WO2021249478A1 - 资源部署方法、设备、管控系统及计算机存储介质 - Google Patents

资源部署方法、设备、管控系统及计算机存储介质 Download PDF

Info

Publication number
WO2021249478A1
WO2021249478A1 PCT/CN2021/099364 CN2021099364W WO2021249478A1 WO 2021249478 A1 WO2021249478 A1 WO 2021249478A1 CN 2021099364 W CN2021099364 W CN 2021099364W WO 2021249478 A1 WO2021249478 A1 WO 2021249478A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
copper
services
path
resources
Prior art date
Application number
PCT/CN2021/099364
Other languages
English (en)
French (fr)
Inventor
杨振泰
胡道允
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021249478A1 publication Critical patent/WO2021249478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • This application relates to the field of communications, specifically, to but not limited to resource deployment methods, equipment, management and control systems, and computer storage media.
  • optical transmission network is an important part of the backbone network, and the transmission rate of a single optical path has reached 100 Gbit/s or even Tbit/s. Conditions such as fiber breaks and equipment failures will cause large-scale paralysis of related services carried in the network. Therefore, it is of great significance to improve the disaster resistance of the OTN network.
  • Network survivability refers to the ability of the network to still carry certain business data when certain catastrophic failures occur in the network, which can also be called network survivability.
  • Network survivability is usually expressed in terms of survival rate, which can be defined as the ratio of the amount of traffic that can be dredged from other lines to the amount of traffic transmitted by the line when a certain line fails.
  • survival rate can be defined as the ratio of the amount of traffic that can be dredged from other lines to the amount of traffic transmitted by the line when a certain line fails.
  • the main factors that affect the survivability of the network include: the performance of the node link in the business concentration; the protection and recovery technology and strategy of the network; the proportion of possible risk factors, etc.
  • the service restoration of the optical layer can often reduce the time to the ms level, so the research of the optical layer restoration of the service has strong practical value.
  • the technologies related to the survivability of optical transmission networks can be roughly divided into two categories: protection and restoration.
  • the protection strategy mainly refers to the corresponding protection or backup resources being reserved for the service while setting up the service. Once the main transmission channel of the service fails, it will immediately switch to the backup resource to perform the service transmission operation.
  • the recovery strategy mainly refers to only setting the working path resources for the business, and dynamically planning the existing network resources to transmit the business when it fails.
  • the main path and the backup path of the protection strategy are generally maintained at the link level or higher level separation strategy when setting, so for some expected network failures, such as single fiber damage, etc., it can ensure 100% successful business recovery .
  • the protection strategy service recovery time is short, but a certain amount of spectrum and bandwidth resources will be wasted; the restoration strategy saves spectrum resources, but the service recovery time is longer. So in summary, the realization mechanism of protection is reserved resources, which has a lower resource utilization rate, but the recovery time is shorter; the realization mechanism of the recovery strategy is rerouting, and the recovery time is longer.
  • optical network resources including spectrum resources and optical module resources, are often reserved during optical network planning.
  • the cost of optical modules is relatively high, and the deployment of redundant optical modules will greatly increase the cost of optical network deployment.
  • the resource deployment method, equipment, management and control system, and computer storage medium provided by the embodiments of this application are intended to solve one of the related technical problems at least to a certain extent, including the difficulty of efficiently and reliably ensuring the availability of services carried by the optical network in optical network resource planning.
  • the embodiment of the present application provides a resource deployment method, including: according to the service information of each service to be deployed, the deployment level service is all the paths of the non-copper service restoration path; The association relationship between the main paths, when a recovery path is deployed for a copper service, the recovery path resources of the unrelated copper service are shared.
  • An embodiment of the present application also provides a resource deployment device.
  • the resource deployment device includes a processor, a memory, and a communication bus; the communication bus is used to implement connection and communication between the processor and the memory; the processor is used to execute the memory
  • One or more programs stored in the computer to implement the steps of the network attack detection and control method described above.
  • An embodiment of the present application also provides a resource deployment management and control system, including: a first deployment module configured to deploy service information of each service requested to be deployed, and deployment level services are all paths of non-copper service restoration paths; second The deployment module is set to share the recovery path resources of unrelated copper services when a recovery path is deployed for a copper service according to the association relationship between the main paths of the copper services for each level of business.
  • An embodiment of the present application also provides a computer storage medium, the computer storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the resource deployment as described above Method steps.
  • FIG. 1 is the first flowchart of the resource deployment method provided by the first embodiment of the present application
  • FIG. 2 is a flowchart of a network provided in Embodiment 1 of the present application.
  • FIG. 3 is a second flowchart of the resource deployment method provided by Embodiment 1 of the present application.
  • FIG. 4 is an OEO deployment scenario diagram provided by Embodiment 2 of the present application.
  • FIG. 5 is a flowchart of a resource deployment method provided by Embodiment 2 of the present application.
  • Fig. 6 is a flow chart of deployment of copper service resources provided in the third embodiment of the present application.
  • FIG. 7 is a schematic diagram of copper service resource sharing provided by Embodiment 3 of the present application.
  • FIG. 8 is a flowchart of a resource deployment method provided by Embodiment 3 of the present application.
  • FIG. 9 is a structural block diagram of a resource deployment device provided in Embodiment 4 of the present application.
  • FIG. 10 is a structural block diagram of a management and control system provided by Embodiment 4 of the present application.
  • an embodiment of the present application provides a resource deployment method that simulates any fiber break in the network. , And pre-deploy some resources in advance to ensure successful service rerouting when the fiber is broken.
  • the resource deployment methods include:
  • the deployment-level service is all paths of the non-copper service restoration path.
  • the optical network planning system receives the service requesting network resources, and obtains the service information and level services of each service.
  • the level services include copper-level services and non-copper-level services.
  • the level The business can be determined according to the importance of the business.
  • the non-bronze business includes iron, silver, gold and diamond. The importance of the business is iron ⁇ copper ⁇ silver ⁇ gold ⁇ diamond.
  • the system receives each service and reads the requested service information from it.
  • the service information includes the source and sink node, bandwidth information, must pass or/and must avoid restriction information; where the source and sink node is the originator of the service.
  • the bandwidth information is the bandwidth required by the service, which must be restricted, that is, the route to be calculated must pass through a specific node or link in the network topology; the constraint must be avoided, that is, the route to be calculated must not pass through A specific node or link in the network topology.
  • the start node of service 1 is node 2 and the end node 8, and the necessary node is node 7.
  • the route of the service can be determined according to the source and sink nodes, must pass or/and must avoid constraint information of the service information.
  • the main path of the business is to determine the main path corresponding to all levels of business; as shown in Figure 2, the start node of business 1 is node 2 and the end node 8, and the necessary node is node 7, then there is a path 2-5-7-8, path 2-4-6-7-8, path 2-1-3-6-7-8, according to the shortest deviation path algorithm, determine the main path of business 1 as 2-5- 7-8.
