WO2021249049A1 - 应用于柔性显示屏的防误触方法、装置、终端及存储介质 - Google Patents

应用于柔性显示屏的防误触方法、装置、终端及存储介质 Download PDF

Info

Publication number
WO2021249049A1
WO2021249049A1 PCT/CN2021/090051 CN2021090051W WO2021249049A1 WO 2021249049 A1 WO2021249049 A1 WO 2021249049A1 CN 2021090051 W CN2021090051 W CN 2021090051W WO 2021249049 A1 WO2021249049 A1 WO 2021249049A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
touch
expansion
flexible display
display screen
Prior art date
Application number
PCT/CN2021/090051
Other languages
English (en)
French (fr)
Inventor
陈彪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021249049A1 publication Critical patent/WO2021249049A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper

Definitions

  • the embodiments of the present application relate to the field of terminal technology, and in particular to a method, device, terminal, and storage medium for preventing false touches applied to a flexible display screen.
  • the flexible display screen can be driven by a driving member (or a reel) to expand or contract the flexible display screen, thereby changing the exposed display area of the flexible display screen.
  • a driving member or a reel
  • the response area of the touch panel is the entire flexible display area.
  • the embodiments of the present application provide a method, a device, a terminal, and a storage medium for preventing accidental touches applied to a flexible display screen.
  • the technical solution is as follows:
  • an embodiment of the present application provides an anti-mistouch method applied to a flexible display screen.
  • the method is used in a terminal with a flexible display screen.
  • the terminal includes a first housing and a second housing.
  • the second housing is slidably connected to the first housing, and the second housing and the first housing change the exposed display area of the flexible display screen through relative movement, and the method includes:
  • the expansion signal being a signal triggered during the expansion and contraction process of the flexible display screen
  • an embodiment of the present application provides an anti-mistouch device applied to a flexible display screen.
  • the device is used in a terminal with a flexible display screen.
  • the terminal includes a first housing and a second housing.
  • the second housing is slidably connected to the first housing, and the second housing and the first housing change the exposed display area of the flexible display screen through relative movement, and the device includes:
  • a receiving module configured to receive an expansion and contraction signal, the expansion and contraction signal being a signal triggered during the expansion and contraction process of the flexible display screen;
  • a first determining module configured to determine, according to the telescopic signal, an anti-mistouch area in a touch panel corresponding to the flexible display screen, and the touch panel and the flexible display screen have the same size;
  • the first mis-touch prevention processing module is configured to perform mis-touch prevention processing on the mis-touch prevention area, wherein the touch signal in the mis-touch prevention area is not responded to after the mis-touch prevention processing.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a processor and a memory.
  • the memory stores at least one instruction, at least one program, code set, or instruction set.
  • the at least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the method for preventing accidental touch applied to a flexible display screen as described in the foregoing aspect.
  • an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the At least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for preventing accidental touch applied to the flexible display screen as described in the above aspect.
  • an embodiment of the present application provides a computer program product or computer program.
  • the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the terminal reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the terminal executes the method for preventing accidental touch applied to the flexible display screen provided in the various optional implementation manners of the foregoing aspects.
  • Figures 1 to 5 show schematic structural diagrams of a terminal shown in an exemplary embodiment of the present application
  • Fig. 6 shows a flow chart of a method for preventing false touches applied to a flexible display screen according to an exemplary embodiment of the present application
  • Fig. 7 shows a schematic diagram of a scaling operation shown in an exemplary embodiment of the present application
  • FIG. 8 shows a schematic diagram of an anti-mistouch area shown in an exemplary embodiment of the present application.
  • FIG. 9 shows a schematic diagram of a process of performing false touch prevention processing according to a terminal coordinate system according to an exemplary embodiment of the present application.
  • FIG. 10 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 11 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 12 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to an exemplary embodiment of the present application
  • FIG. 13 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to an exemplary embodiment of the present application
  • FIG. 14 shows a schematic diagram of a process of determining a first mistouch prevention area in a contraction scenario according to an exemplary embodiment of the present application
  • FIG. 15 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 16 shows a schematic diagram of an exemplary embodiment of the present application showing a process of determining an anti-mistouch area according to the upper limit of the telescopic distance
  • FIG. 17 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 18 shows a schematic diagram of a process of determining a false touch prevention area according to the upper limit of the stretch distance and the stretched distance according to an exemplary embodiment of the present application
  • FIG. 19 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 20 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 21 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to another exemplary embodiment of the present application
  • FIG. 22 shows an anti-mistouch device applied to a flexible display screen provided by an exemplary embodiment of the present application
  • FIG. 23 shows a structural block diagram of a terminal provided by an exemplary embodiment of the present application.
  • the "plurality” mentioned herein means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the method for preventing accidental touch applied to a flexible display screen provided by the embodiment of the present application is applied to a terminal with a flexible display screen.
  • the structure of the terminal is first described below.
  • the terminal 100 in the embodiment of the present application includes a housing assembly 10, a flexible display screen 30, a driving member 50 and a driving mechanism 70.
  • the housing assembly 10 is a hollow structure; components such as the driving member 50, the driving mechanism 70, and the camera 60 can all be arranged in the housing assembly 10.
  • the terminal 100 in the embodiment of the present application includes, but is not limited to, mobile terminals such as mobile phones and tablets, or other portable electronic devices.
  • the terminal 100 is a mobile phone as an example for description.
  • the housing assembly 10 includes a first housing 12 and a second housing 14, and the first housing 12 and the second housing 14 can move relatively.
  • the first housing 12 and the second housing 14 are slidably connected, that is, the second housing 14 can slide relative to the first housing 12.
  • the first housing 12 and the second housing 14 jointly form an accommodating space 16.
  • the accommodating space 16 can be used to place components such as the driving member 50, the camera 60, and the driving mechanism 70.
  • the housing assembly 10 may further include a back cover 18, and the back cover 18 and the first housing 12 and the second housing 14 together form an accommodating space 16.
  • the driving member 50 is disposed in the second housing 14, one end of the flexible display screen 30 is disposed in the first housing 12, the flexible display screen 30 bypasses the driving member 50, and the other end of the flexible display screen 30 is disposed in the container.
  • part of the flexible display screen 30 is hidden in the accommodating space 16, and part of the flexible display screen 30 hidden in the accommodating space 16 may not be lit.
  • the first housing 12 and the second housing 14 are relatively far away, and the flexible display screen 30 can be driven by the driving member 50 to expand, so that more flexible display screens 30 are exposed outside the accommodating space 16.
  • the flexible display screen 30 exposed outside the accommodating space 16 is lighted up, so that the display area presented by the terminal 100 becomes larger.
  • the driving member 50 is a rotating shaft structure with teeth 52 on the outside, and the flexible display screen 30 is linked with the driving member 50 through meshing or the like.
  • the driving member 50 drives a part of the flexible display screen 30 engaged on the driving member 50 to move and unfold.
  • the driving member 50 can also be a round shaft without teeth 52.
  • the driving member 50 will wind the part of the flexible display screen 30 on the driving member 50. Expand so that more flexible display screens 30 are exposed outside the accommodating space 16 and are in a flat state.
  • the driving member 50 is rotatably disposed on the second housing 14, and when the flexible display screen 30 is gradually expanded, the driving member 50 can rotate with the movement of the flexible display screen 30.
  • the driving member 50 may also be fixed on the second housing 14, and the driving member 50 has a smooth surface. When the flexible display screen 30 is expanded, the driving member 50 can slidably contact with the flexible display screen 30 through its smooth surface.
  • the terminal 100 further includes a resetting member (not shown). One end of the flexible display screen housed in the accommodating space 16 is linked with the resetting member. When the first housing 12 and the second housing 14 are relatively close, the resetting member drives the flexible The display screen 30 is reset, so that part of the flexible display screen 30 is retracted into the accommodating space 16.
  • the driving mechanism 70 may be disposed in the accommodating space 16, the driving mechanism 70 may be linked with the second housing 14, and the driving mechanism 70 is used to drive the second housing 14 relative to the first housing 12. Performing a separation movement, thereby driving the flexible display screen assembly 30 to stretch. It can be understood that the driving mechanism 70 may also be omitted, and the user may directly move the first housing and the second housing relative to one another manually.
  • the driving member 50 in the foregoing terminal structure may also be referred to as a reel, and the embodiment of the present application takes the driving reel as a reel as an example for schematic illustration.
  • a terminal with a flexible display screen when a terminal with a flexible display screen receives a telescopic signal triggered during the expansion and contraction process of the flexible display screen, it determines the anti-mistouch area in the touch panel corresponding to the flexible display screen according to the telescoping signal, and makes a mistake
  • the touch area is processed to prevent false touches, so that the touch signal in the false touch prevention area after the false touch prevention processing is not responded.
  • the telescopic signal triggered during the telescopic process is used to determine the anti-mis-touch area, so that the determined anti-mis-touch area is processed to prevent the mis-touch, so that the anti-mis-touch area will not respond to the touch signal, thereby avoiding the interference during the telescopic operation.
  • the accidental touch operation in this area further improves the accuracy of the terminal's touch response.
  • FIG. 6 shows a flowchart of a method for preventing false touches applied to a flexible display screen according to an exemplary embodiment of the present application.
  • the method is applied to the terminals shown in FIGS. 1 to 5 as an example for description.
  • the method includes:
  • Step 601 Receive a stretch signal, where the stretch signal is a signal triggered during the expansion and contraction process of the flexible display screen.
  • the telescopic operation of the flexible display screen includes at least one of a stretching operation and a contraction operation.
  • the stretching operation the first housing and the second housing move relative to each other to increase the exposed display area of the flexible display screen.
  • the first housing and the second housing move relative to each other to reduce the exposed display area of the flexible display screen.
  • the stretching operation on the flexible display screen 702 may be: the position of the first housing 701 remains unchanged, and the second housing 703 slides in the direction shown by the arrow 704, Or the position of the second housing 703 remains unchanged, and the first housing 701 slides in the direction shown by the arrow 705; or the first housing 701 slides in the direction shown by the arrow 705, while the second housing 703 is slid along the arrow 704.
  • the retracting operation of the flexible display screen 702 can be: the position of the first housing 701 remains unchanged, and the second housing 703 slides in the direction shown by the arrow 705; or the position of the second housing 703 remains unchanged ,
  • the first housing 701 slides in the direction shown by arrow 704; or the first housing 701 slides in the direction shown by arrow 704, while the second housing 703 slides in the direction shown by arrow 705.
  • the embodiment of the present application does not limit the stretching operation received by the terminal.
  • the terminal when the user performs a stretching operation on the flexible display screen, correspondingly, the terminal receives a stretching signal triggered during the stretching process of the flexible display screen; or the user performs a contraction operation on the flexible display screen, correspondingly, Yes, the terminal receives the contraction signal triggered during the contraction of the flexible display screen.
  • Step 602 Determine, according to the telescopic signal, an anti-mistouch area in the touch panel corresponding to the flexible display screen, and the touch panel and the flexible display screen have the same size.
  • part of the flexible display screens hidden inside the terminal housing may be accidentally touched with the mechanical parts of the terminal.
  • the reel drives the flexible display screen to expand or contract
  • the reel and the flexible display The screen will be in contact, which will trigger a false touch operation.
  • the telescopic operation of the flexible display screen has a certain correlation with the false touch area of the flexible display screen. Therefore, in a possible implementation manner, it can be triggered according to the telescopic operation
  • the telescopic signal to determine the anti-inadvertent touch area in the touch panel corresponding to the flexible display screen.
  • the telescopic signal corresponding to the telescopic operation can include telescopic distance or telescopic position.
  • the edge of the screen where the length of the screen edge will not change during the telescopic operation is the wide side (if the width is 6cm), and the length of the screen edge varies with the length of the screen.
  • the edge of the screen where the telescopic operation changes is the long side.
  • the long side corresponding to the exposed display area of the flexible display shrinks by 5cm, and the corresponding long side corresponding to the part of the display area hidden inside the terminal housing
  • An increase of 5cm will increase the size of the corresponding anti-mistouch area by 5cm ⁇ 6cm; after a single stretching operation, the corresponding long side of the exposed display area of the flexible display screen will increase by 5cm, and accordingly, the part of the display hidden inside the terminal housing will be displayed
  • the corresponding long side of the area is reduced by 5cm, and the size of the corresponding anti-mistouch area is reduced by 5cm ⁇ 6cm.
  • FIG. 8 shows a schematic diagram of an anti-mistouch area shown in an exemplary embodiment of the present application.
  • the screen edge 802 in the flexible display screen 801 is contracted in the direction indicated by the arrow 804, the length of the screen edge 803 is shortened (corresponding to the contracted distance in the figure), and the part of the display area corresponding to the contracted distance is hidden in Inside the terminal, the accidental touch prevention area 805 is the touch area (display area) whose width is the retracted distance.
  • the terminal is provided with a sensor for detecting the expansion and contraction signal, for example, a light sensor.
  • a sensor for detecting the expansion and contraction signal for example, a light sensor.
  • the mark is recognized by the light sensor. , So as to determine the telescopic position of the flexible display screen, thereby determining the telescopic distance.
  • an angular velocity sensor may also be provided for the reel, and the angular velocity sensor detects the angle of rotation of the reel to determine the number of turns, so as to determine the telescopic distance corresponding to the telescopic operation.
  • the virtual coordinates can also be displayed on the flexible display screen, and by identifying the coordinate values corresponding to the telescopic operation, the telescopic signal corresponding to the telescopic operation can be determined.
  • the embodiment of the present application does not constitute a method for detecting the telescopic signal. limited.
  • Step 603 Perform a false touch prevention process on the false touch prevention area, where the touch signal in the false touch prevention area is not responded after the false touch prevention process.
  • the mistouch prevention area is processed for mistouch prevention, that is, no touch response is made to the touch signal in the mistouch prevention area.
  • the terminal can directly close the contact of the anti accidental touch area, that is, the terminal will not receive the touch operation of the anti accidental touch area; or the terminal receives the touch signal of the anti accidental touch area, However, the touch signal will not be processed (or in response to the touch signal), that is, the touch signal will not be reported to the operating system for processing.
  • a terminal coordinate system can be defined in advance.
  • a false touch prevention area is divided, and if the touch signal falls into the false touch prevention area, the terminal does not need to report the touch event.
  • FIG. 9 shows a schematic diagram of a process of performing anti-mistouch processing according to a terminal coordinate system according to an exemplary embodiment of the present application.
  • the left vertex 902 of the flexible display screen as the coordinate origin of the terminal coordinate system as an example
  • the accidental touch prevention area 902 is hidden inside the terminal.
  • the height of the exposed display area is H.
  • the terminal receives the touch event triggered by the touch point 903, it first obtains the coordinate position (x, y) of the touch point 903. If y is greater than H, it means that the touch point 903 is located in the mistouch prevention area 902. Report the touch event triggered by the touch point to the operating system.
  • a terminal with a flexible display screen receives a telescopic signal triggered during the expansion and contraction of the flexible display screen, it is determined according to the telescoping signal that the flexible display screen corresponds to the anti-mistouch area in the touch panel , And perform the anti-mis-touch treatment on the anti-mis-touch area, so that the touch signal in the anti-mis-touch area after the anti-mis-touch treatment is not responded.
  • the telescopic signal triggered during the telescopic process is used to determine the anti-mis-touch area, so that the determined anti-mis-touch area is processed to prevent the mis-touch, so that the anti-mis-touch area will not respond to the touch signal, thereby avoiding the interference during the telescopic operation.
  • the accidental touch operation in this area further improves the accuracy of the terminal's touch response.
  • determining the anti-mistouch area in the touch panel corresponding to the flexible display screen according to the telescopic signal includes:
  • the expansion and contraction methods include stretching and contraction.
  • the expansion and contraction data includes at least one of the stretched distance and the upper limit of the stretched distance.
  • the stretched distance includes the stretched distance and the contracted distance;
  • determine the anti-mistouch area in the touch panel according to the expansion method and expansion data including:
  • the first mistouch prevention area in the touch panel is determined, and the first mistouch prevention area changes dynamically.
  • determine the first anti-mistouch area in the touch panel including:
  • the touch area with a width of k ⁇ n+n in the touch panel is determined as the first anti-mistouch area, where n is greater than m, k is a natural number, and n is a flexible display screen It is rolled around the reel to a length of one week, and the first anti-mistouch area is located at the edge of the contracted side of the touch panel.
  • determine the anti-mistouch area in the touch panel according to the expansion method and expansion data including:
  • the second mistouch prevention area is the touch area of the touch panel whose width is the upper limit of the telescopic distance.
  • the second mistouch prevention area is located on the touch panel. Extend the edge where one side is located.
  • determine the anti-mistouch area in the touch panel according to the expansion method and expansion data including:
  • the third anti-mistouch area in the touch panel is determined.
  • the third anti-mistouch area changes dynamically, and the third anti-mistouch area is located at the edge of the stretched side of the touch panel.
  • the width of the third anti-mistouch area is the difference between the upper limit of the stretched distance and the stretched distance.
  • the terminal includes a reel, the flexible display screen is rolled around the reel, and an angular velocity sensor is provided at the reel, and the telescopic signal is output by the angular velocity sensor;
  • the rotation angle is determined according to the angular velocity data, and the expansion data is determined according to the rotation angle and the rotation radius.
  • the rotation radius is the radius when the flexible display screen is rolled around the reel.
  • the method also includes:
  • determining the anti-mistouch area in the touch panel corresponding to the flexible display screen according to the telescopic signal also includes:
  • the anti-inadvertent touch application scenario In response to the current application scenario being an anti-inadvertent touch application scenario, perform the step of determining the anti-inadvertent touch area in the touch panel corresponding to the flexible display based on the telescopic signal; the anti-inadvertent application scenario means that the anti-inadvertent touch level of the user interface is higher than the level threshold In the scenario, the user interface is at least one of an application interface and a system interface.
  • the anti-inadvertent touch area is related to the part of the display area hidden inside the terminal (or the exposed display area of the flexible display screen), and different telescopic methods, there are differences in the way to determine the anti-inadvertent area, for example, the flexible display screen Stretching operation (that is, the expansion method is stretching), the corresponding anti-inadvertent touch area decreases with the stretching operation. If the flexible display is retracted (that is, the expansion method is shrinking), the corresponding anti-inadvertent touch area will follow the stretching operation. The shrinking operation increases. Therefore, in a possible implementation manner, when determining the anti-mistouch area, in addition to determining the telescopic distance indicated by the telescopic signal, it is also necessary to consider the telescopic manner indicated by the telescopic signal.
  • FIG. 10 shows a flowchart of a method for preventing accidental touch applied to a flexible display screen according to another exemplary embodiment of the present application.
  • the method is applied to the terminals shown in FIGS. 1 to 5 as an example for description.
  • the method includes:
  • Step 1001 Receive a telescopic signal, which is a signal triggered during the telescopic process of the flexible display screen.
  • step 100 For the implementation of step 1001, reference may be made to step 601, which is not repeated in this embodiment.
  • Step 1002 Determine the expansion and contraction mode and expansion data indicated by the expansion and contraction signal.
  • the expansion and contraction modes include stretching and contraction.
