WO2021249051A1 - 一种动力电池的无氧裂解方法 - Google Patents

一种动力电池的无氧裂解方法 Download PDF

Info

Publication number
WO2021249051A1
WO2021249051A1 PCT/CN2021/090327 CN2021090327W WO2021249051A1 WO 2021249051 A1 WO2021249051 A1 WO 2021249051A1 CN 2021090327 W CN2021090327 W CN 2021090327W WO 2021249051 A1 WO2021249051 A1 WO 2021249051A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
cobalt
nickel
manganese
anaerobic cracking
Prior art date
Application number
PCT/CN2021/090327
Other languages
English (en)
French (fr)
Inventor
余海军
彭挺
谢英豪
张学梅
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to EP21821476.5A priority Critical patent/EP4156377B1/en
Priority to HU2200230A priority patent/HUP2200230A1/hu
Publication of WO2021249051A1 publication Critical patent/WO2021249051A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0404Disintegrating plastics, e.g. by milling to powder
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/0423Halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/0438Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0054Treating ocean floor nodules by wet processes leaching processes
    • C22B47/0063Treating ocean floor nodules by wet processes leaching processes with acids or salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • C22B47/0018Treating ocean floor nodules
    • C22B47/0045Treating ocean floor nodules by wet processes
    • C22B47/0081Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0484Grinding tools, roller mills or disc mills
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the field of lithium ion batteries, and specifically relates to an oxygen-free cracking method of power batteries.
  • Retired power batteries contain a variety of organic matter. As the number of retired power batteries increases, the organic matter in retired power batteries has not been properly disposed of and maximized value utilization, causing irreversible environmental pollution.
  • Traditional incineration and pyrolysis Traditional incineration technology can use the waste heat of incineration to generate electricity. However, improper treatment of the exhaust gas after incineration can greatly pollute the air and soil. The exhaust gas and soot after incineration contain toxic substances, which require special treatment before they can be discharged. The treatment cost is high and the investment cost is high. Ordinary pyrolysis does not control the temperature gradient, and the valuable substances produced in the pyrolysis process of organic matter cannot be classified and recovered. At the same time, because the temperature cannot be controlled according to the temperature nature of the organic matter, the pyrolysis time is increased, and the energy consumption is increased. Conducive to cost savings.
  • the traditional cracking of organic polymer materials is to preheat waste plastics to a molten state, and lime removes the HCl generated during the preheating process, such as "Waste Plastics Cracking Refining Process and Equipment” (CN201610156147.9).
  • this traditional recycling method cannot effectively recycle the plastic separator in the lithium-ion battery, and does not fully recycle other parts of the battery, resulting in waste of resources and backward technology.
  • the purpose of the present invention is to provide an anaerobic cracking method for power batteries, which adopts anaerobic catalytic cracking method to degrade the waste diaphragm in the lithium battery and degrades efficiently.
  • the products are C1-C4 and C5-C10 small molecular organic matter with industrial Use value.
  • An anaerobic cracking method of power battery includes the following steps:
  • step (2) Wetting the diaphragm in step (2) with a solvent, vacuum processing, crushing, and grinding to obtain powder;
  • the temperature of the pyrolysis in step (2) is 400°C-600°C, the time is 2-8h, and the environment is vacuum.
  • the extract in step (3) is one of a mixture of nitric acid and an oxidant or hydrochloric acid.
  • the oxidizing agent is at least one of hydrogen peroxide, potassium peroxide, sodium hypochlorite or potassium hypochlorite.
  • the mass ratio of the mixed liquid, hydrochloric acid, and water in the extract is (1-3):(1-3):1.
  • the mass ratio of the electrode powder and the extraction liquid in step (3) is 1:(1-3).
  • the contents of nickel, cobalt, and manganese are first determined.
  • the titration method used for determining the content of nickel, cobalt, and manganese is one of diacetyl oxime gravimetry, potentiometric titration or EDTA titration.
  • the nickel solution, cobalt solution, and manganese solution in step (3) are at least one of nitrate, hydrochloride, or sulfate of nickel, cobalt, and manganese.
  • the molar ratio of nickel, cobalt, and manganese in the solution A in step (3) is 1:(0.5-3):(0.5-3).
  • the total concentration of the three elements of nickel, cobalt and manganese in the solution A in step (3) is 2-6 mol/L.
  • the volume ratio of the solution A and ammonia in step (3) is 1:(3-7).
  • the concentration of the ammonia water in step (3) is 0.2-0.8 mol/L.
  • the alkali solution in step (3) is NaOH; the concentration of NaOH is 2-6 mol/L.