  • the affected services can quickly resume service transmission through protection and recovery strategies.
  • different service recovery strategies are adopted for different levels of services;
  • this level of service only needs to ensure that a feasible path is deployed in the network, and does not have the rerouting function, so when a fiber break occurs, the service can be left unprocessed; that is, the iron-level service only guarantees the main path resources, and The path damage does not need to be restored.
  • SRLG shared risk link group
  • the separation is successful, that is, the resources of the main path and the protection path are guaranteed at the same time, and the main and protection are damaged and do not need to be restored.
  • the protection path resources of the service after determining the main path, for the silver, gold, and diamond services in the non-copper service, it is also necessary to calculate the protection path resources of the service according to the routing information of the service , And deploy to the optical transmission network; for example, according to the routing information of the service, allocate spectrum resources for the service, according to the routing information and spectrum information of the service, deploy ports in the optical network; suppose the level of service 1 in Figure 2 is For silver-level services, the protection path of service 1 is 2-4-6-7-8, and the spectrum resources and port resources (such as optical modules) of the protection path are calculated according to the path.
  • S102 According to the association relationship between the main paths where the services of each level are copper-level services, when a recovery path is deployed for a copper-level service, share the recovery path resources of the copper-level services that are not related to the recovery path.
  • the association relationship between the main paths of each copper service determine the deployment method of the recovery path of the copper service; among them, the association relationship between the main paths of the copper service includes the coincidence degree of the main paths of the copper service, including complete Coincident, not completely coincident.
  • the recovery path resources separated from the main path are calculated according to the service information and deployed to the optical transmission network.
  • Resources include spectrum resources and port resources.
  • the second copper service recovery path When the second copper service recovery path is deployed, when the main path of the second copper service completely overlaps with the main path of the first copper service, a recovery path that is completely exclusive to computing resources is required, that is, the second copper service.
  • the resources of the first-class service restoration path must be independent of the resources of the first copper-class service and cannot be shared, and the second-class service restoration path must be separated from the main path link.
  • the main paths of copper services do not completely overlap, a certain copper service recovery path is deployed and the recovery path resources of the copper services that are not related to it are shared; for example, if two copper services have If the main paths partially overlap, the resource isolation between the restoration paths must be ensured in the scenario where the fibers of the overlapped links are broken.
  • the recovery path resources can be shared; if the two copper service main paths do not overlap at all, then The restoration paths of these two copper services can share the same path resource, which can further reduce the port cost.
  • the main path of the third copper service and the main path of the first copper service do not go through the same link, that is, do not overlap at all.
  • the resource deployment method provided in the embodiments of this application can be used for network Resource deployment is further optimized.
  • the evolutionary algorithm further optimizes network resources. The process includes:
  • S302 Perform a mutation operation on some individuals in the parent population to obtain the offspring population.
  • the optimal individual is selected from the parent population and the offspring population.
  • the service deployment result obtained in steps S101-S103 is used as the initial solution, and expanded to obtain the parent population, for example, the initial solution is expanded to the specified population size n by deep copying, and then Perform mutation operations on some individuals in the parent population n.
  • One individual refers to the deployment plan of all services in the optical transmission network. Then there are n individuals in the parent population. Select some individuals to perform mutation operations to obtain the offspring population.
  • the mutation operation includes releasing part of the service corresponding path resources in the individual, and redeploying the released service path according to the current optical transmission network status; in some embodiments, selecting some individuals for the mutation operation can be performed by randomly selecting individuals, or it can be It is to generate a random number x for each individual through calculation.
  • the x is 0 to 1.
  • the mutation operation is performed on the individual; for example, suppose that the random number corresponding to an individual is 0.2, which is less than the preset mutation rate. If the mutation rate is 30%, the mutation operation is performed on the individual; similar to the number of each individual, the number of the thrown individual is determined by the calculation method of rolling dice.
  • the individual Perform mutation operations. In the mutation operation, the path resources corresponding to the part of the service in the individual are released. In some embodiments, part of the deployed service in the individual is extracted.
  • the recovery path resources of the copper service are released;
  • the extracted service is a non-copper service, release the main path of the non-copper service; or, the main path and protection path resources; or, the main path, the protection path, and the restoration path resources; that is, the iron-level service, release the frequency and spectrum of the main path.
  • Port resources, the silver, gold, and diamond levels release the spectrum and port resources of the main path and the protection path, or the silver level releases the spectrum and port resources of the main path and the protection path, and the gold and diamond levels release the main path, protection path, and Restore the spectrum and port resources of the path; after releasing the corresponding path resources, redeploy the removed service-related paths according to the current optical transmission network status, and reuse the remaining port resources of the current network as much as possible; it can be understood that the optical transmission network is based on Over time, its network resources have changed. For example, some services automatically release resources after data transmission, and the optical transmission network resources are more than previous resources; among them, the removed service-related paths are redeployed according to the current optical transmission network status. , Still follow steps S101-S103 to deploy path resources, and then reuse the remaining port resources of the current network by using the copper services to occupy the recovery path resources of the unrelated copper services.
  • selecting the optimal individual from the parent population and the offspring population is to select the optimal individual in an iterative manner; from the union of the parent population and the offspring population, select the desired port
  • the first n individuals with the least consumption are regarded as the current parent population, and the current parent population is mutated to obtain the current offspring population; where n can be the same as the initial parent population (that is, the parent population of S301), or Different; until the number of population iterations is greater than the maximum number of iterations, the individual with the least port resources is selected from the union of the parent population and offspring population corresponding to the last iteration as the optimal individual.
  • the initial parent population includes 100 individuals, and the mutation rate is 30%, then 30 offspring individuals are obtained, and the port resource consumption of these 100+30 individuals is sorted, and the first 100 individuals are selected as the second generation parent.
  • Population and then perform mutation operations on some individuals in the second-generation parent population to obtain the second-generation offspring population.
  • the number of iterations is 2, and continue to select from the second-generation parent population and the second-generation offspring population.
  • the first 100 individuals with the least port resources continue to perform mutation operations until the number of population iterations is greater than the preset maximum number of iterations, then the individual with the least port resources is selected from the union of the last parent population and offspring population as the optimal individual.
  • the population iteration is stopped, and the current parent population and offspring population are combined to the individual with the least port resources. , As the best individual. Finally, the optimal individual (that is, the deployment results corresponding to all services are the best in the optical transmission network and the one with the most multiplexed port resources) is used as the final plan for fiber-cutting planning and deployed to the optical transmission network.
  • the resource deployment method provided by the embodiment of the application obtains the service information and level services of each service requested to be deployed.