  • the expansion and contraction data includes at least one of a stretched distance and an upper limit of the stretched distance.
  • the stretched distance includes a stretched distance and a stretched distance. distance.
  • the stretched distance refers to the increased length of the long side of the screen corresponding to the exposed display area of the flexible display during the stretching operation;
  • the contracted distance refers to the exposed display area of the flexible display during the shrinking operation.
  • the reduced length of the long side of the screen is defined as the edge of the screen whose edge length in the flexible display changes with the stretching operation, and the short side of the screen is defined as the screen in the flexible display. The edge length of the screen will not change with the stretching operation.
  • the size of the exposed display area of the flexible display screen decreases with the retractable operation, that is, the size of the anti-mistouch area will increase with the retracted operation, and only the retracted distance corresponding to the retracted operation needs to be determined .
  • You can determine the anti-inadvertent touch area that is, the anti-inadvertent touch area is only related to the telescopic distance.
  • the size of the exposed display area of the flexible display screen increases with the stretch operation, that is, the size of the anti-mistouch area will decrease with the stretch operation, and the flexible display screen is fully or partially contracted In the state, there is an upper limit of the telescopic distance. Therefore, when determining the anti-inadvertent touch area in the stretched scene, not only the stretched distance needs to be considered, but also the upper limit of the stretched distance, that is, the limit of the anti-inadvertent touch area in the stretched scene.
  • the width is the difference between the upper limit of the stretched distance and the stretched distance (that is, the anti-missing area is related to the stretched distance and the upper limit of the stretched distance).
  • the upper limit of the telescopic distance is related to the current contraction state of the flexible display screen before the telescopic operation. For example, if the flexible display screen is in a fully contracted state before the telescopic operation, it corresponds to the upper limit of the maximum telescopic distance; if it is before the telescopic operation, The flexible display screen is in a partially contracted state, and the corresponding upper limit of the expansion distance is less than the upper limit of the maximum expansion distance.
  • an angular velocity sensor may be used to detect the expansion and contraction signal. Since the angular velocity signal output by the angular velocity sensor is directional, the direction of rotation of the reel can be identified, for example, the reel rotates clockwise, Or the reel rotates counterclockwise, so that the contraction method is determined according to the direction of rotation of the reel.
  • the relationship between the rotation direction of the reel and the expansion and contraction mode is related to the setting position of the reel. For example, if the reel is set at the left side shell of the terminal, and the reel rotates to drive the flexible display to expand to the right or contract to the left, the reel When rotating in a clockwise direction, the corresponding expansion method is stretching, and when the reel rotates in a counterclockwise direction, the corresponding expansion method is contraction; if the reel is set at the right side of the terminal, the flexible display will expand to the left when the reel rotates. Or shrink to the right, when the reel rotates in a counterclockwise direction, the corresponding expansion method is stretching, and when the reel rotates in a clockwise direction, the corresponding expansion method is contraction.
  • the relationship between the rotation direction of the reel and the shrinkage mode can be set by the developer according to the actual structure of the terminal, which is not limited in the embodiment of the present application.
  • Step 1003 Determine an anti-mistouch area in the touch panel according to the expansion and contraction mode and the expansion and contraction data.
  • the terminal after the terminal obtains the expansion and contraction mode indicated by the expansion and contraction signal and the expansion and contraction data, it can determine the anti-mistouch area in the touch panel.
  • the stretched distance indicated by the signal, the corresponding anti-mistouch area is the area enclosed by the stretched distance and the edge of the fixed screen (the wide side of the screen); if the stretch mode is stretch, and the stretched distance indicated by the stretch signal is obtained
  • the upper limit of the telescopic distance, the corresponding anti-inadvertent area is the difference between the upper limit of the telescopic distance and the stretched distance, and the area enclosed by the edge of the fixed screen (the wide side of the screen).
  • the size of the corresponding anti-inadvertent area is the sum of the partial hidden area and the added value of the anti-inadvertent area.
  • the increase in the touch area is determined by the contracted distance.
  • Step 1004 Perform anti-error-touch processing on the anti-error-touch area, where the touch signal in the anti-error-touch area is not responded to after the anti-error-touch processing.
  • step 1004 For the implementation of step 1004, reference may be made to step 603, which is not repeated in this embodiment.
  • the expansion and contraction mode indicated by the expansion and contraction signal and the expansion and contraction data are determined, wherein the expansion and contraction mode is used to determine the determination method of the anti-mistouch area, and the expansion data is used to determine the specific size of the anti-incorrect touch area.
  • the anti-mistouch area during the telescopic operation is determined in real time, thereby improving the accuracy of the anti-mistouch during the telescopic operation.
  • the terminal is provided with a reel, and the flexible display screen is rolled around the reel, that is, the flexible display is driven by the reel to expand or contract, thereby changing the exposed display area of the flexible display.
  • An angular velocity sensor is provided at the reel to detect the expansion and contraction operation, and the expansion and contraction data is determined according to the expansion and contraction signal output by the angular velocity sensor.
  • step 1002 may include step 1002A, step 1002B, and step 1002C.
  • Step 1002A Obtain the angular velocity data output by the angular velocity sensor.
  • the developer installs the angular velocity sensor at the reel or is connected to the reel.
  • the angular velocity sensor at the reel rotates at the same time to pass the angular velocity.
  • the sensor detects the rotation state of the reel, and outputs the corresponding analog signal, and the terminal converts the analog signal into a digital signal, that is, the angular velocity data corresponding to the reel is obtained.
  • the terminal performs signal processing on the sensor signal output by the angular velocity sensor to obtain angular velocity data corresponding to different moments, for example, the angular velocity data corresponding to a certain moment is ⁇ rad/s.
  • Step 1002B Determine the expansion and contraction mode according to the angular velocity direction corresponding to the angular velocity data.
  • the determined angular velocity data is also a vector, and different rotation directions will produce sensor signals in different directions, and different rotation directions correspond to different expansion and contraction methods.
  • the expansion and contraction mode can be determined by the angular velocity direction corresponding to the angular velocity data.
  • the developer can set the relationship between the angular velocity direction and the telescopic method according to the setting position of the reel (that is, the structure of the terminal), for example, if the reel is set At the left side shell of the terminal, when the reel rotates, the flexible display screen will expand to the right or contract to the left.
  • the angular velocity direction is positive (corresponding to clockwise rotation), the expansion method is stretching, and the angular velocity direction is negative.
  • Direction (corresponding to counterclockwise rotation), the telescopic method is contraction.
  • the flexible display will expand or contract to the left when the reel rotates, and the angular velocity direction can be defined as the positive direction ( When it corresponds to counterclockwise rotation), the expansion method is stretching, and when the angular velocity direction is negative (corresponding to clockwise rotation), the expansion method is contraction.
  • the embodiment of the present application does not constitute a limitation on the relationship between the angular velocity direction and the expansion and contraction mode.
  • Step 1002C Determine the rotation angle according to the angular velocity data, and determine the expansion data according to the rotation angle and the rotation radius, where the rotation radius is the radius when the flexible display screen is rolled around the reel.
  • the angular velocity can be The data determines the angle of rotation of the reel, and then determines the relationship between the telescopic distance and the circumference of the reel based on this angle. For example, if the rotation angle is 360°, the corresponding telescopic distance is the circumference of the reel, and the circumference of the reel can be Obtained by the radius of the reel.
  • the relationship between the rotation angle, the rotation radius and the telescopic distance can be expressed as:
  • S is the telescopic distance
  • N is the rotation angle
  • r is the rotation radius (the rotation radius can be the radius of the reel).
  • the terminal can obtain the duration corresponding to the telescopic operation, and the rotation angle can be determined according to the duration and the angular velocity value.
  • step 1002C and step 1002B can be performed at the same time, or step 1002B is performed first, and then step 1002C is performed, or step 1002C is performed first, and then step 1002B is performed, which is not limited in the embodiment of the present application.
  • the telescopic signal can be detected by setting an angular velocity sensor at the reel, and the terminal processes the sensor signal output by the angular velocity sensor. , Obtain the angular velocity data, and determine the expansion mode according to the angular velocity direction corresponding to the angular velocity data, and determine the rotation angle according to the angular velocity data, so as to determine the expansion and contraction data according to the rotation angle and the radius of rotation.
  • the telescopic operation that triggers the telescopic signal includes the stretch operation and the contraction operation, there are differences in the way of determining the anti-mistouch area based on the telescopic signal under different telescopic operations.
  • the shrinking distance has a positive correlation with the anti-mistouch area.
  • the stretching distance has a negative correlation with the anti-inadvertent touch area. Therefore, the following embodiments respectively describe how to determine the anti-inadvertent touch area for different telescopic methods.
  • FIG. 12 shows a flowchart of a method for preventing accidental touch applied to a flexible display screen according to an exemplary embodiment of the present application.
  • the method is applied to the terminals shown in FIGS. 1 to 5 as an example for description.
  • the method includes:
  • Step 1201 Receive a telescoping signal, which is a signal triggered during the telescoping process of the flexible display screen.
  • Step 1202 Determine the expansion and contraction mode and expansion data indicated by the expansion and contraction signal.
  • the expansion and contraction methods include stretching and contraction.
  • the expansion and contraction data includes at least one of a stretched distance and an upper limit of the stretched distance.
  • the stretched distance includes a stretched distance and a stretched distance. distance.
  • step 1201 and step 1202 reference may be made to the above embodiment, and this embodiment will not be repeated here.
  • Step 1203 in response to the expansion and contraction mode being contraction, obtain the contracted distance included in the expansion and contraction data.
  • the size of the anti-inadvertent touch area is positively correlated with the retracted distance (and only related to the retracted distance), that is, the size of the anti-inadvertent touch area increases with the increase in the retracted distance Therefore, in a possible implementation manner, when the terminal determines that the expansion mode is contraction according to the collected angular velocity data, it only needs to obtain the contracted distance indicated by the contraction signal, so as to subsequently determine the contracted distance based on the contracted distance. Inadvertent touch prevention area in the touch panel.
  • the sum of the product of the retracted distance and the width of the screen can be directly determined as the anti-mistouch area; when before the shrinking operation
  • the false touch prevention area is composed of the original false touch prevention area and the newly added false touch prevention area.
  • the newly added false touch prevention area is composed of the retracted distance and the screen The sum of the products of the broad sides is determined.
  • Step 1204 according to the contracted distance, determine the first mistouch prevention area in the touch panel, and the first mistouch prevention area dynamically changes.
  • the width of the first anti-mistouch area can be determined according to the contracted distance (the width is defined as when the size of the anti-mistouch area changes, the length changes The length of the edge of the area), thereby dividing the first anti-mistouch area for anti-mistouch treatment.
  • the relationship between the area of the corresponding first anti-mistouch area and the retracted distance can be expressed as:
  • S 1 represents the area of the first false touch prevention area
  • D 1 represents the retracted distance
  • W represents the fixed width of the false touch prevention area, which is a fixed value.
  • the flexible display screen is not in a fully expanded state before receiving the telescopic signal, that is, there is a partial hidden area, which is also an anti-mistouch area.
  • a partial hidden area which is also an anti-mistouch area.
  • the current anti-mistouch area of the flexible display screen is the sum of the partially hidden area (original) and the newly added hidden area.
  • the relationship between the area of the corresponding first anti-mistouch area and the retracted distance can be expressed as:
  • S 1 is the area of the first false touch prevention area
  • S 0 represents the area of the original false touch prevention area
  • D 1 represents the distance that has been contracted
  • W represents the fixed width of the false touch prevention area, which is a fixed value
  • D 0 represents The original distance has been reduced.
  • the first anti-inadvertent touch area will increase with the increase of the retracted distance, if the retracted distance is detected, the anti-inadvertent operation is performed again, during the shrinking process, A false touch operation may have occurred, that is, the retracted distance can only indicate the actual false touch prevention area.
  • the first mistouch prevention area which is defined on the basis of the width corresponding to the actual mistouch prevention area, and the length of the reel to be rolled for one week is increased.
  • step 1204 may be replaced with step 1301.
  • Step 1301 in response to the contracted distance being less than k ⁇ n+m, determine the touch area with a width of k ⁇ n+n in the touch panel as the first anti-mistouch area, where n is greater than m, k is a natural number, and n is The flexible display screen is rolled around the reel for a full circle, and the first anti-mistouch area is located at the edge where the side of the touch panel is contracted.
  • k represents the actual number of rotations of the reel during the shrinking process, which can be 0, 1, 2, 3, 4, etc.
  • k represents the actual number of rotations of the reel during the shrinking process, which can be 0, 1, 2, 3, 4, etc.
  • k it means that the current retracted length of the flexible display around the reel does not reach the length of one revolution of the reel. Or the reel has not rotated one revolution (360°).
  • the anti-mistouch area is estimated, and the length of the reel to roll one week is increased on the basis of the actual width of the anti-mistouch area, or by Determine the ratio between the width of the actual anti-inadvertent area (shrunk distance) and n (that is, the actual number of reel rotations k), and determine the width of (k+1) ⁇ n in the touch panel as the first Prevent accidental touch area.
  • the ratio of the corresponding retracted distance to n is 3.5. Since k is a natural number, the corresponding k is 3, that is, the width of the touch panel is The 4 ⁇ n touch area is determined to be the first mistouch prevention area (the first mistouch prevention area includes the actual mistouch prevention area and the estimated mistouch prevention area).
  • FIG. 14 shows a schematic diagram of the process of determining the first mistouch prevention area in a contraction scenario shown in an exemplary embodiment of the present application.
  • the width 1402 is the length of the reel to shrink one round
  • S' is the size of the display area corresponding to one round of the reel
  • S is the size of the anti-mistouch area corresponding to the stop of the shrinking operation.
  • the estimated anti-inadvertent area size is 2S' (making the size of the anti-inadvertent touch area estimated Always larger than the size of the display area corresponding to the contracted distance), the anti-mistouch area is continuously updated during the shrinking process, until the shrinking operation stops, the first anti-mistouch area 1402 is the display area corresponding to the contracted distance.
  • Step 1205 Perform a false touch prevention process on the false touch prevention area, where the touch signal in the false touch prevention area is not responded to after the false touch prevention process.
  • the terminal determines that the flexible display screen is in the shrinking process, it can be based on The contracted distance indicated by the telescopic signal determines the first anti-mistouch area; in addition, because the contraction operation will cause part of the flexible display area to change from a touchable state to a non-touchable state, so in order to avoid accidental touch operations during the contraction process , It is necessary to estimate the first anti-inadvertent area corresponding to the shrinking method, that is, add 1 to the actual number of rotations, so that the corresponding flexible display screen has been subjected to anti-inadvertent treatment before shrinking, thereby improving the anti-inadvertent touch Accuracy, and thus avoids accidental touch operation in a wider range.
  • the above embodiments describe how to determine the anti-mistouch area during the shrinking process, that is, the anti-mistouch area needs to be estimated.
  • the flexible display screen is stretched during the stretch operation, the flexible display corresponds to the anti-error area
  • the touch area is reduced, that is, part of the flexible display screen will change from a non-touchable state to a touchable state, that is, before the stretched distance is determined, the hidden area will not be touched by mistake. Therefore, in a possible implementation manner
  • the terminal determines that the telescopic mode is stretching, by determining the stretched distance indicated by the telescopic signal and the upper limit of the telescopic distance, the anti-mistouch area can be determined, and there is no need to perform an estimation operation of the anti-mistouch area.
  • FIG. 15 shows a flowchart of a method for preventing accidental touch applied to a flexible display screen according to another exemplary embodiment of the present application.
  • the method is applied to the terminals shown in FIGS. 1 to 5 as an example for description.
  • the method includes:
  • Step 1501 Receive a telescoping signal, which is a signal triggered during the expansion and contraction process of the flexible display screen.
  • Step 1502 Determine the expansion and contraction mode and expansion data indicated by the expansion and contraction signal.
  • the expansion and contraction modes include stretching and contraction.
  • the expansion and contraction data includes at least one of a stretched distance and an upper limit of the stretched distance.
  • the stretched distance includes a stretched distance and a contracted distance. distance.
  • step 1501 and step 1502 reference may be made to the above embodiment, and this embodiment will not be repeated here.
  • Step 1503 in response to the expansion and contraction mode being stretching, obtain the upper limit of the expansion and contraction distance included in the expansion and contraction data.
  • the upper limit of the expansion distance is the corresponding expansion distance when the flexible display screen is stretched from the fully contracted state to the fully expanded state, or the corresponding expansion distance when the flexible display screen is contracted from the fully expanded state to the fully contracted state, or the flexible display screen
  • the corresponding expansion distance when stretched from the partially contracted state to the fully expanded state, that is, the upper limit of the expansion distance is determined by the current expansion state of the flexible display screen.
  • the stretching operation can change part of the display area from a non-touchable state to a touchable state.
  • the touch area is larger than the area where the flexible display screen is in contact with the mechanical device (that is, the actual hidden area).
  • the actual hidden area is not paid attention to, and only the area is pulled.
  • the hidden area before stretching is determined as the anti-touch area, that is, it is only necessary to obtain the upper limit of the stretch distance included in the stretch data, and determine the touch area corresponding to the upper limit of the stretch as the anti-mistouch area.
  • Step 1504 determine the second mistouch prevention area in the touch panel.
  • the second mistouch prevention area is the touch area of the touch panel whose width is the upper limit of the telescopic distance, and the second mistouch prevention area is located in the touch panel. The edge where the control panel is stretched on one side.
  • the anti-mistouch area is a touch area in the touch panel whose width is the upper limit of the stretching distance.
  • the stretching operation there is no need to change the size of the anti-inadvertent touch area, that is, the anti-inadvertent touch area is maintained unchanged, which can avoid accidental touch operations in the stretching operation in a wider range.
  • the upper limit of the expansion distance corresponding to the partially contracted state is smaller than the upper limit of the corresponding expansion distance in the fully contracted state.
  • FIG. 16 shows a schematic diagram of an exemplary embodiment of the present application showing the process of determining the anti-mistouch area according to the upper limit of the telescopic distance.
  • the second mistouch prevention area 1602 is hidden inside the terminal.
  • the width of the second mistouch prevention area 1602 is the upper limit of the telescopic distance.
  • update the size of the second accidental touch prevention area 1602 (as shown in Figure 16).
  • the flexible display screen 1601 is fully unfolded, and the size of the second mistouch prevention area 1602 is 0).
  • the relationship between the second mistouch prevention area and the upper limit of the telescopic distance can be expressed as:
  • S 2 represents the area of the second mistouch prevention area
  • D 2 represents the upper limit of the stretch distance before the stretching operation
  • W represents the fixed width of the mistouch prevention area.
  • S 2 is Fixed value, only when the stretching operation stops, update the second anti-inadvertent touch zone.
  • the false touch prevention area can be updated according to the size of the exposed display area, that is, the actual hidden area is determined as the false touch prevention area.
  • the upper limit of the flexible display screen's stretch distance (the updated upper limit of the stretch distance) and the fixation of the anti-inadvertent zone when the stretch operation stops Width determine the second anti-inadvertent area; or determine the second anti-inadvertent area according to the size of the exposed display area of the flexible display and the complete display size of the flexible display; or according to the stretched distance and stretch
  • the upper limit of the telescopic distance before the extension operation and the fixed width of the anti-inadvertent touch area determine the second anti-inadvertent touch area.