  • the temperature of the hydrothermal reaction in step (4) is 100°C-150°C, and the time is 2-6 hours.
  • the drying temperature in step (4) is 60°C-80°C, and the time is 4-24 hours.
  • the calcination temperature in step (4) is 450° C.-500° C., the time is 1-2 hours, and the atmosphere is nitrogen.
  • the mass ratio of the diaphragm and the solvent in step (5) is 1:(0.4-0.8).
  • the solvent in step (5) is amyl acetate.
  • the temperature of the infiltration in step (5) is 70°C-80°C, and the time is 12-24 hours.
  • the temperature of the vacuum treatment in step (5) is 80°C-120°C, and the time is 30-120 min.
  • the mass ratio of the powder to the catalyst in step (6) is 1: (200-240).
  • the temperature of the reaction in step (6) is 400°C-700°C, and the reaction time is 4-8h.
  • the C1-C4 and C5-C10 small molecular organics in step (6) are saturated or unsaturated hydrocarbons with a carbon chain of 1-10 carbons.
  • the C1-C4 and C5-C10 small molecular organics are gaseous hydrocarbons such as methane, ethane, ethylene, propylene, butene, or liquid hydrocarbons such as pentane, pentene, ethane, and hexene.
  • step (3) it further includes pyrolyzing the reacted catalyst, extracting it with an extract, and recycling it.
  • the extraction liquid is one of a mixed liquid of nitric acid and an oxidant or hydrochloric acid.
  • the oxidizing agent is at least one of hydrogen peroxide, potassium peroxide, sodium hypochlorite or potassium hypochlorite.
  • the mass ratio of the mixed liquid, hydrochloric acid, and water in the extract is (1-3):(1-3):1.
  • the present invention adopts anaerobic catalytic cracking method to degrade the waste diaphragm in the lithium battery, and it is efficiently degraded, and the product is small molecular organic matter with industrial use value; in addition, it also effectively avoids the pollution of the waste lithium battery diaphragm to the environment and catalytic degradation In the process, only nitrogen is consumed, which does not cause environmental pollution. If the membrane simply recycled may be a mixture of multiple high molecular polymers, and may be damaged, the recycling value is not high. After the membrane is degraded, it can be used as a combustible gas as an energy source on the one hand, and can be used as an industrial raw material on the other hand.
  • the method of the present invention uses ethylene amyl ester as a solvent to destroy the mechanical strength of the linear polymer through swelling, increase the brittleness of the polymer, and make the polymer easier to break and grind into a powder with a smaller particle size. This makes the reactants better contact with the catalyst, and the catalytic effect is better. In addition, the swelling effect can also destroy the binding force between molecules, making it easier to be adsorbed and activated by the catalyst.
  • a catalyst is prepared by using a waste battery cathode material as a raw material, and the catalyst is reused to catalyze the degradation of the diaphragm, and the catalyst can still be recycled and catalyzed again.
  • Figure 1 is an SEM image of the catalyst prepared in Example 2;
  • Example 2 is a comparison diagram of the yield of small molecular organic compounds prepared in Example 2 and Comparative Example 1;
  • FIG. 3 is a gas chromatographic detection diagram of small molecular organic compounds prepared in Example 2.
  • FIG. 3 is a gas chromatographic detection diagram of small molecular organic compounds prepared in Example 2.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels, or can be obtained by existing known methods.
  • the electrode powder and extraction liquid water, hydrochloric acid, hydrogen peroxide molar ratio is 1:1:1 according to the solid-liquid ratio of 1:3 to extract the nickel, cobalt and manganese elements, the current collector is directly recovered, filtered, and the filter residue is removed
  • the content of nickel, cobalt, and manganese in the filtrate were measured by the diacetyl oxime gravimetric method, potentiometric titration method, and EDTA titration method.
  • the nickel solution, cobalt solution, and manganese solution concentration are all 4mol/L were used to adjust the 10mL filtrate.
  • the molar ratio of nickel, cobalt, and manganese is 1:0.5:0.5, and solution A is obtained (the total concentration of nickel, cobalt, and manganese is 2mol/L), and solution A is dropped into a concentration of 0.2mol at a volume ratio of 1:3 /L ammonia solution, and stirring at the same time for 5min at a speed of 50r/min, then adding a 2mol/L NaOH solution with a ratio of 0.1mL, and stirring at the original speed for 5min to obtain solution B;
  • step (2) Infiltrate the diaphragm in step (2) with amyl acetate (solid-to-liquid ratio 1:0.4, 70°C for 12 hours). After soaking the diaphragm, treat it under vacuum at 80°C for 30 minutes, then crush and grind into powder. ;
  • step (6) Mix the powder with the catalyst Ni 2+ 0.5 Co 2+ 0.25 Mn 2+ 0.25 O obtained in step (4) at a mass ratio of 200:1, place it in a high-pressure reactor, and evacuate the reactor. Introduce nitrogen, react under a nitrogen atmosphere at 400°C for 4 hours to obtain small molecular organics, and then subject the reacted catalyst to pyrolysis, extract the extract, and recycle it.
