WO2021250917A1 - 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置 - Google Patents

検出信号補正方法、モータ制御装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2021250917A1
WO2021250917A1 PCT/JP2020/047702 JP2020047702W WO2021250917A1 WO 2021250917 A1 WO2021250917 A1 WO 2021250917A1 JP 2020047702 W JP2020047702 W JP 2020047702W WO 2021250917 A1 WO2021250917 A1 WO 2021250917A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
detection signal
signal
steering
motor
Prior art date
Application number
PCT/JP2020/047702
Other languages
English (en)
French (fr)
Inventor
優介 西岡
義宏 青崎
浩之 山村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN202080006959.XA priority Critical patent/CN114096324B/zh
Priority to US17/299,884 priority patent/US11338846B2/en
Priority to EP20891422.6A priority patent/EP3957547B1/en
Priority to JP2021512461A priority patent/JP6885531B1/ja
Publication of WO2021250917A1 publication Critical patent/WO2021250917A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1407Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs
    • G01L3/1428Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers
    • G01L3/1435Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving springs using electrical transducers involving magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/221Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to steering wheels, e.g. for power assisted steering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home

Definitions

  • the present invention relates to a detection signal correction method, a motor control device, and an electric power steering device.
  • an electric power steering (EPS) device that assists steering by a motor is known.
  • EPS electric power steering
  • the rotation angle of the motor is calculated based on the sine signal and the cosine signal output from the sensor according to the rotation of the rotation axis of the motor of the electric power steering, and the rotation angle is calculated based on the calculated rotation angle.
  • a motor control device for controlling a motor is disclosed.
  • the motor When the motor is controlled based on the measurement angle including the linearity error (linearity error), vibration of a frequency component that is an integral multiple of the motor rotation cycle included in the linearity error is generated in the motor. If this frequency matches the resonance frequency of the vehicle body, the vehicle may vibrate and be transmitted to the driver as abnormal noise or vibration, which may impair comfort.
  • the present invention has been made in view of such a problem, and a motor that applies steering assist torque to the steering shaft of a vehicle is based on a detection signal output from a sensor according to the rotation of the rotation shaft of the motor. The purpose is to reduce the resonance of the vehicle due to the vibration generated by the motor during control.
  • a sine signal and a cosine signal which are detection signals output from the sensor in response to the rotation of the rotation shaft of the motor that applies steering assist torque to the steering shaft of the vehicle.
  • a detection signal correction method for correcting the signal is given.
  • the rotation angle of the rotating shaft is calculated based on the detection signal
  • the steering speed of the steering shaft is calculated based on the rotation angle
  • the error of the detection signal is calculated
  • the steering speed is equal to or higher than the steering speed threshold value. If there is and the error of the detection signal is equal to or larger than the error threshold value, the error of the detection signal is corrected.
  • a motor control device for a motor that applies steering assist torque to the steering shaft of a vehicle.
  • the motor control device includes a sensor that outputs a detection signal including a sine signal and a cosine signal according to the rotation of the rotation axis of the motor, a rotation angle calculation unit that calculates the rotation angle of the rotation axis based on the detection signal, and rotation.
  • a control unit that controls the motor based on the angle, a steering speed calculation unit that calculates the steering speed of the steering axis based on the rotation angle, an error calculation unit that calculates the error of the detection signal, and the steering speed is equal to or higher than the steering speed threshold.
  • the electric power steering device includes the above-mentioned motor control device and a motor controlled by the motor control device, and the motor applies steering assist torque to the steering shaft of the vehicle.
  • the vibration generated by the motor causes the motor. It is possible to reduce the resonance of the vehicle.
  • FIG. 1 It is a block diagram which shows the outline of an example of the electric power steering apparatus of an embodiment. It is an exploded view which shows the outline of an example of a sensor unit. It is a block diagram which shows the outline of an example of a control device. It is explanatory drawing of an example of the functional structure of a control device. (A) to (c) are explanatory diagrams of offset error, amplitude error, and phase error of a sine signal and a cosine signal, respectively. It is explanatory drawing of linearity error. It is explanatory drawing of the phase shift amount (origin error) between the rotation angle reference of a rotor of a motor, and the rotation angle reference of a sensor unit.
  • FIG. 1 shows a configuration example of the electric power steering device of the present embodiment.
  • the steering shaft (for example, column shaft) 2 of the steering handle 1 is connected to the tie rod 6 of the steering wheel via a reduction gear 3, universal joints 4A and 4B, and a pinion rack mechanism 5.
  • the steering shaft 2 is provided with a torque sensor 7 that detects the steering torque Th applied to the steering shaft 2, and a motor 10 that assists the steering force of the steering handle 1 is attached to the steering shaft 2 via the reduction gear 3. It is connected.
  • the sinusoidal signal SIN1 and the cosine signal COS1 may be collectively referred to as “detection signal”.
  • the control device 30 is an electronic control unit (ECU) that controls an electric power steering (EPS) device.
  • ECU electronic control unit
  • EPS electric power steering
  • the control device 30 calculates the rotation angle ⁇ of the rotation shaft 11 of the motor 10 based on the detection signal by the sensor unit 20.
  • the control device 30 calculates the steering assist command value of the assist command using the assist map or the like based on the steering torque Th detected by the torque sensor 7 and the vehicle speed Vh detected by the vehicle speed sensor 8.
  • the control device 30 controls the current I supplied to the motor 10 based on the steering assist command value and the rotation angle of the motor 10 to drive and control the motor 10.
  • the torque generated by the motor 10 is applied to the steering system as an auxiliary force (steering assist force) for the driver's steering wheel operation.
  • the sensor unit 20 will be described with reference to FIG.
  • the sensor unit 20 includes a magnet 21, a circuit board 22, and a support member 23.
  • the magnet 21 is fixed to an end portion 14 opposite to the output end 12 of the rotating shaft 11 of the motor 10 and has different magnetic poles (S pole and N pole) arranged along the circumferential direction of the rotating shaft 11.
  • An MR (Magnetic Resistance) sensor element (Integrated Circuit) 24 for detecting magnetic flux is mounted on the circuit board 22.
  • a plurality of MR sensor elements may be mounted on the circuit board 22 to form a redundant system in which the rotation axis 11 is calculated separately based on the detection signal of each MR sensor element.
  • the circuit board 22 is fixed to the support member 23 by fixing means such as a fastening screw or caulking (not shown). Further, the support member 23 is also fixed to the motor 10 by a fixing means (not shown). The position where the circuit board 22 is fixed to the support member 23 and the position where the support member 23 is fixed to the motor 10 are when the circuit board 22 is fixed to the support member 23 and the support member 23 is fixed to the motor 10. The circuit board 22 is arranged between the support member 23 and the motor 10, and the MR sensor element 24 is determined to be close to the magnet 21.
  • the MR sensor element 24 detects the change in the magnetic flux of the magnet 21 according to the rotation angle, and the motor 10 A detection signal corresponding to the rotation of the rotation shaft 11 of the above is output.
  • the MR sensor element 24 outputs the sine signal SIN1 and the cosine signal COS1 corresponding to the rotation angle ⁇ of the rotation shaft 11 of the motor 10 as detection signals corresponding to the rotation of the rotation shaft 11 of the motor 10.
  • the sensor unit 20 may include a sensor other than the MR sensor. As the sensor unit 20, various types of sensors that output a sine signal and a cosine signal according to the rotation angle ⁇ of the rotation shaft 11 can be adopted.
  • the support member 23 is, for example, a cover that covers the circuit board 22.
  • the support member 23 has, for example, a recess that opens downward in FIG. 2, and the circuit board 22 is fixed in the recess of the support member 23.
  • the opening of the recess of the support member 23 is shielded by the motor 10, and the circuit board 22 is housed in the recess of the support member 23 and the internal space defined by the motor 10.
  • the support member 23 may be formed of a metal having good thermal conductivity such as an aluminum alloy and may serve as a heat sink. Further, the support member 23 may be the heat sink itself.
  • the control device 30, which is an electronic control unit separate from the sensor unit 20, is connected to the sensor unit 20 by a harness 25.
  • the detection signal output from the MR sensor element 24 in response to the rotation of the rotating shaft 11 of the motor 10 is transmitted to the control device 30 via the harness 25.
  • the control device 30 calculates the rotation angle ⁇ of the rotation shaft 11 of the motor 10 based on the detection signal by the MR sensor element 24, controls the power semiconductor switching element according to the calculated rotation angle ⁇ , and drives the motor 10. do.
  • the control device 30 will be described with reference to FIG.
  • the control device 30 includes a processor 31 such as a CPU (Central Processing Unit) and an MPU (Micro-Processing Unit), a storage device 32 such as a memory, and analog-to-digital converters (ADCs) 33 and 34. , A drive circuit 35, a current sensor 36, and an I / F (interface) circuit 37.
  • the function of the control device 30 described below is realized, for example, by the processor 31 executing a computer program stored in the storage device 32.
  • the control device 30 may be formed by, in addition to or in place of the processor 31, dedicated hardware for executing each information processing described below.
  • the control device 30 may include a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the control device 30 may have a programmable logic device (PLD: Programmable Logic Device) such as a field-programmable gate array (FPGA).
  • PLD Programmable Logic Device
  • FPGA field-programmable gate array
  • the steering torque Th detected by the torque sensor 7 and the vehicle speed Vh detected by the vehicle speed sensor 8 are input to the processor 31 via the I / F circuit 37.
  • the processor 31 calculates the steering assist command value of the assist command based on the steering torque Th and the vehicle speed Vh.
  • the detection signal that is, the sine signal SIN1 and the cosine signal COS1
  • the processor 31 calculates a measured value of the rotation angle ⁇ of the rotation shaft 11 of the motor 10 (hereinafter referred to as “measurement angle ⁇ m”) based on the sine signal SIN1 and the cosine signal COS1.
  • the control device 30 calculates the corrected rotation angle ⁇ c by correcting the linearity error of the measurement angle ⁇ m and the phase shift of the origin.
  • the drive circuit 35 supplies a motor current for driving the motor 10 based on a control signal output from the processor 31.
  • the drive circuit 35 may be, for example, an inverter including a switching element for turning on / off the motor current.
  • the current sensor 36 detects the motor current.
  • the motor 10 is a three-phase motor, and the current sensor 36 detects the U-phase motor current Im, the V-phase motor current Ivm, and the W-phase motor current Iwm.
  • the application of the present invention is not limited to the three-phase motor.
  • the present invention is applicable to motors having various phases.
  • the processor 31 reads the detected values of the U-phase motor current Im, the V-phase motor current Ivm, and the W-phase motor current Iwm via the I / F circuit 37.
  • the processor 31 generates a control signal for controlling the drive circuit 35 based on the steering assist command value calculated from the steering torque Th and the vehicle speed Vh, the corrected rotation angle ⁇ c, and the motor currents Ium, Ivm, and Iwm.
  • the control device 30 includes a detection signal correction unit 50, a rotation angle calculation unit 51, a linearity correction unit 52, an origin correction unit 53, a motor control unit 54, a steering speed calculation unit 55, and an error calculation unit 56.