  • Step 1505 Perform a false touch prevention process on the false touch prevention area, where the touch signal in the false touch prevention area is not responded to after the false touch prevention process.
  • the stretching operation by comparing the relationship between the stretching operation and the anti-inadvertent touch area, during the stretching operation, part of the display area changes from an uncontrollable state to a controllable state. Therefore, in order to make the anti-inadvertent touch area
  • the area larger than the contact area of the mechanical device directly determine the part of the display area of the touch panel whose width is the upper limit of the stretch distance as the anti-mistouch area, that is, during the stretching process, the anti-mistouch area will not change, which is before the stretching operation
  • the corresponding anti-mistouch area can increase the range of the anti-mistouch area, thereby avoiding misoperation caused by the contact between the flexible display and the mechanical device during the stretching process.
  • the stretched distance and the The upper limit of the stretched distance is used to determine the current actual hidden area in real time, thereby dynamically determining the anti-missing area, thereby more accurately determining the anti-missing area.
  • step 1503 and step 1504 can be replaced with step 1701 and step 1702.
  • Step 1701 in response to the expansion and contraction mode being stretching, obtain the stretched distance and the upper limit of the expansion and contraction distance included in the expansion and contraction data.
  • the size of the anti-inadvertent touch area will decrease as the stretching operation progresses, and the width of the reduced anti-inadvertent area is consistent with the stretched distance, and the actual anti-inadvertent touch area will be protected by the original
  • Step 1702 according to the upper limit of the stretch distance and the stretched distance, determine the third mistouch prevention area in the touch panel, the third mistouch prevention area changes dynamically, and the third mistouch prevention area is located on the stretched side of the touch panel
  • the width of the third anti-mistouch area is the difference between the upper limit of the stretched distance and the stretched distance.
  • the terminal determines the upper limit of the telescopic distance and the stretched distance, where the upper limit of the telescopic distance corresponds to the original anti-inadvertent touch area, and the stretched distance corresponds to the reduced anti-inadvertent touch area, then the upper limit of the telescopic distance
  • the difference between the stretched distance and the stretched distance corresponds to the current actual anti-inadvertent touch area, that is, the terminal can determine the real-time anti-inadvertent touch during the stretching operation by determining the difference between the upper limit of the stretch distance and the stretched distance Area (that is, the third anti-inadvertent touch area).
  • FIG. 18 shows a schematic diagram of the process of determining the anti-mistouch area according to the upper limit of the stretch distance and the stretched distance shown in an exemplary embodiment of the present application.
  • the width of the third inadvertent touch prevention area 1802 is the upper limit of the expansion distance.
  • the third inadvertent touch prevention area 1802 is The corresponding width 1803 becomes the difference between the upper limit of the stretched distance and the stretched distance.
  • the relationship between the upper limit of the stretch distance, the stretched distance and the third anti-mistouch area can be expressed as:
  • S 3 represents the third anti-inadvertent touch area
  • S 2 represents the original anti-inadvertent area before the stretching operation (determined according to the upper limit of the stretch distance before the stretch operation)
  • D 2 represents the upper limit of the stretch distance before the stretch operation
  • D 3 represents the stretched distance
  • W represents the fixed width of the anti-inadvertent touch area.
  • the terminal can determine the difference between the stretched distance and the upper limit of the stretch distance, and determine the difference as
  • the width corresponding to the anti-inadvertent area during the stretching operation can be determined in real time during the stretching operation, which improves the accuracy of the anti-inadvertent area and realizes precise anti-inadvertent processing.
  • the determined anti-mistouch area will dynamically change with the telescopic operation.
  • the anti-mistouch area needs to be estimated processing
  • the determined anti-inadvertent area is larger than the actual hidden area.
  • the anti-inadvertent area will not change at this time. In order to increase the touchable area and accurately determine the anti-inadvertent area, this At this time, it is necessary to re-determine the actual anti-inadvertent area according to the exposed size of the flexible display screen, and perform anti-inadvertent treatment accordingly.
  • FIG. 6 shows a flowchart of a method for preventing accidental touch applied to a flexible display screen according to another exemplary embodiment of the present application.
  • the method is applied to the terminals shown in FIGS. 1 to 5 as an example for description.
  • the method includes:
  • Step 1901 Receive a telescoping signal, which is a signal triggered during the expansion and contraction process of the flexible display screen.
  • Step 1902 Determine, according to the telescopic signal, an anti-mistouch area in the touch panel corresponding to the flexible display screen, and the touch panel and the flexible display screen have the same size.
  • Step 1903 Perform a false touch prevention process on the false touch prevention area, where the touch signal in the false touch prevention area is not responded to after the false touch prevention process.
  • step 1901 to step 1903 reference may be made to the above embodiment, and this embodiment will not be repeated here.
  • Step 1904 in response to the termination of the telescopic signal, determine the target anti-mistouch area according to the size of the exposed area of the flexible display screen.
  • the anti-mistouch area is the difference between the overall size of the flexible display and the size of the exposed display area, that is, the anti The accidental touch area is the actual hidden display area. Therefore, the target anti-inadvertent area (actual anti-inadvertent area) after the telescopic operation can be determined according to the size of the exposed area of the flexible display screen.
  • the reel drives the flexible display screen to shrink, by setting an angular velocity sensor at the reel, or setting the angular velocity sensor to be connected to the reel, In order to determine whether the expansion signal is stopped based on the output signal of the angular velocity sensor, that is, when the output signal of the angular velocity sensor indicates that the current angular velocity data is 0, it is determined that the expansion signal is terminated.
  • Step 1905 Perform anti-error-touch processing on the target anti-error-touch area.
  • the actual anti-touch area is determined according to the size of the exposed area of the flexible display screen when the telescopic signal is detected to terminate, so that the terminal can provide a larger touch area, thereby improving the determination. Accuracy of anti-inadvertent touch area.
  • the terminal can determine whether it is necessary to perform the step of determining the anti-inadvertent area based on the telescopic signal according to the current application scenario in order to reduce the power consumption of the terminal.
  • FIG. 20 shows a flow chart of a method for preventing accidental touch applied to a flexible display screen according to another exemplary embodiment of the present application.
  • the method is applied to the terminals shown in FIGS. 1 to 5 as an example for description.
  • the method includes:
  • Step 2001 Receive a telescopic signal, which is a signal triggered during the telescopic process of the flexible display screen.
  • step 2001 reference may be made to the above embodiment, and this embodiment will not be repeated here.
  • Step 2002 Acquire the current application scenario.
  • the application scenarios include anti-inadvertent touch application scenarios or common application scenarios, where the inadvertent touch prevention application scenarios are scenarios where the level of the user interface’s anti-inadvertent touch is higher than the level threshold.
  • the common application scenarios are the user interface’s error prevention Touch the scene where the level is lower than the level threshold.
  • the developer sets standard parameters for the anti-incorrect touch application scenario, for example, the touch sensitivity requirement level of the user interface. If the touch sensitivity requirement level is higher, the corresponding anti-inadvertent touch level Higher.
  • the terminal may divide the user interface according to the standard parameters of the accidental touch prevention application scenario, and determine the user interface with a higher level of accidental prevention as the accidental touch prevention application scenario.
  • the developer can set identification information for different user interfaces in advance, and the identification information indicates whether the current user interface is an anti-mistouch application scenario.
  • the terminal when receiving the telescopic signal, the terminal first obtains the current user interface identifier of the flexible display screen, and determines the current application scenario corresponding to the current user interface identifier.
  • step 2003 in response to the current application scenario being an anti-inadvertent touch application scenario, determine the anti-inadvertent touch area in the touch panel corresponding to the flexible display screen according to the telescopic signal.
  • the anti-inadvertent touch application scenario means that the accidental touch prevention level of the user interface is higher than the level threshold
  • the user interface is at least one of an application interface and a system interface.
  • the level threshold is preset by the developer, or set by the user according to his own needs (that is, multiple level threshold options are provided, and the user can customize it).
  • the level threshold is 4.
  • the terminal is preset with a table of the relationship between the level of anti-inadvertent touch and the user interface.
  • the terminal receives the telescopic signal, it obtains the current user interface identifier of the flexible display screen, and according to this The user interface identification information searches for an anti-inadvertent touch level corresponding to the user interface, so as to determine whether the current application scene is an anti-inadvertent touch scene according to the anti-inadvertent touch level.
  • the relationship between the mistouch prevention level and the user interface identification information may be as shown in Table 1.
  • the terminal determines that the current user interface identification information is a game interface, it can be seen from Table 1 that the corresponding anti-inadvertent touch level is 7. If the level threshold is 4, the inadvertent touch protection level is high At the preset level threshold, it means that the current application scene belongs to the accident prevention application scene, and the accident prevention area is determined according to the telescopic signal, and then the accident prevention operation is performed.
  • the terminal determines that the current user interface identification information is an e-book interface, as shown in Table 1, the anti-inadvertent touch level is 2, which is lower than the level threshold, indicating that the current application scenario is not an anti-inadvertent application scenario, and there is no need to perform the above-mentioned error prevention Touch operation.
  • the level threshold used to determine whether to perform the false touch prevention operation may be a fixed value or a dynamically changing value.
  • the level threshold can be dynamically changed with the power state of the terminal.
  • the level threshold can be adjusted appropriately to increase the application scenarios where the terminal needs to perform anti-incorrect touch operations, thereby improving the accuracy of the terminal's touch
  • the level threshold can be adjusted appropriately to reduce the application scenarios where the terminal needs to perform anti-inadvertent operation, and give priority to ensuring the terminal battery life.
  • step 2004 an anti-mistouch processing is performed on the anti-mistouch area, where the touch signal in the anti-mistouch area is not responded after the anti-mistouch processing.
  • step 2004 reference may be made to the above embodiment, and this embodiment will not be repeated here.
  • FIG. 21 shows a flowchart of a method for preventing accidental touch applied to a flexible display screen according to another exemplary embodiment of the present application.
  • the method is applied to determine the anti-mistouch area in a shrinking scene, and the method includes:
  • Step 2101 Receive a telescopic signal.
  • the estimated height of the false touch area is the height increased by the retracted distance. For example, if the actual number of rotations is detected as 1, then the estimated height of the false touch area is increased, and the width of the corresponding false touch prevention area is 2S'.
  • Step 2103 It is judged whether the expansion and contraction signal is stopped.
  • step 2109 determines the height of the anti-mistouch area according to the actual retracted distance; if the telescopic signal does not stop, proceed to step 2104 to continue to update the height of the mistouch area.
  • Step 2104 whether the current rotation angle is greater than or equal to 350°.
  • step 2105 is entered to determine the height of the anti-mistouch area at this time. If the current angle is less than 350°, it means that the current actual number of rotations has not reached one circle, and there is no need to perform the operation of adding one, and then go to step 2107.
  • Step 2106 Determine the size of the false touch prevention area as W ⁇ N'S'.
  • W is the length of the fixed-length screen edge in the flexible display screen, which is a fixed value.
  • Step 2107 Determine the size of the anti-inadvertent touch area as W ⁇ NS'.
  • Step 2108 Perform anti-error-touch processing on the anti-error-touch area.
  • Step 2109 Determine the height of the anti-mistouch area as S.
  • S is the contracted distance corresponding to the end of the contraction operation.
  • Step 2110 Determine the size of the false touch prevention area as W ⁇ S.
  • step 2108 is entered to perform the mistouch prevention treatment on the mistouch prevention area.
  • FIG. 22 shows an anti-mistouch device applied to a flexible display screen provided by an exemplary embodiment of the present application.
  • the device is used for a terminal with a flexible display screen.
  • the terminal includes a first housing and a second housing. Shell, the second shell is slidably connected with the first shell, the second shell and the first shell change the exposed display area of the flexible display screen through relative movement.
  • the device can be realized by software, hardware or a combination of both All or part of the terminal.
  • the device includes:
  • the receiving module 2201 is configured to receive an expansion and contraction signal, the expansion and contraction signal being a signal triggered during the expansion and contraction process of the flexible display screen;
  • the first determining module 2202 is configured to determine, according to the telescopic signal, an anti-mistouch area in a touch panel corresponding to the flexible display screen, and the touch panel and the flexible display screen have the same size;
  • the first mis-touch prevention processing module 2203 is configured to perform mis-touch prevention processing on the mis-touch prevention area, wherein the touch signal in the mis-touch prevention area is not responded to after the mis-touch prevention processing.
  • the first determining module 2202 includes:
  • the first determining unit is configured to determine the expansion and contraction mode and expansion data indicated by the expansion and contraction signal, where the expansion and contraction modes include stretching and contraction, and the expansion and contraction data includes at least one of a stretched distance and an upper limit of the expansion distance, so The stretched distance includes stretched distance and contracted distance;
  • the second determining unit is configured to determine the anti-mistouch area in the touch panel according to the expansion and contraction mode and the expansion and contraction data.
  • the second determining unit is further configured to:
  • the first mis-touch prevention area in the touch panel is determined, and the first mis-touch prevention area changes dynamically.
  • the second determining unit is further configured to:
  • a touch area with a width of k ⁇ n+n in the touch panel is determined as the first accidental touch prevention area, where n is greater than m, and k is a natural number , N is the length of the flexible display screen being rolled around a reel, and the first anti-mistouch area is located at the edge where the side of the touch panel is contracted.
  • the second determining unit is further configured to:
  • a second mis-touch prevention area in the touch panel is determined, and the second mis-touch prevention area is a touch area of the touch panel whose width is the upper limit of the telescopic distance, so The second mistouch prevention area is located at the edge where the stretched side of the touch panel is located.
  • the second determining unit is configured to:
  • a third mistouch prevention area in the touch panel is determined, the third mistouch prevention area changes dynamically, and the third mistouch prevention area is located at all The edge where the stretched side of the touch panel is located, and the width of the third mistouch prevention area is the difference between the upper limit of the stretch distance and the stretched distance.
  • the terminal includes a reel, the flexible display screen is rolled around the reel, and an angular velocity sensor is provided at the reel, and the telescopic signal is output by the angular velocity sensor;
  • the first determining unit is further configured to:
  • the rotation angle is determined according to the angular velocity data
  • the expansion data is determined according to the rotation angle and the rotation radius, where the rotation radius is the radius when the flexible display screen is rolled around the reel.
  • the device further includes:
  • the second determining module is configured to determine a target anti-mistouch area according to the size of the exposed area of the flexible display screen in response to the termination of the telescopic signal;
  • the second mistouch prevention processing module is used to perform mistouch prevention processing on the target mistouch prevention area.
  • the first determining module 2202 further includes:
  • the obtaining unit is used to obtain the current application scenario
  • the third determining unit is configured to, in response to the current application scene being an anti-mistouch application scenario, execute the step of determining the anti-mistouch area in the touch panel corresponding to the flexible display screen according to the telescopic signal;
  • the accidental touch prevention application scenario refers to a scenario where the accidental touch prevention level of the user interface is higher than the level threshold, and the user interface is at least one of an application interface and a system interface.
  • a terminal with a flexible display screen receives a telescopic signal triggered during the expansion and contraction of the flexible display screen, it is determined according to the telescoping signal the anti-mistouch area in the touch panel corresponding to the flexible display screen, and the error prevention The touch area is treated with anti-mis-touch, so that the touch signal in the anti-mis-touch area after the anti-mis-touch treatment is not responded.
  • the telescopic signal triggered during the telescopic process is used to determine the anti-mis-touch area, so that the determined anti-mis-touch area is processed to prevent the mis-touch, so that the anti-mis-touch area will not respond to the touch signal, thereby avoiding the interference during the telescopic operation.
  • the accidental touch operation in this area further improves the accuracy of the terminal's touch response.
  • FIG. 23 shows a structural block diagram of a terminal 2300 provided by an exemplary embodiment of the present application.
  • the terminal 2300 may be an electronic device with a flexible display screen, such as a smart phone, a tablet computer, an e-book, or a portable personal computer.
  • the terminal 2300 in this application may include one or more of the following components: a memory 2301, a processor 2302, and a flexible display 2303.
  • the processor 2302 may include one or more processing cores.
  • the processor 2302 uses various interfaces and lines to connect various parts of the entire terminal 2300, and executes the terminal by running or executing instructions, programs, code sets, or instruction sets stored in the memory 2301, and calling data stored in the memory 2301. 2300's various functions and processing data.
  • the processor 2302 may adopt at least one of digital signal processing (Digital Signal Processing, DSP), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), and Programmable Logic Array (Programmable Logic Array, PLA). A kind of hardware form to realize.
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA Programmable Logic Array
  • the processor 2302 may integrate one or a combination of a central processing unit (Central Processing Uni, CPU), a graphics processing unit (Graphics Processing Unit, GPU), and a modem.
  • a central processing unit Central Processing Uni, CPU
  • a graphics processing unit Graphics Processing Unit, GPU
  • a modem used for processing wireless communication. It is understandable that the above-mentioned modem may not be integrated into the processor 2302, but may be implemented by a communication chip alone.
  • the memory 2301 may include random access memory (RAM) or read-only memory (ROM).
  • the memory 2301 includes a non-transitory computer-readable storage medium.
  • the memory 2301 may be used to store instructions, programs, codes, code sets or instruction sets.
  • the memory 2001 may include a storage program area and a storage data area, where the storage program area may store instructions for implementing the operating system and instructions for implementing at least one function (such as touch function, sound playback function, image playback function, etc.) , Instructions used to implement the foregoing various method embodiments, etc., the operating system may be the Android system (including the system based on the in-depth development of the Android system), the IOS system developed by Apple (including the system of the in-depth development based on the IOS system) Or other systems.
  • the data storage area can also store data created during use of the terminal 2000 (such as phone book, audio and video data, chat record data) and the like.
  • the flexible display screen 2303 is used to receive the user's touch operation on or near any suitable object such as a finger, a touch pen, etc., and to display the user interface of each application program.
  • the flexible display 2303 is usually arranged on the front panel of the terminal 2300.
  • the size of the exposed display area of the flexible display screen 2303 can be changed with the telescopic operation.
  • the terminal 2300 further includes a driving member for driving the flexible display screen to expand or contract.
  • the terminal 2300 further includes a driving mechanism, and the driving mechanism is used to drive the first housing and the second housing to move relative to each other.
  • the structure of the terminal 2300 shown in the above drawings does not constitute a limitation on the terminal 2300, and the terminal may include more or less components than those shown in the figure, or a combination of certain components. Components, or different component arrangements.
  • the terminal 2300 also includes components such as a radio frequency circuit, a photographing component, a sensor, an audio circuit, a wireless fidelity (Wireless Fidelity, WiFi) component, a power supply, a Bluetooth component, etc., which will not be repeated here.
  • the embodiments of the present application also provide a computer-readable medium that stores at least one instruction, and the at least one instruction is loaded and executed by the processor to realize the application flexibility described in each of the above embodiments.
  • the embodiments of the present application provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the terminal reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the terminal executes the method for preventing accidental touch applied to the flexible display screen provided in the various optional implementation manners of the foregoing aspects.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Abstract