  • the level services include copper services and non-copper services; all paths of the non-copper service recovery paths are deployed according to the service information; According to the association relationship between the main paths of each copper service, when a restoration path is deployed for a copper service, the restoration path resources of the copper service that are not related to it are shared.
  • Path resources include spectrum resources and port resources, which can be based on Network resource information and business information in the network, output a port resource deployment plan, and at the same time output a service routing and spectrum allocation plan, and ensure the success rate of service recovery and the total network cost in a single fiber damage scenario.
  • corresponding protection or recovery strategies can be adopted for the services of different levels of business to ensure that the four services of silver, gold, and diamonds exist.
  • ROADM reconfigurable optical add/drop multiplexer
  • OEO optical/electrical/optical conversion
  • Wave hopping operation as shown in business 2.
  • Service 2 is transmitted by the wavelength ⁇ 1 in the inbound fiber.
  • the optical signal is first converted into an electrical signal.
  • the electrical signal is converted into an optical signal and distributed to the outbound fiber.
  • the wavelength ⁇ 2. Therefore, it is necessary to allocate an OEO port on the network element for ⁇ 1 of the inbound fiber and ⁇ 2 of the outbound fiber.
  • Service 3 monopolizes the wavelength ⁇ 2 on the inbound fiber, but after passing through the site, it converges with service 2 to the wavelength ⁇ 2 of the outbound fiber. Therefore, it is necessary to allocate an OEO port for each of ⁇ 1 and ⁇ 2 of the inbound fiber, which is responsible for converting service 2 and service 3 into electrical signals. At the same time, it is necessary to allocate an OEO port for the wavelength ⁇ 2 of the outbound fiber, which is responsible for converting the converged electrical signal of service 2 and service 3 into optical signals.
  • OEO port such as service 0.
  • OEO ports on ROADM equipment enables operations such as wave hopping, convergence and splitting during the transmission process, which greatly improves the flexibility of WDM network resource scheduling, the cost of OEO equipment is relatively expensive. Therefore, when deploying services and OEO ports, operators need to balance the benefits of service deployment and the cost of OEO port deployment.
  • the resource deployment method includes:
  • S501 Initialize spectrum resources, existing services, and deployed port information of the optical transmission network
  • S502 Receive a batch of services to be planned, and read the requested source and sink nodes, bandwidth information, must pass and avoid constraint information, and level services from the request;
  • S503 According to the service information, converge services that have the same requirements except bandwidth into a combined service request with the maximum bandwidth resource size of a single channel;
  • S504 Sort operations from large to small according to the combined service bandwidth
  • the must-pass must-avoid constraint information the routing operation is performed according to the Yen-ksp algorithm, and the main path of the service is determined.
  • S506 Allocate spectrum resources for the service according to the routing information of the service
  • S507 Determine the OEO port in the optical network according to the routing information and spectrum information of the service
  • S508 Calculate the path resource of the related service according to the service level service.
  • the iron level only guarantees the main path resources, and the path damage does not need to be restored;
  • the copper level guarantees the main path resources, and the service recovery operation is performed when the main path is damaged;
  • the silver level guarantees the main path and the protection path resources at the same time, and the main path Both the path and the protection path are damaged and do not need to be restored;
  • the gold level guarantees the resources of the main path and the protection path at the same time, and the service recovery operation is required when the paths are damaged;
  • the diamond level always maintains the existence of two preset resource routes for the business. If there are still services that have not been deployed, skip to S505.
  • This step S510 is specifically shown in FIG. 6, and includes the following steps:
  • S602 The main path for deploying copper services, as shown in Figure 7, the main path for service 1 is 2-5-7, the main path for service 2 is 2-5-7, and the main path for service 3 is 5-7- 6.
  • the main path of service 4 is 1-3-6;
  • S603 Collect information about the main path of the copper service, calculate the restoration path and deploy related optical modules in sequence starting from service 1;
  • S605 Deploy service 2. Since service 2 is completely overlapped with service 1 that has a restoration path in the existing network, in a fiber-cut scenario, both services will be affected at the same time. Therefore, the resources of the service 2 restoration path must be independent of the resources of the service 1 and cannot be shared, and the service 2 restoration path must be separated from the main path link.
  • S606 Deploy service 3, and the main paths of service 3, service 1 and service 2 overlap on the link (5-7).
  • the three services are affected at the same time, and the resource separation between the restoration paths is maintained.
  • service 3 can share the restoration path resources of service 1 and 2. The two recovery paths in these two cases can share resources with each other.
  • Service 4 is deployed. There is no overlapping link between service 4 and the main paths of service 1, 2, and 3. When the service 4 restoration path is deployed, resources related to the restoration path of service 1, 2, and 3 can be shared.
  • the embodiment of this application provides a resource deployment method.
  • the service path is determined according to the service information of the service, and then all the paths of the non-copper recovery path are deployed in the optical transmission network. Only the copper service needs to be guaranteed in a fiber-cut scenario. The business can be successfully restored on the basis of existing port resources.
  • the overlap degree of the main copper-level service paths can be determined. For services that are not completely overlapped, the unrelated copper-level service will be occupied.
  • Service restoration path resources reuse as many current network resources as possible, and optimize the cost of optical network deployment.
  • the embodiment of the application further optimizes network resources on the basis of the second embodiment, as shown in FIG. 8, including the following steps:
  • the service and port planning solution obtained in step S510 in the second embodiment is used as the initial solution.
  • S803 Generate a random number x for the individuals in the population by calculation. If x ⁇ the mutation rate p, perform corresponding mutation operations on the individual and update its status; otherwise, skip it;
  • S804 Release part of the service-corresponding path resources in the individual and dismantle ports not associated with the service, and redeploy the released service path according to the current optical transmission network state.
  • S805 Complete the mutation operation for all individuals, from the union of offspring and parent populations, using port resource consumption as a measurement index, select the first n individuals with the least port resources as the next generation population;
  • the mutation operation is performed on the individuals of the next-generation population part, that is, steps S803-S805 are repeated.
  • S806 Determine whether the iteration termination condition is satisfied; if yes, proceed to S807, if not, proceed to S806.
  • the individual with the least port resources is selected as the final fiber-breaking plan.
  • An embodiment of the present application also provides a resource deployment device. As shown in FIG. 9, it includes a processor 901, a memory 902, and a communication bus 903, where:
  • the communication bus 903 is used to implement connection and communication between the processor 901 and the memory 902;
  • the processor 901 is configured to execute one or more computer programs stored in the memory 902 to implement the following steps:
  • the restoration path resources of the copper service that are not related to it are shared, and the path resources include spectrum resources and port resources.
  • the embodiment of the present application also provides a resource deployment management and control system.
  • the management and control system includes:
  • the first deployment module 1001 is set to deploy all the paths of the non-copper service recovery path according to the service information of each service to be deployed according to the request;
  • the second deployment module 1002 is set to share the recovery path resources of copper services that are not related to it when deploying a recovery path for a copper service according to the association relationship between the main paths of the copper services of each level of business, Path resources include spectrum resources and port resources.