  • the detection signal correction unit 50 corrects the sinusoidal signal SIN1 and the cosine signal COS1.
  • the detection signal correction unit 50 has an amplitude that is the difference between the offset error of the sine signal SIN1 and the cosine signal COS1 (see (a) in FIG. 5) and the amplitude between the sine signal SIN1 and the cosine signal COS1. Correct the error (see (b) in FIG. 5).
  • the detection signal correction unit 50 calculates a sum signal (COS + SIN) and a difference signal (COS-SIN) of the sinusoidal signal and the cosine signal whose offset error and amplitude error have been corrected.
  • the detection signal correction unit 50 corrects the difference between the amplitude of the sum signal (COS + SIN) and the amplitude of the difference signal (COS + SIN) from the sum signal (COS + SIN) and the difference signal (COS-SIN) to the sine signal SIN1 and the cosine.
  • the influence of the phase error with the signal COS1 (see (c) in FIG. 5) is removed.
  • the configuration and function of the detection signal correction unit 50 will be further described later.
  • the detection signal correction unit 50 outputs a sum signal (COS + SIN) and a difference signal (COS-SIN) to the rotation angle calculation unit 51.
  • the rotation angle calculation unit 51 calculates the measurement angle ⁇ m of the rotation shaft 11 of the motor 10 based on the sum signal (COS + SIN) and the difference signal (COS-SIN).
  • the linearity correction unit 52 corrects the linearity error at the measurement angle ⁇ m.
  • the linearity correction unit 52 outputs the measurement angle ⁇ c0 obtained by correcting the linearity of the measurement angle ⁇ m.
  • the linearity error of the measurement angle ⁇ m will be described with reference to FIG.
  • the solid line shows the characteristic of the measurement angle ⁇ m during one rotation of the rotation shaft 11 of the motor 10, and the alternate long and short dash line shows the desired calculation result (detection result) ⁇ d of the rotation angle.
  • the linearity error EL is the difference ( ⁇ m ⁇ d) between the measurement angle ⁇ m and the desired calculation result ⁇ d, and the linearity correction unit 52 has linearity from the measurement angle ⁇ m input from the rotation angle calculation unit 51.
  • the linearity error of the measurement angle ⁇ m is corrected by subtracting the error EL.
  • the origin correction unit 53 corrects the deviation ⁇ between the measurement angle ⁇ c0 output by the linearity correction unit 52 and the phase of the rotor of the motor 10 (for example, the electric angle of the rotor) to calculate the corrected rotation angle ⁇ c. ..
  • phase deviation amount the deviation between the measurement angle ⁇ m and the phase of the rotor (hereinafter, may be referred to as “phase deviation amount”) ⁇ will be described.
  • the solid line shows the measurement angle ⁇ m, and the broken line shows the U-phase induced voltage of the motor 10.
  • FIG. 7 shows a U-phase induced voltage waveform of a 4-pole pair motor as an example.
  • the rotor-side rotation angle reference may be a predetermined mechanical angle of the rotor, for example, a rising point or falling point of the induced voltage (zero crossing point of the induced voltage), or a predetermined electric angle of the rotor (for example, 0 [deg]). ..
  • the sensor-side rotation angle reference may be, for example, a predetermined measurement angle ⁇ m (for example, 0 [deg]).
  • the origin correction unit 53 is provided after the linearity correction unit 52, and after correcting the linearity of the measurement angle ⁇ m, the deviation from the phase of the rotor is corrected.
  • the linearity correction unit 52 may be provided after the origin correction unit 53 to correct the deviation between the measurement angle ⁇ m and the phase of the rotor, and then correct the linearity.
  • the origin correction unit 53 outputs the corrected rotation angle ⁇ c to the steering speed calculation unit 55.
  • the steering speed calculation unit 55 calculates the steering angle ⁇ h of the steering shaft 2 by dividing the corrected rotation angle ⁇ c by the gear ratio of the reduction gear 3, and calculates the steering speed ⁇ by differentiating the steering angle ⁇ h.
  • the steering speed calculation unit 55 outputs the calculated steering speed ⁇ to the detection signal correction unit 50.
  • the origin correction unit 53 outputs the corrected rotation angle ⁇ c to the motor control unit 54.
  • the detection values of the motor currents Ium, Ivm and Iwm detected by the current sensor 36, the steering torque Th detected by the torque sensor 7, and the vehicle speed Vh detected by the vehicle speed sensor 8 are also input to the motor control unit 54.
  • the motor control unit 54 outputs a control signal for driving the motor 10 via the drive circuit 35 based on the steering torque Th, the vehicle speed Vh, the corrected rotation angle ⁇ c, and the motor currents Ium, Ivm, and Iwm. Generate.
  • the motor control unit 54 includes a torque command value calculation unit 60, a differentiator 61, a current command value calculation unit 62, a three-phase / two-phase conversion unit 63, subtractors 64 and 65, and PI (proportional integration) control. It includes units 66 and 67, a two-phase / three-phase conversion unit 68, and a PWM (Pulse Width Modulation) control unit 69.
  • the torque command value calculation unit 60 calculates the torque command value Tref using the assist map based on the steering torque Th and the vehicle speed Vh.
  • the differentiator 61 differentiates the corrected rotation angle ⁇ c to calculate the rotation speed (rotation angular velocity) ⁇ e of the motor 10.
  • the current command value calculation unit 62 calculates the d-axis current command value Idref and the q-axis current command value Iqref using the torque command value Tref and the rotation speed ⁇ e.
  • the d-axis current command value Iref and the q-axis current command value Iqref are output to the subtractors 64 and 65, respectively. Further, the d-axis current command value Iref and the q-axis current command value Iqref are also output to the detection signal correction unit 50 as shown in FIG.
  • the three-phase / two-phase conversion unit 63 converts the motor currents Ium, Ivm, and Iwm) into two-phase currents using the corrected rotation angle ⁇ c. Specifically, the three-phase motor current is converted into the d-axis motor current Idm and the q-axis motor current Iqm, which are the two-phase currents.
  • the PI control unit 66 obtains the d-axis voltage command value Vdref based on the deviation Id between the d-axis current command value Idref and the d-axis motor current Idm. Similarly, the PI control unit 67 obtains the q-axis voltage command value Vqref based on the deviation Iq between the q-axis current command value Iqref and the q-axis motor current Iqm.
  • the two-phase / three-phase conversion unit 68 uses the corrected rotation angle ⁇ c to change the two-phase voltage consisting of the d-axis voltage command value Vdref and the q-axis voltage command value Vqref by, for example, spatial vector modulation (spatial vector conversion). Converts to a three-phase voltage (U-phase voltage command value Vuref, V-phase voltage command value Vvref, and W-phase voltage command value Vwref).
  • the PWM control unit 69 generates a control signal for controlling the drive circuit 35 by PMW control based on the U-phase voltage command value Vuref, the V-phase voltage command value Vvref, and the W-phase voltage command value Vwref. As described above, the control device 30 drives the motor 10 according to the rotation angle of the rotation shaft 11 of the motor 10.
  • the detection signal correction unit 50 has at least two operation modes, a “normal mode” and a “correction execution mode”. In the normal mode, the detection signal correction unit 50 determines the offset error of the sine signal SIN1 and the cosine signal COS1 (see (a) in FIG. 5) and the sine signal SIN1 based on the correction data obtained in the calibration work at the time of product shipment. The amplitude error between the cosine signal COS1 and the cosine signal COS1 (see (b) in FIG. 5) is corrected.
  • the sine signal SIN1 and the cosine signal COS1 in which the offset error and the amplitude error are corrected based on the correction data obtained in the calibration work at the time of product shipment are referred to as “calibrated sine signal SIN2" and “calibrated cosine signal COS2", respectively. It is written as.
  • the calibrated sine signal SIN2 and calibrated cosine signal COS2 may have temporary offset errors due to the influence of the actual usage environment (ambient temperature, stress on the MR sensor element 24, electromagnetic interference (EMI), etc.). Amplitude error may occur.
  • the linearity of the measurement error is lowered due to the influence of these errors.
  • the offset error causes an error of the primary component which is a component equal to the rotation cycle of the motor 10
  • the amplitude error causes an error of the secondary component which is a component of a cycle twice the rotation cycle of the motor 10. If the primary and / or secondary components of these linearity errors match the resonance frequency of the vehicle body, the vehicle may vibrate and be transmitted to the driver as abnormal noise or vibration, which may impair comfort.
  • the error calculation unit 56 shown in FIG. 4 calculates the offset error Eos of the calibrated sine signal SIN2, the offset error Eoc of the calibrated cosine signal COS2, and the amplitude error Ea of the calibrated sine signal SIN2 and the calibrated cosine signal COS2. do.
  • the detection signal correction unit 50 corrects the offset errors Eos, Eoc, and the amplitude error Ea of the calibrated sine signal SIN2 and the calibrated chord signal COS2.
  • FIG. 9 is a functional configuration diagram of an example of the detection signal correction unit 50.
  • the detection signal correction unit 50 includes a first sine and cosine offset correction unit 70, a first cosine offset correction unit 71, a first amplitude error correction unit 72, a correction control unit 73, a second sine and cosine offset correction unit 74, and a second.
  • the two cosine offset correction unit 75, the second amplitude error correction unit 76, the adder 77, the subtractor 78, and the phase error correction unit 79 are provided.
  • the first sine offset correction unit 70 corrects the offset error of the sine signal SIN1 based on the first sine offset correction value Cofs0, which is the correction data obtained in the calibration work at the time of product shipment. Specifically, the calibrated sine signal SIN2 is calculated by subtracting the first sine offset correction value Cofs0 from the sine signal SIN1.
  • the first cosine offset correction unit 71 corrects the offset error of the cosine signal COS1 based on the first cosine offset correction value Cofc0, which is the correction data obtained in the calibration work at the time of product shipment.
  • the first amplitude error correction unit 72 corrects the amplitude error between the sinusoidal signal SIN1 and the cosine signal COS1 based on the first amplitude correction gain G1 which is the correction data obtained in the calibration work at the time of product shipment. .. Specifically, the first chord offset correction unit 71 subtracts the first chord offset correction value Cofc0 from the chord signal COS1, and the first amplitude error correction unit 72 multiplies the subtraction result by the first amplitude correction gain G1. By doing so, the calibrated cosine signal COS2 is calculated.
  • the correction control unit 73 switches the operation mode of the detection signal correction unit 50 between the normal mode and the correction execution mode. Specifically, when a predetermined correction execution condition is satisfied while the detection signal correction unit 50 is operating in the normal mode, the correction control unit 73 changes the operation mode of the detection signal correction unit 50 from the normal mode to the correction execution mode. Switch to. Further, when a predetermined correction invalid condition is satisfied while the detection signal correction unit 50 is operating in the correction execution mode, the correction control unit 73 switches the operation mode of the detection signal correction unit 50 from the correction execution mode to the normal mode. .. FIG. 10 shows an example of a state transition diagram of the operation mode of the detection signal correction unit 50.
  • the correction execution condition may satisfy at least both of the following conditions (A1) and (A2).
  • A1) The steering speed ⁇ is equal to or higher than the first steering speed threshold value Th ⁇ 1.
  • of the offset error Eoc of the calibrated cosine signal COS2 is equal to or greater than the error threshold Theo.
  • the first steering speed threshold value Th ⁇ 1 may be appropriately set according to, for example, the resonance frequency of the vehicle or the gear ratio of the reduction gear 3. These resonance frequencies and gear ratios differ depending on the vehicle model. For example, as shown in Table 1 below, the range of the resonance frequency is in the range of 20 [Hz] to 40 [Hz], and the range of the gear ratio of the reduction gear 3 is generally in the range of 18.5 to 20.5. ..