本申请实施例公开了一种应用于柔性显示屏的防误触方法、装置、终端及存储介质,属于终端技术领域。该方法用于具有柔性显示屏的终端,终端包括第一壳体和第二壳体,第二壳体与第一壳体滑动连接,第二壳体和第一壳体通过相对运动改变柔性显示屏的外露显示区域,该方法包括:接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号;根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,触控面板与柔性显示屏的尺寸一致;对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响应。避免了在伸缩操作过程中对该区域的误触操作,进而提高了终端触控响应的准确性。

Description

应用于柔性显示屏的防误触方法、装置、终端及存储介质
本申请要求于2020年06月10日提交的申请号为202010524249.8、发明名称为“应用于柔性显示屏的防误触方法、装置、终端及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及终端技术领域,特别涉及一种应用于柔性显示屏的防误触方法、装置、终端及存储介质。
背景技术
对于具有柔性显示屏的终端,当用户对柔性显示屏进行伸缩操作时,柔性显示屏可通过带动件(或卷轴)带动柔性显示屏展开或收缩,从而改变柔性显示屏的外露显示区域。相关技术中,无论显示屏的外露显示区域如何发生改变,触控面板(Touch Panel,TP)的响应区域均为整个柔性显示屏区域,当柔性显示屏被卷动或拉伸的过程中,TP会与带动件(或卷轴)发生接触,可能存在误触操作。
发明内容
本申请实施例提供了一种应用于柔性显示屏的防误触方法、装置、终端及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种应用于柔性显示屏的防误触方法,所述方法用于具有柔性显示屏的终端,所述终端包括第一壳体和第二壳体,所述第二壳体与所述第一壳体滑动连接,所述第二壳体和所述第一壳体通过相对运动改变所述柔性显示屏的外露显示区域,所述方法包括:
接收伸缩信号,所述伸缩信号是所述柔性显示屏伸缩过程中触发的信号;
根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,所述触控面板与所述柔性显示屏的尺寸一致;
对所述防误触区域进行防误触处理,其中,经过防误触处理后所述防误触区域内的触控信号不被响应。
另一方面,本申请实施例提供了一种应用于柔性显示屏的防误触装置,所述装置用于具有柔性显示屏的终端,所述终端包括第一壳体和第二壳体,所述第二壳体与所述第一壳体滑动连接,所述第二壳体和所述第一壳体通过相对运动改变所述柔性显示屏的外露显示区域,所述装置包括:
接收模块,用于接收伸缩信号,所述伸缩信号是所述柔性显示屏伸缩过程中触发的信号;
第一确定模块,用于根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,所述触控面板与所述柔性显示屏的尺寸一致;
第一防误触处理模块,用于对所述防误触区域进行防误触处理,其中,经过防误触处理后所述防误触区域内的触控信号不被响应。
另一方面,本申请实施例提供了一种终端,所述终端包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上述方面所述的应用于柔性显示屏的防误触方法。
另一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上述方面所述的应用于柔性显示屏的防误触方法。
另一方面,本申请实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。终端的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该终端执行上述方面的各种可选实现方式中提供的应用于柔性显示屏的防误触方法。
附图说明
图1至图5示出了本申请一个示例性实施例示出的终端的结构示意图;
图6示出了本申请一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图7示出了本申请一个示例性实施例示出的伸缩操作的示意图;
图8出了本申请一个示例性实施例示出的防误触区域的示意图;
图9示出了本申请一个示例性实施例示出的根据终端坐标系进行防误触处理的过程的示意图;
图10示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图11示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图12示出了本申请一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图13示出了本申请一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图14示出了本申请一个示例性实施例示出的收缩场景下确定第一防误触区域的过程的示意图;
图15示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图16示出了本申请一个示例性实施例示出根据伸缩距离上限确定防误触区域的过程的示意图;
图17示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图18示出了本申请一个示例性实施例示出的根据伸缩距离上限和已拉伸距离确定防误触区域的过程的示意图;
图19出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图20示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图21示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图;
图22示出了本申请一个示例性实施例提供的应用于柔性显示屏的防误触装置;
图23示出了本申请一个示例性实施例提供的终端的结构方框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例提供的应用于柔性显示屏的防误触方法,应用于具有柔性显示屏的终端,下面首先对终端的结构进行说明。
请结合图1至图3,本申请实施例中的终端100包括壳体组件10、柔性显示屏30、带动件50及驱动机构70。壳体组件10为中空结构;带动件50、驱动机构70以及摄像头60等组件均可设置在壳体组件10。可以理解的是,本申请实施例中的终端100包括但不限于手机、平板等移动终端或者其它便携式电子设备,在本文中,以终端100为手机为例进行说明。
在本申请实施中,壳体组件10包括第一壳体12和第二壳体14,第一壳体12和第二壳体14能够相对运动。在一种可能的实施方式中,第一壳体12和第二壳体14滑动连接,也即是说,第二壳体14能够相对第一壳体12滑动。
可选的,请参阅图4及图5,第一壳体12与第二壳体14共同形成有容置空间16。容置空间16可用于放置带动件50、摄像头60及驱动机构70等部件。壳体组件10还可包括后盖18,后盖18与第一壳体12与第二壳体14共同形成容置空间16。
可选的,带动件50设置于第二壳体14,柔性显示屏30的一端设置于第一壳体12,柔性显示屏30绕过带动件50,且柔性显示屏30的另一端设置于容置空间16内,以使部分柔性显示屏30隐藏于容置空间16内,隐藏于容置空间16内的部分柔性显示屏30可不点亮。第一壳体12和第二壳体14相对远离,可通过带动件50带动柔性显示屏30展开,以使得更多的柔性显示屏30暴露于容置空间16外。点亮暴露于容置空间16外部的柔性显示屏30,以使得终端100所呈现的显示区域变大。
可选的,带动件50为外部带有齿52的转轴结构,柔性显示屏30通过啮合等方式与带动件50相联动,第一壳体12和第二壳体14相对远离时,通过带动件50带动啮合于带动件50上的部分柔性显示屏30移动并展开。
可以理解,带动件50还可为不附带齿52的圆轴,第一壳体12和第二壳体14相对远离时,通过带动件50将卷绕于带动件50上的部分柔性显示屏30撑开,以使更多的柔性显示屏30暴露于容置空间16外,并处于平展状态。可选的,带动件50可转动地设置于第二壳体14,在逐步撑开柔性显示屏30时,带动件50可随柔性显示屏30的移动而转动。在其它实施例中,带动件50也可固定在第二壳体14上,带动件50具备光滑的表面。在将柔性显示屏30撑开时,带动件50通过其光滑的表面与柔性显示屏30可滑动接触。
当第一壳体12和第二壳体14相对靠近时,柔性显示屏30可通过带动件50带动收回。或者,终端100还包括复位件(图未示),柔性显示屏收容于容置空间16的一端与复位件联动,在第一壳体12和第二壳体14相对靠近时,复位件带动柔性显示屏30复位,进而使得部分柔性显示屏30收回于容置空间16内。
在本申请实施例中,驱动机构70可设置在容置空间16内,驱动机构70可与第二壳体14相联动,驱 动机构70用于驱动第二壳体14相对于第一壳体12做相离运动,进而带动柔性显示屏组件30伸展。可以理解,驱动机构70也可以省略,用户可以直接通过手动等方式来使得第一壳体和第二壳体相对运动。
需要说明的是,上述终端结构中的带动件50也可以被称为卷轴,本申请实施例以带动卷为卷轴为例进行示意性说明。
本申请实施例中,当具有柔性显示屏的终端接收到柔性显示屏进行伸缩过程中触发的伸缩信号时,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,并对防误触区域进行防误触处理,使得经过防误触处理后的防误触区域内的触控信号不被响应。由于柔性显示屏的外露显示区域与对柔性显示屏的伸缩操作有关,而除外露显示区域之外的显示区域(隐藏显示区域)为可能出现误触操作的区域,因此,终端可以根据柔性显示屏伸缩过程中触发的伸缩信号来确定防误触区域,从而对确定出的防误触区域进行防误触处理,使得防误触区域不会响应触控信号,从而避免了在伸缩操作过程中对该区域的误触操作,进而提高了终端触控响应的准确性。
请参考图6,其示出了本申请一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。本实施例以该方法应用于图1至5所示的终端中为例进行说明,该方法包括:
步骤601,接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号。
其中,对柔性显示屏的伸缩操作包括拉伸操作和收缩操作中的至少一种,其中,拉伸操作下,第一壳体和第二壳体通过相对运动以增加柔性显示屏的外露显示区域,收缩操作下,第一壳体和第二壳体通过相对运动以减少柔性显示屏的外露显示区域。
在一个示例性的例子中,如图7所示,对柔性显示屏702的拉伸操作可以为:第一壳体701位置保持不变,第二壳体703沿箭头704所示的方向滑动,或第二壳体703位置保持不变,第一壳体701沿箭头705所示的方向滑动;或第一壳体701沿箭头705所示的方向滑动,同时第二壳体703沿箭头704所示的方向滑动;对柔性显示屏702的收缩操作可以为:第一壳体701位置保持不变,第二壳体703沿箭头705所示的方向滑动;或第二壳体703位置保持不变,第一壳体701沿箭头704所示的方向滑动;或第一壳体701沿箭头704所示的方向滑动,同时第二壳体703沿箭头705所示的方向滑动。本申请实施例对终端接收到的拉伸操作不构成限定。
在一种可能的实施方式中,当用户对柔性显示屏进行拉伸操作,相应的,终端接收到柔性显示屏拉伸过程中触发的拉伸信号;或用户对柔性显示屏进行收缩操作,相应的,终端接收到柔性显示屏收缩过程中触发的收缩信号。
步骤602,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,触控面板与柔性显示屏的尺寸一致。
由于对于具有柔性显示屏的终端,隐藏在终端壳体内部的部分柔性显示屏存在与终端机械部分发生误触的可能性,比如,当卷轴带动柔性显示屏进行展开或收缩时,卷轴与柔性显示屏会发生接触,从而引发误触操作,可见,对柔性显示屏的伸缩操作与柔性显示屏的误触区域具有一定的关联性,因此,在一种可能的实施方式中,可以根据伸缩操作触发的伸缩信号来确定柔性显示屏对应触控面板中的防误触区域。
其中,伸缩操作对应的伸缩信号可以包括伸缩距离或伸缩位置,比如,定义终端在伸缩操作过程中,屏幕边缘长度不会发生改变的屏幕边缘为宽边(若宽为6cm),屏幕边缘长度随伸缩操作发生改变的屏幕边缘为长边,经过单次收缩操作后,柔性显示屏的外露显示区域对应的长边收缩5cm,则对应的,隐藏在终端壳体内部的部分显示区域对应的长边增加5cm,则对应的防误触区域的尺寸增加5cm×6cm;经过单次拉伸操作,柔性显示屏的外露显示区域对应的长边增加5cm,相应的,隐藏在终端壳体内部的部分显示区域对应的长边减少5cm,则对应的防误触区域的尺寸减少5cm×6cm。
在一个示例性的例子中,如图8所示,其示出了本申请一个示例性实施例示出的防误触区域的示意图。当柔性显示屏801中的屏幕边缘802沿箭头804所示的方向进行收缩操作后,屏幕边缘803的长度缩短(对应图中的已收缩距离),其中,已收缩距离对应的部分显示区域隐藏在终端内部,则防误触区域805即为宽度为已收缩距离的触控区域(显示区域)。
针对检测伸缩信号的方式,在一种可能的实施方式中,终端设置有检测伸缩信号的传感器,比如,光感传感器,通过为柔性显示屏的卷动部分设置标识,通过光感传感器识别该标识,从而确定出柔性显示屏的伸缩位置,从而确定伸缩距离。
在另一种可能的实施方式中,也可以为卷轴设置角速度传感器,由角速度传感器检测卷轴转动的角度,从而确定出转动的圈数,以便确定出伸缩操作对应的伸缩距离等。
在其他可能的实施方式中,也可以通过在柔性显示屏上显示虚拟坐标,通过识别伸缩操作对应的坐标数值,确定出伸缩操作对应的伸缩信号,本申请实施例对检测伸缩信号的方式不构成限定。
步骤603,对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响 应。
在一种可能的实施方式中,当终端根据伸缩信号确定出防误触区域后,对防误触区域进行防误触处理,即对防误触区域中的触控信号不进行触控响应。
其中,针对防误触的处理方式,终端可以直接关闭防误触区域的触点,即终端不会接收该防误触区域的触控操作;或终端接收到防误触区域的触控信号,但是不会对该触控信号进行处理(或响应该触控信号),即不会将该触控信号上报至操作系统进行处理。
在一种可能的应用场景下,由于TP一般通过确定触控信号产生的位置坐标来进行响应处理,因此,在对防误触区域在进行防误触处理时,可以预先定义一个终端坐标系,在该终端坐标系中,划分出防误触区域,若触控信号落入到该防误触区域,则终端无需将该触控事件进行上报。
在一个示例性的例子中,如图9所示,其示出了本申请一个示例性实施例示出的根据终端坐标系进行防误触处理的过程的示意图。以柔性显示屏的左顶点902为终端坐标系的坐标原点为例,当柔性显示屏901经过收缩操作后,防误触区域902隐藏在终端内部,此时,外露显示区域的高度为H,当终端接收到触控点903触发的触控事件时,首先获取到触控点903的坐标位置(x,y),若y大于H,则表示触控点903位于防误触区域902内,无需将该触控点触发的触控事件上报至操作系统。
综上所述,本申请实施例中,当具有柔性显示屏的终端接收到柔性显示屏进行伸缩过程中触发的伸缩信号时,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,并对防误触区域进行防误触处理,使得经过防误触处理后的防误触区域内的触控信号不被响应。由于柔性显示屏的外露显示区域与对柔性显示屏的伸缩操作有关,而除外露显示区域之外的显示区域(隐藏显示区域)为可能出现误触操作的区域,因此,终端可以根据柔性显示屏伸缩过程中触发的伸缩信号来确定防误触区域,从而对确定出的防误触区域进行防误触处理,使得防误触区域不会响应触控信号,从而避免了在伸缩操作过程中对该区域的误触操作,进而提高了终端触控响应的准确性。
可选的,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,包括:
确定伸缩信号所指示的伸缩方式和伸缩数据,伸缩方式包括拉伸和收缩,伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,已伸缩距离包括已拉伸距离和已收缩距离;
根据伸缩方式和伸缩数据,确定触控面板中的防误触区域。
可选的,根据伸缩方式和伸缩数据,确定触控面板中的防误触区域,包括:
响应于伸缩方式为收缩,获取伸缩数据中包含的已收缩距离;
根据已收缩距离,确定触控面板中的第一防误触区域,第一防误触区域动态变化。