  • An embodiment of the present application also provides a computer storage medium.
  • the computer storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the resource deployment method as in the first to second embodiments. A step of.
  • the deployment level services are all paths of the non-copper service restoration path through the service information of each service deployed according to the request;
  • the association relationship between the main paths of the copper services, when a recovery path is deployed for a copper service, the recovery path resources of the copper services that are not related to it are shared; that is, the resource deployment method provided in the embodiment of this application is used in a single fiber
  • the corresponding resource deployment method is adopted according to the business information of the business.
  • the recovery path of a certain copper service is deployed, the path is realized by occupying the recovery path resources of the unrelated copper service.
  • the sharing of resources in turn reduces the use of resources to a certain extent, thereby reducing the cost of optical network deployment while increasing the success rate of service recovery.
  • the computer storage medium includes volatile or nonvolatile, removable or non-removable implemented in any method or technology for storing information (such as computer readable instructions, data structures, computer program modules, or other data) In addition to the medium.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or it can be used to store desired information and can be any other medium that can be accessed by a computer.
  • the functional modules/units in the system, and the device can be implemented as software (which can be implemented by computer program code executable by a computing device. ), firmware, hardware and their appropriate combination.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, a physical component may have multiple functions, or a function or step may consist of several physical components. The components are executed cooperatively. Certain physical components or all physical components can be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种资源部署方法、设备、管控系统以及计算机存储介质,其中的方法包括,根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径(S101);根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源(S102);即在单一光纤损毁场景下,针对不同的等级业务,根据业务的业务信息采用对应的资源部署方式,在部署某个铜级业务的恢复路径时,通过占用其不相关的铜级业务的恢复路径资源,实现路径资源的共享。

Description

资源部署方法、设备、管控系统及计算机存储介质
相关申请的交叉引用
本申请基于申请号为202010534174.1、申请日为2020年06月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,具体而言,涉及但不限于资源部署方法、设备、管控系统及计算机存储介质。
背景技术
随着互联网技术的快速发展以及5G时代的到来,网络流量呈现快速增长的趋势。而光传输网络(OTN)作为主干网的重要组成部分,单一光路传输速率已经达到百Gbit/s甚至Tbit/s。光纤断裂、设备故障等状况将导致网络中承载的相关业务大规模瘫痪,因此提升OTN网络的抗灾能力具有重要意义。网络生存性是指当网络发生某些灾难故障时,其仍然能够承载一定的业务数据的能力,又可以称为网络抗毁性。网络生存性通常以生存率来表示,可定义为当某条线路出现故障时,可以从其他线路上疏通的业务量与该线路所传输的业务量之比。影响网络生存性的主要因素包括:业务集中的节点链路的性能;网络的保护恢复技术与策略;可能存在的危险因素占比等。光层的业务恢复往往能将时间降低到ms级别,因而业务的光层恢复研究具有较强的现实价值。
与光传输网络生存性相关的技术大体上可以分为保护和恢复两大类。保护策略主要指在设置业务的同时为其预留好相对应的保护或备用资源,一旦业务的主传输通道发生故障立即切换到备用资源上进行业务的传输操作。恢复策略主要是指只为业务设置工作路径资源,当其发生故障时动态的规划现网资源以传输业务。保护策略的主路径和备路径在设置时一般保持链路级别或更高级别的分离策略,因而对于某些预料之内的网络故障,例如单一光纤毁坏等,其可以保证业务能100%恢复成功。保护策略业务恢复时间少,但会浪费一定的频谱和带宽资源;恢复策略节省频谱资源,但业务恢复时间较长。所以综上所述,保护的实现机制是预留资源,具有较低的资源利用率,但是恢复时间较短;恢复策略的实现机制是重路由,恢复时间较长。
针对已部署的光网络,为了保证任意一根光纤断裂时,受影响的业务能通过保护或恢复策略迅速恢复业务传输,往往会在光网络规划时预留一部分网络资源,包括频谱资源和光模块资源,但光模块成本较高,部署冗余光模块会大幅提升光网络部署的成本。
发明内容
本申请实施例提供的资源部署方法、设备、管控系统及计算机存储介质,旨在至少一定程度上解决相关的技术问题之一,包括光网络资源规划难以高效、可靠的保证光网络承载的业务在单一光纤损坏的恢复效率以及总的恢复成本的问题。
有鉴于此,本申请实施例提供一种资源部署方法,包括:根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径;根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源。
本申请实施例还提供一种资源部署设备,所述资源部署设备包括处理器、存储器及通信总线;所述通信总线用于实现处理器和存储器之间的连接通信;所述处理器用于执行存储器中存储的一个或者多个程序,以实现如上所述的网络攻击检测控制方法的步骤。