  • the conditions under which the steering speed ⁇ generated by the motor 10 vibrates at the resonance frequency of the vehicle are the lowest are that the resonance frequency is 20 [Hz], the gear ratio is 20.5, and the measurement angle is ⁇ m. This is the case of resonance due to the secondary component of the error. In this case, the steering speed ⁇ is 175 [deg / sec].
  • the conditions for the highest steering speed ⁇ generated by the motor 10 to vibrate the resonance frequency of the vehicle are the resonance frequency of 40 [Hz], the gear ratio of 18.5, and the linearity of the measurement angle ⁇ m. This is the case of resonance due to the primary component of the error. In this case, the steering speed ⁇ is 778 [deg / sec].
  • the error threshold value Teo may be appropriately set according to the system.
  • the error threshold Too may be set to 10 [mV].
  • correction execution condition may satisfy one or both of the following conditions (A3) and (A4) in addition to the conditions (1) and (2).
  • A3) The current command value Iref (Idref 2 + Iqref 2 ) 1/2 is equal to or higher than the current threshold value Ti.
  • the current command value Iref is equivalent to the steering assist torque generated by the motor 10. Therefore, by transitioning to the correction execution mode when the current command value Error is equal to or higher than the current threshold value Ti, the output torque from the motor 10 is large and large vibration is likely to occur. Vibration due to error can be suppressed.
  • the current threshold value Ti may be appropriately set according to the system, and may be, for example, 20 [A].
  • the condition (A3) may be that the torque command value Tref is equal to or higher than the threshold value.
  • the transition to the correction execution mode requires a large steering assist force and the vibration generated from the motor 10 tends to be large at low speed, and the sine signal SIN1 And vibration due to the error of the cosine signal COS1 can be suppressed.
  • the vehicle speed threshold value Tv may be appropriately set according to the system, and may be, for example, 15 [km / h].
  • the above condition (A2) may be replaced with the following condition (A5).
  • A5 The amplitude error Ea between the calibrated sine signal SIN2 and the calibrated cosine signal COS2 is equal to or greater than the error threshold value Tea.
  • the error threshold value Tea may also be appropriately set according to the system. For example, it may be set to about 0.6% of the amplitude of the normal sinusoidal signal SIN1 and the cosine signal COS1.
  • the above condition (A2) may be replaced with the following condition (A6).
  • A6) The absolute value
  • the correction invalid condition may satisfy the following condition (B1).
  • B1 The steering speed ⁇ is less than the second steering speed threshold Th ⁇ 2.
  • the second steering speed threshold Th ⁇ 2 may be the same value as the first steering speed threshold Th ⁇ 1, and the second steering speed threshold Th ⁇ 2 is set to a value smaller than the first steering speed threshold Th ⁇ 1 to set the hysteresis characteristic in the operation mode. May have.
  • the first steering speed threshold Th ⁇ 1 is 400 [deg / sec]
  • the second steering speed threshold Th ⁇ 2 may be set to 300 [deg / sec].
  • the correction control unit 73 outputs the offset error Eos, the offset error Eoc, and the amplitude error Ea as the second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second amplitude correction gain G2, respectively.
  • the correction control unit 73 may limit the sizes of the second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second amplitude correction gain G2 to the upper limit values or less of each. This makes it possible to prevent the error due to the sensor failure from being corrected.
  • the second sine offset correction unit 74 corrects the calibrated sine signal SIN2 based on the second sine offset correction value Cofs1. Specifically, the sine and cosine signal SIN is calculated by subtracting the second sine and cosine offset correction value Cofs1 from the calibrated sine and cosine signal SIN2.
  • the second cosine offset correction unit 75 corrects the calibrated cosine signal COS2 based on the second cosine offset correction value Cofc1. Specifically, the cosine signal COS3 is calculated by subtracting the second cosine offset correction value Cofc1 from the calibrated cosine signal COS2.
  • the second amplitude error correction unit 76 corrects the amplitude error between the calibrated sine signal SIN2 and the calibrated cosine signal COS2 based on the second amplitude correction gain G2.
  • the cosine signal COS is calculated by multiplying the cosine signal COS3 output from the second cosine offset correction unit 75 by the second amplitude correction gain G2.
  • the detection signal correction unit 50 corrects the offset errors Eos, Eoc, and the amplitude error Ea of the calibrated sine signal SIN2 and the calibrated cosine signal COS2.
  • the correction control unit 73 sets the values of the second sine offset correction value Cofs1 and the second cosine offset correction value Cofc1 to "0", and sets the value of the second amplitude correction gain G2 to "1". Set. Therefore, the calibrated sine signal SIN2 and the calibrated cosine signal COS2 are output as the sine signal SIN and the cosine signal COS from the second sine offset correction unit 74 and the second amplitude error correction unit 76 without being corrected. That is, the offset error Eos, Eoc and the amplitude error Ea are not corrected.
  • the adder 77 calculates a sum signal (COS + SIN) of the sine signal SIN and the cosine signal COS, and outputs the sum signal (COS + SIN) to the rotation angle calculation unit 51 (see FIG. 4).
  • the subtractor 78 calculates a difference signal (COS-SIN) between the sine signal SIN and the cosine signal COS, and outputs the difference signal (COS-SIN) to the phase error correction unit 79.
  • the phase error correction unit 79 multiplies the difference signal (COS-SIN) by the phase correction gain G3 to obtain between the sum signal (COS + SIN) and the difference signal (COS-SIN) between the sine signal SIN1 and the cosine signal COS1. The effect of the phase error of is removed.
  • the phase error correction unit 79 outputs a difference signal (COS-SIN) to the rotation angle calculation unit 51.
  • step S1 the rotation angle calculation unit 51 calculates a measurement angle ⁇ m, which is a measurement value of the rotation angle of the rotation axis of the motor 10.
  • the linearity correction unit 52 and the origin correction unit 53 calculate the corrected rotation angle ⁇ c by correcting the linearity error and the phase shift amount at the measurement angle ⁇ m, respectively.
  • step S2 the steering speed calculation unit 55 calculates the steering angle ⁇ h of the steering shaft 2 by dividing the corrected rotation angle ⁇ c by the gear ratio of the reduction gear 3, differentiates the steering angle ⁇ h, and calculates the steering speed ⁇ . do.
  • step S3 the vehicle speed sensor 8 detects the vehicle speed Vh of the vehicle.
  • step S4 the torque command value calculation unit 60 calculates the torque command value Tref, and the current command value calculation unit 62 calculates the d-axis current command value Iref and the q-axis current command value Iqref according to the torque command value Tref. ..
  • step S5 the error calculation unit 56 calculates the offset error Eos of the calibrated sine signal SIN2, the offset error Eoc of the calibrated cosine signal COS2, and the amplitude error Ea of the calibrated sine signal SIN2 and the calibrated cosine signal COS2.
  • the correction control unit 73 of the detection signal correction unit 50 learns the offset errors Eos, Eoc, and the amplitude error Ea as the second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second amplitude correction gain G2, respectively.
  • step S6 the correction control unit 73 determines whether or not the operation mode of the detection signal correction unit 50 is the normal mode.
  • the process proceeds to step S7.
  • the correction control unit 73 determines whether or not the correction execution condition is satisfied.
  • step S7: Y the process proceeds to step S8. If the correction execution condition is not satisfied (step S7: N), the process proceeds to step S10.
  • step S8 the correction control unit 73 shifts the operation mode of the detection signal correction unit 50 to the correction execution mode.
  • step S9 the second sine and cosine offset correction unit 74, the second cosine offset correction unit 75, and the second amplitude error correction unit 76 have learned the second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second amplitude correction.
  • the gain G2 corrects the offset errors Eos, Eoc, and amplitude error Ea of the calibrated sine and cosine signal SIN2 and the calibrated cosine signal COS2. After that, the process proceeds to step S15.
  • step S10 the correction control unit 73 discards the learned second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second amplitude correction gain G2. Specifically, the correction control unit 73 sets the value of the second sine offset correction value Cofs1 and the second cosine offset correction value Cofc1 to "0", and sets the value of the second amplitude correction gain G2 to "1". Do not correct by doing. After that, the process proceeds to step S15.
  • step S6 the correction control unit 73 determines in step S11 whether or not the correction invalid condition is satisfied.
  • step S11: Y the process proceeds to step S12. If the correction invalid condition is not satisfied (step S11: N), the process proceeds to step S14.
  • step S12 the correction control unit 73 discards the learned second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second amplitude correction gain G2.
  • step S13 the operation mode of the detection signal correction unit 50 is changed to the normal mode. After that, the process proceeds to step S15.
  • step S14 the second sine and cosine offset correction unit 74, the second cosine offset correction unit 75, and the second amplitude error correction unit 76 have learned the second sine and cosine offset correction value Cofs1, the second cosine offset correction value Cofc1, and the second. 2
  • the amplitude correction gain G2 corrects the offset errors Eos, Eoc, and the amplitude error Ea of the calibrated sine and cosine signal SIN2 and the calibrated cosine signal COS2.
  • step S15 the control device 30 determines whether or not the ignition key signal has been turned off. If the ignition key signal is not turned off (step S15: N), the process returns to step S1. The process ends when the ignition key signal is turned off (step S15: Y).
  • the sensor unit 20 outputs a sine signal and a cosine signal according to the rotation of the rotation shaft 11 of the motor 10 that applies steering assist torque to the steering shaft 2 of the vehicle.
  • the rotation angle calculation unit 51 calculates the rotation angle of the rotation shaft 11 based on the sine signal and the cosine signal.
  • the steering speed calculation unit 55 calculates the steering speed of the steering shaft 2 based on the rotation angle.
  • the error calculation unit 56 calculates the error of the sinusoidal signal and the cosine signal.
  • the detection signal correction unit 50 corrects the error of the sine signal and the cosine signal when the steering speed is equal to or more than the steering speed threshold value and the error of the sine signal and the cosine signal is equal to or more than the error threshold.
  • the detection signal correction unit 50 may further correct errors in the sinusoidal signal and the cosine signal when the steering assist torque applied to the steering shaft 2 is equal to or greater than the threshold value. As a result, vibration due to an error in the sine signal and the cosine signal can be suppressed in a state where the output torque from the motor 10 is large and large vibration is likely to occur.
  • the detection signal correction unit 50 may further correct errors in the sinusoidal signal and the cosine signal when the vehicle speed of the vehicle is equal to or lower than the vehicle speed threshold value. As a result, vibration due to errors in the sine signal and cosine signal can be suppressed at low speeds where a large steering assist force is required and the vibration generated from the motor 10 tends to be large.
  • the above error of the sine signal and the cosine signal may be the offset of the sine signal and the cosine signal, or the amplitude error between the sine signal and the cosine signal. This makes it possible to correct offset and amplitude errors that affect the primary and secondary components of the linearity error of the rotation angle calculated based on the sinusoidal signal and the cosine signal, respectively.
  • origin correction unit 54 ... motor control unit, 55 ... steering speed calculation unit, 56 ... error calculation unit, 60 ... torque command value calculation unit, 61 ... Differential, 62 ... Current command value calculation unit, 63 ... 3-phase / 2-phase conversion unit, 64, 65, 78 ... Subtractor, 66, 67 ... PI control unit, 68 ... 2 phase / 3 phase conversion unit, 69 ... PWM control unit, 70 ... 1st sine offset correction unit, 71 ... 1st cosine offset correction unit, 72 ... 1st amplitude error correction Unit, 73 ... correction control unit, 74 ... second sine offset correction unit, 75 ... second cosine offset correction unit, 76 ... second amplitude error correction unit, 77 ... adder, 79 ... Phase error correction unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