可选的,根据已收缩距离,确定触控面板中的第一防误触区域,包括:
响应于已收缩距离小于k×n+m,将触控面板中宽度为k×n+n的触控区域确定为第一防误触区域,n大于m,k为自然数,n为柔性显示屏绕卷轴卷缩一周的长度,且第一防误触区域位于触控面板收缩一侧所在的边缘。
可选的,根据伸缩方式和伸缩数据,确定触控面板中的防误触区域,包括:
响应于伸缩方式为拉伸,获取伸缩数据中包含的伸缩距离上限;
根据伸缩距离上限,确定触控面板中的第二防误触区域,第二防误触区域为触控面板中宽度为伸缩距离上限的触控区域,第二防误触区域位于触控面板拉伸一侧所在的边缘。
可选的,根据伸缩方式和伸缩数据,确定触控面板中的防误触区域,包括:
响应于伸缩方式为拉伸,获取伸缩数据中包含的已拉伸距离和伸缩距离上限;
根据伸缩距离上限与已拉伸距离,确定触控面板中的第三防误触区域,第三防误触区域动态变化,第三防误触区域位于触控面板拉伸一侧所在的边缘,且第三防误触区域的宽度为伸缩距离上限与已拉伸距离之差。
可选的,终端包括卷轴,柔性显示屏绕卷轴卷缩,且卷轴处设置有角速度传感器,伸缩信号由角速度传感器输出;
确定伸缩信号所指示的伸缩方式和伸缩数据,包括:
获取角速度传感器输出的角速度数据;
根据角速度数据对应的角速度方向确定伸缩方式;
根据角速度数据确定旋转角度,并根据旋转角度和旋转半径确定伸缩数据,旋转半径是柔性显示屏绕卷轴卷缩时的半径。
可选的,方法还包括:
响应于伸缩信号终止,根据柔性显示屏的外露区域的尺寸,确定目标防误触区域;
对目标防误触区域进行防误触处理。
可选的,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,还包括:
获取当前应用场景;
响应于当前应用场景为防误触应用场景,执行根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域的步骤;防误触应用场景指用户界面的防误触等级高于等级阈值的场景,用户界面为应用界面和系统界面中的至少一种。
由于防误触区域与隐藏在终端内部的部分显示区域(或柔性显示屏的外露显示区域)有关,而不同的伸缩方式,对应确定防误触区域的方式存在差异,比如,对柔性显示屏进行拉伸操作(即伸缩方式为拉伸),则对应的防误触区域随拉伸操作而减少,若对柔性显示屏进行收缩操作(即伸缩方式为收缩),则对应的防误触区域随收缩操作而增加,因此,在一种可能的实施方式中,在确定防误触区域时,除了需要确定伸缩信号指示的伸缩距离外,还需要考虑伸缩信号指示的伸缩方式。
请参考图10,其示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。本实施例以该方法应用于图1至5所示的终端中为例进行说明,该方法包括:
步骤1001,接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号。
步骤1001的实施方式可以参考步骤601,本实施例在此不做赘述。
步骤1002,确定伸缩信号所指示的伸缩方式和伸缩数据,伸缩方式包括拉伸和收缩,伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,已伸缩距离包括已拉伸距离和已收缩距离。
其中,已拉伸距离为进行拉伸操作的过程中,柔性显示屏的外露显示区域对应的屏幕长边增加的长度;已收缩距离为进行收缩操作的过程中,柔性显示屏的外露显示区域对应的屏幕长边减少的长度,示意性的,本实施例中的屏幕长边定义为柔性显示屏中屏幕边缘长度会随着拉伸操作改变的屏幕边缘,屏幕短边定义为柔性显示屏中屏幕边长长度不会随拉伸操作改变的屏幕边缘。
针对伸缩方式为收缩的场景下,柔性显示屏的外露显示区域的尺寸随伸缩操作而减少,即防误触区域的尺寸会随收缩操作而增加,则只需要确定出收缩操作对应的已收缩距离,即可以确定出防误触区域(即防误触区域仅与已伸缩距离有关)。
针对伸缩方式为拉伸的场景下,柔性显示屏的外露显示区域的尺寸随拉伸操作而增加,即防误触区域的尺寸会随拉伸操作而减少,且柔性显示屏处于完全或部分收缩状态时,均存在伸缩距离上限,因此,在确定拉伸场景下的防误触区域时,不仅需要考虑已拉伸距离,还需要考虑伸缩距离上限,即拉伸场景下的防误触区域的宽度为伸缩距离上限与已拉伸距离之差(即防误触区域与已拉伸距离和伸缩距离上限有关)。
其中,伸缩距离上限与对柔性显示屏进行伸缩操作之前,柔性显示屏的当前收缩状态有关,比如,若伸缩操作之前,柔性显示屏处于完全收缩状态,对应最大伸缩距离上限;若伸缩操作之前,柔性显示屏处于部分收缩状态,对应的伸缩距离上限小于最大伸缩距离上限。
综上所述,在根据伸缩信号确定防误触区域时,需要获取伸缩信号指示的伸缩方式和伸缩数据,若伸缩方式为拉伸,则需要获取伸缩方式对应的伸缩距离上限和已拉伸距离;若伸缩方式为收缩,则需要获取伸缩方式对应的已收缩距离。
针对确定伸缩方式的方法,在一种可能的实施方式中,可以采用角速度传感器检测伸缩信号,由于角速度传感器输出的角速度信号存在方向性,可以识别出卷轴转动的方向,比如,卷轴顺时针转动,或卷轴逆时针转动,从而根据卷轴的转动方向确定出收缩方式。
其中,卷轴转动方向与伸缩方式之间的关系由卷轴的设置位置有关,比如,若卷轴设置在终端的左侧壳体处,卷轴转动时带动柔性显示屏向右展开或向左收缩,则卷轴沿顺时针方向转动时对应的伸缩方式为拉伸,卷轴沿逆时针方向转动时对应的伸缩方式为收缩;若卷轴设置在终端的右侧壳体处,卷轴转动时带动柔性显示屏向左展开或向右收缩,则卷轴沿逆时针方向转动时对应的伸缩方式为拉伸,卷轴沿顺时针方向转动时对应的伸缩方式为收缩。
在另一种可能的实施方式中,卷轴转动方向与收缩方式之间的关系可以由开发人员根据终端的实际结构进行设置,本申请实施例对此不构成限定。
步骤1003,根据伸缩方式和伸缩数据,确定触控面板中的防误触区域。
在一种可能的实施方式中,当终端获取到伸缩信号指示的伸缩方式和伸缩数据后,即可以确定出触控面板中的防误触区域,比如,若伸缩方式为收缩,且获取到伸缩信号指示的已伸缩距离,则对应的防误触区域为已伸缩距离与固定屏幕边缘围成(屏幕宽边)的区域;若伸缩方式为拉伸,且获取到伸缩信号指示的已拉伸距离和伸缩距离上限,则对应的防误触区域为伸缩距离上限与已拉伸距离之差,与固定屏幕边缘(屏幕宽边)围成的区域。
在另一种可能的实施方式中,若进行收缩操作之前,屏幕已存在部分隐藏区域,则对应的防误触区域的尺寸为部分隐藏区域与防误触区域增加值的和,其中,防误触区域增加值由已收缩距离确定。
步骤1004,对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响应。
步骤1004的实施方式可以参考步骤603,本实施例在此不做赘述。
本实施例中,通过确定伸缩信号指示的伸缩方式和伸缩数据,其中,伸缩方式用于确定防误触区域的确定方式,而伸缩数据用于确定防误触区域的具体尺寸。通过实时确定伸缩信号所指示的伸缩方式和伸缩数据,实时确定出在伸缩操作过程中的防误触区域,进而提高伸缩操作过程中的防误触准确性。
在一种可能的实施方式中,终端中设置有卷轴,柔性显示屏绕卷轴进行卷缩,即通过卷轴带动柔性显示屏进行展开或收缩,从而改变柔性显示屏的外露显示区域,因此,可以通过在卷轴处设置角速度传感器来检测伸缩操作,并根据角速度传感器输出的伸缩信号来确定伸缩数据。
在一个示例性的例子中,在图10的基础上,如图11所示,步骤1002可以包括步骤1002A、步骤1002B和步骤1002C。
步骤1002A,获取角速度传感器输出的角速度数据。
在一种可能的实施方式中,开发人员将角速度传感器设置在卷轴处,或与卷轴相连,当卷轴通过转动带动柔性显示屏进行卷缩时,卷轴处设置的角速度传感器同时进行转动,从而通过角速度传感器检测到卷轴转动状态,并输出对应的模拟信号,由终端将该模拟信号转换为数字信号,即得到卷轴对应的角速度数据。
在一个示例性的例子中,终端对角速度传感器输出的传感器信号进行信号处理,得到不同时刻对应的角速度数据,比如,某时刻对应的角速度数据为πrad/s。
步骤1002B,根据角速度数据对应的角速度方向确定伸缩方式。
由于角速度传感器输出的传感器信号为矢量信号,即有正负性,则确定出的角速度数据也为矢量,而不同的转动方向会产生不同方向的传感器信号,不同转动方向对应不同的伸缩方式,因此,在一种可能的实施方式中,可以通过角速度数据对应的角速度方向确定伸缩方式。
针对根据角速度方向确定伸缩方式的方式,在一种可能的实施方式中,开发人员可以根据卷轴的设置位置(即终端的结构)对应设置角速度方向与伸缩方式之间的关系,比如,若卷轴设置在终端的左侧壳体处,卷轴转动时带动柔性显示屏向右展开或向左收缩,可以定义角速度方向为正方向(对应顺时针方向转动)时,伸缩方式为拉伸,角速度方向为负方向(对应逆时针方向转动)时,伸缩方式为收缩,若卷轴设置在终端的右侧壳体处,卷轴转动时带动柔性显示屏向左展开或向右收缩,可以定义角速度方向为正方向(对应逆时针方向转动)时,伸缩方式为拉伸,角速度方向为负方向(对应顺时针方向转动)时,伸缩方式为收缩。本申请实施例对角速度方向与伸缩方式之间的关系不构成限定。
步骤1002C,根据角速度数据确定旋转角度,并根据旋转角度和旋转半径确定伸缩数据,旋转半径是柔性显示屏绕卷轴卷缩时的半径。
由于柔性显示屏是绕卷轴进行拉伸和收缩,则对应的伸缩距离与卷轴的周长之间存在一定关系(伸缩距离为周长的倍数),因此,在一种可能的实施方式中,可以通过角速度数据确定出卷轴旋转的角度,从而根据该角度确定出已伸缩距离与卷轴周长之间的关系,比如,旋转角度为360°,则对应的已伸缩距离为卷轴的周长,而卷轴的周长可以通过卷轴的半径得到。
在一个示例性的例子中,旋转角度、旋转半径与已伸缩距离之间的关系可以表示为:
Figure PCTCN2021090051-appb-000001
其中,S为已伸缩距离,N为旋转角度,r为旋转半径(旋转半径可以采用卷轴的半径)。
针对确定旋转角度的方式,在一种可能的实施方式中,终端可以获取伸缩操作对应的时长,根据该时长与角速度数值,即可以确定出旋转角度。
需要说明的是,步骤1002C和步骤1002B可以同时执行,或先执行步骤1002B,后执行步骤1002C,或先执行步骤1002C,后执行步骤1002B,本申请实施例对此不构成限定。
本实施例中,当终端中设置有卷轴,使得柔性显示屏可以绕卷轴进行卷缩时,可以通过在卷轴处设置角速度传感器的方式来检测伸缩信号,由终端对角速度传感器输出的传感器信号进行处理,得到角速度数据,并根据角速度数据对应的角速度方向,确定伸缩方式,根据角速度数据确定旋转角度,以便根据旋转角度和旋转半径确定伸缩数据。
由于触发伸缩信号的伸缩操作包括拉伸操作和收缩操作,而不同伸缩操作下,根据伸缩信号确定防误触区域的方式存在差异,比如,对于收缩操作,收缩距离与防误触区域呈正相关关系,而对于拉伸操作,拉伸距离与防误触区域呈负相关关系,因此,下文实施例中对于不同的伸缩方式分别介绍如何确定防误触 区域。
请参考图12,其示出了本申请一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。本实施例以该方法应用于图1至5所示的终端中为例进行说明,该方法包括:
步骤1201,接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号。
步骤1202,确定伸缩信号所指示的伸缩方式和伸缩数据,伸缩方式包括拉伸和收缩,伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,已伸缩距离包括已拉伸距离和已收缩距离。
步骤1201和步骤1202的实施方式可以参考上文实施例,本实施例在此不做赘述。
步骤1203,响应于伸缩方式为收缩,获取伸缩数据中包含的已收缩距离。
由于在伸缩方式为收缩的场景下,防误触区域的尺寸与已收缩距离之间成正相关关系(且仅与已收缩距离有关),即防误触区域的尺寸随已收缩距离的增加而增加,因此,在一种可能的实施方式中,当终端根据采集到的角速度数据确定出伸缩方式为收缩时,只需要获取该伸缩信号指示的已收缩距离即可,以便后续基于该已收缩距离确定触控面板中的防误触区域。
可选的,当收缩操作之前柔性显示屏为完全展开状态时(不存在隐藏显示区域),可以直接将已收缩距离和屏幕宽边的乘积之和,确定为防误触区域;当收缩操作之前柔性显示屏为部分展开状态时(存在部分隐藏显示区域),防误触区域由原有防误触区域和新增防误触区域构成,其中,新增防误触区域由已收缩距离和屏幕宽边的乘积之和确定。
步骤1204,根据已收缩距离,确定触控面板中的第一防误触区域,第一防误触区域动态变化。
在一种可能的实施方式中,当终端确定出已收缩距离后,即可以根据已收缩距离确定第一防误触区域的宽度(定义宽度为防误触区域的尺寸发生改变时,长度变化的区域边缘的长度),从而划分出第一防误触区域,用于作防误触处理。
在一个示例性的例子中,若终端接收到伸缩信号之前,柔性显示屏处于完全展开状态,则对应的第一防误触区域的面积与已收缩距离之间的关系可以表示为:
S 1=D 1×W
其中,S 1表示第一防误触区域的面积,D 1表示已收缩距离,W表示防误触区域的固定宽度,为固定值。
在另一种可能的实施方式中,若柔性显示屏在接收到伸缩信号之前,不处于完全展开状态,即存在部分隐藏区域,该隐藏区域也为防误触区域,接收伸缩信号后,新增部分隐藏区域(根据已收缩距离确定),则柔性显示屏的当前防误触区域为部分隐藏区域(原有)和新增隐藏区域之和。
在一个示例性的例子中,若柔性显示屏在接收到伸缩信号之前,不处于完全展开状态,则对应的第一防误触区域的面积和已收缩距离之间的关系可以表示为:
S 1=S 0+D 1×W或S 1=(D 0+D 1)×W
其中,S 1为第一防误触区域的面积,S 0表示原有防误触区域的面积,D 1表示已收缩距离,W表示防误触区域的固定宽度,为固定值,D 0表示原有已收缩距离。
当柔性显示屏处于收缩过程中,由于第一防误触区域会随已收缩距离的增加而增加,如果在检测到已收缩距离后,再去做防误触操作,在进行收缩的过程中,可能已经发生误触操作,即已收缩距离仅能指示实际的防误触区域,为了在收缩场景下,可以在检测到已收缩距离之前,预先对第一防误触区域进行防误触处理,在一种可能的实施方式中,需要对第一防误触区域进行预估,定义在实际防误触区域对应的宽度的基础上,增加卷轴卷缩一周的长度。
在一个示例性的例子中,在图12的基础上,如图13所示,步骤1204可以被替换为步骤1301。
步骤1301,响应于已收缩距离小于k×n+m,将触控面板中宽度为k×n+n的触控区域确定为第一防误触区域,n大于m,k为自然数,n为柔性显示屏绕卷轴卷缩一周的长度,且第一防误触区域位于触控面板收缩一侧所在的边缘。
其中,k表示收缩过程中卷轴实际旋转圈数,可以取0、1、2、3、4等值,当k取0,表示当前柔性显示屏绕卷轴卷缩的长度未达到卷轴一周的长度,或卷轴未转动一周(360°)。
在一种可能的实施方式中,当柔性显示屏处于收缩场景下,对防误触区域进行预估,在实际防误触区域对应的宽度的基础上增加卷轴卷缩一周的长度,或,通过确定实际防误触区域的宽度(已收缩距离)与n之间的比值(即卷轴实际旋转圈数k),并将触控面板中宽度为(k+1)×n的宽度确定为第一防误触区域。
比如,若卷轴卷缩一周的长度n为2cm,已收缩距离为7cm,则对应的已收缩距离与n的比值为3.5,由于k为自然数,对应的k取3,即将触控面板中宽度为4×n的触控区域确定为第一防误触区域(该第一防误触区域包括实际防误触区域和预估防误触区域)。
在一个示例性的例子中,请参考图14,其示出了本申请一个示例性实施例示出的收缩场景下确定第一防误触区域的过程的示意图。其中,宽度1402为卷轴卷缩一周的长度,S'为卷轴卷缩一周对应的显示区 域的尺寸,S为收缩操作停止后对应的防误触区域的尺寸。当柔性显示屏接收到伸缩信号后,即确定预估防误触区域为S',当卷轴卷缩一周后,预估防误触区域的尺寸为2S'(使得预估防误触区域的尺寸始终大于已收缩距离对应的显示区域的尺寸),在收缩过程中不断更新防误触区域,直至收缩操作停止后,第一防误触区域1402为已收缩距离对应的显示区域。
在收缩过程中,为了防止误触操作,需要对防误触区域进行预估,但是在收缩停止后,对应的防误触区域不会动态变化,此时,为了尽可能的增大柔性显示屏的触控区域,只需要将隐藏在终端壳体内部的部分显示区域(除外露显示区域之外的显示区域)确定为防误触区域即可,或根据该次收缩操作对应的已收缩距离确定第一防误触区域。
步骤1205,对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响应。
本步骤的实施方式可以参考上文实施例,本实施例在此不做赘述。