本申请实施例还提供一种资源部署的管控系统,包括:第一部署模块,被设置成根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径;第二部署模块,被设置成根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源。
本申请实施例还提供一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上所述的资源部署方法的步骤。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请说明书中的记载变的显而易见。
附图说明
图1是本申请实施例一提供的资源部署方法的流程图一;
图2是本申请实施例一提供的网络的流程图;
图3是本申请实施例一提供的资源部署方法的流程图二;
图4是本申请实施例二提供的OEO部署场景图;
图5是本申请实施例二提供的资源部署方法的流程图;
图6是本申请实施例三提供的铜级业务资源部署流程图;
图7是本申请实施例三提供的铜级业务资源共享示意图;
图8是本申请实施例三提供的资源部署方法流程图;
图9是本申请实施例四提供的资源部署设备的结构框图;
图10是本申请实施例四提供的管控系统的结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本申请实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
为了相关光网络资源规划算法难以高效、可靠的保证光网络承载的业务在单一光纤损坏的恢复效率以及总的恢复成本的问题,本申请实施例提供一种资源部署方法,模拟网络中任意光纤断裂,并提前预部署一些资源,以保证光纤断裂时,业务重路由成功,如图1所示,该资源部署方法包括:
S101:根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径。
在本申请实施例中,光网络规划系统接收请求网络资源的业务,并获取各业务的业务信息和等级业务,其中该等级业务包括铜级业务和非铜级业务,在一个实施方式中,等级业务可以根据业务的重要程度确定,该非铜级业务包括铁级、银级、金级和钻石级,其中等级业务重要程度铁级<铜级<银级<金级<钻石级。
在本申请实施例中,系统接收各业务,并从中读取请求的业务信息,该业务信息包括源宿节点、带宽信息、必经或/和必避约束信息;其中源宿节点为业务的起始节点和终止节点,带宽信息为业务所需带宽大小,必经约束,即要求待计算的路由必须经过网络拓扑中特定的节点或者链路;必避约束,即要求待计算的路由必须不能经过网络拓扑中特定的节点或者链路。如图2所示,业务1的起始节点为节点2和终止节点8,必经节点为节点7。
在本申请实施例中,可根据业务信息的源宿节点、必经或/和必避约束信息确定业务的路由,例如基于单源最短路径算法,根据业务信息对各业务进行路由操作,确定各业务的主路径,可以理解的是,是确定所有等级业务对应的主路径;如图2中的,业务1的起始节点为节点2和终止节点8,必经节点为节点7,则存在路径2-5-7-8,路径2-4-6-7-8,路径2-1-3-6-7-8,则按照最短偏离路径算法,确定业务1的主路径为2-5-7-8。
为了保证任意一根光纤断裂时,受影响的业务能通过保护、恢复策略迅速恢复业务传输,本申请实施例中,对于不同的等级业务,采用不同的业务恢复策略;
针对铁级业务:该等级业务仅需要保证在网络中部署一条可行路径,并且不具备重路由功能,所以当发生断纤时,该业务可以不作处理;即铁级业务只保证主路径资源,且路径损坏无需恢复。
针对铜级业务(1+R):该等级业务,需要规划一条工作路由,当光纤断裂时,需要保证该业务恢复路径计算成功。恢复路径需要满足和工作路径的链路和共享风险链路组(SRLG)分离,即铜级保证主路径资源,主路径损坏时要进行业务恢复操作。
针对银级业务(1+1):该等级业务,需要规划一条工作路由和一条保护路由,当光纤断裂时,业务可以自动切换到保护路径上;所以只需要保证银级业务的工作和保护路径分离成功即可,即同时保证主路径和保护路径资源,主和保护均损坏无需恢复。
针对金级业务(1+1+R):该等级业务,需要规划一条工作路由和一条保护路由,当光纤断裂时,业务可以自动切换到保护路径上;所以只需要保证金级业务的工作和保护路径分离成功即可。预置恢复路由可成功可失败;无预置的恢复路径可以不计算。
针对钻石级业务(永久1+1):该等级业务需要规划一条工作路由和一条保护路由,当光纤断裂时,业务可以自动切换到保护路径上;所以只需要保证钻石级业务的工作和保护路径分离成功,且时刻保持业务有两条预置资源的路由存在。预置恢复路由可成功可失败; 无预置的恢复路径可以不计算。
根据上述不同的等级业务不同的业务恢复策略,在确定主路径后,针对非铜级业务中的银级业务、金级业务、钻石级业务,还需要根据业务的路由信息计算业务的保护路径资源,并部署到光传输网络中;例如,根据业务的路由信息,为业务分配频谱资源,根据业务的路由信息和频谱信息,在光网络中部署端口;假设图2中的业务1的等级业务为银级业务,该业务1的保护路径为2-4-6-7-8,则根据该路径计算该保护路径的频谱资源和端口资源(如光模块)。
S102:根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源。
需要说明的是,先在光传输网络中部署非铜级恢复路径的所有路径,针对铜级业务,在一次断纤场景下只需要保证铜级业务能够在现有端口资源基础上能够成功恢复业务。根据各铜级业务的主路径之间的关联关系,确定铜级业务的恢复路径的部署方式;其中铜级业务的主路径之间的关联关系包括铜级业务的主路径的重合度,包括完全重合,不完全重合。
由于光传输网络还未部署铜级业务的恢复路径,当两个铜级业务的主路径完全重合时,根据业务信息分别计算与主路径分离的恢复路径资源,并部署到光传输网络中,路径资源包括频谱资源和端口资源。假设确定各铜级业务,依次计算各铜级业务恢复路径,由于光传输网络中不存在铜级业务的恢复路径,先直接部署第一个铜级业务的恢复路径,恢复路径与主路径保证链路分离,并预先为该恢复路径分配频谱资源、部署光模块。部署第二个铜级业务的恢复路径时,当第二个铜级业务的主路径与第一个铜级业务的主路径完全重合,则需计算资源完全独占的恢复路径,即第二个铜级业务恢复路径的资源要和第一个铜级业务的资源保持独立不能共享,并保证第二个铜级业务恢复路径与主路径链路分离。
在本申请实施例中,当存在铜级业务的主路径不完全重合时,部署某个铜级业务恢复路径,共享与其不相关的铜级业务的恢复路径资源;例如若两个铜级业务的主路径部分重合,那么对于重合链路断纤的场景下需保证恢复路径之间资源隔离,不重合链路断纤时可以共享恢复路径资源;如果两个铜级业务主路径完全不重合,则这两个铜级业务的恢复路径可以共享同一路径资源,进而可以使得端口成本进一步减少。承接上例,第三个铜级业务的主路径与第一个铜级业务的主路径没有经过相同的链路,即完全不重合,在单一光纤损坏而导致业务中断的场景下,这两个业务不会同时中断业务,这两个铜级业务不会同时切换至恢复路径,在部署第三个铜级业务的恢复路径时可以共享第一个铜级业务的恢复路径资源。
通过上述共享网络和光模块资源的技术方案,已经在一定程度上减少了光模块的使用,获得较优端口预部署的网络,在此基础上,在本申请实施例提供的资源部署方法可以对网络资源部署进行进一步优化,如图3所示,根据共享策略部署完所有业务之后,进化算法对网络资源做进一步的优化流程包括:
S301、对已部署的业务的部署结果进行扩展得到父代种群。
S302、对父代种群中的部分个体进行变异操作得到子代种群。
S303、根据端口资源的消耗量,从父代种群和子代种群中选取最优个体。
S304、将最优个体对应的部署结果部署到光传输网络中。