検出信号補正方法では、センサ(20)の検出信号に基づいてモータ(10)の回転軸の回転角度を演算し(S1)、回転角度に基づいて操舵軸の操舵速度を演算し(S2)、検出信号の誤差を演算し(S5)、操舵速度が操舵速度閾値以上であり且つ検出信号の誤差が誤差閾値以上である場合に検出信号の誤差を補正する(S7、S9)。

Description

検出信号補正方法、モータ制御装置及び電動パワーステアリング装置
 本発明は、検出信号補正方法、モータ制御装置及び電動パワーステアリング装置に関する。
 車両の操舵力を軽減するため、モータによって操舵を補助する電動パワーステアリング(EPS:Electric Power Steering)装置が知られている。例えば、下記特許文献1には、電動パワーステアリングのモータの回転軸の回転に応じてセンサから出力される正弦信号及び余弦信号に基づいてモータの回転角度を演算し、演算された回転角度に基づいてモータを制御するモータ制御装置が開示されている。
特開2019-144056号公報
 モータの回転軸の回転に応じた検出信号を出力するセンサを用いてモータの回転角度を演算する場合に、センサの出荷時に較正を行っても、実際の使用環境(温度等)に応じてセンサの検出信号に誤差が生じる場合がある。
 このような誤差を含んだ検出信号に基づいてモータの回転角度を演算すると、回転角度の測定値(測定角度)の直線性(リニアリティ)が低下する。
 直線性誤差(リニアリティ誤差)を含んだ測定角度に基づいてモータを制御すると、直線性誤差に含まれるモータ回転周期の整数倍の周波数成分の振動がモータに発生する。この周波数と車体の共振周波数とが一致すると、車両が振動して運転者に異音や振動として伝わり、快適性を損ねるおそれがある。
 本発明は、このような問題に鑑みてなされたものであり、車両の操舵軸に操舵補助トルクを付与するモータを、モータの回転軸の回転に応じてセンサから出力される検出信号に基づいて制御する際に、モータが発生する振動によって車両が共振するのを軽減することを目的とする。
 上記目的を達成するために、本発明の一態様によれば、車両の操舵軸に操舵補助トルクを付与するモータの回転軸の回転に応じてセンサから出力される検出信号である正弦信号及び余弦信号を補正する検出信号補正方法が与えられる。検出信号補正方法では、検出信号に基づいて回転軸の回転角度を演算し、回転角度に基づいて操舵軸の操舵速度を演算し、検出信号の誤差を演算し、操舵速度が操舵速度閾値以上であり且つ検出信号の誤差が誤差閾値以上である場合に検出信号の誤差を補正する。
 本発明の他の一態様によれば、車両の操舵軸に操舵補助トルクを付与するモータのモータ制御装置が与えられる。モータ制御装置は、モータの回転軸の回転に応じた正弦信号及び余弦信号を含んだ検出信号を出力するセンサと、検出信号に基づいて回転軸の回転角度を演算する回転角度演算部と、回転角度に基づいてモータを制御する制御部と、回転角度に基づいて操舵軸の操舵速度を演算する操舵速度演算部と、検出信号の誤差を演算する誤差演算部と、操舵速度が操舵速度閾値以上であり且つ検出信号の誤差が誤差閾値以上である場合に、検出信号の誤差を補正する検出信号補正部と、を備える。
 本発明の更なる他の一態様による電動パワーステアリング装置は、上記のモータ制御装置と、モータ制御装置によって制御されるモータと、を備え、モータによって車両の操舵軸に操舵補助トルクを付与する。
 本発明によれば、車両の操舵軸に操舵補助トルクを付与するモータを、モータの回転軸の回転に応じてセンサから出力される検出信号に基づいて制御する際に、モータが発生する振動によって車両が共振するのを軽減できる。
実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。 センサユニットの一例の概略を示す分解図である。 制御装置の一例の概要を示す構成図である。 制御装置の機能構成の一例の説明図である。 (a)~(c)は、それぞれ正弦信号及び余弦信号のオフセット誤差、振幅誤差、位相誤差の説明図である。 直線性誤差の説明図である。 モータのロータの回転角度基準とセンサユニットの回転角度基準との間の位相ずれ量(原点誤差)の説明図である。 図4に示すモータ制御部の一例の機能構成図である。 図4に示す検出信号補正部の一例の機能構成図である。 検出信号補正部の動作モードの一例の状態遷移図である。 実施形態の検出信号補正方法の一例のフローチャートである。
 本発明の実施形態を、図面を参照しながら詳細に説明する。なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 (構成)
 本実施形態の電動パワーステアリング装置の構成例を図1に示す。操向ハンドル1の操舵軸(例えばコラム軸)2は減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て操向車輪のタイロッド6に連結されている。操舵軸2には、操舵軸2に加えられる操舵トルクThを検出するトルクセンサ7が設けられており、操向ハンドル1の操舵力を補助するモータ10が減速ギア3を介して操舵軸2に連結されている。
 センサユニット20は、モータ10のロータの回転角度θに応じた正弦信号SIN1=A×sinθ+Bと余弦信号COS1=A×cosθ+Bを制御装置30へ出力する。以下、正弦信号SIN1及び余弦信号COS1を総称して「検出信号」と表記することがある。
 制御装置30は、電動パワーステアリング(EPS:Electric Power Steering)装置を制御する電子制御ユニット(ECU:Electronic Control Unit)である。
 センサユニット20及び制御装置30は、特許請求の範囲に記載の「モータ制御装置」の一例である。
 制御装置30には、バッテリ40から電力が供給されるとともに、イグニション(IGN)キー41を経てイグニションキー信号が入力される。なお、操舵補助力を付与する手段は、モータに限られず、様々な種類のアクチュエータを利用可能である。
 制御装置30は、センサユニット20による検出信号に基づいてモータ10の回転軸11の回転角度θを演算する。
 制御装置30は、トルクセンサ7で検出された操舵トルクThと、車速センサ8で検出された車速Vhとに基づいてアシストマップ等を用いてアシスト指令の操舵補助指令値の演算を行う。
 制御装置30は、操舵補助指令値とモータ10の回転角度とに基づいてモータ10に供給する電流Iを制御して、モータ10を駆動制御する。これにより、モータ10の発生トルクが、運転者のハンドル操作の補助力(操舵補助力)として操舵系に付与される。
 図2を参照してセンサユニット20を説明する。
 センサユニット20は、磁石21と、回路基板22と、支持部材23とを備える。
 磁石21は、モータ10の回転軸11の出力端12と反対側の端部14に固定され、回転軸11の周方向に沿って配列された異なる磁極(S極及びN極)を有している。
 回路基板22には磁束を検出するMR(磁気抵抗:Magnetic Resistance)センサ素子(Integrated Circuit)24が実装されている。回路基板22に複数のMRセンサ素子を実装して、各々のMRセンサ素子の検出信号に基づいて回転軸11を別個に算出する冗長系を構成してもよい。
 回路基板22は図示しない締結ネジやかしめなどの固定手段によって支持部材23に固定されている。また、支持部材23も同様に図示しない固定手段によってモータ10に固定されている。
 回路基板22が支持部材23に固定される位置と、支持部材23がモータ10に固定される位置は、回路基板22が支持部材23に固定され且つ支持部材23がモータ10に固定されたときに、支持部材23とモータ10との間に回路基板22が配置されて、MRセンサ素子24が磁石21に近接するように決定されている。
 モータ10のロータとともに回転軸11が回転し、回転軸11の回転に伴って磁石21が回転すると、これによりMRセンサ素子24は、回転角度に応じた磁石21の磁束変化を検出し、モータ10の回転軸11の回転に応じた検出信号を出力する。
 例えば、MRセンサ素子24は、モータ10の回転軸11の回転角度θに応じた正弦信号SIN1と余弦信号COS1を、モータ10の回転軸11の回転に応じた検出信号として出力する。
 なお、センサユニット20は、MRセンサ以外のセンサを備えてもよい。センサユニット20は、回転軸11の回転角度θに応じた正弦信号と余弦信号を出力する様々な形式のセンサを採用できる。
 支持部材23は、例えば回路基板22を覆うカバーである。支持部材23は、例えば、図2において下方に開口する凹部を有しており、回路基板22は支持部材23の凹部内に固定される。支持部材23をモータ10に固定すると、支持部材23の凹部の開口部がモータ10によって遮蔽され、支持部材23の凹部とモータ10によって画成される内部空間内に回路基板22が収納される。これにより、外部からの衝撃や異物から回路基板22が保護される。
 支持部材23は、例えばアルミ合金などの熱伝導性のよい金属で形成されて、ヒートシンクとしての役割を果たしてよい。また、支持部材23はヒートシンクそのものであってもよい。
 センサユニット20とは別体の電子制御ユニットである制御装置30は、ハーネス25によりセンサユニット20と接続される。モータ10の回転軸11の回転に応じてMRセンサ素子24から出力される検出信号は、ハーネス25を経由して制御装置30に伝達される。
 制御装置30は、MRセンサ素子24による検出信号に基づいてモータ10の回転軸11の回転角度θを演算し、演算した回転角度θに応じてパワー半導体スイッチング素子を制御して、モータ10を駆動する。
 図3を参照して、制御装置30を説明する。
