WO2021250981A1 - プラズマ処理装置およびプラズマ処理方法 - Google Patents

プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
WO2021250981A1
WO2021250981A1 PCT/JP2021/013262 JP2021013262W WO2021250981A1 WO 2021250981 A1 WO2021250981 A1 WO 2021250981A1 JP 2021013262 W JP2021013262 W JP 2021013262W WO 2021250981 A1 WO2021250981 A1 WO 2021250981A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
ground electrode
plasma
plasma processing
processing apparatus
Prior art date
Application number
PCT/JP2021/013262
Other languages
English (en)
French (fr)
Inventor
英紀 鎌田
太郎 池田
聡 川上
匠 嘉部
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US18/008,008 priority Critical patent/US20230238219A1/en
Publication of WO2021250981A1 publication Critical patent/WO2021250981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • This disclosure relates to a plasma processing apparatus and a plasma processing method.
  • Etching by-products such as polymers are formed on the edges of substrates such as semiconductor wafers, which cause particles in the subsequent process. Therefore, a technique for etching the edges of the substrate has been proposed (for example). Patent Document 1).
  • the present disclosure provides a plasma processing apparatus and a plasma processing method capable of locally generating plasma at the end of a substrate and efficiently treating the end of the substrate with plasma.
  • the plasma processing apparatus is a plasma processing apparatus that plasma-treats the end portion of the substrate, and is a portion of the processing container excluding at least the end portion of the substrate to be plasma-treated.
  • a substrate support member whose side surface is at least made of a dielectric, and a counter-dielectric member which is made of a dielectric and is provided so as to face the substrate support member, while a high-frequency power is applied to support the substrate support member.
  • a side ground electrode provided on the side of the board supported by the board support member, close to the board to such an extent that an electrical bond is generated with the end face of the board, and having a ground potential.
  • At least at the end of the substrate there is a gas supply unit that supplies a processing gas for generating plasma.
  • a plasma processing apparatus and a plasma processing method capable of locally generating plasma at the end of a substrate and efficiently treating the end of the substrate with plasma are provided.
  • FIG. 1 is a cross-sectional view schematically showing a plasma processing apparatus according to a first embodiment.
  • the plasma processing apparatus 100 is configured to perform plasma processing on the end portion of a substrate such as a semiconductor wafer. Specifically, deposits such as a polymer existing at the end of the substrate are removed by plasma etching.
  • the plasma processing device 100 includes a processing container 1, a substrate mounting table 2, a high-frequency power supply 10, an upper dielectric member 15, a side ground electrode 18, an exhaust device 30, a gas supply unit 40, and a control unit 50. And have.
  • the processing container 1 is made of a metal such as aluminum, and a substrate mounting table 2, an upper dielectric member 15, a side ground electrode 18, and the like are housed therein.
  • the processing container 1 is grounded.
  • the substrate mounting table 2 is for mounting the substrate W, and is configured as a substrate supporting member that supports at least a portion of the substrate W excluding the end portion to be plasma-processed, and has an insulator on the bottom portion in the processing container 1. It is provided via a spacer 3 made of.
  • the substrate mounting table 2 has a base material 5 made of a metal such as aluminum, and an outer peripheral dielectric member 7 that covers the outer peripheral portions of the base material 5 and the spacer 3.
  • the base material 5 can be separated into a large-diameter lower member 5a and a small-diameter upper member 5b, and the upper member 5b can be replaced.
  • the outside of the portion corresponding to the lower member 5a and the spacer 3 of the outer peripheral dielectric member 7 is covered with a metal cover 8 extending from the bottom wall of the processing container 1.
  • An electrostatic chuck 6 for electrostatically adsorbing the substrate W is provided on the upper surface of the base material 5.
  • an elevating pin (not shown) for transferring the board W is provided so as to be retractable with respect to the upper surface.
  • the base material 5 of the substrate mounting table 2 is not limited to metal, but may be a dielectric such as ceramics having a high frequency electrode inside.
  • the substrate mounting table 2 is a dielectric, it is not necessary to provide the outer peripheral dielectric member. That is, at least the side surface portion of the substrate mounting table 2 may be made of a dielectric. This makes it possible to prevent an extra electric field from leaking from the substrate mounting table 2 to which high frequency power is supplied.
  • the substrate W may be placed directly on the base material 5 without providing the electrostatic chuck 6. Further, in the figure, the substrate mounting table 2 is drawn so as to be fixed to the processing container 1, but it is preferable that the substrate mounting table 2 is provided so as to be able to move up and down in consideration of loading and unloading of the substrate W.