本实施例中,通过比较收缩操作与防误触区域之间的关系(防误触区域尺寸随收缩操作的进行而增大),因此,当终端确定出柔性显示屏处于收缩过程中,可以根据伸缩信号指示的已收缩距离确定第一防误触区域;此外,由于收缩操作会使得部分柔性显示区域由可触控状态变为不可触控状态,因此,为了避免在收缩过程中的误触操作,需要对收缩方式对应的第一防误触区域进行预估,即在实际旋转圈数上加1,使得对应的柔性显示屏在收缩之前,已进行防误触处理,从而提高了防误触的准确性,进而更大范围的避免了误触操作。
上文实施例中描述了收缩过程中如何确定防误触区域,即需要对防误触区域进行预估操作,而由于在对柔性显示屏进行拉伸操作过程中,柔性显示全屏对应的防误触区域减少,即部分柔性显示屏会由不可触控状态变为可触控状态,即在确定出已拉伸距离之前,隐藏区域不会发生误触操作,因此,在一种可能的实施方式中,当终端确定出伸缩方式为拉伸时,通过确定伸缩信号指示的已拉伸距离和伸缩距离上限,即可确定出防误触区域,且无需进行防误触区域的预估操作。
在一个示例性的例子中,请参考图15,其示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。本实施例以该方法应用于图1至5所示的终端中为例进行说明,该方法包括:
步骤1501,接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号。
步骤1502,确定伸缩信号所指示的伸缩方式和伸缩数据,伸缩方式包括拉伸和收缩,伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,已伸缩距离包括已拉伸距离和已收缩距离。
步骤1501和步骤1502的实施方式可以参考上文实施例,本实施例在此不做赘述。
步骤1503,响应于伸缩方式为拉伸,获取伸缩数据中包含的伸缩距离上限。
其中,伸缩距离上限为柔性显示屏由完全收缩状态拉伸至完全展开状态时,对应的伸缩距离,或柔性显示屏由完全展开状态收缩至完全收缩状态时,对应的伸缩距离,或柔性显示屏由部分收缩状态拉伸至完全展开状态时对应的伸缩距离,也即伸缩距离上限由柔性显示屏的当前伸缩状态确定。
由于在伸缩方式为拉伸的场景下,防误触区域的尺寸随拉伸操作而减少,即拉伸操作可以将部分显示区域由不可触控状态变为可触控状态,则为了使得防误触区域大于柔性显示屏与机械装置接触的区域(即实际隐藏区域),在一种可能的实施方式中,在对柔性显示屏进行拉伸过程中,不关注实际隐藏区域的改变,仅将拉伸前的隐藏区域确定为防触控区域,即只需要获取伸缩数据中包含的伸缩距离上限,并将伸缩上限对应的触控区域确定为防误触区域即可。
步骤1504,根据伸缩距离上限,确定触控面板中的第二防误触区域,第二防误触区域为触控面板中宽度为伸缩距离上限的触控区域,第二防误触区域位于触控面板拉伸一侧所在的边缘。
在一种可能的实施方式中,若进行拉伸操作之前,柔性显示屏处于完全收缩状态或部分收缩状态,此时,防误触区域为触控面板中宽度为伸缩距离上限的触控区域,进行拉伸操作的过程中,无需改变防误触区域的尺寸,即维持防误触区域不变,可以更大范围的避免拉伸操作过程中的误触操作。
其中,部分收缩状态对应的伸缩距离上限小于完全收缩状态下对应的伸缩距离上限。
在一个示例性的例子中,请参考图16,其示出了本申请一个示例性实施例示出根据伸缩距离上限确定防误触区域的过程的示意图。如图16所示,当柔性显示屏1601处于收缩状态时,第二防误触区域1602隐藏在终端内部,该第二防误触区域1602的宽度即为伸缩距离上限,当对柔性显示屏进行拉伸操作的过程中,不关注外露显示区域的增加,保持第二防误触区域1602的尺寸不发生变化,直至拉伸操作结束之后,更新第二防误触区域1602的尺寸(如图16所示,拉伸操作结束后,柔性显示屏1601完全展开,此时第二防误触区域1602的尺寸为0)。
本实施例中,第二防误触区域和伸缩距离上限之间的关系可以表示为:
S 2=D 2×W
其中,S 2表示第二防误触区域的面积,D 2表示拉伸操作之前的伸缩距离上限,W表示防误触区域的固定宽度。由于本实施中在拉伸操作的过程中,第二防误触区域的面积不变,即第二防误触区域并不会随着拉伸操作而改变,则拉伸操作过程中S 2为定值,仅在拉伸操作停止时,更新第二防误触区域。
在另一种可能的实施方式中,当拉伸操作停止之后,由于在进行拉伸过程中防误触区域并未发生改变,使得外露显示区域中的部分显示区域存在不可控区域,而外露显示区域不会与终端内部的机械结构发生接触而导致误触操作,此时,可以根据外露显示区域的尺寸,更新防误触区域,即将实际隐藏区域确定为防误触区域。
可选的,针对拉伸操作停止时确定第二防误触区域的方式,可以根据拉伸操作停止时,柔性显示屏的伸缩距离上限(更新后的伸缩距离上限)和防误触区域的固定宽度,确定第二防误触区域;或根据柔性显示屏外露显示区域的尺寸和柔性显示屏的完整显示尺寸,确定第二防误触区域;或根据拉伸操作对应的已拉伸距离、拉伸操作之前的伸缩距离上限和防误触区域的固定宽度,确定第二防误触区域。
步骤1505,对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响应。
本步骤的实施方式可以参考上文实施例,本实施例在此不做赘述。
本实施例中,通过比较拉伸操作与防误触区域之间的关系,当进行拉伸操作的过程中,部分显示区域由不可控状态变为可控状态,因此,为了使得防误触区域大于机械装置接触的区域,直接将触控面板中宽度为伸缩距离上限的部分显示区域确定为防误触区域,即在拉伸过程中,防误触区域不会发生改变,为拉伸操作之前对应的防误触区域,可以增大防误触区域的范围,从而避免拉伸过程中柔性显示屏与机械装置接触导致的误操作。
上文实施例在拉伸操作过程中,通过不改变拉伸操作之前对应的防误触区域,来更大范围的避免误操作,在其他可能的实施方式中,也可以通过已拉伸距离和拉伸距离上限,来实时确定当前实际隐藏区域,从而动态确定防误触区域,从而更准确的确定出防误触区域。
在一个示例性的例子中,在图15的基础上,如图17所示,步骤1503和步骤1504可以被替换为步骤1701和步骤1702。
步骤1701,响应于伸缩方式为拉伸,获取伸缩数据中包含的已拉伸距离和伸缩距离上限。
由于在拉伸操作过程中,防误触区域的尺寸会随着拉伸操作的进行而减少,且减少防误触区域的宽度与已拉伸距离一致,而实际防误触区域即由原防误触区域(与伸缩距离上限对应)与减少防误触区域(与已拉伸距离对应)之间的差值,因此,在一种可能的实施方式中,当终端确定出伸缩方式为拉伸时,可以通过获取伸缩数据中包含的已拉伸距离和伸缩距离上限,用于实时确定拉伸操作过程中的防误触区域。
步骤1702,根据伸缩距离上限与已拉伸距离,确定触控面板中的第三防误触区域,第三防误触区域动态变化,第三防误触区域位于触控面板拉伸一侧所在的边缘,且第三防误触区域的宽度为伸缩距离上限与已拉伸距离之差。
在一种可能的实施方式中,当终端确定出伸缩距离上限和已拉伸距离之后,其中,伸缩距离上限对应原防误触区域,已拉伸距离对应减少防误触区域,则伸缩距离上限和已拉伸距离之间的差值即对应当前实际防误触区域,即终端可以通过确定伸缩距离上限和已拉伸距离之间的差值,确定出拉伸操作过程中的实时防误触区域(即第三防误触区域)。
在一个示例性的例子中,如图18所示,其示出了本申请一个示例性实施例示出的根据伸缩距离上限和已拉伸距离确定防误触区域的过程的示意图。当柔性显示屏1801在进行拉伸操作之前,此时,第三防误触区域1802的宽度为伸缩距离上限,在对柔性显示屏1801进行拉伸操作的过程中,第三防误触区域1802对应的宽度1803变为伸缩距离上限与已拉伸距离之间的差值。
示例性的,伸缩距离上限、已拉伸距离和第三防误触区域之间的关系可以表示为:
S 3=(D 2-D 3)×W或S 3=S 2-D 3×W
其中,S 3表示第三防误触区域,S 2表示拉伸操作之前的原有防误触区域(根据拉伸操作之前的伸缩距离上限确定),D 2表示拉伸操作之前的伸缩距离上限,D 3表示已拉伸距离,W表示防误触区域的固定宽度,可见,由于已拉伸距离随着拉伸操作的进行逐渐增大,对应第三防误触区域也会随着拉伸操作的进行逐渐缩小,即第三防误触区域在拉伸操作过程中为动态变化的值。
本实施例中,由于已拉伸距离、伸缩距离上限与实时防误触区域之间的关系,终端可以确定出已拉伸距离和伸缩距离上限之间的差值,并将该差值确定为拉伸操作过程中的防误触区域对应的宽度,可以实时确定出拉伸操作过程中的防误触区域,提高了防误触区域的准确性,实现精准防误触处理。
由于上文实施例中均是在进行伸缩操作过程中进行防误触处理,即确定出的防误触区域会随着伸缩操 作而动态变化,其中,当需要对防误触区域进行预估处理时,确定出的防误触区域均大于实际隐藏区域,当伸缩操作停止时,此时防误触区域不会发生改变,为了增大可触控区域,并准确确定出防误触区域,此时,需要根据柔性显示屏的外露尺寸,重新确定出实际防误触区域,并对应进行防误触处理。
在一个示例性的例子中,在图6的基础上,如图19所示,其示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。本实施例以该方法应用于图1至5所示的终端中为例进行说明,该方法包括:
步骤1901,接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号。
步骤1902,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,触控面板与柔性显示屏的尺寸一致。
步骤1903,对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响应。
步骤1901至步骤1903的实施方式可以参考上文实施例,本实施例在此不做赘述。
步骤1904,响应于伸缩信号终止,根据柔性显示屏的外露区域的尺寸,确定目标防误触区域。
在一种可能的实施方式中,当检测到伸缩信号终止时,确定伸缩操作结束,此时,防误触区域即为柔性显示屏的整体尺寸与外露显示区域尺寸之间的差值,即防误触区域为实际隐藏显示区域,因此,可以根据柔性显示屏的外露区域的尺寸,确定出伸缩操作后对应的目标防误触区域(实际防误触区域)。
针对检测伸缩信号是否终止的方式,在一种可能的实施方式中,若终端中设置有卷轴,由卷轴带动柔性显示屏卷缩,通过在卷轴处设置角速度传感器,或设置角速度传感器与卷轴相连,以便基于角速度传感器的输出信号,确定伸缩信号是否停止,即当角速度传感器的输出信号指示当前角速度数据为0时,确定伸缩信号终止。可选的,为了避免偶然因素导致确定出的角速度数据有误,从而影响后续确定目标防误触区域的准确性,当确定出预设时间段内的角速度数据均为0时,确定伸缩信号终止,示意性的,预设时间段可以是5s。步骤1905,对目标防误触区域进行防误触处理。
其中,对目标防误触区域进行防误触处理的实施方式可以参考上文实施例,本实施例在此不做赘述。
本实施例中,通过在检测到伸缩信号终止时,根据柔性显示屏的外露区域的尺寸,来确定实际防触控区域(隐藏区域),以便终端可以提供较大的触控区域,进而提高确定防误触区域的准确性。
由于进行防误触操作需要不断检测伸缩信号,对于终端功耗存在需求,而对于某些用户界面,其对防误触的需求较低,比如,相册界面,而某些用户界面对防误触的需求较高,比如,游戏类应用界面,因此,为了降低终端的功耗,终端可以根据当前应用场景来确定是否需要执行根据伸缩信号确定防误触区域的步骤。
在一个示例性的例子中,如图20所示,其示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。本实施例以该方法应用于图1至5所示的终端中为例进行说明,该方法包括:
步骤2001,接收伸缩信号,伸缩信号是柔性显示屏伸缩过程中触发的信号。
步骤2001的实施方式可以参考上文实施例,本实施例在此不做赘述。
步骤2002,获取当前应用场景。
其中,应用场景包括防误触应用场景或普通应用场景,其中,防误触应用场景为用户界面的防误触等级高于等级阈值的场景,相对应的,普通应用场景为用户界面的防误触等级低于等级阈值的场景。
在另一种可能的实施方式中,开发人员为防误触应用场景设置有标准参数,比如,用户界面的触控灵敏度需求等级,若触控灵敏度需求等级较高,则对应的防误触等级较高。终端可以根据防误触应用场景的标准参数将用户界面进行划分,并将防误触等级较高的用户界面确定为防误触应用场景。
可选的,开发人员可以预先为不同的用户界面设置有标识信息,该标识信息指示当前用户界面是否为防误触应用场景。
在一种可能的实施方式中,终端在接收到伸缩信号时,首先获取柔性显示屏的当前用户界面标识,并确定出当前用户界面标识对应的当前应用场景。
步骤2003,响应于当前应用场景为防误触应用场景,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,防误触应用场景指用户界面的防误触等级高于等级阈值的场景,用户界面为应用界面和系统界面中的至少一种。
其中,等级阈值由开发人员预先设置,或由用户根据自身需要设置(即提供有多个等级阈值的选项,用户可以进行自定义)。比如,等级阈值为4。
在一种可能的实施方式中,终端中预设有防误触等级与用户界面之间的关系表,当终端在接收到伸缩信号时,通过获取柔性显示屏的当前用户界面标识,并根据该用户界面标识信息查找该用户界面对应的防误触等级,以便根据该防误触等级确定当前应用场景是否为防误触场景。
在一个示例性的例子中,防误触等级与用户界面标识信息的关系可以如表一所示。
表一
用户界面标识信息 防误触等级
游戏类界面 7
电子书界面 2
视频类界面 5
….. ….
在一种可能的实施方式中,当终端确定出当前用户界面标识信息为游戏类界面,则由表一可知,对应的防误触等级为7级,若等级阈值为4,防误触等级高于预设等级阈值,则表示当前应用场景属于防误触应用场景,则继续根据伸缩信号确定防误触区域,进而执行防误触操作。反之,若终端确定出当前用户界面标识信息为电子书界面,由表一可知,防误触等级为2,低于等级阈值,表示当前应用场景不属于防误触应用场景,无需执行上述防误触操作。
可选的,用于确定是否执行防误触操作的等级阈值可以是定值,也可以是动态变化的值。比如,等级阈值可以随着终端电量状态而动态变化,示意性的,当终端电量充足时,等级阈值可以适当下调,以增加终端需要执行防误触操作的应用场景,从而提高终端的触控准确性;反之,当终端电量不足(开启有省电模式)时,等级阈值可以适当上调,以减少终端需要执行防误触操作的应用场景,优先保证终端续航。
步骤2004,对防误触区域进行防误触处理,其中,经过防误触处理后防误触区域内的触控信号不被响应。
步骤2004的实施方式可以参考上文实施例,本实施例在此不做赘述。
本实施例中,通过在接收到伸缩信号时,获取当前应用场景,并在当前应用场景为防误触场景时,根据伸缩信号确定防误触区域并进行防误触处理,可以避免在所有应用场景下均进行防误触处理导致对终端功耗的浪费。
请参考图21,其示出了本申请另一个示例性实施例示出的应用于柔性显示屏的防误触方法的流程图。该方法应用与收缩场景下确定防误触区域,该方法包括:
步骤2101,接收伸缩信号。
步骤2102,定义误触区域预估高度为卷轴卷缩一周的长度S',旋转圈数N=1。
其中,误触区域的预估高度是为已收缩距离增加的高度,比如,若检测到实际旋转圈数为1,则增加误触区域预估高度,则对应的防误触区域的宽度即为2S'。
步骤2103,判断伸缩信号是否停止。
若伸缩信号停止,则进入步骤2109,根据实际已收缩距离确定防误触区域的高度,若伸缩信号未停止,则进行步骤2104,继续更新误触区域高度。
步骤2104,当前旋转角度是否大于等于350°。
若检测到旋转角度大于等于350°,表示进行收缩操作使得旋转圈数增加一周,则进入步骤2105,确定出此时的防误触区域高度。若当前角度小于350°,表示当前实际旋转圈数并未达到一周,无需进行加一操作,则进入步骤2107。
步骤2105,确定旋转圈数为N'=N+1,误触区域高度为N'S'。
步骤2106,确定防误触区域的尺寸为W×N'S'。
其中,W为柔性显示屏中固定长度的屏幕边缘的长度,为固定值。
步骤2107,确定防误触区域的尺寸为W×NS'。
步骤2108,对防误触区域进行防误触处理。
步骤2109,确定防误触区域高度为S。
其中,S为收缩操作结束后对应的已收缩距离。
步骤2110,确定防误触区域的尺寸为W×S。
当收缩操作停止后,并确定出防误触区域后,即进入步骤2108,对防误触区域进行防误触处理。
请参考图22,其示出了本申请一个示例性实施例提供的应用于柔性显示屏的防误触装置,该装置用于具有柔性显示屏的终端,该终端包括第一壳体和第二壳体,第二壳体与第一壳体滑动连接,第二壳体和第一壳体通过相对运动改变柔性显示屏的外露显示区域,该装置可以通过软件、硬件或者两者的结合实现成为终端的全部或一部分。该装置包括:
接收模块2201,用于接收伸缩信号,所述伸缩信号是所述柔性显示屏伸缩过程中触发的信号;