 制御装置30は、CPU(Central Processing Unit)やMPU(Micro-Processing Unit)等のプロセッサ31と、メモリ等である記憶装置32と、アナログディジタル変換器(ADC:Analog-Digital Converter)33及び34と、駆動回路35と、電流センサ36と、I/F(インタフェース)回路37を備える。
 以下に説明する制御装置30の機能は、例えばプロセッサ31が、記憶装置32に格納されたコンピュータプログラムを実行することにより実現される。
 制御装置30は、プロセッサ31に加えて又は代えて、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、制御装置30は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えば制御装置30は、フィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 トルクセンサ7が検出した操舵トルクThと車速センサ8が検出した車速Vhは、I/F回路37を経由して、プロセッサ31に入力される。プロセッサ31は、操舵トルクThと車速Vhとに基づいてアシスト指令の操舵補助指令値を演算する。
 MRセンサ素子24から出力される検出信号(すなわち正弦信号SIN1及び余弦信号COS1)は、ADC33及びADC34によってディジタル信号に変換されて、プロセッサ31に入力される。プロセッサ31は、正弦信号SIN1及び余弦信号COS1に基づいてモータ10の回転軸11の回転角度θの測定値(以下「測定角度θm」と表記する)を演算する。さらに制御装置30は、測定角度θmの直線性誤差と原点の位相ずれとを補正することにより補正後回転角度θcを演算する。
 駆動回路35は、プロセッサ31から出力される制御信号に基づいて、モータ10を駆動するモータ電流を供給する。駆動回路35は、例えばモータ電流をオンオフするスイッチング素子を備えるインバータであってよい。
 電流センサ36は、モータ電流を検出する。本実施形態では、モータ10は3相モータであり、電流センサ36は、U相モータ電流Ium、V相モータ電流Ivm及びW相モータ電流Iwmを検出する。なお、本発明の適用対象は3相モータに限定されない。本発明は、様々な相数のモータに適用可能である。
 プロセッサ31は、I/F回路37を経由して、U相モータ電流Ium、V相モータ電流Ivm及びW相モータ電流Iwmの検出値を読み取る。
 プロセッサ31は、操舵トルクThと車速Vhから演算した操舵補助指令値と、補正後回転角度θcと、モータ電流Ium、Ivm、Iwmに基づいて、駆動回路35を制御する制御信号を生成する。
 図4を参照して、制御装置30の機能構成の一例を説明する。制御装置30は、検出信号補正部50と、回転角度演算部51と、直線性補正部52と、原点補正部53と、モータ制御部54と、操舵速度演算部55と、誤差演算部56を備える。
 検出信号補正部50は、正弦信号SIN1及び余弦信号COS1を補正する。具体的には、検出信号補正部50は、正弦信号SIN1及び余弦信号COS1のオフセット誤差(図5の(a)参照)と、正弦信号SIN1と余弦信号COS1との間の振幅の差である振幅誤差(図5の(b)参照)を補正する。
 また、検出信号補正部50は、オフセット誤差及び振幅誤差が補正された正弦信号と余弦信号との和信号(COS+SIN)と差信号(COS-SIN)を演算する。
 検出信号補正部50は、和信号(COS+SIN)の振幅と差信号(COS+SIN)の振幅の差を補正することにより、和信号(COS+SIN)及び差信号(COS-SIN)から、正弦信号SIN1と余弦信号COS1との間の位相誤差(図5の(c)参照)の影響を除去する。検出信号補正部50の構成及び機能については更に後述する。
 図4を参照する。検出信号補正部50は、和信号(COS+SIN)及び差信号(COS-SIN)を回転角度演算部51へ出力する。
 回転角度演算部51は、和信号(COS+SIN)及び差信号(COS-SIN)に基づいて、モータ10の回転軸11の測定角度θmを演算する。
 直線性補正部52は、測定角度θmの直線性誤差を補正する。直線性補正部52は、測定角度θmの直線性を補正して得られた測定角度θc0を出力する。
 図6を参照して、測定角度θmの直線性誤差を説明する。実線は、モータ10の回転軸11が1回転する間の測定角度θmの特性を示し、一点鎖線は、回転角度の所望の演算結果(検出結果)θdを示す。
 直線性誤差ELは、測定角度θmと所望の演算結果θdとの間の差分(θm-θd)であり、直線性補正部52は、回転角度演算部51から入力した測定角度θmから、直線性誤差ELを減算することによって測定角度θmの直線性誤差を補正する。
 図4を参照する。原点補正部53は、直線性補正部52が出力する測定角度θc0とモータ10のロータの位相(例えば、ロータの電気角)との間のずれΔθを補正して補正後回転角度θcを算出する。
 図7を参照して、測定角度θmとロータの位相との間のずれ(以下「位相ずれ量」と表記することがある)Δθを説明する。実線は測定角度θmを示し、破線はモータ10のU相誘起電圧を示す。図7は、4極対モータのU相誘起電圧波形を例として示している。
 例えば位相ずれ量Δθは、ロータの回転角度が所定のロータ側回転角度基準であるときのロータの機械角θrmと、測定角度θmが所定のセンサ側回転角度基準であるときのロータの機械角θrcとの間の差分として与えられる(Δθ=θrc-θrm)。ロータ側回転角度基準は、ロータの所定の機械角や、例えば誘起電圧の立ち上がり点又は立ち下がり点(誘起電圧のゼロクロス点)、ロータの所定の電気角(例えば0[deg])であってよい。センサ側回転角度基準は、例えば所定の測定角度θm(例えば0[deg])であってよい。
 図4を参照する。原点補正部53は、直線性が補正された測定角度θc0から位相ずれ量を減算して補正後回転角度θc(θc=θc0-Δθ)を算出する。
 なお、本実施形態では、直線性補正部52の後段に原点補正部53を設け、測定角度θmの直線性を補正した後に、ロータの位相とのずれを補正した。これに代えて、原点補正部53の後段に直線性補正部52を設け、測定角度θmとロータの位相とのずれを補正した後に、直線性を補正してもよい。
 原点補正部53は、補正後回転角度θcを操舵速度演算部55へ出力する。操舵速度演算部55は、減速ギア3のギア比で補正後回転角度θcを除算することにより、操舵軸2の操舵角θhを演算し、操舵角θhを微分して操舵速度ωを演算する。操舵速度演算部55は、演算した操舵速度ωを検出信号補正部50へ出力する。
 また、原点補正部53は、補正後回転角度θcをモータ制御部54へ出力する。モータ制御部54には、電流センサ36が検出したモータ電流Ium、Ivm及びIwmの検出値と、トルクセンサ7が検出した操舵トルクThと車速センサ8が検出した車速Vhも入力される。
 モータ制御部54は、操舵トルクThと、車速Vhと、補正後回転角度θcと、モータ電流Ium、Ivm及びIwmとに基づいて、駆動回路35を介してモータ10を駆動するための制御信号を生成する。
 図8を参照してモータ制御部54の機能構成を説明する。モータ制御部54は、トルク指令値演算部60と、微分器61と、電流指令値演算部62と、3相/2相変換部63と、減算器64及び65と、PI(比例積分)制御部66及び67と、2相/3相変換部68と、PWM(Pulse Width Modulation)制御部69とを備える。
 トルク指令値演算部60は、操舵トルクTh及び車速Vhに基づいてアシストマップを用いてトルク指令値Trefを演算する。
 微分器61は、補正後回転角度θcを微分してモータ10の回転速度(回転角速度)ωeを算出する。
 電流指令値演算部62は、トルク指令値Tref及び回転速度ωeを用いて、d軸電流指令値Idref及びq軸電流指令値Iqrefを算出する。d軸電流指令値Idref及びq軸電流指令値Iqrefは、それぞれ減算器64及び65に出力される。また、d軸電流指令値Idref及びq軸電流指令値Iqrefは、図4に示すように検出信号補正部50にも出力される。
 3相/2相変換部63は、補正後回転角度θcを用いてモータ電流Ium、Ivm及びIwm)を2相の電流に変換する。具体的には、3相のモータ電流を2相の電流であるd軸モータ電流Idm及びq軸モータ電流Iqmに変換する。
 減算器64は、d軸電流指令値Idrefとフィードバックされているd軸モータ電流値Idmとの偏差Id(=Idref-Idm)を演算する。減算器65は、q軸電流指令値Iqrefとフィードバックされているq軸モータ電流値Iqmとの偏差Iq(=Iqref-Iqm)を演算する。
 PI制御部66は、d軸電流指令値Idrefとd軸モータ電流Idmとの偏差Idに基づいてd軸電圧指令値Vdrefを求める。同様に、PI制御部67は、q軸電流指令値Iqrefとq軸モータ電流Iqmとの偏差Iqに基づいてq軸電圧指令値Vqrefを求める。
 2相/3相変換部68は、補正後回転角度θcを用いて、d軸電圧指令値Vdref及びq軸電圧指令値Vqrefからなる2相の電圧を、例えば空間ベクトル変調(空間ベクトル変換)により、3相の電圧(U相電圧指令値Vuref、V相電圧指令値Vvref及びW相電圧指令値Vwref)に変換する。
 PWM制御部69は、U相電圧指令値Vuref、V相電圧指令値Vvref及びW相電圧指令値Vwrefに基づいて、PMW制御により駆動回路35を制御する制御信号を生成する。
 以上により、制御装置30は、モータ10の回転軸11の回転角度に応じてモータ10を駆動する。