在本申请实施例中,将按照步骤S101-S103部署得到的业务的部署结果作为初始解,并进行扩展得到父代种群,例如,通过深拷贝方式将初始解扩展至规定的种群规模n,然后对父代种群n中的部分个体进行变异操作,其中一个个体指的是光传输网络中所有业务的部署方案,则父代种群中有n个个体,选择部分个体进行变异操作得到子代种群,该变异操作包括释放个体内部分的业务对应路径资源,根据当前光传输网络状态重新部署释放后的业务的路径;在一些实施例中,选择部分个体进行变异操作可以是通过随机选择个体,也是可以是对每个个体通过计算产生随机数x,该x为0~1,当该x小于预设变异率,则对该个体进行变异操作;例如假设某个个体对应的随机数为0.2,小于预设变异率30%,则对该个体进行变异操作;类似于为每个个体编号,通过丢骰子的计算方式,确定丢出的个体编号,当该个体编号小于预设变异编号,则对该个体进行变异操作。变异操作中释放个体内部分的业务对应路径资源,在一些实施例中,抽取个体内的部分已部署的业务,当抽取的业务是铜级业务时,释放该铜级业务的恢复路径资源;当抽取的业务是非铜级业务时,释放非铜级业务的主路径;或,主路径和保护路径资源;或,主路径、保护路径和恢复路径资源;即铁级业务,释放主路径的频谱和端口资源,银级、金级、钻石级释放主路径和保护路径的频谱和端口资源,或银级释放主路径和保护路径的频谱和端口资源,金级、钻石级释放主路径、保护路径和恢复路径的频谱和端口资源;释放相应路径资源后,根据当前光传输网络状态重新部署拆除掉的业务相关路径,尽可能多的复用当前网络的剩余端口资源;可以理解为,光传输网络根据时间的推移,其网络资源发生的变化,例如部分业务完成数据传输后自动释放掉资源,进而光传输网络资源比之前的资源多;其中根据当前光传输网络状态重新部署拆除掉的业务相关路径时,仍然按照步骤S101-S103进行部署路径资源,进而通过铜级业务占用其不相关的铜级业务的恢复路径资源复用当前网络的剩余端口资源。
需要说明的是,根据端口资源的消耗量,从父代种群和子代种群中选取最优个体是通过迭代的方式选取最优个体;从父代种群和子代种群的并集中,选取所需端口的消耗量最少的前n个个体作为当前父代种群,对当前父代种群进行变异操作得到当前子代种群;其中,该n可以与初始父代种群(即S301的父代种群)相同,也可以不同;直到种群迭代次数大于最大迭代次数,从最后一次迭代对应的父代种群和子代种群的并集中选取端口资源最少的个体,作为最优个体。例如初始父代种群包括100个个体,变异率为30%,则得到30个子代个体,则从这100+30个个体的端口资源消耗量进行排序,选择前100个个体作为第二代父代种群,然后对第二代父代种群中的部分个体进行变异操作得到第二代子代种群,此时为迭代次数为2,继续从第二代父代种群和第二代子代种群中选择端口资源最少的前100个个体继续进行变异操作,直到种群迭代次数大于预设最大迭代次数,则从最后一个的父代种群和子代种群的并集中选取端口资源最少的个体作为最优个体。在一些实施例中,也可以是当从父代种群和子代种群中能选择出满足实际需求的个体时,则停止种群迭代,将当前父代种群和子代种群中的并集中端口资源最少的个体,作为最优个体。最后将最优个体(即所有业务对应的部署结果均为光传输网络中最优的,复用端口资源最多的)作为断纤规划的最终方案,部署到光传输网络中。
本申请实施例提供的资源部署方法,通过获取请求部署的各业务的业务信息和等级业务,等级业务包括铜级业务和非铜级业务;根据业务信息部署非铜级业务恢复路径的所有 路径;根据各铜级业务的主路径之间的关联关系,在为某个铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源,路径资源包括频谱资源和端口资源,能够根据网络资源信息和网络中的业务信息,输出一种端口资源的部署方案,同时输出一种业务的路由和频谱分配方案,并保证在单一光纤损毁场景下业务恢复的成功率和网络总成本。具体的,能够针对不同等级业务的业务采用相应的保护或恢复策略,保证银、金、钻四种业务,存在两条满足SRLG分离的路径,并通过铜级业务占用不相关的铜级业务的恢复路径资源,实现共享频谱和端口资源提升业务恢复成功率,降低网络部署成本;能够在满足单一光纤损毁场景下的约束前提下,使得网络部署的端口模块数量更少,从而降低光网络部署成本。
实施例二:
在一些情况中,商用可重构光分插复用器(ROADM)设备还不具备全光再生技术,因此业务在ROADM设备上只能通过部署光/电/光转换(OEO)端口的方式来实现发送、接收、跳波、聚会和拆分等操作。
发送和接收:如图4中的业务1所示,当该网元为业务1的原宿节点时,由于客户侧均为电信号,因此需要为出站光纤的λ1分配一个OEO端口,从而将业务1由电信号转换成光信号。
跳波操作:如业务2所示。业务2在入站光纤中由波长λ1传输,在经过站点时,先由光信号被转换成电信号,经过电层模块后,再由电信号转换成光信号,并被分配到出站光纤的波长λ2中。因此需要在该网元上为入站光纤的λ1和和出站光纤的λ2各分配一个OEO端口。
业务汇聚和拆分:如业务2和业务3所示。业务3在入站光纤上独占波长λ2,但是经过该站点后,和业务2一起汇聚到了出站光纤的波长λ2中。因此,需要为入站光纤的λ1和λ2各分配一个OEO端口,负责将业务2和业务3转换成电信号。同时,需要为出站光纤的波长λ2分配一个OEO端口,负责将业务2和业务3汇聚后的电信号转换成光信号。
如果业务在经过站点时只经过光交叉矩阵实现转发,则不需要部署OEO端口,如业务0。虽然在ROADM设备上部署OEO端口能够使业务在传输过程中实现跳波、汇聚和拆分等操作,极大程度上提高了WDM网络资源调度的灵活性,但是OEO设备成本较为昂贵。所以运营商在部署业务和OEO端口时,需要均衡业务部署带来的收益和OEO端口部署付出的成本。
针对已部署的光网络,为了保证任意一根光纤断裂时,受影响的业务都能迅速恢复业务传输,往往会在光网络规划时预留一部分网络资源,包括频谱资源和OEO端口资源,为了光网络规划系统需要在保证服务质量的同时,尽可能地减少部署OEO端口数量,本申请 实施例以一个较为具体的例子对资源部署方法进行说明,如图5所示,该资源部署方法包括:
S501:初始化光传输网络的频谱资源、已有业务和已部署的端口信息;
S502:接收批量待规划的业务,并从中读取请求的源宿节点、带宽信息、必经必避约束信息和等级业务;
S503:根据业务信息,将除带宽外其他要求均一致的业务汇聚成单通道最大带宽资源大小的合并业务请求;
S504:依据合并业务带宽,从大到小进行排序操作;
S505:选取还未部署的业务,使用最短路径算法Yen-ksp算法进行路由操作;
根据源宿节点、必经必避约束信息,按照Yen-ksp算法进行路由操作,确定业务的主路径。
S506:根据业务的路由信息,为业务分配频谱资源;
S507:根据业务的路由信息和频谱信息,在光网络中确定OEO端口;
S508:根据业务的等级业务计算相关业务的路径资源。
在本申请实施例中,铁级只保证主路径资源,且路径损坏无需恢复;铜级保证主路径资源,主路径损坏时要进行业务恢复操作;银级同时保证主路径和保护路径资源,主路径和保护路径均损坏无需恢复;金级同时保证主路径和保护路径资源,路径均损坏时需进行业务恢复操作;钻石级时刻保持业务有两条预置资源的路由存在。若还有业务未部署则跳转至S505。
S509:对于所有请求,在光传输网络上部署非铜级恢复路径的所有路径,并部署中继和功能端口;
S510:根据各铜级业务的主路径之间的关联关系,在为某个铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源。
该步骤S510具体如图6所示,包括以下步骤:
S601:假定所有非铜级业务已按其业务要求部署到现网中,只存在4个铜级业务;
S602:部署铜级业务的主路径,如图7所示,业务1的主路径为2-5-7,业务2的主路径为2-5-7,业务3的主路径为5-7-6,业务4的主路径为1-3-6;
S603:采集铜级业务主路径信息,从业务1开始依次计算恢复路径及部署相关光模块;
S604:由于现网中不存在铜级业务的恢复路径,则直接计算业务1的恢复路径(与其主路径保持链路分离)并预分配资源和部署OEO端口;
S605:部署业务2,由于业务2与现网中已存在恢复路径的业务1路径完全重合,则在一次断纤场景下,两个业务会同时受影响。因而,业务2恢复路径的资源要和业务1的 资源保持独立不能共享,并保证业务2恢复路径与主路径链路分离。
S606:部署业务3,业务3与业务1和业务2的主路径在链路(5-7)上重合。当重合链路发生断纤时,三个业务同时受影响,则其恢复路径之间保持资源分离。当不重合链路发生断纤时,业务3可以共享业务1,2的恢复路径资源。这两种情况下的两条恢复路径,彼此之间可以共享资源。
S607:部署业务4,业务4与业务1,2,3主路径均不存在重合链路,则在部署业务4恢复路径的时候可以共享业务1,2,3的恢复路径的相关资源。
本申请实施例提供一种资源部署方法,先根据业务的业务信息确定业务的路径,进而在光传输网络中部署非铜级恢复路径的所有路径,在一次断纤场景下只需要保证铜级业务能够在现有端口资源基础上能够成功恢复业务,通过获取铜级业务主路径之间的关联关系,确定铜级业务主路径的重合度,对于不完全重合的业务,占用其不相关的铜级业务的恢复路径资源,尽可能多的复用当前网络资源,优化光网络部署成本。
实施例三:
本申请实施例在实施例二的基础上,进一步地对网络资源进行优化,如图8所示,包括以下步骤:
S801:获取所求得的业务和端口规划方案,作为初始解;
将实施例二中步骤S510所求得的业务和端口规划方案,作为初始解。