  • the high frequency power supply 10 is connected to the base material 5 of the substrate mounting table 2 via the matching unit 11. As a result, high frequency power is supplied to the base material 5. Further, when the base material of the substrate mounting table 2 is made of a dielectric material such as ceramics, an electrode can be provided inside the base material so that high frequency power can be supplied to the electrode.
  • the upper dielectric member 15 is provided facing the substrate mounting table in order to suppress the generation of plasma in the central portion of the substrate W, and is configured as an opposed dielectric member.
  • the upper dielectric member 15 is made of a dielectric such as alumina, is supported by the top wall of the processing container 1, and is provided above the substrate mounting table 2 so as to face the substrate mounting table 2 in close proximity to the substrate mounting table 2.
  • the distance between the substrate W mounted on the substrate mounting table 2 and the upper dielectric member 15 is preferably about 1 mm or less, more preferably 0.1 to 1 mm.
  • the side ground electrode 18 is provided on the side (outside) of the substrate W supported by the substrate mounting table 2 and has a ring shape.
  • the side ground electrode 18 extends from a metal ring member 16 provided around the upper dielectric member 15 so as to be supported by the top wall of the processing container 1, and has a ground potential similar to that of the processing container 1. ing.
  • the side ground electrode 18 functions as a counter electrode of the substrate mounting table 2 (base material 5) to which high-frequency power is applied, and the substrate W is to the extent that electrical coupling via plasma is generated between the side electrode 18 and the end face of the substrate W. It is installed in a position close to. Details of the side ground electrode 18 will be described later.
  • An exhaust port 11 is formed on the bottom wall of the processing container 1, and the exhaust port 11 is provided with an exhaust device 30 having a vacuum pump, an automatic pressure control valve, and the like via an exhaust pipe 31.
  • the inside of the processing container 1 is exhausted by the exhaust device 30, and the vacuum pressure is controlled to a predetermined value.
  • the gas supply unit 40 supplies an etching gas such as CF 4 gas and an inert gas such as Ar gas to the substrate W.
  • a first gas pipe 41 and a second gas pipe 42 extend from the gas supply unit 40.
  • the first gas pipe 41 is connected to a first gas flow path 43 provided in the center of the top wall of the processing container 1 and the upper dielectric member 15.
  • the second gas pipe 42 is connected to a plurality of second gas flow paths 44 provided at the top wall of the processing container 1 and the end portions of the upper dielectric member 15.
  • the inert gas is supplied from the gas supply unit 40 to the central portion of the substrate W via the first gas pipe 41 and the first gas flow path 43, and via the second gas pipe 42 and the second gas flow path 44.
  • Etching gas is supplied to the end portion of the substrate W.
  • the flow of the inert gas is formed from the center of the substrate W toward the end portion, so that the etching gas is prevented from entering the center side of the substrate W.
  • the control unit 50 is composed of a computer including a CPU and a storage unit, and controls the high frequency power supply 10, the exhaust device 30, the gas supply unit 40, etc., which are the components of the plasma processing device 100.
  • the control unit 50 causes each component of the plasma processing device 100 to execute a predetermined operation based on the processing recipe stored in the storage medium of the storage unit.
  • An insulating member 19 is provided on the outer peripheral portion of the bottom portion of the processing container 1 so as to surround the spacer 3 and the substrate mounting table 2. Further, a carry-in outlet (not shown) for carrying in and out the substrate W is provided on the side wall of the processing container 1, and the carry-in outlet can be opened and closed by a gate valve (not shown).
  • the side ground electrode 18 As described above, the side ground electrode 18 is provided on the side (outside) of the substrate W. Then, the side ground electrode 18 functions as a counter electrode of the substrate mounting table 2 to which high frequency power is supplied, and as shown in FIG. 2, an electric coupling is generated between the side ground electrode 18 and the end surface of the substrate W via plasma. It is provided at a position close to the substrate W and has a function of concentrating an electric field with the end face of the substrate W. As a result, the electric field in the central portion of the substrate W can be suppressed, and the generation of extra plasma in the central portion of the substrate W can be suppressed. FIG.
  • FIG. 3 is a diagram showing the electromagnetic field simulation results of the portion including the end portion of the substrate W and the side ground electrode 18. From this figure, by providing the side ground electrode 18 at an appropriate position near the side (outside) of the substrate W, an electric coupling is generated with the substrate W, and an electric field is particularly applied to the end surface of the substrate W. It can be seen that the state is concentrated.