  • solution A is obtained (the total concentration of nickel, cobalt, and manganese is 4mol/L), and solution A is dropped into 0.5mol with a volume ratio of 1:5 /L ammonia solution, stir at 500r/min for 30min, then add 20mL of 4mol/L NaOH solution, stir at 500r/min for 5min to obtain solution B;
  • step (4) Mix the powder with the catalyst Ni 2+ 0.2 Co 2+ 0.4 Mn 2+ 0.4 O obtained in step (4) at a mass ratio of 200:1, place it in a high-pressure reactor, and evacuate the reactor. Introduce nitrogen, react at 550°C for 6h in a nitrogen atmosphere to obtain small molecular organics, and then subject the reacted catalyst to pyrolysis, extract the extract, and recycle it.
  • step (4) Mix the powder with the catalyst Ni 2+ 0.142 Co 2+ 0.429 Mn 2+ 0.429 O obtained in step (4) at a mass ratio of 200:1, place it in a high-pressure reactor, and evacuate the reactor. Introduce nitrogen and react for 8 hours at 700°C under a nitrogen atmosphere to obtain small molecular organics. Then, the reacted catalyst is subjected to pyrolysis, and the extract is extracted and recycled.
  • An oxygen-free cracking recovery and sorting process for lithium batteries includes the following steps:
  • Step 1 Send the lithium battery to the crusher for crushing
  • Step 2 The crusher crushes the lithium battery and transports it to the winnowing machine through the conveying device;
  • Step 3 The winnowing machine sorts out the metal blocks and plastic shells with a larger specific gravity, and the mixture of positive and negative plates, separators and plastics with a small specific gravity are transported to the high temperature anaerobic cracking through a conveyor device after being evacuated.
  • the temperature of the high-temperature oxygen-free cracking furnace is above 300°C, the high-temperature oxygen-free cracking furnace is evacuated and kept closed before the mixture is added, and the conveying device is kept in a vacuum state during the conveying process.
  • the doped plastic and diaphragm are cracked to produce combustible gas and discharged and collected. The cracked mixture is only left with positive and negative plates and a small amount of metal;
  • Step 4 Feed the positive and negative plates into a high-speed decomposer.
  • the high-speed decomposer pulverizes the positive and negative plates again into powder for decomposition and separation.
  • the decomposer decomposes the material into larger metal particles and smaller positive and negative particles. Pole powder
  • Step 5 The decomposed and separated materials enter the cyclone collector through negative pressure, and the cyclone collector collects the positive and negative powders through a dust collection system with a fan, and the positive and negative powders are collected by the dust collection system;
  • Step 6 After being collected by the cyclone collector, the remaining coarser particles are screened by the screening device, and the positive and negative electrode powders, the copper-aluminum mixture and the large metal particles with increasing particle size are screened out respectively;
  • Step 7 the sieved metal mixture undergoes screening and classification and multiple specific gravity separations to separate copper and aluminum with different specific gravities
  • Step 8 classify the obtained positive and negative electrode powders, metals and plastics.
  • the anaerobic cracking was carried out in the foregoing Example 2 and Comparative Example 1, respectively, and the obtained products were detected by gas chromatography.
  • the yield results are shown in Figure 2. It can be seen from Figure 2 that the products C1-C10 in Comparative Example 1 have a small yield of small molecule products, while the yield of macromolecular products above C11 is relatively large. On the contrary, in Example 2, the yield of C1-C4 and C5-C10 small-molecule products was higher, while the yield of large-molecule products was lower.
  • the gas chromatography detection result is shown in Figure 3. Therefore, it is shown that the anaerobic cracking effect of Example 2 is better than that of Comparative Example 1, and the product is a small molecule organic matter with industrial use value.
  • Comparative Example 1 The simply recovered diaphragm is a mixture of multiple high molecular polymers, and may be damaged, and the recovery value is not high. After the diaphragm of the present invention is degraded, it can be used as a combustible gas as an energy source on the one hand, and can be used as an industrial raw material on the other hand. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ocean & Marine Engineering (AREA)
  • Oceanography (AREA)
  • Sustainable Development (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种动力电池的无氧裂解方法,包括以下步骤:将废旧动力电池经过拆解,得到电芯;将电芯中的隔膜取出备用,再对电芯进行热解,得到电极粉;用提取液提取电极粉中的镍钴锰元素,过滤,取滤液,再用镍溶液、钴溶液、锰溶液调节滤液,得到溶液A,滴入氨水中搅拌,再加入碱液搅拌,得到溶液B;将溶液B进行水热反应,过滤,焙烧,得到催化剂,催化剂的化学式为Ni 2+ 1-x-yCo 2+ xMn 2+ yO,其中0.25≤x<0.45,0.25≤y<0.45;用溶剂浸润隔膜,真空处理,研磨,得到粉末;将粉末和催化剂混合,反应,得到C1-C4和C5-C10小分子有机物。采用无氧催化裂解的方式降解锂电池中的废弃隔膜,高效降解,产物为小分子有机物,具有工业利用价值。