S802:通过深拷贝方式将初始解数量拓展至制定的种群规模n;
S803:通过计算对种群中的个体产生随机数x,若x<变异率p,则对该个体进行相应的变异操作,并更新其状态;反之,则跳过;
S804:释放个体内部分的业务对应路径资源并拆除没有业务关联的端口,根据当前光传输网络状态重新部署释放后的业务的路径。
随机抽取个体内k条规划结果中已部署的业务,若业务为铜级业务,则释放铜级业务的相关恢复路径频谱和端口资源;否则,释放业务主路径;或,主路径和保护路径资源;或,主路径、保护路径和恢复路径相关的频谱和端口资源。重新根据实施例二的步骤部署拆除掉的业务相关路径,尽可能多的复用当前网络的剩余端口资源;
S805:完成对所有个体的变异操作,从子代和父代种群的并集中,以端口的资源消耗为衡量指标,选取所需端口资源最少的前n个个体作为下一代种群;
对下一代种群部分的个体进行变异操作,即重复步骤S803-S805。
S806:判断是否满足迭代终止条件;如是,则进行S807,如否,则进行S806。
当前迭代次数大于最大迭代次数或者当前最优解以满足用户需求,则判定满足迭代终 止条件。
S807:输出端口成本最低的个体作为最终的一次断纤规划方案。
从最后一次迭代对应的父代种群和子代种群的并集中选取端口资源最少的个体作为最终的一次断纤规划方案。
实施例四:
本申请实施例还提供了一种资源部署设备,参见图9所示,其包括处理器901、存储器902及通信总线903,其中:
通信总线903用于实现处理器901和存储器902之间的连接通信;
处理器901用于执行存储器902中存储的一个或者多个计算机程序,以实现如下步骤:
根据业务信息部署非铜级业务恢复路径的所有路径;
根据各铜级业务的主路径之间的关联关系,在为某个铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源,路径资源包括频谱资源和端口资源。
本申请实施例还提供一种资源部署的管控系统,如图10所示,该管控系统包括:
第一部署模块1001,被设置成根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径;
第二部署模块1002,被设置成根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源,路径资源包括频谱资源和端口资源。
值得注意的是,为了不累赘说明,在本实施例中并未完全阐述各实施例中的所有示例,应当明确的是,各实施例中的所有示例均适用于本实施例。
本申请实施例还提供一种计算机存储介质,计算机存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如实施例一至二中的资源部署方法的步骤。
根据本申请实施例提供的资源部署方法、设备、管控系统以及计算机存储介质,通过根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径;根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源;即本申请实施例提供的资源部署方法,在单一光纤损毁场景下,针对不同的等级业务,根据业务的业务信息采用对应的资源部署方式,在部署某个铜级业务的恢复路径时,通过占用其不相关的铜级业务的恢复路径资源,实现路径资源的共享,进而在一定程度上减少了资源的使用,从而在降低光网络部署成本的同时,提升业务恢复成功率。
该计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本申请实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (11)

  1. 一种资源部署方法,包括:
    根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径;
    根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源。
  2. 如权利要求1所述的资源部署方法,其中,所述业务信息包括:请求的源宿节点、带宽信息、必经或/和必避约束信息。
  3. 如权利要求2所述的资源部署方法,其中,所述根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径,包括:
    基于单源最短路径算法,根据所述业务信息对所述各业务进行路由操作,确定所述各业务的主路径;
    针对所述非铜级业务中的银级业务、金级业务、钻石级业务,根据业务的路由信息计算业务的保护路径资源,并部署到光传输网络中。
  4. 如权利要求3所述的资源部署方法,其中,根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源,所述路径资源包括频谱资源和端口资源之前,包括:
    针对铜级业务,当两个铜级业务的主路径完全重合时,根据业务信息分别计算与所述主路径分离的恢复路径资源,并部署到光传输网络中。
  5. 如权利要求4所述的资源部署方法,其中,所述根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源包括:
    当存在铜级业务的主路径不完全重合时,部署一铜级业务恢复路径,共享与其不相关的铜级业务的恢复路径资源。
  6. 如权利要求1-5任一项所述的资源部署方法,其中,所述根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源之后,包括:
    对已部署的业务的部署结果进行扩展得到父代种群;
    对父代种群中的部分个体进行变异操作得到子代种群,所述变异操作包括释放所述个体内部分的业务对应路径资源,根据当前所述光传输网络状态重新部署释放后的业务的路径;
    根据端口资源的消耗量,从所述父代种群和子代种群中选取最优个体;
    将所述最优个体对应的部署结果部署到所述光传输网络中。
  7. 如权利要求6所述的资源部署方法,其中,所述释放所述个体内部分的业务对应路径资源,包括:
    抽取所述个体内的部分已部署的业务,当抽取的业务是铜级业务时,释放所述铜级业务的恢复路径资源;
    当抽取的业务是非铜级业务时,释放所述非铜级业务的主路径;或,主路径和保护路径资源;或,主路径、保护路径和恢复路径。
  8. 如权利要求6所述的资源部署方法,其中,所述根据端口资源的消耗量,从所述父代种群和子代种群中选取最优个体,包括:
    从父代种群和子代种群的并集中,选取所述端口资源的消耗量最少的前n个个体作为当前父代种群,对所述当前父代种群进行变异操作得到当前子代种群;
    直到种群迭代次数大于预设最大迭代次数,从最后一次迭代对应的父代种群和子代种群的并集中选取端口资源最少的个体,作为所述最优个体。
  9. 一种资源部署设备,包括处理器、存储器及通信总线;其中,
    所述通信总线用于实现处理器和存储器之间的连接通信;
    所述处理器用于执行存储器中存储的一个或者多个程序,以实现如权利要求1至8中任一项所述的资源部署方法的步骤。
  10. 一种资源部署的管控系统,包括:
    第一部署模块,被设置成根据请求部署的各业务的业务信息,部署等级业务为非铜级业务恢复路径的所有路径;
    第二部署模块,被设置成根据各等级业务为铜级业务的主路径之间的关联关系,在为一铜级业务部署恢复路径时,共享与其不相关的铜级业务的恢复路径资源。
  11. 一种计算机存储介质,存储有一个或者多个程序,其中,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至8中任一项所述的资源部署方法中的步骤。
PCT/CN2021/099364 2020-06-12 2021-06-10 资源部署方法、设备、管控系统及计算机存储介质 WO2021249478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010534174.1A CN113810793A (zh) 2020-06-12 2020-06-12 资源部署方法、设备、管控系统及计算机存储介质
CN202010534174.1 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021249478A1 true WO2021249478A1 (zh) 2021-12-16

Family

ID=78846839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099364 WO2021249478A1 (zh) 2020-06-12 2021-06-10 资源部署方法、设备、管控系统及计算机存储介质

Country Status (2)

Country Link
CN (1) CN113810793A (zh)
WO (1) WO2021249478A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374428A (zh) * 2021-12-29 2022-04-19 中国电信股份有限公司 一种光缆故障业务恢复优先级的确定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030095500A1 (en) * 2001-10-23 2003-05-22 Sycamore Networks, Inc. Methods for distributed shared mesh restoration for optical networks
CN1747368A (zh) * 2004-09-10 2006-03-15 华为技术有限公司 一种实现网格状光网络业务恢复的方法
CN101145930A (zh) * 2007-09-19 2008-03-19 华为技术有限公司 保证组播业务可靠传输的方法、系统和设备
CN101262298A (zh) * 2008-04-25 2008-09-10 东北大学 一种wdm网中的多种服务等级的多故障保护方法
CN101743719A (zh) * 2008-09-26 2010-06-16 动力方法企业有限公司 光网络中的多重冗余方案
CN101755416A (zh) * 2008-09-26 2010-06-23 动力方法企业有限公司 在光网络中处置多重故障的方法和设备
US20110280580A1 (en) * 2010-05-13 2011-11-17 Eci Telecom Ltd. Technique for traffic recovery in multilayer communication networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030095500A1 (en) * 2001-10-23 2003-05-22 Sycamore Networks, Inc. Methods for distributed shared mesh restoration for optical networks
CN1747368A (zh) * 2004-09-10 2006-03-15 华为技术有限公司 一种实现网格状光网络业务恢复的方法
CN101145930A (zh) * 2007-09-19 2008-03-19 华为技术有限公司 保证组播业务可靠传输的方法、系统和设备
CN101262298A (zh) * 2008-04-25 2008-09-10 东北大学 一种wdm网中的多种服务等级的多故障保护方法
CN101743719A (zh) * 2008-09-26 2010-06-16 动力方法企业有限公司 光网络中的多重冗余方案
CN101755416A (zh) * 2008-09-26 2010-06-23 动力方法企业有限公司 在光网络中处置多重故障的方法和设备
US20110280580A1 (en) * 2010-05-13 2011-11-17 Eci Telecom Ltd. Technique for traffic recovery in multilayer communication networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, FENG'AN: "Research on Failure Recovery with Diff-Serv Based on MPLS TE", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 May 2011 (2011-05-01), pages 1 - 90, XP055879108 *

Also Published As

Publication number Publication date
CN113810793A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US20030065811A1 (en) Methods and apparatus for allocating working and protection bandwidth in a network
US7852752B2 (en) Method and apparatus for designing backup communication path, and computer product
JP2006527543A (ja) 光ネットワーク・トポロジ・データベースおよび光ネットワーク・オペレーション
JP2003229889A (ja) パス設定方法及びそれを用いる通信ネットワーク並びにノード装置
US20030169692A1 (en) System and method of fault restoration in communication networks
EP1993223B1 (en) Method and device of group broadcast protection in wdm optical network
JP6269088B2 (ja) 冗長パス提供方法および伝送装置
JP4547314B2 (ja) 故障復旧方法および管理ノードならびに通信ノード
JP2002335276A (ja) パスルーティング方法及びデータ処理システム
Savas et al. Backup reprovisioning with partial protection for disaster-survivable software-defined optical networks
WO2012019404A1 (zh) 一种计算路径的方法及装置
WO2021249478A1 (zh) 资源部署方法、设备、管控系统及计算机存储介质
WO2013189041A1 (zh) 一种恢复路径建立的方法、系统和节点设备
JP2009071614A (ja) 波長制御ネットワークシステム及び波長制御方法
Singh et al. Defragmentation based load balancing routing & spectrum assignment (DLBRSA) strategy for elastic optical networks
WO2016149897A1 (zh) Ason的路由计算方法和装置
EP1453233B1 (en) Method and apparatus for dynamic provisioning of reliable connections in the presence of multiple failures
CN115632702A (zh) 一种光网络的多层保护恢复及资源分配方法
Ho et al. A framework of scalable optical metropolitan networks for improving survivability and class of service
Bórquez-Paredes et al. Network virtualization over elastic optical networks: a survey of allocation algorithms
Pradhan et al. Multicast protection and grooming scheme in survivable WDM optical networks
Chen et al. Techniques for Designing Survivable Optical Grid Networks.
KR20070060488A (ko) 광 전송망에서의 자원 분산 공유 방법
EP2770669B1 (en) Method and node device for establishing recovery path
JP6342823B2 (ja) ネットワーク管理装置及びネットワーク管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21822185

Country of ref document: EP

Kind code of ref document: A1