  • the electric field strength at the end facing the side ground electrode 18 of the substrate W is set to V1, and the upper dielectric member 15 and the surface of the substrate W are connected to each other.
  • V2 the maximum electric field strength between them
  • the side ground electrode 18 is arranged at a position where
  • is determined by the position of the side ground electrode 18, for example, the relationship between the horizontal distance ⁇ r between the end face of the substrate W and the side ground electrode 18 and
  • s, and it can be seen that the smaller ⁇ r is, the smaller the value of s is.
  • the distance ⁇ z between the height position at the center of the substrate W in the thickness direction and the height position at the tip of the side ground electrode 18 also affects the value of
  • the downward direction is the positive direction
  • the upward direction is the negative direction. do.
  • the side ground electrode 18 moves away from the substrate W, and the value of
  • FIG. 6 is a diagram showing the electromagnetic field simulation results showing the relationship between the values of ⁇ r and ⁇ z and
  • s.
  • s ⁇ 1 can be satisfied if at least ⁇ r is 3 mm or less, or at least ⁇ z is -1 mm or more.
  • s ⁇ 0.7 can be satisfied if at least ⁇ r is 1 mm or less, or at least ⁇ z is 0 mm or more, and s ⁇ 0.5 is satisfied if at least ⁇ r is 0.5 mm or less or ⁇ z is 1 mm or more. Can be done.
  • the substrate W is carried into the processing container 1 from an inlet (not shown), and the substrate W is placed on the substrate mounting table 2.
  • the pressure inside the processing container 1 is set to a predetermined vacuum pressure by the exhaust device 30, and the inert gas and the etching gas are supplied from the gas supply unit 40.
  • the end of the substrate W is supplied through the second gas pipe 42 and the second gas flow path 44.
  • the etching gas is supplied to the part.
  • an inert gas flow is formed from the center to the end of the substrate W, so that the etching gas is prevented from entering the center side of the substrate W, and the etching gas should mainly perform plasma treatment. It is supplied to the end of the substrate W.
  • the side ground electrode 18 mainly functions as a counter electrode, local plasma is generated at the end of the substrate W, and only deposits such as a polymer at the end of the substrate W are removed by etching.
  • the side ground electrode 18 is provided at a position close to the substrate W to such an extent that an electrical coupling is generated with the end face of the substrate W, and has a function of concentrating an electric field with the end face of the substrate W. Therefore, it is possible to suppress the electric field in the central portion of the substrate W and suppress the generation of extra plasma in the central portion of the substrate W. Therefore, plasma can be locally generated only at the end portion of the substrate W, and the end portion of the substrate W can be efficiently etched.
  • the arrangement position of the side ground electrode 18 is adjusted so as to satisfy
  • the electrical coupling with the substrate W is increased, and the function of concentrating the electric field can be enhanced. This makes it possible to enhance the effect of suppressing the electric field in the central portion of the substrate W and suppressing the generation of excess plasma in the central portion of the substrate W.
  • the side ground electrode 18 is provided on the side (outside) of the substrate W, it is particularly suitable for the treatment of removing the deposits on the bevel portion of the end surface of the substrate W.
  • the side ground electrode 18 extends from a metal ring member 16 provided around the upper dielectric member 15 so as to be supported by the top wall of the processing container 1.
  • the present invention is not limited to this, and any place may be connected as long as it has a ground potential.
  • FIG. 7 is a cross-sectional view schematically showing the plasma processing apparatus according to the second embodiment.
  • the plasma processing apparatus 101 of the present embodiment has the same basic configuration as that of FIG. 1 of the first embodiment, but has a lower ground electrode 51 instead of the side ground electrode 18 in that the plasma of FIG. 1 is provided. It is different from the processing device 100.
  • the lower ground electrode 51 extends from a metal cover 8 provided so as to be in contact with the bottom wall of the processing container 1, is provided in a ring shape so as to surround the outer peripheral dielectric member 7, and is provided on the back surface end portion of the substrate W. It is provided so as to be close to the position directly below, and is grounded via the cover 8 and the processing container 1. Further, since the lower ground electrode 51 is provided on the outer peripheral side of the outer peripheral dielectric member 7 and is insulated from the base material 5, it functions as a counter electrode of the base material 5 that functions as a high frequency application electrode. Then, as shown in FIG.