 次に、検出信号補正部50の詳細について説明する。検出信号補正部50は「通常モード」と「補正実施モード」の少なくとも2つの動作モードを有する。
 通常モードにおいて検出信号補正部50は、製品出荷時の校正作業で得られた補正データに基づいて、正弦信号SIN1及び余弦信号COS1のオフセット誤差(図5の(a)参照)と、正弦信号SIN1と余弦信号COS1との間の振幅誤差(図5の(b)参照)を補正する。
 以下、製品出荷時の校正作業で得られた補正データに基づいてオフセット誤差及び振幅誤差が補正された正弦信号SIN1と余弦信号COS1を、それぞれ「校正済正弦信号SIN2」及び「校正済余弦信号COS2」と表記する。
 校正済正弦信号SIN2及び校正済余弦信号COS2には、実際の使用環境(周囲温度、MRセンサ素子24への応力、電磁妨害(EMI:Electromagnetic Interference)等)の影響によって、一時的にオフセット誤差や振幅誤差が生じることがある。
 このような誤差を有する信号に基づいて測定角度θmを演算すると、これら誤差の影響により測定誤差の直線性が低下する。例えば、オフセット誤差は、モータ10の回転周期と等しい成分である1次成分の誤差を生じ、振幅誤差は、モータ10の回転周期の2倍の周期の成分である2次成分の誤差を生じる。
 これらの直線性誤差の1次成分及び/又は2次成分と車体の共振周波数とが一致すると、車両が振動して運転者に異音や振動として伝わり、快適性を損ねるおそれがある。
 そこで、図4に示す誤差演算部56は、校正済正弦信号SIN2のオフセット誤差Eos、校正済余弦信号COS2のオフセット誤差Eoc及び校正済正弦信号SIN2と校正済余弦信号COS2との振幅誤差Eaを演算する。
 補正実施モードにおいて検出信号補正部50は、校正済正弦信号SIN2及び校正済余弦信号COS2のオフセット誤差Eos、Eoc及び振幅誤差Eaを補正する。
 図9は、検出信号補正部50の一例の機能構成図である。検出信号補正部50は、第1正弦オフセット補正部70と、第1余弦オフセット補正部71と、第1振幅誤差補正部72と、補正制御部73と、第2正弦オフセット補正部74と、第2余弦オフセット補正部75と、第2振幅誤差補正部76と、加算器77と、減算器78と、位相誤差補正部79を備える。
 第1正弦オフセット補正部70は、製品出荷時の校正作業で得られた補正データである第1正弦オフセット補正値Cofs0に基づいて正弦信号SIN1のオフセット誤差を補正する。具体的には、正弦信号SIN1から第1正弦オフセット補正値Cofs0を減算することにより、校正済正弦信号SIN2を演算する。
 第1余弦オフセット補正部71は、製品出荷時の校正作業で得られた補正データである第1余弦オフセット補正値Cofc0に基づいて余弦信号COS1のオフセット誤差を補正する。
 また、第1振幅誤差補正部72は、製品出荷時の校正作業で得られた補正データである第1振幅補正ゲインG1に基づいて正弦信号SIN1と余弦信号COS1との間の振幅誤差を補正する。
 具体的には、第1余弦オフセット補正部71は、余弦信号COS1から第1余弦オフセット補正値Cofc0を減算し、第1振幅誤差補正部72が、その減算結果に第1振幅補正ゲインG1を乗算することによって、校正済余弦信号COS2を演算する。
 補正制御部73は、検出信号補正部50の動作モードを通常モードと補正実施モードとの間で切り換える。
 具体的には、検出信号補正部50が通常モードで動作している状態で所定の補正実施条件が成立すると、補正制御部73は、検出信号補正部50の動作モードを通常モードから補正実施モードに切り換える。また、検出信号補正部50が補正実施モードで動作している状態で所定の補正無効条件が成立すると、補正制御部73は、検出信号補正部50の動作モードを補正実施モードから通常モードに切り換える。
 検出信号補正部50の動作モードの状態遷移図の例を図10に示す。
 例えば補正実施条件は、少なくとも次の条件(A1)及び(A2)の両方を満足することであってよい。
 (A1)操舵速度ωが第1操舵速度閾値Thω1以上である。
 (A2)校正済正弦信号SIN2のオフセット誤差Eosの絶対値|Eos|又は校正済余弦信号COS2のオフセット誤差Eocの絶対値|Eoc|が誤差閾値Teo以上である。
 第1操舵速度閾値Thω1は、例えば車両の共振周波数や減速ギア3のギア比に応じて適宜設定してよい。これら共振周波数やギア比は車両の車種によって異なる。
 例えば下記の表1に示すとおり共振周波数の範囲は20[Hz]~40[Hz]の範囲にあり、減速ギア3のギア比の範囲は18.5~20.5の範囲が一般的である。
Figure JPOXMLDOC01-appb-T000001
 この場合、車両の共振周波数の振動をモータ10が発生する操舵速度ωが最も低くなる条件は、共振周波数が20[Hz]であり、ギア比が20.5であり、測定角度θmの直線性誤差の2次成分により共振する場合である。この場合の操舵速度ωは175[deg/秒]となる。
 一方で、車両の共振周波数の振動をモータ10が発生する操舵速度ωが最も高くなる条件は、共振周波数が40[Hz]であり、ギア比が18.5であり、測定角度θmの直線性誤差の1次成分により共振する場合である。この場合の操舵速度ωは778[deg/秒]となる。
 したがって、例えば第1操舵速度閾値Thω1は、175[deg/秒]~778[deg/秒]の範囲の値となるように適宜設定してよい。例えば、ギア比が20.5、共振周波数が25Hz、1次成分の誤差が主に生じる場合を考える。共振周波数25Hzに相当する操舵速度は、360[deg]×25[Hz]/20.5=439[deg/秒]となる。第1操舵速度閾値Thω1を439[deg/秒]より低い400[deg/秒]としてよい。
 また、誤差閾値Teoについてもシステムに応じて適宜設定してよい。例えば、正常な正弦信号SIN1及び余弦信号COS1が、2.5[V]を基準に振幅1.5[V]で増減する信号である場合(すなわち、SIN1=1.5×sinθ+2.5[V],COS1=1.5×cosθ+2.5[V])である場合に、誤差閾値Teoを10[mV]に設定してよい。
 このように、オフセット誤差の絶対値|Eos|、|Eoc|が誤差閾値Teo以上の場合に補正実施モードに遷移することにより、誤差が通常のばらつき範囲内である場合には補正を抑制する。これにより頻繁な補正により、かえって快適性を損ねることを防止できる。
 また、補正実施条件は、条件(1)及び(2)に加えて、次の条件(A3)及び(A4)の一方又は両方を満足することであってもよい。
 (A3)電流指令値Iref=(Idref+Iqref1/2が電流閾値Ti以上である。
 (A4)車速Vhが車速閾値Tv以下である。
 条件(A3)に関して、電流指令値Irefはモータ10が発生する操舵補助トルクと等価である。したがって、電流指令値Irefが電流閾値Ti以上である場合に補正実施モードに遷移することにより、モータ10からの出力トルクが大きく、大きな振動が発生しやすい状態において、正弦信号SIN1及び余弦信号COS1の誤差による振動を抑制できる。
 電流閾値Tiはシステムに応じて適宜設定してよく、例えば20[A]であってよい。電流指令値Irefに代えて、トルク指令値Trefが閾値以上であることを条件(A3)としてもよい。
 また条件(A4)に関して、車速Vhが車速閾値Tv以下である場合に補正実施モードに遷移することにより、大きな操舵補助力が必要でありモータ10から生じる振動が大きくなり易い低速時に、正弦信号SIN1及び余弦信号COS1の誤差による振動を抑制できる。車速閾値Tvはシステムに応じて適宜設定してよく、例えば15[km/h]であってよい。
 また上記の条件(A2)を、以下の条件(A5)に置き換えてもよい。
 (A5)校正済正弦信号SIN2と校正済余弦信号COS2との振幅誤差Eaが誤差閾値Tea以上である。
 誤差閾値Teaについてもシステムに応じて適宜設定してよい。例えば、正常な正弦信号SIN1及び余弦信号COS1の振幅の約0.6%に設定してよい。
 また上記の条件(A2)を、以下の条件(A6)に置き換えてもよい。
 (A6)オフセット誤差の絶対値|Eos|又は|Eoc|が誤差閾値Teo以上であり、且つ振幅誤差Eaが誤差閾値Tea以上である。
 一方で、例えば補正無効条件は、次の条件(B1)を満足することであってよい。
 (B1)操舵速度ωが第2操舵速度閾値Thω2未満である。
 第2操舵速度閾値Thω2は、第1操舵速度閾値Thω1と同じ値であってもよく、第2操舵速度閾値Thω2を第1操舵速度閾値Thω1よりも小さな値に設定して、動作モードにヒステリシス特性を持たせてもよい。例えば、第1操舵速度閾値Thω1が400[deg/秒]である場合に、第2操舵速度閾値Thω2を300[deg/秒]に設定してよい。
 図9を参照する。補正実施モードにおいて補正制御部73は、オフセット誤差Eos、オフセット誤差Eoc、振幅誤差Eaを、それぞれ第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2として出力する。
 なお、補正制御部73は、第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2の大きさを、それぞれの上限値以下に制限してもよい。これにより、センサの故障による誤差を補正してしまうのを防止できる。
 第2正弦オフセット補正部74は、第2正弦オフセット補正値Cofs1に基づいて校正済正弦信号SIN2を補正する。具体的には、校正済正弦信号SIN2から第2正弦オフセット補正値Cofs1を減算することにより、正弦信号SINを演算する。