Description

一种动力电池的无氧裂解方法 技术领域
本发明属于锂离子电池领域,具体涉及一种动力电池的无氧裂解方法。
背景技术
现在退役动力电池巨量增长,大规模全组分回收利用迫在眉睫,但是退役动力电池中典型的三项有机物的无害化处理难题一直影响着全组分金属回收利用的效率。目前,在全世界当中,同时严重影响着回收处理行业的清洁生产与二次环境保护,特别是传统焚烧和热解方法很难达到清洁生产和超低排放环境标准,这是电池回收行业的共性关键问题。
近些年来,中国新能源汽车快速发展,新能源汽车年产量到2020年将超过200万辆,累计产销量将超过500万辆。随着汽车日常使用次数和使用年限的增加,新能源汽车动力电池的各项性能日渐衰减。依据国际通用电池规范,为了保证汽车日常行驶安全,当动力电池组性能衰减到原动力电池的80%时,必须进行退役替换。而退役下来的电池要进行回收再利用才能更好地实现其价值。
退役动力电池当中含有多种有机物,随着退役动力电池的数量增加,退役动力电池中的有机物未经妥善处置和价值最大化利用,造成难以逆转的环境污染。传统的焚烧和热解。传统的焚烧技术可利用焚烧余热进行发电,但是,焚烧后的尾气处理不当对空气和土壤有极大污染。焚烧后的尾气和烟灰都含有有毒物质,需要经过特殊处理才能进行排放,处理成本高,投资成本大。普通热解并没有对温度进行梯度控制,对有机物在热解过程中产生有价值物质无法分类回收,同时,由于无法针对有机物的温度性质进行控温,增加了热解时间,增加能耗,不利于成本的节省。
传统裂解有机高分子材料是将废塑料分段预热至熔融状态,石灰对预热过程产生的HCl进行脱除,如《废塑料裂解炼油工艺及设备》(CN201610156147.9)。然而,这种传统的回收方式不能有效地回收锂离子电池中的塑料隔膜,并且没有对电池其他部分进行充分回收,导致资源浪费,技术较落后。
发明内容
本发明的目的是提供一种动力电池的无氧裂解方法,该方法采用无氧催化裂解的方式降解锂电池中的废弃隔膜,高效降解,产物为C1-C4和C5-C10小分子有机物具有工业利用价值。
为了实现上述目的,本发明采取以下技术方案:
一种动力电池的无氧裂解方法,包括以下步骤:
(1)将废旧动力电池依次拆解,分别得到电芯和金属外壳;
(2)将电芯中的隔膜取出,清洗备用,再对剩余电芯进行热解,得到电极粉;
(3)用提取液提取电极粉中的镍钴锰元素,过滤,取滤液,再用镍溶液、钴溶液、锰溶液调节滤液,得到溶液A,将溶液A滴入氨水中搅拌,再加入碱溶液搅拌,得到溶液B;
(4)将溶液B进行水热反应,过滤,烘干,焙烧,得到催化剂Ni 2+ 1-x-yCo 2+ xMn 2+ yO;
(5)用溶剂浸润步骤(2)中的隔膜,真空处理,破碎,研磨,得到粉末;
(6)将粉末和步骤(4)中的催化剂混合,反应,得到C1-C4和C5-C10小分子有机物;步骤(4)中所述催化剂的化学式为Ni 2+ 1-x-yCo 2+ xMn 2+ yO,其中0.25≤x<0.45,0.25≤y<0.45。
优选地,步骤(2)中所述热解的温度为400℃-600℃,时间为2-8h,环境为真空。
优选地,步骤(3)中所述提取液为硝酸和氧化剂的混合液或盐酸中的一种。
更优选地,所述氧化剂为过氧化氢、过氧化钾、次氯酸钠或次氯酸钾中的至少一种。
更优选地,所述提取液中混合液、盐酸、水的质量比为(1-3):(1-3):1。
优选地,步骤(3)中所述电极粉和提取液的质量比为1:(1-3)。
优选地,步骤(3)中所述调节滤液的过程前,先测定镍、钴、锰的含量。
更优选地,所述测定镍、钴、锰的含量所使用的滴定法为丁二酮肟重量法、电位滴定法或EDTA滴定法中的一种。
优选地,步骤(3)中所述镍溶液、钴溶液、锰溶液为镍、钴、锰的硝酸盐、盐酸盐或硫酸盐中的至少一种。
优选地,步骤(3)中所述溶液A中的镍、钴、锰的摩尔比为1:(0.5-3):(0.5-3)。
优选地,步骤(3)中所述溶液A中镍、钴、锰三元素的总浓度为2-6mol/L。
优选地,步骤(3)中所述溶液A和氨水的体积比为1:(3-7)。
优选地,步骤(3)中所述氨水的浓度为0.2-0.8mol/L。
优选地,步骤(3)中所述碱溶液为NaOH;所述NaOH浓度为2-6mol/L。
优选地,步骤(4)中所述水热反应的温度为100℃-150℃,时间为2-6小时。
优选地,步骤(4)中所述烘干的的温度为60℃-80℃,时间为4-24小时。
优选地,步骤(4)中所述焙烧的温度为450℃-500℃,时间为1-2小时,气氛为氮气。
优选地,步骤(5)中所述隔膜和溶剂的质量比为1:(0.4-0.8)。
优选地,步骤(5)中所述溶剂为乙酸戊酯。
优选地,步骤(5)中所述浸润的温度为70℃-80℃,时间为12-24小时。
优选地,步骤(5)中所述真空处理的温度为80℃-120℃,时间为30-120min。
优选地,步骤(6)中所述粉末和催化剂的质量比为1:(200-240)。
优选地,步骤(6)中所述反应的温度为400℃-700℃,反应的时间为4-8h。
优选地,步骤(6)中所述C1-C4和C5-C10小分子有机物为碳链为1-10个碳的饱和或者不饱和烃类。
更优选地,所述C1-C4和C5-C10小分子有机物为甲烷、乙烷、乙烯、丙烯、丁烯等气态烃类或戊烷、戊烯、乙烷、己烯等液态烃。
优选地,步骤(3)中所述反应后还包括将反应后的催化剂经过热解,用提取液提取,回收利用。
更优选地,所述提取液为硝酸和氧化剂的混合液或盐酸中的一种。
更优选地,所述氧化剂为过氧化氢、过氧化钾、次氯酸钠或次氯酸钾中的至少一种。
更优选地,所述提取液中混合液、盐酸、水的质量比为(1-3):(1-3):1。
有益效果
1、本发明采用无氧催化裂解的方式降解锂电池中的废弃隔膜,高效降解,产物为小分子有机物具有工业利用价值;此外,还有效避免了废弃锂电池隔膜对环境造成了污染,催化降解过程中,只消耗了氮气,不造成环境污染。如果单纯回收的隔膜可能是多种高分子聚合物混在一起,并且可能有破损,回收价值不高,而隔膜降解之后一方面可作为可燃气体充当能源,另一方面可当做工业原料。
2、本发明的方法采用乙烯戊酯作为溶剂,通过溶胀作用,破坏线性聚合物的机械强度,增加聚合物脆性,使聚合物更容易破碎、研磨成粒度更小的粉末状态。这使得反应物更好的与催化剂接触,催化效果更佳。此外,通过溶胀作用还能破坏分子间的结合力,更容易被催化剂吸附活化。
3、本发明采用废旧电池正极材料为原料制备催化剂,再利用催化剂催化隔膜的降解,并且催化剂依然可以回收再次催化。
附图说明
图1是实施例2制得的催化剂的SEM图;
图2是实施例2和对比例1制得的小分子有机物的产量对比图;
图3是实施例2制得的小分子有机物的气相色谱检测图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
本实施例的动力电池的无氧裂解方法,包括以下具体步骤:
(1)将废旧动力电池依次经过放电、拆解,分别得到电芯和金属外壳;
(2)将电芯中的隔膜取出,去离子水洗至无肉眼可见附着物,再对剩余电芯在气氛为真空和温度为500℃下进行热解4h,得到电极粉;
(3)将电极粉和提取液(水、盐酸、过氧化氢摩尔比例为1:1:1)按固液比为1:3提取镍钴锰元素,集流体直接进行回收,过滤,去除滤渣,滤液用丁二酮肟重量法、电位滴定法、EDTA滴定法分别测出镍、钴、锰的含量,分别用镍溶液、钴溶液、锰溶液(浓度均为4mol/L)调节10mL滤液中镍、钴、锰的摩尔比例为1:0.5:0.5,得到溶液A(镍、钴、锰三元素总浓度为2mol/L),将溶液A以体积比为1:3滴入浓度为0.2mol/L的氨水溶液中,并同时搅拌5min,转速为50r/min,接着加入比例0.1mL的2mol/L的NaOH溶液,维持原速搅拌5min得溶液B;
(4)将溶液B置于聚四氟乙烯反应釜中100℃水热反应2小时,将沉淀物过滤,滤渣用去离子水洗3次,60℃烘干4小时后,在450℃和氮气氛下焙烧1小时得到催化剂Ni 2+ 0.5Co 2+ 0.25Mn 2+ 0.25O;
(5)用乙酸戊酯浸润步骤(2)中的隔膜(固液比1:0.4,70℃浸润12小时),将隔膜浸润之后在80℃真空条件下真空处理30min后,破碎、研磨成粉末;
(6)将粉末与步骤(4)所得的催化剂Ni 2+ 0.5Co 2+ 0.25Mn 2+ 0.25O以质量比为200:1混匀,置于高压反应器中,将反应器抽至真空,导入氮气,在氮气气氛和400℃下反应4h,得到小分子有机物,再将反应后的催化剂经过热解,提取液提取,回收利用。
实施例2
本实施例的动力电池的无氧裂解方法,包括以下具体步骤:
(1)将废旧动力电池依次经过放电、拆解,分别得到电芯和金属外壳,其中,金属外 壳直接回收;
(2)将电芯中的隔膜取出,去离子水洗至无肉眼可见附着物,再对剩余电芯在真空和温度为500℃下进行热解4h,得到电极粉;
(3)将电极粉和提取液(水、盐酸、过氧化氢摩尔比例为1:2:2)按固液比为1:3提取镍钴锰元素,集流体直接进行回收,过滤,去除滤渣,滤液用丁二酮肟重量法、电位滴定法、EDTA滴定法分别测出镍、钴、锰的含量,分别用镍溶液、钴溶液、锰溶液(浓度均为6mol/L)调节250mL滤液中镍、钴、锰的摩尔比例为1:2:2,得到溶液A(镍、钴、锰三元素总浓度为4mol/L),将溶液A以体积比为1:5滴入浓度为0.5mol/L的氨水溶液中,在转速为500r/min下搅拌30min,接着加入比例为20mL的4mol/L的NaOH溶液,在转速为500r/min下搅拌5min,得溶液B;
(4)将溶液B置于聚四氟乙烯反应釜中在120℃下水热反应4小时,将沉淀物过滤,滤渣用去离子水洗5次,在70℃下烘干14小时后,再在480℃和氮气氛下焙烧1.5小时得到催化剂Ni 2+ 0.2Co 2+ 0.4Mn 2+ 0.4O;
(5)用乙酸戊酯在75℃下以固液比为1:0.6浸润隔膜18小时,再在100℃真空条件下处理80min,破碎,研磨,得到粉末;
(6)将粉末与步骤(4)所得的催化剂Ni 2+ 0.2Co 2+ 0.4Mn 2+ 0.4O以质量比为200:1混匀,置于高压反应器中,将反应器抽至真空,导入氮气,在氮气气氛和550℃下反应6h,得到小分子有机物,再将反应后的催化剂经过热解,提取液提取,回收利用。
实施例3
本实施例的动力电池的无氧裂解方法,包括以下具体步骤:
(1)将废旧动力电池依次经过放电、拆解,分别得到电芯和金属外壳,其中,金属外壳直接回收;
(2)将电芯中的隔膜取出,去离子水洗至无肉眼可见附着物,再对剩余电芯在真空和温度为500℃下进行热解4h,得到电极粉;
(3)将电极粉和提取液(水、盐酸、过氧化氢摩尔比例为1:3:3)按固液比为1:3提取镍钴锰元素,集流体直接进行回收,过滤,去除滤渣,滤液用丁二酮肟重量法、电位滴定法、EDTA滴定法分别测出镍、钴、锰的含量,分别用镍溶液、钴溶液、锰溶液(浓度均为6mol/L)调节500mL的滤液中镍、钴、锰的摩尔比例为1:3:3,得到溶液A(镍、钴、锰三元素总浓度为6mol/L),将溶液A以体积比为1:7滴入浓度为0.8mol/L的氨水溶液中,在转速为1000r/min下搅拌60min,接着加入比例为45mL的6mol/L的NaOH溶液,在转速为1000r/min下搅拌30min,得溶液B;
(4)将溶液B置于聚四氟乙烯反应釜中在150℃下水热反应6小时,将沉淀物过滤,滤渣用去离子水洗7次,在80℃下烘干24小时后,再在500℃和氮气氛下焙烧2小时得到催化剂Ni 2+ 0.142Co 2+ 0.429Mn 2+ 0.429O;
(5)用乙酸戊酯在80℃下以固液比为1:0.8浸润隔膜24小时,再在120℃真空条件下处理120min,破碎,研磨,得到粉末;
(6)将粉末与步骤(4)所得的催化剂Ni 2+ 0.142Co 2+ 0.429Mn 2+ 0.429O以质量比为200:1混匀,置于高压反应器中,将反应器抽至真空,导入氮气,在氮气气氛和700℃下反应8h,得到小分子有机物,再将反应后的催化剂经过热解,提取液提取,回收利用。
对比例1(CN108941162A)
一种锂电池无氧裂解回收分选工艺,包括以下步骤:
步骤1,将锂电池送入破碎机进行破碎;
步骤2,破碎机将锂电池粉碎,经过输送装置输送至风选机;
步骤3,风选机将比重较大的金属块和塑料壳分选出来,并将比重较小的正负极片、隔膜以及塑胶的混合物料在抽真空后通过输送装置输送到高温无氧裂解炉,所述高温无氧裂解炉的温度在300℃以上,所述高温无氧裂解炉在加入混合物料前进行抽真空且保持封闭,所述输送装置在输送过程中保持真空状态,混合物料中掺杂的塑胶和隔膜进行裂解产生可燃气并排出收集,裂解后的混合物料只剩下正负极片及少量金属;
步骤4,将正负极片送入高速分解机,高速分解机将正负极片再次粉碎成粉状进行分解分离,分解机将物料分解成粒度较大的金属颗粒和粒度较小的正负极粉;
步骤5,经过分解分离的物料通过负压进入旋风集料器,旋风集料器将收集的正负极粉通过带风机的收尘系统进行集料,正负极粉被收尘系统收集;
步骤6,旋风集料器收集后剩下颗粒较粗的物料通过筛选装置进行筛选,将粒度递增的正负极粉、铜铝混合物和大的金属颗粒分别筛选出来;
步骤7,筛分出来的所述金属混合物经过筛选分级和多次比重分选,将比重不同的铜和铝进行分离;
步骤8,将得到的正负极粉、金属及塑料进行分类。
降解效果对比:
分别以上述实施例2和对比例1进行无氧裂解,得到的产物通过气相色谱进行检测,产量结果见图2。由图2可知,对比例1中的产物C1-C10小分子产物产量较少,而C11以上的大分子产物产量较多。相反,实施例2中C1-C4和C5-C10小分子产物产量较多,而大分子产物产量较少,气相色谱检测结果如图3。因此说明,实施例2的无氧裂解效果比对比 例1的好,而且产物为小分子有机物具有工业利用价值。对比例1单纯回收的隔膜是多种高分子聚合物混在一起,并且可能有破损,回收价值不高,而本发明的隔膜降解之后一方面可作为可燃气体充当能源,另一方面可当做工业原料。
以上对本发明提供的动力电池的无氧裂解方法进行了详细的介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种动力电池的无氧裂解方法,其特征在于,包括以下步骤:
    (1)将废旧动力电池依次经过拆解,分别得到电芯和金属外壳;
    (2)将电芯中的隔膜取出,清洗备用,再对电芯进行热解,得到电极粉;
    (3)用提取液提取电极粉中的镍钴锰元素,过滤,取滤液,再用镍溶液、钴溶液、锰溶液调节滤液,得到溶液A,将溶液A滴入氨水中搅拌,再加入碱液搅拌,得到溶液B;
    (4)将溶液B进行水热反应,过滤,烘干,焙烧,得到催化剂;
    (5)用溶剂浸润步骤(2)中的隔膜,真空处理,破碎,研磨,得到粉末;
    (6)将粉末和步骤(4)中的催化剂混合,反应,得到C1-C4和C5-C10小分子有机物;
    步骤(4)中所述催化剂的化学式为Ni 2+ 1-x-yCo 2+ xMn 2+ yO,其中0.25≤x<0.45,0.25≤y<0.45。
  2. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(2)中所述热解的温度为400℃-600℃,时间为2-8h,环境为真空。
  3. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(3)中所述提取液为硝酸和氧化剂的混合液或盐酸中的一种;所述氧化剂为过氧化氢、过氧化钾、次氯酸钠或次氯酸钾中的至少一种。
  4. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(3)中所述镍溶液、钴溶液、锰溶液为镍、钴、锰的硝酸盐、盐酸盐或硫酸盐中的至少一种。
  5. 根据权利要求1所述的无氧裂解方法,其特征在于,步骤(3)中所述溶液A中的镍、钴、锰的摩尔比为1:(0.5-3):(0.5-3)。
  6. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(4)中所述水热反应的温度为100℃-150℃,时间为2-6小时。
  7. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(4)中所述焙烧的温度为450℃-500℃,时间为1-2小时,气氛为氮气。
  8. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(5)中所述溶剂为乙酸戊酯。
  9. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(5)中所述真空处理的温度为80℃-120℃,时间为30-120min。
  10. 根据权利要求1所述的动力电池的无氧裂解方法,其特征在于,步骤(6)中所述反应的温度为400℃-700℃,反应的时间为4-8h。
PCT/CN2021/090327 2020-06-09 2021-04-27 一种动力电池的无氧裂解方法 WO2021249051A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21821476.5A EP4156377B1 (en) 2020-06-09 2021-04-27 Anaerobic cracking method for power battery
HU2200230A HUP2200230A1 (hu) 2020-06-09 2021-04-27 Anaerob krakkolási eljárás akkumulátorokhoz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010518461.3 2020-06-09
CN202010518461.3A CN111682276B (zh) 2020-06-09 2020-06-09 一种动力电池的无氧裂解方法

Publications (1)

Publication Number Publication Date
WO2021249051A1 true WO2021249051A1 (zh) 2021-12-16

Family

ID=72454202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090327 WO2021249051A1 (zh) 2020-06-09 2021-04-27 一种动力电池的无氧裂解方法

Country Status (6)

Country Link
US (1) US11591525B2 (zh)
EP (1) EP4156377B1 (zh)
CN (1) CN111682276B (zh)
CL (1) CL2022003442A1 (zh)
HU (1) HUP2200230A1 (zh)
WO (1) WO2021249051A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682276B (zh) * 2020-06-09 2022-06-14 广东邦普循环科技有限公司 一种动力电池的无氧裂解方法
CN112510281B (zh) * 2020-11-26 2022-04-01 中国科学院过程工程研究所 一种废旧锂离子电池全组分回收方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312254A1 (en) * 2011-02-17 2013-11-28 Korea Institute Of Geoscience And Mineral Resources Method for manufacturing a valuable-metal sulfuric-acid solution from a waste battery, and method for manufacturing a positive electrode active material
CN106966539A (zh) * 2017-04-27 2017-07-21 江南大学 一种高效降解聚乙烯醇材料的方法
CN109148995A (zh) * 2018-07-26 2019-01-04 江苏理工学院 一种低钴高锰废料和废旧锂电池正极材料的共同处理方法
CN109273791A (zh) * 2018-10-31 2019-01-25 株洲鼎端装备股份有限公司 一种废旧锂离子动力电池中隔膜的去除方法
CN110180573A (zh) * 2019-05-20 2019-08-30 河南师范大学 利用废旧电池正极材料制备非均相磁性催化剂CoFeO2@CN的方法及其应用
CN110444830A (zh) * 2019-07-02 2019-11-12 中南大学 一种废旧锂离子电池负极和隔膜的联合处理方法
CN111682276A (zh) * 2020-06-09 2020-09-18 广东邦普循环科技有限公司 一种动力电池的无氧裂解方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742743A (zh) * 2016-01-18 2016-07-06 江南石墨烯研究院 一种从废旧锂离子电池中回收隔膜材料的方法
CN107774698B (zh) * 2017-10-31 2023-05-26 广州维港环保科技有限公司 一种废旧电池无氧催化热裂系统和方法
CN108941162A (zh) * 2018-06-14 2018-12-07 河南巨峰环保科技有限公司 一种锂电池无氧裂解回收分选工艺
KR102096341B1 (ko) * 2018-08-09 2020-04-02 기주현 폐전지로부터 원료를 회수하는 방법
CN110783658B (zh) * 2019-11-13 2021-01-29 郑州中科新兴产业技术研究院 一种退役动力三元锂电池回收示范工艺方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312254A1 (en) * 2011-02-17 2013-11-28 Korea Institute Of Geoscience And Mineral Resources Method for manufacturing a valuable-metal sulfuric-acid solution from a waste battery, and method for manufacturing a positive electrode active material
CN106966539A (zh) * 2017-04-27 2017-07-21 江南大学 一种高效降解聚乙烯醇材料的方法
CN109148995A (zh) * 2018-07-26 2019-01-04 江苏理工学院 一种低钴高锰废料和废旧锂电池正极材料的共同处理方法
CN109273791A (zh) * 2018-10-31 2019-01-25 株洲鼎端装备股份有限公司 一种废旧锂离子动力电池中隔膜的去除方法
CN110180573A (zh) * 2019-05-20 2019-08-30 河南师范大学 利用废旧电池正极材料制备非均相磁性催化剂CoFeO2@CN的方法及其应用
CN110444830A (zh) * 2019-07-02 2019-11-12 中南大学 一种废旧锂离子电池负极和隔膜的联合处理方法
CN111682276A (zh) * 2020-06-09 2020-09-18 广东邦普循环科技有限公司 一种动力电池的无氧裂解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156377A4

Also Published As

Publication number Publication date
HUP2200230A1 (hu) 2022-08-28
EP4156377A1 (en) 2023-03-29
US20210380886A1 (en) 2021-12-09
CN111682276A (zh) 2020-09-18
CN111682276B (zh) 2022-06-14
EP4156377B1 (en) 2024-07-03
EP4156377A4 (en) 2023-11-29
US11591525B2 (en) 2023-02-28
CL2022003442A1 (es) 2023-05-26

Similar Documents

Publication Publication Date Title
CN105428745B (zh) 一种废旧锂离子动力电池无害化综合回收利用方法
Kim et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling
CN109326843B (zh) 一种废旧电池正极材料回收再利用工艺
WO2021249051A1 (zh) 一种动力电池的无氧裂解方法
CN109604024A (zh) 废锂离子电池破碎分选装置及方法
CN101383442B (zh) 一种从废旧锂离子电池中回收、制备钴酸锂的方法
CN205609702U (zh) 一种废旧锂电池全组分物料分离收集装置
CN108711651B (zh) 一种废旧电池的资源化回收利用工艺和系统
CN112510281B (zh) 一种废旧锂离子电池全组分回收方法
CN208226042U (zh) 一种废旧电池的资源化回收利用系统
AU2021103810A4 (en) Device and method for integrated recycling and regeneration of full components of graphite anode of waste lithium battery
AU2021103805A4 (en) Method for degrading poly(vinylidene fluoride) (pvdf) in cathode of waste lithium iron phosphate battery
CN103045870A (zh) 一种从废弃锂离子电池中资源化综合回收有价金属的方法
CN111600090A (zh) 一种回收废旧锂电池的工艺
CN110828887A (zh) 废旧磷酸铁锂正极材料的回收再生方法及得到的磷酸铁锂正极材料
WO2023070801A1 (zh) 一种废旧锂离子电池有价组分的回收方法
CN112635867B (zh) 一种废旧锂电池石墨材料的回收方法
CN113083848A (zh) 废旧磷酸铁锂电池正、负极材料分选回收方法
CN103633394A (zh) 一种废旧铅膏脱硫方法
CN111987381A (zh) 从废旧锂离子电池中浸出有价金属同步脱氟的方法
CN114614074B (zh) 一种废旧锂离子电池回收方法及装置
WO2022224264A1 (en) A method for recycling of used scrap lithium battery
CN113981226B (zh) 一种预处理待回收三元正极片的方法
Yongzhen et al. A review on recycling technology of spent lithium iron phosphate battery
CN114006071A (zh) 一种废旧锂电池的正极片极粉剥离回收的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821476

Country of ref document: EP

Effective date: 20221222