  • the lower ground electrode 51 is provided at a position close to the substrate W to such an extent that an electric coupling is generated between the lower ground electrode 51 and the back surface end portion of the substrate W, and the lower ground electrode 51 is provided with the back surface end portion of the substrate W. In between, it has the function of concentrating the electric field through a dielectric or space. As a result, the electric field in the central portion of the substrate W can be suppressed, and the generation of extra plasma in the central portion of the substrate W can be suppressed.
  • the distance between the lower ground electrode 51 and the back surface of the substrate W is preferably 0.5 to 3 mm.
  • a ring-shaped dielectric member 52 made of alumina or the like is provided between the lower ground electrode 51 and the substrate W.
  • the ring-shaped dielectric member 52 can suppress the intrusion of plasma into the back surface side of the substrate W.
  • the ring-shaped dielectric member 52 is provided as an independent member, but it can also be provided as a part of the electrostatic chuck 6 or a part of the outer peripheral dielectric member 7, and these forms are also rings. It is included as a form of the dielectric member 52.
  • the lower ground electrode 51 is provided at a position directly below the back surface end portion of the substrate W and at a position close to the substrate W to such an extent that an electrical coupling is generated with the end surface of the substrate W. It has a function of concentrating an electric field between the substrate W and the back surface end portion. Therefore, it is possible to suppress the generation of extra plasma in the central portion of the substrate W. Further, by providing the ring-shaped dielectric member 52 made of alumina or the like between the lower ground electrode 51 and the substrate W, it is possible to suppress the intrusion of plasma into the back surface side of the substrate W. As a result, the plasma can be concentrated on the end portion of the substrate W.
  • the lower ground electrode 51 is provided so as to be close to the position directly below the back surface end portion of the substrate W, and is therefore particularly suitable for the treatment of removing deposits on the back surface end portion of the substrate W. ..
  • the lower ground electrode 51 extends upward along the upper part of the outer peripheral dielectric member 7 from the metal cover 8 provided so as to be in contact with the bottom wall of the processing container 1.
  • the present invention is not limited to this, and any connection may be made as long as it has a ground potential.
  • FIG. 9 is a cross-sectional view schematically showing the plasma processing apparatus according to the third embodiment.
  • the plasma processing device 102 of the present embodiment has the same basic configuration as the plasma processing device 100 shown in FIG. 1, but grounds both the side ground electrode 18 and the lower ground electrode 51 used in the second embodiment. It differs from the plasma processing apparatus 100 of FIG. 1 in that it has an electrode.
  • both the side ground electrode 18 and the lower ground electrode 51 function as counter electrodes of the base material 5 that function as high frequency application electrodes, and as shown in FIG. 10, the end face and the back surface end of the substrate W, respectively. It is provided at a position close to the substrate W to such an extent that an electrical bond is generated between the portions.
  • the side ground electrode 18 and the lower ground electrode 51 have a function of concentrating an electric field between the end surface and the back surface end of the substrate, respectively. This has the effect of suppressing the electric field in the central portion of the substrate W and suppressing the generation of extra plasma in the central portion of the substrate W, as compared with the case where the side ground electrode 18 or the lower ground electrode 51 is provided alone. Can be enhanced. Further, since local plasma can be formed in the vicinity of the surface facing the side ground electrode 18 and the surface facing the lower ground electrode 51 in the substrate W, the end surface (bevel portion) and the back surface end portion of the substrate W can be formed. The deposits can be efficiently removed.
  • the side ground electrode 18 and the lower ground electrode 51 may be connected anywhere as long as they have a ground potential, and the side ground electrode 18 and the lower ground electrode 51 may be connected.
  • high frequency power is applied to the substrate mounting table to generate plasma at the end of the substrate, but the present invention is not limited to this.
  • an example of plasma etching the end portion of the substrate is shown, but other plasma processing may be used.
  • the semiconductor wafer is exemplified as the substrate, but the present invention is not limited to this, and other substrates such as an FPD (flat panel display) substrate and a ceramic substrate may be used.
  • processing container, 2 substrate mount, 5; substrate, 6; electrostatic chuck, 7; outer peripheral dielectric member, 10; high frequency power supply, 15; upper dielectric member, 18; side ground electrode, 51; Lower ground electrode, 52; Ring-shaped dielectric member, 100, 101, 102; Plasma processing device, W; Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板の端部をプラズマ処理するプラズマ処理装置は、処理容器と、処理容器内で、基板の少なくともプラズマ処理すべき端部を除いた部分を支持し、高周波電力が印加されるとともに、少なくとも側面が誘電体で構成されている基板支持部材と、誘電体で構成され、基板支持部材に対向して設けられた対向誘電体部材と、基板支持部材に支持された基板の側方の、基板の端面との間に電気的結合が生じる程度に基板に近接した位置に設けられ、接地電位を有する側方接地電極と、少なくとも前記基板の端部にプラズマを生成するための処理ガスを供給するガス供給部とを有する。

Description

プラズマ処理装置およびプラズマ処理方法
 本開示は、プラズマ処理装置およびプラズマ処理方法に関する。
 半導体ウエハ等の基板の端部には、ポリマー等のエッチング副生成物が形成され、それが後工程でのパーティクルの原因となることから、基板端部をエッチングする技術が提案されている(例えば特許文献1)。
特表2010-531538号公報
 本開示は、基板の端部に局所的にプラズマを生成して効率良く基板の端部をプラズマ処理できるプラズマ処理装置およびプラズマ処理方法を提供する。
 本開示の一態様に係るプラズマ処理装置は、基板の端部をプラズマ処理するプラズマ処理装置であって、処理容器と、前記処理容器内で、基板の少なくともプラズマ処理すべき端部を除いた部分を支持し、高周波電力が印加されるとともに、少なくとも側面が誘電体で構成されている基板支持部材と、誘電体で構成され、前記基板支持部材に対向して設けられた対向誘電体部材と、前記基板支持部材に支持された前記基板の側方の、前記基板の端面との間に電気的結合が生じる程度に前記基板に近接した位置に設けられ、接地電位を有する側方接地電極と、少なくとも前記基板の端部にプラズマを生成するための処理ガスを供給するガス供給部と、を有する。
 本開示によれば、基板の端部に局所的にプラズマを生成して効率良く基板の端部をプラズマ処理できるプラズマ処理装置およびプラズマ処理方法が提供される。
第1の実施形態に係るプラズマ処理装置を概略的に示す断面図である。 第1の実施形態に係るプラズマ処理装置の要部を拡大して示す断面図である。 第1の実施形態に係るプラズマ処理装置の基板端部と側方接地電極を含む部分の電磁界シミュレーション結果を示す図である。 電界強度V1およびV2を説明するための図である。 基板の端面と側方接地電極の水平方向の距離Δrと|V2/V1|=sとの関係を示す図である。 ΔrおよびΔzの値と|V2/V1|=sとの関係を示す電磁界シミュレーション結果を示す図である。 第2の実施形態に係るプラズマ処理装置を概略的に示す断面図である。 第2の実施形態に係るプラズマ処理装置の要部を拡大して示す断面図である。 第3の実施形態に係るプラズマ処理装置を概略的に示す断面図である。 第3の実施形態に係るプラズマ処理装置の要部を拡大して示す断面図である。
 以下、添付図面を参照して実施形態について説明する。
 <第1の実施形態>
 まず、第1の実施形態について説明する。
 図1は、第1の実施形態に係るプラズマ処理装置を概略的に示す断面図である。
 プラズマ処理装置100は、半導体ウエハ等の基板の端部をプラズマ処理するものとして構成される。具体的には、基板の端部に存在するポリマー等の付着物をプラズマエッチングにより除去する。プラズマ処理装置100は、処理容器1と、基板載置台2と、高周波電源10と、上方誘電体部材15と、側方接地電極18と、排気装置30と、ガス供給部40と、制御部50とを有する。
 処理容器1は、アルミニウム等の金属からなり、その中に基板載置台2、上方誘電体部材15、側方接地電極18等が収容されている。処理容器1は接地されている。
 基板載置台2は、基板Wが載置されるものであり、少なくとも基板Wのプラズマ処理すべき端部を除いた部分を支持する基板支持部材として構成され、処理容器1内の底部に絶縁体からなるスペーサ3を介して設けられている。基板載置台2は、例えばアルミニウム等の金属からなる基材5と、基材5およびスペーサ3の外周部を覆う外周誘電体部材7とを有する。基材5は大径の下部部材5aと、小径の上部部材5bとに分離可能となっており、上部部材5bが交換可能となっている。外周誘電体部材7の下部部材5aおよびスペーサ3に対応する部分の外側は、処理容器1の底壁から延びる金属製のカバー8で覆われている。基材5の上面には基板Wを静電吸着するための静電チャック6が設けられている。基板載置台2の内部には、基板Wの受け渡しのための昇降ピン(図示せず)が上面に対して突没可能に設けられている。
 基板載置台2の基材5は、金属に限らず内部に高周波電極を有したセラミックス等の誘電体であってもよい。基板載置台2が誘電体の場合には、外周誘電体部材は設けなくともよい。すなわち、基板載置台2は少なくとも側面部分が誘電体で構成されていればよい。これにより、高周波電力が供給される基板載置台2から余分な電界が漏出することを防止することができる。
 なお、静電チャック6を設けずに基材5上に基板Wを直接載置するようにしてもよい。また、図では基板載置台2は処理容器1に固定されているように描かれているが、基板Wの搬入出を考慮して昇降可能に設けられていることが好ましい。
 高周波電源10は、整合器11を介して基板載置台2の基材5に接続されている。これにより、基材5に高周波電力が供給される。また、基板載置台2の基材がセラミックス等の誘電体で構成されている場合は、基材の内部に電極を設け、その電極に高周波電力を供給するようにすることができる。
 上方誘電体部材15は、基板Wの中央部でのプラズマの生成を抑制するために基板載置台に対向して設けられ、対向誘電体部材として構成される。上方誘電体部材15はアルミナ等の誘電体で構成され、処理容器1の天壁に支持され、基板載置台2の上方に基板載置台2に近接して対向するように設けられている。基板載置台2に載置された基板Wと上方誘電体部材15との間の距離は、1mm以下程度が好ましく、0.1~1mmがより好ましい。
 側方接地電極18は、基板載置台2に支持された基板Wの側方(外方)に設けられ、リング状をなしている。側方接地電極18は、上方誘電体部材15の周囲に処理容器1の天壁に支持されるように設けられた金属製リング部材16から延びており、処理容器1と同様に接地電位となっている。側方接地電極18は、高周波電力が印加される基板載置台2(基材5)の対向電極として機能し、基板Wの端面との間にプラズマを介した電気的結合が生じる程度に基板Wに近接した位置に設けられる。側方接地電極18の詳細は後述する。
 処理容器1の底壁には排気口11が形成されており、排気口11には排気管31を介して、真空ポンプや自動圧力制御バルブ等を有する排気装置30が設けられている。排気装置30により処理容器1内が排気されるとともに、予め定められた真空圧力に制御される。
 ガス供給部40は、基板Wに対してCFガス等のエッチングガスおよびArガス等の不活性ガスを供給するものである。ガス供給部40からは第1ガス配管41および第2ガス配管42が延びている。第1ガス配管41は、処理容器1の天壁および上方誘電体部材15の中央に設けられた第1ガス流路43に接続されている。また、第2ガス配管42は、処理容器1の天壁および上方誘電体部材15の端部に複数設けられた第2ガス流路44に接続されている。そして、ガス供給部40から、第1ガス配管41および第1ガス流路43を介して基板Wの中央部に不活性ガスが供給され、第2ガス配管42および第2ガス流路44を介して基板Wの端部にエッチングガスが供給される。これにより、基板Wの中央から端部に向けて不活性ガスの流れが形成されるため、エッチングガスが基板Wの中央側に侵入することが阻止される。
 制御部50は、CPUおよび記憶部等を備えたコンピュータで構成されており、プラズマ処理装置100の構成部である高周波電源10、排気装置30、ガス供給部40等を制御する。制御部50は、記憶部の記憶媒体に記憶された処理レシピに基づいて、プラズマ処理装置100の各構成部に予め定められた動作を実行させる。
 処理容器1内の底部外周部には、スペーサ3および基板載置台2を囲むように絶縁部材19が設けられている。また、処理容器1の側壁には、基板Wを搬入および搬出するための搬入出口(図示せず)が設けられており、搬入出口はゲートバルブ(図示せず)で開閉可能となっている。
 次に、側方接地電極18について詳細に説明する。
 上述したように、側方接地電極18は、基板Wの側方(外方)に設けられる。そして、側方接地電極18は、高周波電力が供給される基板載置台2の対向電極として機能し、図2に示すように、基板Wの端面との間にプラズマを介した電気的結合が生じる程度に基板Wに近接した位置に設けられ、基板Wの端面との間に電界を集中させる機能を有する。これにより、基板Wの中央部の電界を抑制し、基板Wの中央部での余分なプラズマの発生を抑制することができる。図3は、基板Wの端部と側方接地電極18とを含む部分の電磁界シミュレーション結果を示す図である。この図から、基板Wの側方(外方)近傍の適切な位置に側方接地電極18を設けることにより、基板Wとの間に電気的結合が生じて、特に基板Wの端面に電界が集中した状態となることがわかる。
 このような機能を有効に発揮させるためには、図4に示すように、基板Wの側方接地電極18との対向端の電界強度をV1とし、上方誘電体部材15と基板W表面との間の最大の電界強度をV2とした場合に、側方接地電極18が|V2/V1|<1となるような位置に配置されることが好ましい。これにより、基板Wの端面と側方接地電極18との間に電界を集中させる機能がより効果的に発揮され、基板Wの中央部の電界を抑制する効果を高めることができる。
 このような効果は、|V2/V1|の値が小さいほど大きくなり、|V2/V1|≦0.7がより好ましく、|V2/V1|≦0.5が一層好ましい。
 |V2/V1|の値は、側方接地電極18の位置により決まり、例えば、基板Wの端面と側方接地電極18との水平方向の距離Δrと|V2/V1|との関係は図5の電磁界シミュレーション結果に示すようになる。図5では、|V2/V1|=sとして表しており、Δrが小さくなるほどsの値が小さくなっていることがわかる。
 また、基板Wの厚さ方向中心の高さ位置と側方接地電極18の先端の高さ位置との距離Δzも|V2/V1|の値に影響を与える。例えば、側方接地電極18の先端の高さ位置が基板Wの厚さ方向中心の高さ位置に一致する位置にある場合をΔz=0とし、下方向をプラス方向、上方向をマイナス方向とする。この場合は、Δzが0からマイナス方向にいくに従って側方接地電極18が基板Wから離れていき、|V2/V1|の値が大きくなる傾向となる。
 図6は、ΔrおよびΔzの値と|V2/V1|=sとの関係を示す電磁界シミュレーション結果を示す図である。この図に示すように、少なくともΔrが3mm以下、または少なくともΔzが-1mm以上であればs<1を満たすことができる。また、少なくともΔrが1mm以下、または少なくともΔzが0mm以上であればs≦0.7を満たすことができ、少なくともΔrが0.5mm以下、またはΔzが1mm以上でs≦0.5を満たすことができる。
 このように構成されるプラズマ処理装置においては、図示しない搬入出口から基板Wを処理容器1内に搬入し、基板Wを基板載置台2上に載置する。排気装置30により処理容器1内の圧力を予め定められた真空圧力とし、ガス供給部40から不活性ガスおよびエッチングガスを供給する。このとき、第1ガス配管41および第1ガス流路43を介して基板Wの中央に不活性ガスを供給しつつ、第2ガス配管42および第2ガス流路44を介して基板Wの端部にエッチングガスを供給する。
 これにより、基板Wの中央から端部に向けて不活性ガスの流れが形成されるので、エッチングガスが基板Wの中央側に侵入することが阻止され、エッチングガスが主にプラズマ処理をすべき基板Wの端部に供給される。
 この状態で、高周波電源10から基板載置台2の基材5に高周波電力を供給する。これにより、主に側方接地電極18が対向電極として機能し、基板Wの端部に局所的なプラズマが生成され、基板Wの端部のポリマー等の付着物のみがエッチング除去される。
 このとき、側方接地電極18は、基板Wの端面との間に電気的結合を生じる程度に基板Wに近接した位置に設けられ、基板Wの端面との間に電界を集中させる機能を有するので、基板Wの中央部の電界を抑制して基板Wの中央部での余分なプラズマの発生を抑制することができる。このため、基板Wの端部のみに局所的にプラズマを生成することができ、効率良く基板Wの端部のエッチングを行うことができる。
 特に、側方接地電極18の配置位置を、|V2/V1|<1、より好ましくは|V2/V1|≦0.7、一層好ましくは|V2/V1|≦0.5を満たすように調整することにより、基板Wとの間の電気的結合が増大し電界を集中させる機能を高めることができる。これにより、基板Wの中央部の電界を抑制して基板Wの中央部での余分なプラズマの発生を抑制する効果を高めることができる。
 第1の実施形態では、側方接地電極18は、基板Wの側方(外方)に設けられているので、特に基板W端面のベベル部の付着物除去処理に適している。
 なお、上記例では、側方接地電極18は、上方誘電体部材15の周囲に処理容器1の天壁に支持されるように設けられた金属製リング部材16から延びている例を示しているが、これに限らず、接地電位となっていれば、どこに接続されていてもよい。
 <第2の実施形態>
 次に、第2の実施形態について説明する。
 図7は、第2の実施形態に係るプラズマ処理装置を概略的に示す断面図である。
 本実施形態のプラズマ処理装置101は、基本構成は第1の実施形態の図1と同じであるが、側方接地電極18の代わりに下方接地電極51を有している点が図1のプラズマ処理装置100とは異なっている。
 下方接地電極51は、処理容器1の底壁に接触するように設けられた金属製のカバー8から延び、外周誘電体部材7を取り囲むようにリング状に設けられ、基板Wの裏面端部の直下位置に近接するよう設けられており、カバー8および処理容器1を介して接地されている。また、下方接地電極51は外周誘電体部材7のさらに外周側に設けられ、基材5と絶縁されているので、高周波印加電極として機能する基材5の対向電極として機能する。そして、図8に示すように、下方接地電極51は、基板Wの裏面端部との間に電気的結合が生じる程度に基板Wに近接した位置に設けられ、基板Wの裏面端部との間に、誘電体または空間を介して電界を集中させる機能を有する。これにより、基板Wの中央部の電界を抑制し、基板Wの中央部での余分なプラズマの発生を抑制することができる。下方接地電極51と基板Wの裏面との間の距離は、0.5~3mmであることが好ましい。
 また、下方接地電極51と基板Wとの間には、アルミナ等からなるリング状誘電体部材52が設けられている。リング状誘電体部材52により、基板Wの裏面側へのプラズマの侵入を抑制することができる。なお、本例ではリング状誘電体部材52を独立した部材として設けているが、静電チャック6の一部や外周誘電体部材7の一部として設けることも可能であり、これらの形態もリング状誘電体部材52の形態として含まれる。
 このように、本実施形態では、下方接地電極51は、基板Wの裏面端部の直下位置に、基板Wの端面との間に電気的結合が生じる程度に基板Wに近接した位置に設けられ、基板Wの裏面端部との間に電界を集中させる機能を有する。このため、基板Wの中央部での余分なプラズマの発生を抑制することができる。また、下方接地電極51と基板Wとの間に、アルミナ等からなるリング状誘電体部材52が設けられることにより、基板Wの裏面側へのプラズマの侵入を抑制することができる。これらにより、プラズマを基板Wの端部に集中させることができる。
 第2の実施形態においては、下方接地電極51は、基板Wの裏面端部の直下位置に近接するように設けられているので、特に基板Wの裏面端部の付着物除去処理に適している。
 なお、上記例では、下方接地電極51は、処理容器1の底壁に接触するように設けられた金属製のカバー8から外周誘電体部材7の上部に沿って上方に延びている例を示しているが、これに限らず、接地電位となっていれば、どこに接続されていてもよい。
 <第3の実施形態>
 次に、第3の実施形態について説明する。
 図9は、第3の実施形態に係るプラズマ処理装置を概略的に示す断面図である。
 本実施形態のプラズマ処理装置102は、基本構成は、図1に示すプラズマ処理装置100と同じであるが、側方接地電極18と第2の実施形態で用いた下方接地電極51の両方の接地電極を有している点が図1のプラズマ処理装置100とは異なっている。
 側方接地電極18と下方接地電極51の両方を設けることにより、これらが高周波印加電極として機能する基材5の対向電極として機能し、図10に示すように、それぞれ基板Wの端面および裏面端部との間に電気的結合が生じる程度に基板Wに近接した位置に設けられる。そして、側方接地電極18と下方接地電極51は、それぞれ基板の端面および裏面端部との間に電界を集中させる機能を有する。これにより、側方接地電極18または下方接地電極51を単独で設ける場合よりも、基板Wの中央部の電界を抑制して、基板Wの中央部での余分なプラズマの発生を抑制する効果をより高めることができる。また、基板Wにおける側方接地電極18との対向面および下方接地電極51との対向面の近傍に局部的なプラズマを形成することができるので、基板Wの端面(ベベル部)および裏面端部の付着物を効率良く除去することができる。
 なお、側方接地電極18および下方接地電極51は、接地電位となっていればどこに接続されていてもよく、また、側方接地電極18と下方接地電極51が接続されていてもよい。
 <他の適用>
 以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 例えば、上記実施形態では、基板載置台に高周波電力を印加して基板の端部にプラズマを生成するようにしたが、これに限るものではない。また、上記実施形態では、基板の端部をプラズマエッチングする例を示したが、他のプラズマ処理であってもよい。さらに、上記実施形態では、基板として半導体ウエハを例示したが、これに限るものではなく、FPD(フラットパネルディスプレイ)基板や、セラミックス基板等の他の基板であってもよい。
 1;処理容器、2;基板載置台、5;基材、6;静電チャック、7;外周誘電体部材、10;高周波電源、15;上方誘電体部材、18;側方接地電極、51;下方接地電極、52;リング状誘電体部材、100,101,102;プラズマ処理装置、W;基板

Claims (11)

  1.  基板の端部をプラズマ処理するプラズマ処理装置であって、
     処理容器と、
     前記処理容器内で、基板の少なくともプラズマ処理すべき端部を除いた部分を支持し、高周波電力が印加されるとともに、少なくとも側面が誘電体で構成されている基板支持部材と、
     誘電体で構成され、前記基板支持部材に対向して設けられた対向誘電体部材と、
     前記基板支持部材に支持された前記基板の側方の、前記基板の端面との間に電気的結合が生じる程度に前記基板に近接した位置に設けられ、接地電位を有する側方接地電極と、
     少なくとも前記基板の端部にプラズマを生成するための処理ガスを供給するガス供給部と、
    を有する、プラズマ処理装置。
  2.  前記基板の前記側方接地電極との対向端の電界強度をV1とし、前記対向誘電体部材と前記基板表面との間の最大の電界強度をV2とした場合に、前記側方接地電極が|V2/V1|<1となるような位置に配置される、請求項1に記載のプラズマ処理装置。
  3.  前記基板の端面と前記側方接地電極との水平方向の距離Δrが3mm以下である、請求項2に記載のプラズマ処理装置。
  4.  前記基板の厚さ方向中心の高さ位置と前記側方接地電極の先端との高さ位置が一致する場合をΔz=0とし、下方向をプラス方向、上方向をマイナス方向とした場合の高さ方向の距離Δzが-1mm以上である、請求項2または請求項3に記載のプラズマ処理装置。
  5.  前記側方接地電極が|V2/V1|<0.7となるような位置に配置される、請求項2に記載のプラズマ処理装置。
  6.  前記側方接地電極が|V2/V1|<0.5となるような位置に配置される、請求項5に記載のプラズマ処理装置。
  7.  前記基板支持部材を取り囲むようにリング状に設けられ、前記基板の裏面端部の下方の、前記基板の裏面端部との間に電気的結合が生じる程度に前記基板に近接した位置に設けられ、接地電位を有する下方接地電極をさらに有する、請求項1から請求項6のいずれか一項に記載のプラズマ処理装置。
  8.  前記下方接地電極と前記基板の裏面の間に介在されたリング状誘電体部材をさらに有する、請求項7に記載のプラズマ処理装置。
  9.  基板の端部をプラズマ処理するプラズマ処理装置であって、
     処理容器と、
     前記処理容器内で、基板の少なくともプラズマ処理すべき端部を除いた部分を支持し、高周波電力が印加されるとともに、少なくとも側面が誘電体で構成されている基板支持部材と、
     誘電体で構成され、前記基板支持部材に対向して設けられた対向誘電体部材と、
    前記基板支持部材を取り囲むようにリング状に設けられ、前記基板の裏面端部の下方の、前記基板の裏面端部との間に電気的結合が生じる程度に前記基板に近接した位置に設けられ、接地電位を有する下方接地電極と、
     少なくとも前記基板の端部にプラズマを生成するための処理ガスを供給するガス供給部と、
    を有する、プラズマ処理装置。
  10.  前記下方接地電極と前記基板の裏面の間に介在されたリング状誘電体部材をさらに有する、請求項9に記載のプラズマ処理装置。
  11.  請求項1から請求項10のいずれか一項に記載のプラズマ処理装置を用いるプラズマ処理方法であって、
     前記基板支持部材上に基板を支持させることと、
     少なくとも前記基板の端部にプラズマを生成するための処理ガスを供給することと、
     前記基板支持部に高周波電力を供給して、前記基板の端部をプラズマ処理することと、
    を有するプラズマ処理方法。
PCT/JP2021/013262 2020-06-11 2021-03-29 プラズマ処理装置およびプラズマ処理方法 WO2021250981A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/008,008 US20230238219A1 (en) 2020-06-11 2021-03-29 Plasma processing apparatus and plasma processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101678A JP2021197244A (ja) 2020-06-11 2020-06-11 プラズマ処理装置およびプラズマ処理方法
JP2020-101678 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021250981A1 true WO2021250981A1 (ja) 2021-12-16

Family

ID=78845484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013262 WO2021250981A1 (ja) 2020-06-11 2021-03-29 プラズマ処理装置およびプラズマ処理方法

Country Status (3)

Country Link
US (1) US20230238219A1 (ja)
JP (1) JP2021197244A (ja)
WO (1) WO2021250981A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253263A (ja) * 2008-04-03 2009-10-29 Tes Co Ltd プラズマ処理装置
JP2010531538A (ja) * 2007-03-05 2010-09-24 ラム リサーチ コーポレーション 電力が可変であるエッジ電極

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531538A (ja) * 2007-03-05 2010-09-24 ラム リサーチ コーポレーション 電力が可変であるエッジ電極
JP2009253263A (ja) * 2008-04-03 2009-10-29 Tes Co Ltd プラズマ処理装置

Also Published As

Publication number Publication date
US20230238219A1 (en) 2023-07-27
JP2021197244A (ja) 2021-12-27

Similar Documents

Publication Publication Date Title
CN109216148B (zh) 等离子体处理装置
JP6869034B2 (ja) プラズマ処理装置
KR101677239B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101061673B1 (ko) 플라즈마 처리 장치와 플라즈마 처리 방법 및 기억 매체
JP5317424B2 (ja) プラズマ処理装置
KR102374521B1 (ko) 재치대 및 플라즈마 처리 장치
JP5597891B2 (ja) 基板処理装置及び基板処理方法
JP6948822B2 (ja) 基板処理装置及び基板取り外し方法
TWI492294B (zh) Plasma processing device and plasma processing method
KR102302313B1 (ko) 재치대에 피흡착물을 흡착시키는 방법 및 플라즈마 처리 장치
JP5064707B2 (ja) プラズマ処理装置
KR101672856B1 (ko) 플라즈마 처리 장치
CN111584339B (zh) 载置台和等离子体处理装置
KR102070706B1 (ko) 하부 전극 및 플라즈마 처리 장치
KR101898079B1 (ko) 플라즈마 처리 장치
KR20100018454A (ko) 정전 흡착 장치의 제전 처리 방법, 기판 처리 장치, 및 기억 매체
JP7458195B2 (ja) 載置台、プラズマ処理装置及びクリーニング処理方法
JP5432629B2 (ja) バッフル板及びプラズマ処理装置
TW201729649A (zh) 電漿處理方法
TW201909272A (zh) 電漿處理裝置之洗淨方法
WO2021250981A1 (ja) プラズマ処理装置およびプラズマ処理方法
US20150069910A1 (en) Plasma processing method and plasma processing apparatus
JP2022024265A (ja) 基板離脱方法及びプラズマ処理装置
JP6574588B2 (ja) プラズマ処理装置
JP4087674B2 (ja) 半導体製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822125

Country of ref document: EP

Kind code of ref document: A1