 第2余弦オフセット補正部75は、第2余弦オフセット補正値Cofc1に基づいて校正済余弦信号COS2を補正する。具体的には、校正済余弦信号COS2から第2余弦オフセット補正値Cofc1を減算することにより、余弦信号COS3を演算する。
 第2振幅誤差補正部76は、第2振幅補正ゲインG2に基づいて校正済正弦信号SIN2と校正済余弦信号COS2との間の振幅誤差を補正する。
 具体的には、第2余弦オフセット補正部75から出力された余弦信号COS3に第2振幅補正ゲインG2を乗算することによって、余弦信号COSを演算する。
 以上により、補正実施モードにおいて検出信号補正部50は、校正済正弦信号SIN2及び校正済余弦信号COS2のオフセット誤差Eos、Eoc及び振幅誤差Eaを補正する。
 一方で、通常モードにおいて補正制御部73は、第2正弦オフセット補正値Cofs1及び第2余弦オフセット補正値Cofc1の値を「0」に設定し、第2振幅補正ゲインG2の値を「1」に設定する。このため、第2正弦オフセット補正部74及び第2振幅誤差補正部76からは、校正済正弦信号SIN2及び校正済余弦信号COS2が補正されずに正弦信号SIN及び余弦信号COSとして出力される。すなわち、オフセット誤差Eos、Eoc及び振幅誤差Eaは補正されない。
 加算器77は、正弦信号SINと余弦信号COSとの和信号(COS+SIN)を演算し、回転角度演算部51(図4参照)に出力する。
 減算器78は、正弦信号SINと余弦信号COSとの差信号(COS-SIN)を演算し、位相誤差補正部79に出力する。
 位相誤差補正部79は、差信号(COS-SIN)に位相補正ゲインG3を乗算することによって、和信号(COS+SIN)及び差信号(COS-SIN)から、正弦信号SIN1と余弦信号COS1との間の位相誤差の影響を除去する。位相誤差補正部79は、差信号(COS-SIN)を回転角度演算部51に出力する。
 (動作)
 次に、図11を参照して実施形態の検出信号補正方法の一例を説明する。
 ステップS1において回転角度演算部51は、モータ10の回転軸の回転角度の測定値である測定角度θmを演算する。直線性補正部52及び原点補正部53は、それぞれ測定角度θmの直線性誤差及び位相ずれ量を補正することにより補正後回転角度θcを演算する。
 ステップS2において操舵速度演算部55は、減速ギア3のギア比で補正後回転角度θcを除算することにより操舵軸2の操舵角θhを演算し、操舵角θhを微分して操舵速度ωを演算する。
 ステップS3において、車速センサ8は、車両の車速Vhを検出する。
 ステップS4において、トルク指令値演算部60はトルク指令値Trefを演算し、電流指令値演算部62は、トルク指令値Trefに応じたd軸電流指令値Idref及びq軸電流指令値Iqrefを算出する。
 ステップS5において誤差演算部56は、校正済正弦信号SIN2のオフセット誤差Eos、校正済余弦信号COS2のオフセット誤差Eoc及び校正済正弦信号SIN2と校正済余弦信号COS2との振幅誤差Eaを演算する。検出信号補正部50の補正制御部73は、オフセット誤差Eos、Eoc、振幅誤差Eaを、それぞれ第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2として学習する。
 ステップS6において補正制御部73は、検出信号補正部50の動作モードが通常モードであるか否かを判定する。動作モードが通常モードである場合(ステップS6:Y)に処理はステップS7へ進む。動作モードが通常モードでなく補正実施モードである場合(ステップS6:N)に処理はステップS11へ進む。
 ステップS7において補正制御部73は、補正実施条件が成立するか否かを判定する。補正実施条件が成立する場合(ステップS7:Y)に処理はステップS8へ進む。補正実施条件が成立しない場合(ステップS7:N)に処理はステップS10へ進む。
 ステップS8において補正制御部73は、検出信号補正部50の動作モードを補正実施モードに遷移させる。
 ステップS9において第2正弦オフセット補正部74、第2余弦オフセット補正部75及び第2振幅誤差補正部76は、学習した第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2により、校正済正弦信号SIN2及び校正済余弦信号COS2のオフセット誤差Eos、Eoc及び振幅誤差Eaを補正する。その後に処理はステップS15へ進む。
 一方で、ステップS10において補正制御部73は、学習した第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2を破棄する。具体的には、補正制御部73は、第2正弦オフセット補正値Cofs1及び第2余弦オフセット補正値Cofc1の値を「0」に設定し、第2振幅補正ゲインG2の値を「1」に設定することにより補正しないようにする。その後に処理はステップS15へ進む。
 検出信号補正部50の動作モードが補正実施モードである場合(ステップS6:N)、ステップS11において補正制御部73は、補正無効条件が成立するか否かを判定する。補正無効条件が成立する場合(ステップS11:Y)に処理はステップS12へ進む。補正無効条件が成立しない場合(ステップS11:N)に処理はステップS14へ進む。
 ステップS12において補正制御部73は、学習した第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2を破棄する。具体的には、補正制御部73は、第2正弦オフセット補正値Cofs1及び第2余弦オフセット補正値Cofc1の値を「0」に設定し、第2振幅補正ゲインG2の値を「1」に設定することにより補正しないようにする。
 ステップS13において検出信号補正部50の動作モードを通常モードに遷移させる。その後に処理はステップS15へ進む。
 一方で、ステップS14において第2正弦オフセット補正部74、第2余弦オフセット補正部75及び第2振幅誤差補正部76は、学習した第2正弦オフセット補正値Cofs1、第2余弦オフセット補正値Cofc1、第2振幅補正ゲインG2により、校正済正弦信号SIN2及び校正済余弦信号COS2のオフセット誤差Eos、Eoc及び振幅誤差Eaを補正する。その後に処理はステップS15へ進む。
 ステップS15において制御装置30は、イグニションキー信号がオフになったか否かを判定する。イグニションキー信号がオフになっていない場合(ステップS15:N)に処理はステップS1へ戻る。イグニションキー信号がオフになった場合(ステップS15:Y)に処理は終了する。
 (実施形態の効果)
 (1)センサユニット20は、車両の操舵軸2に操舵補助トルクを付与するモータ10の回転軸11の回転に応じた正弦信号及び余弦信号を出力する。回転角度演算部51は、正弦信号及び余弦信号に基づいて回転軸11の回転角度を演算する。操舵速度演算部55は、回転角度に基づいて操舵軸2の操舵速度を演算する。誤差演算部56は、正弦信号及び余弦信号の誤差を演算する。検出信号補正部50は、操舵速度が操舵速度閾値以上であり且つ正弦信号及び余弦信号の誤差が誤差閾値以上である場合に、正弦信号及び余弦信号の誤差を補正する。
 これにより、車両の共振周波数の振動が発生しやすい操舵速度において、正弦信号及び余弦信号の誤差によるモータ10の振動を抑制できる。この結果、モータ10が発生する振動によって車両が共振し、運転者に異音や振動として伝わって快適性を損ねることを軽減できる。
 (2)検出信号補正部50は、更に操舵軸2に付与する操舵補助トルクが閾値以上である場合に、正弦信号及び余弦信号の誤差を補正してよい。これにより、モータ10からの出力トルクが大きく、大きな振動が発生しやすい状態において、正弦信号及び余弦信号の誤差による振動を抑制できる。
 (3)検出信号補正部50は、更に車両の車速が車速閾値以下である場合に、正弦信号及び余弦信号の誤差を補正してよい。これにより、大きな操舵補助力が必要でありモータ10から生じる振動が大きくなり易い低速時に、正弦信号及び余弦信号の誤差による振動を抑制できる。
 (4)正弦信号及び余弦信号の上記の誤差は、正弦信号及び余弦信号のオフセット、又は正弦信号と余弦信号との間の振幅誤差であってよい。これにより、正弦信号及び余弦信号に基づいて演算される回転角度の直線性誤差の1次成分及び2次成分に、それぞれ影響を与えるオフセット及び振幅誤差を補正できる。
 1...操向ハンドル、2...操舵軸、3...減速ギア、4A、4B...ユニバーサルジョイント、5...ピニオンラック機構、6...タイロッド、7...トルクセンサ、8...車速センサ、10...モータ、11...回転軸、20...センサユニット、21...磁石、22...回路基板、23...支持部材、24...MRセンサ素子、25...ハーネス、30...制御装置、31...プロセッサ、32...記憶装置、33、34...アナログディジタル変換器、35...駆動回路、36...電流センサ、37...I/F回路、40...バッテリ、41...キー、50...検出信号補正部、51...回転角度演算部、52...直線性補正部、53...原点補正部、54...モータ制御部、55...操舵速度演算部、56...誤差演算部、60...トルク指令値演算部、61...微分器、62...電流指令値演算部、63...3相/2相変換部、64、65、78...減算器、66、67...PI制御部、68...2相/3相変換部、69...PWM制御部、70...第1正弦オフセット補正部、71...第1余弦オフセット補正部、72...第1振幅誤差補正部、73...補正制御部、74...第2正弦オフセット補正部、75...第2余弦オフセット補正部、76...第2振幅誤差補正部、77...加算器、79...位相誤差補正部