第一确定模块2202,用于根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,所述 触控面板与所述柔性显示屏的尺寸一致;
第一防误触处理模块2203,用于对所述防误触区域进行防误触处理,其中,经过防误触处理后所述防误触区域内的触控信号不被响应。
可选的,所述第一确定模块2202,包括:
第一确定单元,用于确定所述伸缩信号所指示的伸缩方式和伸缩数据,所述伸缩方式包括拉伸和收缩,所述伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,所述已伸缩距离包括已拉伸距离和已收缩距离;
第二确定单元,用于根据所述伸缩方式和所述伸缩数据,确定所述触控面板中的所述防误触区域。
可选的,所述第二确定单元,还用于:
响应于所述伸缩方式为收缩,获取所述伸缩数据中包含的所述已收缩距离;
根据所述已收缩距离,确定所述触控面板中的第一防误触区域,所述第一防误触区域动态变化。
可选的,所述第二确定单元,还用于:
响应于所述已收缩距离小于k×n+m,将所述触控面板中宽度为k×n+n的触控区域确定为所述第一防误触区域,n大于m,k为自然数,n为所述柔性显示屏绕卷轴卷缩一周的长度,且所述第一防误触区域位于所述触控面板收缩一侧所在的边缘。
可选的,所述第二确定单元,还用于:
响应于所述伸缩方式为拉伸,获取所述伸缩数据中包含的所述伸缩距离上限;
根据所述伸缩距离上限,确定所述触控面板中的第二防误触区域,所述第二防误触区域为所述触控面板中宽度为所述伸缩距离上限的触控区域,所述第二防误触区域位于所述触控面板拉伸一侧所在的边缘。
可选的,所述第二确定单元,用于:
响应于所述伸缩方式为拉伸,获取所述伸缩数据中包含的所述已拉伸距离和所述伸缩距离上限;
根据所述伸缩距离上限与所述已拉伸距离,确定所述触控面板中的第三防误触区域,所述第三防误触区域动态变化,所述第三防误触区域位于所述触控面板拉伸一侧所在的边缘,且所述第三防误触区域的宽度为所述伸缩距离上限与所述已拉伸距离之差。
可选的,所述终端包括卷轴,所述柔性显示屏绕所述卷轴卷缩,且所述卷轴处设置有角速度传感器,所述伸缩信号由所述角速度传感器输出;
可选的,所述第一确定单元,还用于:
获取所述角速度传感器输出的角速度数据;
根据所述角速度数据对应的角速度方向确定所述伸缩方式;
根据所述角速度数据确定旋转角度,并根据所述旋转角度和旋转半径确定所述伸缩数据,所述旋转半径是所述柔性显示屏绕所述卷轴卷缩时的半径。
可选的,所述装置还包括:
第二确定模块,用于响应于所述伸缩信号终止,根据所述柔性显示屏的所述外露区域的尺寸,确定目标防误触区域;
第二防误触处理模块,用于对所述目标防误触区域进行防误触处理。
可选的,所述第一确定模块2202,还包括:
获取单元,用于获取当前应用场景;
第三确定单元,用于响应于所述当前应用场景为防误触应用场景,执行所述根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域的步骤;所述防误触应用场景指用户界面的防误触等级高于等级阈值的场景,所述用户界面为应用界面和系统界面中的至少一种。
本申请实施例中,当具有柔性显示屏的终端接收到柔性显示屏进行伸缩过程中触发的伸缩信号时,根据伸缩信号确定柔性显示屏对应触控面板中的防误触区域,并对防误触区域进行防误触处理,使得经过防误触处理后的防误触区域内的触控信号不被响应。由于柔性显示屏的外露显示区域与对柔性显示屏的伸缩操作有关,而除外露显示区域之外的显示区域(隐藏显示区域)为可能出现误触操作的区域,因此,终端可以根据柔性显示屏伸缩过程中触发的伸缩信号来确定防误触区域,从而对确定出的防误触区域进行防误触处理,使得防误触区域不会响应触控信号,从而避免了在伸缩操作过程中对该区域的误触操作,进而提高了终端触控响应的准确性。
需要说明的是,上述实施例提供的装置在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
请参考图23,其示出了本申请一个示例性实施例提供的终端2300的结构方框图。该终端2300可以是智能手机、平板电脑、电子书、便携式个人计算机等具有柔性显示屏的电子设备。本申请中的终端2300可以包括一个或多个如下部件:存储器2301、处理器2302和柔性显示屏2303。
处理器2302可以包括一个或者多个处理核心。处理器2302利用各种接口和线路连接整个终端2300内的各个部分,通过运行或执行存储在存储器2301内的指令、程序、代码集或指令集,以及调用存储在存储器2301内的数据,执行终端2300的各种功能和处理数据。可选地,处理器2302可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器2302可集成中央处理器(Central Processing Uni,CPU)、图形处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负柔性显示屏2303所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器2302中,单独通过一块通信芯片进行实现。
存储器2301可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory,ROM)。可选地,该存储器2301包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器2301可用于存储指令、程序、代码、代码集或指令集。存储器2001可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等,该操作系统可以是安卓(Android)系统(包括基于Android系统深度开发的系统)、苹果公司开发的IOS系统(包括基于IOS系统深度开发的系统)或其它系统。存储数据区还可以存储终端2000在使用中所创建的数据(比如电话本、音视频数据、聊天记录数据)等。
柔性显示屏2303用于接收用户使用手指、触摸笔等任何适合的物体在其上或附近的触摸操作,以及显示各个应用程序的用户界面。柔性显示屏2303通常设置在终端2300的前面板。本申请实施例中,柔性显示屏2303外露显示区域的尺寸能够随伸缩操作而改变。可选的,定义隐藏在终端内部的柔性显示屏的显示区域为防误触区域。
本申请实施例中,终端2300中还包括带动件,该带动件用于带动柔性显示屏展开或收缩。可选的,终端2300中还包括驱动机构,该驱动机构用于驱动第一壳体和第二壳体做相对运动。
除此之外,本领域技术人员可以理解,上述附图所示出的终端2300的结构并不构成对终端2300的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。比如,终端2300中还包括射频电路、拍摄组件、传感器、音频电路、无线保真(Wireless Fidelity,WiFi)组件、电源、蓝牙组件等部件,在此不再赘述。
本申请实施例还提供了一种计算机可读介质,该计算机可读介质存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现如上各个实施例所述的应用于柔性显示屏的防误触方法。
本申请实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。终端的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该终端执行上述方面的各种可选实现方式中提供的应用于柔性显示屏的防误触方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种应用于柔性显示屏的防误触方法,所述方法用于具有柔性显示屏的终端,所述终端包括第一壳体和第二壳体,所述第二壳体与所述第一壳体滑动连接,所述第二壳体和所述第一壳体通过相对运动改变所述柔性显示屏的外露显示区域,所述方法包括:
    接收伸缩信号,所述伸缩信号是所述柔性显示屏伸缩过程中触发的信号;
    根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,所述触控面板与所述柔性显示屏的尺寸一致;
    对所述防误触区域进行防误触处理,其中,经过防误触处理后所述防误触区域内的触控信号不被响应。
  2. 根据权利要求1所述的方法,其中,所述根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,包括:
    确定所述伸缩信号所指示的伸缩方式和伸缩数据,所述伸缩方式包括拉伸和收缩,所述伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,所述已伸缩距离包括已拉伸距离和已收缩距离;
    根据所述伸缩方式和所述伸缩数据,确定所述触控面板中的所述防误触区域。
  3. 根据权利要求2所述的方法,其中,所述根据所述伸缩方式和所述伸缩数据,确定所述触控面板中的所述防误触区域,包括:
    响应于所述伸缩方式为收缩,获取所述伸缩数据中包含的所述已收缩距离;
    根据所述已收缩距离,确定所述触控面板中的第一防误触区域,所述第一防误触区域动态变化。
  4. 根据权利要求3所述的方法,其中,所述根据所述已收缩距离,确定所述触控面板中的第一防误触区域,包括:
    响应于所述已收缩距离小于k×n+m,将所述触控面板中宽度为k×n+n的触控区域确定为所述第一防误触区域,n大于m,k为自然数,n为所述柔性显示屏绕卷轴卷缩一周的长度,且所述第一防误触区域位于所述触控面板收缩一侧所在的边缘。
  5. 根据权利要求2所述的方法,其中,所述根据所述伸缩方式和所述伸缩数据,确定所述触控面板中的所述防误触区域,包括:
    响应于所述伸缩方式为拉伸,获取所述伸缩数据中包含的所述伸缩距离上限;
    根据所述伸缩距离上限,确定所述触控面板中的第二防误触区域,所述第二防误触区域为所述触控面板中宽度为所述伸缩距离上限的触控区域,所述第二防误触区域位于所述触控面板拉伸一侧所在的边缘。
  6. 根据权利要求2所述的方法,其中,所述根据所述伸缩方式和所述伸缩数据,确定所述触控面板中的所述防误触区域,包括:
    响应于所述伸缩方式为拉伸,获取所述伸缩数据中包含的所述已拉伸距离和所述伸缩距离上限;
    根据所述伸缩距离上限与所述已拉伸距离,确定所述触控面板中的第三防误触区域,所述第三防误触区域动态变化,所述第三防误触区域位于所述触控面板拉伸一侧所在的边缘,且所述第三防误触区域的宽度为所述伸缩距离上限与所述已拉伸距离之差。
  7. 根据权利要求2至6任一所述的方法,其中,所述终端包括卷轴,所述柔性显示屏绕所述卷轴卷缩,且所述卷轴处设置有角速度传感器,所述伸缩信号由所述角速度传感器输出;
    所述确定所述伸缩信号所指示的伸缩方式和伸缩数据,包括:
    获取所述角速度传感器输出的角速度数据;
    根据所述角速度数据对应的角速度方向确定所述伸缩方式;
    根据所述角速度数据确定旋转角度,并根据所述旋转角度和旋转半径确定所述伸缩数据,所述旋转半径是所述柔性显示屏绕所述卷轴卷缩时的半径。
  8. 根据权利要求1至6任一所述的方法,其中,所述方法还包括:
    响应于所述伸缩信号终止,根据所述柔性显示屏的所述外露区域的尺寸,确定目标防误触区域;
    对所述目标防误触区域进行防误触处理。
  9. 根据权利要求1至6任一所述的方法,其中,所述根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,还包括:
    获取当前应用场景;
    响应于所述当前应用场景为防误触应用场景,执行所述根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域的步骤;所述防误触应用场景指用户界面的防误触等级高于等级阈值的场景,所述用户界面为应用界面和系统界面中的至少一种。
  10. 一种应用于柔性显示屏的防误触装置,所述装置用于具有柔性显示屏的终端,所述终端包括第一壳 体和第二壳体,所述第二壳体与所述第一壳体滑动连接,所述第二壳体和所述第一壳体通过相对运动改变所述柔性显示屏的外露显示区域,所述装置包括:
    接收模块,用于接收伸缩信号,所述伸缩信号是所述柔性显示屏伸缩过程中触发的信号;
    第一确定模块,用于根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域,所述触控面板与所述柔性显示屏的尺寸一致;
    第一防误触处理模块,用于对所述防误触区域进行防误触处理,其中,经过防误触处理后所述防误触区域内的触控信号不被响应。
  11. 根据权利要求10所述的装置,其中,所述第一确定模块,包括:
    第一确定单元,用于确定所述伸缩信号所指示的伸缩方式和伸缩数据,所述伸缩方式包括拉伸和收缩,所述伸缩数据包括已伸缩距离和伸缩距离上限中的至少一种,所述已伸缩距离包括已拉伸距离和已收缩距离;
    第二确定单元,用于根据所述伸缩方式和所述伸缩数据,确定所述触控面板中的所述防误触区域。
  12. 根据权利要求11所述的装置,其中,所述第二确定单元,还用于:
    响应于所述伸缩方式为收缩,获取所述伸缩数据中包含的所述已收缩距离;
    根据所述已收缩距离,确定所述触控面板中的第一防误触区域,所述第一防误触区域动态变化。
  13. 根据权利要求12所述的装置,其中,所述第二确定单元,还用于:
    响应于所述已收缩距离小于k×n+m,将所述触控面板中宽度为k×n+n的触控区域确定为所述第一防误触区域,n大于m,k为自然数,n为所述柔性显示屏绕卷轴卷缩一周的长度,且所述第一防误触区域位于所述触控面板收缩一侧所在的边缘。
  14. 根据权利要求11所述的装置,其中,所述第二确定单元,还用于:
    响应于所述伸缩方式为拉伸,获取所述伸缩数据中包含的所述伸缩距离上限;
    根据所述伸缩距离上限,确定所述触控面板中的第二防误触区域,所述第二防误触区域为所述触控面板中宽度为所述伸缩距离上限的触控区域,所述第二防误触区域位于所述触控面板拉伸一侧所在的边缘。
  15. 根据权利要求11所述的装置,其中,所述第二确定单元,还用于:
    响应于所述伸缩方式为拉伸,获取所述伸缩数据中包含的所述已拉伸距离和所述伸缩距离上限;
    根据所述伸缩距离上限与所述已拉伸距离,确定所述触控面板中的第三防误触区域,所述第三防误触区域动态变化,所述第三防误触区域位于所述触控面板拉伸一侧所在的边缘,且所述第三防误触区域的宽度为所述伸缩距离上限与所述已拉伸距离之差。
  16. 根据权利要求11至15任一所述的装置,其中,所述终端包括卷轴,所述柔性显示屏绕所述卷轴卷缩,且所述卷轴处设置有角速度传感器,所述伸缩信号由所述角速度传感器输出;
    所述第一确定单元,还用于:
    获取所述角速度传感器输出的角速度数据;
    根据所述角速度数据对应的角速度方向确定所述伸缩方式;
    根据所述角速度数据确定旋转角度,并根据所述旋转角度和旋转半径确定所述伸缩数据,所述旋转半径是所述柔性显示屏绕所述卷轴卷缩时的半径。
  17. 根据权利要求10至15任一所述的装置,其中,所述装置还包括:
    第二确定模块,用于响应于所述伸缩信号终止,根据所述柔性显示屏的所述外露区域的尺寸,确定目标防误触区域;
    第二防误触处理模块,用于对所述目标防误触区域进行防误触处理。
  18. 根据权利要求10至15任一所述的装置,其中,所述第一确定模块,还包括:
    获取单元,用于获取当前应用场景;
    第三确定单元,用于响应于所述当前应用场景为防误触应用场景,执行所述根据所述伸缩信号确定所述柔性显示屏对应触控面板中的防误触区域的步骤;所述防误触应用场景指用户界面的防误触等级高于等级阈值的场景,所述用户界面为应用界面和系统界面中的至少一种。
  19. 一种终端,所述终端包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至9任一所述的应用于柔性显示屏的防误触方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至9任一所述的应用于柔性显示屏的防误触方法。
PCT/CN2021/090051 2020-06-10 2021-04-26 应用于柔性显示屏的防误触方法、装置、终端及存储介质 WO2021249049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010524249.8A CN113778252B (zh) 2020-06-10 2020-06-10 应用于柔性显示屏的防误触方法、装置、终端及存储介质
CN202010524249.8 2020-06-10

Publications (1)

Publication Number Publication Date
WO2021249049A1 true WO2021249049A1 (zh) 2021-12-16

Family

ID=78834757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090051 WO2021249049A1 (zh) 2020-06-10 2021-04-26 应用于柔性显示屏的防误触方法、装置、终端及存储介质

Country Status (2)

Country Link
CN (1) CN113778252B (zh)
WO (1) WO2021249049A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273675A (zh) * 2022-08-24 2022-11-01 京东方科技集团股份有限公司 显示装置、控制方法、显示设备以及计算机存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879860B (zh) * 2022-04-20 2023-05-23 荣耀终端有限公司 可折叠屏幕防误触的方法、设备和存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313846A1 (en) * 2015-04-24 2016-10-27 Samsung Display Co., Ltd. Flexible display device and method for driving the same
CN106095188A (zh) * 2016-06-24 2016-11-09 联想(北京)有限公司 一种控制方法及电子设备
CN107506086A (zh) * 2017-09-08 2017-12-22 广东欧珀移动通信有限公司 触摸屏控制方法、装置、移动终端及存储介质
CN107807752A (zh) * 2017-10-27 2018-03-16 京东方科技集团股份有限公司 电子设备、柔性屏及其防误触控装置和方法
CN107845333A (zh) * 2016-09-20 2018-03-27 三星显示有限公司 柔性显示装置
CN108259649A (zh) * 2018-02-09 2018-07-06 西安中兴新软件有限责任公司 一种移动终端、控制系统和控制方法
CN109669580A (zh) * 2018-12-28 2019-04-23 努比亚技术有限公司 防误触操作方法、移动终端及计算机可读存储介质
US20190317550A1 (en) * 2018-04-13 2019-10-17 Samsung Electronics Co., Ltd. Electronic device including flexible display
CN111061406A (zh) * 2019-12-16 2020-04-24 维沃移动通信有限公司 显示控制方法及电子设备
WO2020097799A1 (zh) * 2018-11-13 2020-05-22 深圳市柔宇科技有限公司 终端设备及其触摸响应控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI431363B (zh) * 2010-07-21 2014-03-21 E Ink Holdings Inc 可撓式顯示裝置及其防誤觸方法
KR101442622B1 (ko) * 2013-05-21 2014-09-22 오재헌 플렉시블 디스플레이를 이용한 전자기기
CN104238794B (zh) * 2013-06-24 2019-07-16 腾讯科技(深圳)有限公司 一种对触屏操作的响应方法及终端、移动终端
CN106503537B (zh) * 2016-10-26 2019-04-16 北京小米移动软件有限公司 基于柔性显示屏的验证方法及装置
CN108319390B (zh) * 2018-01-25 2021-01-08 维沃移动通信有限公司 一种柔性屏的控制方法及移动终端
CN111610874B (zh) * 2019-02-22 2022-05-10 华为技术有限公司 一种触摸屏的响应方法及电子设备
CN113031827A (zh) * 2021-04-19 2021-06-25 深圳市宝能通讯技术有限公司 可折叠屏设备防误触方法、装置、电子设备及存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313846A1 (en) * 2015-04-24 2016-10-27 Samsung Display Co., Ltd. Flexible display device and method for driving the same
CN106095188A (zh) * 2016-06-24 2016-11-09 联想(北京)有限公司 一种控制方法及电子设备
CN107845333A (zh) * 2016-09-20 2018-03-27 三星显示有限公司 柔性显示装置
CN107506086A (zh) * 2017-09-08 2017-12-22 广东欧珀移动通信有限公司 触摸屏控制方法、装置、移动终端及存储介质
CN107807752A (zh) * 2017-10-27 2018-03-16 京东方科技集团股份有限公司 电子设备、柔性屏及其防误触控装置和方法
CN108259649A (zh) * 2018-02-09 2018-07-06 西安中兴新软件有限责任公司 一种移动终端、控制系统和控制方法
US20190317550A1 (en) * 2018-04-13 2019-10-17 Samsung Electronics Co., Ltd. Electronic device including flexible display
WO2020097799A1 (zh) * 2018-11-13 2020-05-22 深圳市柔宇科技有限公司 终端设备及其触摸响应控制方法
CN109669580A (zh) * 2018-12-28 2019-04-23 努比亚技术有限公司 防误触操作方法、移动终端及计算机可读存储介质
CN111061406A (zh) * 2019-12-16 2020-04-24 维沃移动通信有限公司 显示控制方法及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273675A (zh) * 2022-08-24 2022-11-01 京东方科技集团股份有限公司 显示装置、控制方法、显示设备以及计算机存储介质
CN115273675B (zh) * 2022-08-24 2023-12-29 京东方科技集团股份有限公司 显示装置、控制方法、显示设备以及计算机存储介质

Also Published As

Publication number Publication date
CN113778252A (zh) 2021-12-10
CN113778252B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
EP3296838B1 (en) Electronic device and operation method thereof
WO2021249049A1 (zh) 应用于柔性显示屏的防误触方法、装置、终端及存储介质
US11829581B2 (en) Display control method and terminal
US20160188079A1 (en) Controlling Method of Foldable Screen and Electronic Device
US9389764B2 (en) Target disambiguation and correction
CN109120841B (zh) 摄像头控制方法、装置、移动终端及存储介质
KR102422181B1 (ko) 전자 장치의 디스플레이 제어 방법 및 그 전자 장치
KR20180081353A (ko) 전자 장치 및 그의 동작 방법
CN112596648A (zh) 页面处理方法、装置、电子设备及可读存储介质
CN114374751A (zh) 包括柔性显示器的电子装置和操作电子装置的屏幕的方法
US10481772B2 (en) Widget displaying method and apparatus for use in flexible display device, and storage medium
CN112230908A (zh) 一种对齐组件的方法、装置、电子设备及存储介质
CN112749590B (zh) 目标检测方法、装置、计算机设备和计算机可读存储介质
US10872455B2 (en) Method and portable electronic device for changing graphics processing resolution according to scenario
US20210124903A1 (en) User Interface Display Method of Terminal, and Terminal
JP2012203440A (ja) 情報処理装置、情報処理方法、およびプログラム
CN111556248B (zh) 拍摄方法、装置、存储介质及移动终端
CN111158575B (zh) 终端执行处理的方法、装置、设备以及存储介质
CN110266875B (zh) 一种提示信息的显示方法及电子设备
CN111666076A (zh) 图层添加方法、装置、终端及存储介质
CN107977147B (zh) 滑动轨迹显示方法及装置
WO2019127509A1 (zh) 具有触控功能的实体地球仪、显示终端和地图显示方法
CN111596822B (zh) 图标显示控制方法、装置及电子设备
WO2021179802A1 (zh) 可扩展部件的扩展控制方法、装置、存储介质及电子设备
CN108958860B (zh) 屏幕显示状态控制方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821778

Country of ref document: EP

Kind code of ref document: A1