Claims (9)

  1.  車両の操舵軸に操舵補助トルクを付与するモータの回転軸の回転に応じてセンサから出力される検出信号である正弦信号及び余弦信号を補正する検出信号補正方法であって、
     前記検出信号に基づいて前記回転軸の回転角度を演算し、
     前記回転角度に基づいて前記操舵軸の操舵速度を演算し、
     前記検出信号の誤差を演算し、
     前記操舵速度が操舵速度閾値以上であり且つ前記検出信号の前記誤差が誤差閾値以上である場合に、前記検出信号の前記誤差を補正する、
     ことを特徴とする検出信号補正方法。
  2.  更に、前記操舵軸に付与する操舵補助トルクが閾値以上である場合に前記検出信号の前記誤差を補正する、ことを特徴とする請求項1に記載の検出信号補正方法。
  3.  更に、前記車両の車速が車速閾値以下である場合に前記検出信号の前記誤差を補正する、ことを特徴とする請求項1又は2に記載の検出信号補正方法。
  4.  前記検出信号の前記誤差は、前記正弦信号もしくは前記余弦信号のオフセット、又は前記正弦信号と前記余弦信号との間の振幅誤差であることを特徴とする請求項1~3のいずれか一項に記載の検出信号補正方法。
  5.  車両の操舵軸に操舵補助トルクを付与するモータのモータ制御装置であって、
     前記モータの回転軸の回転に応じた正弦信号及び余弦信号を含んだ検出信号を出力するセンサと、
     前記検出信号に基づいて前記回転軸の回転角度を演算する回転角度演算部と、
     前記回転角度に基づいて前記モータを制御する制御部と、
     前記回転角度に基づいて前記操舵軸の操舵速度を演算する操舵速度演算部と、
     前記検出信号の誤差を演算する誤差演算部と、
     前記操舵速度が操舵速度閾値以上であり且つ前記検出信号の前記誤差が誤差閾値以上である場合に、前記検出信号の前記誤差を補正する検出信号補正部と、
     を備えることを特徴とするモータ制御装置。
  6.  前記検出信号補正部は、更に、前記操舵軸に付与する操舵補助トルクが閾値以上である場合に前記検出信号の前記誤差を補正することを特徴とする請求項5に記載のモータ制御装置。
  7.  前記検出信号補正部は、更に、前記車両の車速が車速閾値以下である場合に前記検出信号の前記誤差を補正する、ことを特徴とする請求項5又は6に記載のモータ制御装置。
  8.  前記検出信号の前記誤差は、前記正弦信号もしくは前記余弦信号のオフセット、又は前記正弦信号と前記余弦信号との間の振幅誤差であることを特徴とする請求項5~7のいずれか一項に記載のモータ制御装置。
  9.  請求項5~8のいずれか一項に記載のモータ制御装置と、
     前記モータ制御装置によって制御されるモータと、
     を備え、前記モータによって車両の操舵軸に操舵補助トルクを付与することを特徴とする電動パワーステアリング装置。
PCT/JP2020/047702 2020-06-08 2020-12-21 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置 WO2021250917A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080006959.XA CN114096324B (zh) 2020-06-08 2020-12-21 检测信号修正方法、马达控制装置以及电动助力转向装置
US17/299,884 US11338846B2 (en) 2020-06-08 2020-12-21 Detection signal correction method, motor control device, and electric power steering device
EP20891422.6A EP3957547B1 (en) 2020-06-08 2020-12-21 Detection signal correction method, motor control device, and electric power steering device
JP2021512461A JP6885531B1 (ja) 2020-06-08 2020-12-21 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-099632 2020-06-08
JP2020099632 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021250917A1 true WO2021250917A1 (ja) 2021-12-16

Family

ID=76553460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047702 WO2021250917A1 (ja) 2020-06-08 2020-12-21 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置

Country Status (1)

Country Link
WO (1) WO2021250917A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147733A (ja) * 2003-11-12 2005-06-09 Favess Co Ltd 異常検出装置、異常検出方法、車両用操舵装置
JP2006335252A (ja) * 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
JP2008087756A (ja) * 2006-09-07 2008-04-17 Nsk Ltd 電動パワーステアリング装置
US20180319440A1 (en) * 2015-10-29 2018-11-08 Thyssenkrupp Presta Ag Electromechanical power steering system, method for determining an absolute angle of rotation, and method for calibrating a measuring device for measuring an absolute angle of rotation
JP2019144056A (ja) 2018-02-19 2019-08-29 日本精工株式会社 回転角検出装置、モータ制御装置、電動パワーステアリング装置、及び回転角検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147733A (ja) * 2003-11-12 2005-06-09 Favess Co Ltd 異常検出装置、異常検出方法、車両用操舵装置
JP2006335252A (ja) * 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
JP2008087756A (ja) * 2006-09-07 2008-04-17 Nsk Ltd 電動パワーステアリング装置
US20180319440A1 (en) * 2015-10-29 2018-11-08 Thyssenkrupp Presta Ag Electromechanical power steering system, method for determining an absolute angle of rotation, and method for calibrating a measuring device for measuring an absolute angle of rotation
JP2019144056A (ja) 2018-02-19 2019-08-29 日本精工株式会社 回転角検出装置、モータ制御装置、電動パワーステアリング装置、及び回転角検出方法

Similar Documents

Publication Publication Date Title
JP5200628B2 (ja) モータ制御装置および電動パワーステアリング装置
US7298109B2 (en) Electric power steering apparatus, and method for detecting abnormality of angle detector thereof
US8150580B2 (en) Motor controller and electric power steering system
EP1470988B1 (en) Electric power steering apparatus
JP5679136B2 (ja) 回転角検出装置、および、回転角検出装置を備えた電動パワーステアリング装置
WO2009091015A1 (ja) モータ制御装置および電動パワーステアリング装置
WO2009087991A1 (ja) モータ制御装置および電動パワーステアリング装置
WO2009123107A1 (ja) モータ制御装置および電動パワーステアリング装置
US20040262074A1 (en) Electric power steering apparatus
JP4899611B2 (ja) 電動パワーステアリング装置
JP2009261066A (ja) モータ制御装置および電動パワーステアリング装置
JP5092760B2 (ja) モータ制御装置および電動パワーステアリング装置
JP4603340B2 (ja) モータ制御装置、および操舵装置
JP5136839B2 (ja) モータ制御装置
JP5412825B2 (ja) モータ制御装置および電動パワーステアリング装置
WO2021250917A1 (ja) 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置
JP6885531B1 (ja) 検出信号補正方法、モータ制御装置及び電動パワーステアリング装置
JP3624737B2 (ja) モータ制御装置
JP7211515B2 (ja) 位相調整方法、補正値算出装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP7435269B2 (ja) 回転角度演算装置の補正方法、回転角度演算装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP2008155683A (ja) 電気式動力舵取装置
JP2005088709A (ja) ステアリング装置
JP2019124670A (ja) 回転角検出装置、モータ制御装置、電動パワーステアリング装置、及び回転角検出方法
JP2023136019A (ja) モータ制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021512461

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020891422

Country of ref document: EP

Effective date: 20210602

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE