WO2021248980A1 - 一种粉末冶金用含铜铁粉及其制备方法 - Google Patents

一种粉末冶金用含铜铁粉及其制备方法 Download PDF

Info

Publication number
WO2021248980A1
WO2021248980A1 PCT/CN2021/083122 CN2021083122W WO2021248980A1 WO 2021248980 A1 WO2021248980 A1 WO 2021248980A1 CN 2021083122 W CN2021083122 W CN 2021083122W WO 2021248980 A1 WO2021248980 A1 WO 2021248980A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
copper
containing iron
iron powder
temperature
Prior art date
Application number
PCT/CN2021/083122
Other languages
English (en)
French (fr)
Inventor
李江
王洋
纪向军
卜福昌
周振龙
修凤玲
孙有望
Original Assignee
鞍钢(鞍山)冶金粉材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢(鞍山)冶金粉材有限公司 filed Critical 鞍钢(鞍山)冶金粉材有限公司
Priority to DE112021000016.0T priority Critical patent/DE112021000016T5/de
Publication of WO2021248980A1 publication Critical patent/WO2021248980A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/088Fluid nozzles, e.g. angle, distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the technical field of powder metallurgy, in particular to a copper-containing iron powder for powder metallurgy and a preparation method thereof.
  • Water atomized iron powder is often used as the basic raw material for the preparation of powder metallurgical product parts, but it is often necessary to add graphite and copper powder (electrolytic copper powder, atomized copper powder, etc.) and other alloy auxiliary materials to improve the final product parts. Various properties to achieve its best use effect.
  • copper powder is often added in the process of mixing powder. Generally, it is added directly or by bonding powder mixing technology. However, both of them have the following limitations: 1. The advantage of direct addition lies in the low cost, but if copper If the amount of powder is too much, segregation is likely to occur, which will eventually cause poor sintering dimensional stability and large performance deviations after sintering of the product parts. In severe cases, free copper will be generated and the matrix structure performance will be damaged; 2. Adhesion and powder mixing The technology can effectively bond the copper powder to the surface of the base powder and improve the problem of large fluctuations in the sintered size. However, if the adhesive volatilizes incompletely, it will easily cause pollution to the surface of the product parts and affect the appearance.
  • the technical problem to be solved by the present invention is to provide a copper-containing iron powder for powder metallurgy.
  • the copper powder is directly attached to the surface of iron powder particles without copper segregation.
  • the copper-containing iron powder is directly used in the mixing and powdering process of powder metallurgy products. , No need to add additional copper powder.
  • the present invention provides a copper-containing iron powder for powder metallurgy, the chemical composition of which is composed by weight percentage: C ⁇ 0.02%; Si ⁇ 0.030%; Mn ⁇ 0.15%; P ⁇ 0.015%; S ⁇ 0.015%; Cu 8 ⁇ 30%; Mo 0 ⁇ 4.0%, the rest Fe and unavoidable impurities.
  • the copper powder in the copper-containing iron powder for powder metallurgy is directly attached to the surface of the iron powder particles.
  • the mass content of copper in the copper-containing iron powder is 9.65%, 10% or 20%.
  • the chemical composition of the copper-containing iron powder for powder metallurgy is composed by weight percentage: C 0.002%; Si 0.022%; Mn 0.10%; P 0.008%; S 0.010%; Cu 10.0%; Mo 0%, the rest Fe And inevitable impurities.
  • the chemical composition of the copper-containing iron powder for powder metallurgy is composed of: C 0.009%; Si 0.029%; Mn 0.12%; P 0.013%; S 0.014%; Cu 9.65%; Mo 0%, the rest Fe And inevitable impurities.
  • the chemical composition of the copper-containing iron powder for powder metallurgy is composed of: C 0.003%; Si 0.025%; Mn 0.11%; P 0.012%; S 0.012%; Cu 20.0%; Mo 0.5%, the remaining Fe And inevitable impurities.
  • the present invention provides a method for preparing copper-containing iron powder for powder metallurgy, including: smelting, atomization, reduction, annealing, mixing, and diffusion; the specific steps are as follows:
  • Atomized pulverization atomization pressure is 10-15MPa, atomization start temperature is 1580 ⁇ 1700°C, atomization end temperature is 1550 ⁇ 1630°C, molten steel flow diameter is 14 ⁇ 28mm, flow rate is 140 ⁇ 240m 3 /h, the spray angle is 30 ⁇ 50°;
  • the above-mentioned atomized powder is reduced by a reduction furnace.
  • the reduction preheating section temperature of the reduction furnace is 550 ⁇ 800°C, the preheating section stroke is 4 ⁇ 6m; the high temperature section temperature is 800 ⁇ 1000°C, the high temperature section The stroke is 6 ⁇ 12m; the temperature of the cooling section is 500 ⁇ 800°C, the stroke of the cooling section is 4 ⁇ 8m; the operating speed is 90 ⁇ 300mm/min; the thickness of the material layer is 12 ⁇ 48mm; the ammonia flow is 60 ⁇ 190m 3 /h ;
  • Annealing The above-mentioned reduced powder is annealed through a reduction furnace.
  • the reduction preheating section temperature of the reduction furnace is 550 ⁇ 800°C; the preheating section stroke is 4 ⁇ 6m; the high temperature section temperature is 800 ⁇ 900°C; high temperature The section stroke is 6 ⁇ 12m; the cooling section temperature is 500 ⁇ 800°C; the cooling section stroke is 4 ⁇ 8m; the operating speed is 90 ⁇ 300mm/min; the thickness of the material layer is 12 ⁇ 48mm, and the ammonia flow rate is 60 ⁇ 190m 3 / h; Compressibility of 600MP baked powder ⁇ 7.17g/cm 3 ;
  • Diffusion The above semi-finished products are diffused through the reduction furnace.
  • the temperature of the diffusion preheating section of the reduction furnace is 650 ⁇ 900°C, the preheating section stroke is 2 ⁇ 4m; the high temperature section temperature is 900 ⁇ 1000°C, and the high temperature section stroke is 4 ⁇ 14m.
  • the temperature of the cooling section is 650 ⁇ 900°C, the stroke of the cooling section is 4 ⁇ 8m; the ammonia flow is 60 ⁇ 190m 3 /h, the control diffusion time is 60 ⁇ 120min, the thickness of the material layer is 20 ⁇ 35mm, and the finished product is produced.
  • the present invention provides the application of the copper-containing iron powder for powder metallurgy described in the above technical solution or the copper-containing iron powder for powder metallurgy prepared by the method described in the above technical solution in the preparation of powder metallurgy materials.
  • the powder metallurgy material is powder metallurgy material FC0208.
  • the powder metallurgy material FC0208 includes 20% copper-containing iron powder, 0.8% graphite, 0.6% lubricant, and the rest is water atomized pure iron powder.
  • the mass content of copper in the copper-containing iron powder is 10%.
  • the high-compressibility water-atomized pure iron powder is prepared first, then electrolytic copper powder is added and mixed, and the copper-containing water-atomized steel powder is prepared by means of high-temperature diffusion and adhesion.
  • the copper powder is directly attached to the surface of the iron powder particles without copper segregation, and the high temperature diffusion of the copper powder particles to the surface of the iron powder particles can reduce agglomeration, which is beneficial to improve the mechanical properties of the sintered parts.
  • the compressibility of copper-containing iron powder at 600MPa is ⁇ 7.10g/cm 3 . It can be directly used for powder metallurgy preparation without adding copper powder, and keep the surface of sintered parts clean.
  • the present invention uses electrolytic copper powder instead of atomized copper powder. Because the electrolytic copper powder has high purity and the shape is dendritic, it is beneficial to the uniformity of the diffusion process; the high temperature diffusion method can make the copper powder adhere to the iron powder Particle surface to ensure the compressibility of iron powder and sintering dimensional stability.
  • Figure 1 is an application example of FC0208 sintered product metallographic sample diagram
  • Figure 2 is a metallographic sample diagram of the FC0208 sintered product of the comparative example.
  • the copper-containing iron powder is prepared according to the following method:
  • a method for preparing copper-containing iron powder for powder metallurgy including: smelting, atomization, reduction, annealing, mixing, and diffusion; the specific steps are as follows:
  • Atomized powder making the atomization pressure is 10-15Mpa, the atomization start temperature is 1700°C, the atomization end temperature is 1630°C, the molten steel flow diameter is 28mm, the flow rate is 240m 3 /h, and the spray angle is 30 ⁇ 50°;
  • the above-mentioned atomized powder is reduced by a reduction furnace.
  • the reduction preheating section temperature of the reduction furnace is 800°C, the preheating section stroke is 6m; the high temperature section temperature is 1000°C, and the high temperature section stroke is 12m; the cooling section The temperature is 800°C, the cooling section stroke is 8m; the operating speed is 300mm/min; the thickness of the material layer is 48mm; the ammonia flow rate is 190m 3 /h;
  • Annealing The above-mentioned reduced powder is annealed in a reduction furnace.
  • the annealing preheating section temperature of the reduction furnace is 800°C; the preheating section stroke is 6m; the high temperature section temperature is 900°C; the high temperature section stroke is 2m; cooling The temperature of the section is 800°C; the stroke of the cooling section is 8m; the operating speed: 300mm/min; the thickness of the material layer: 48mm; the ammonia flow rate is 190m 3 /h; the compressibility of the discharged powder at 600MPa is ⁇ 7.17g/cm 3 ;
  • Diffusion The above-mentioned semi-finished products are diffused through the reduction furnace.
  • the temperature of the diffusion preheating section of the reduction furnace is 900°C, the preheating section stroke is 4m; the high temperature section temperature is 1000°C, the high temperature section stroke is 14m; the cooling section temperature is 900°C, The stroke of the cooling section is 8m; the ammonia flow is 190m 3 /h, the control diffusion time is 120min, the thickness of the material layer is 35mm, and the finished product is made out of the furnace.
  • the copper-containing iron powder is prepared according to the following method:
  • Atomized pulverization the atomization pressure is 10MPa, the atomization start temperature is 1580°C, the atomization end temperature is 1550°C, the molten steel flow diameter is 14mm, the flow rate is 140 ⁇ 240m 3 /h, and the spray angle is 30 ⁇ 50°;
  • the above-mentioned atomized powder is reduced by a reduction furnace.
  • the reduction preheating section temperature of the reduction furnace is 550 ⁇ 800°C, and the preheating section stroke is 4m; the high temperature section temperature is 800 ⁇ 1000°C, and the high temperature section stroke is 10m; cooling section temperature is 600°C, cooling section stroke is 7m; operating speed: 220mm/min; material layer thickness is 22mm; ammonia flow rate is 160m 3 /h;
  • Annealing The above-mentioned reduced powder is annealed in a reduction furnace.
  • the annealing preheating section temperature of the reduction furnace is 550°C; the preheating section stroke is 4m; the high temperature section temperature is 800°C; the high temperature section stroke is 6m; cooling The temperature of the section is 500°C; the stroke of the cooling section is 4m; the operating speed: 180mm/min; the thickness of the material layer: 12mm; the ammonia flow rate is 160m 3 /h; the compressibility of the discharged powder at 600MPa is ⁇ 7.17g/cm 3 ;
  • Diffusion The above semi-finished products are diffused through the reduction furnace.
  • the temperature of the diffusion preheating section of the reduction furnace is 650°C, the preheating section stroke is 4m; the high temperature section temperature is 1000°C, the high temperature section stroke is 10m; the cooling section temperature is 700°C, The stroke of the cooling section is 8m; the ammonia flow is 170m 3 /h, the control diffusion time is 80min, the thickness of the material layer is 25mm, and the finished copper-containing iron powder is obtained from the furnace.
  • the copper-containing iron powder is prepared according to the following method:
  • Atomized powder making the atomization pressure is 11MPa, the atomization start temperature is 1600°C, the atomization end temperature is 1550°C, the molten steel flow diameter is 20mm, the flow rate is 150m 3 /h, and the spray angle is 30-50° ;
  • the above-mentioned atomized powder is reduced by a reduction furnace.
  • the reduction preheating section temperature of the reduction furnace is 600°C, the preheating section stroke is 4-6m; the high temperature section temperature is 600°C, and the high temperature section stroke is 10m;
  • the temperature of the cooling section is 600°C, the stroke of the cooling section is 8m; the operating speed: 200mm/min; the thickness of the material layer is 38mm; the ammonia flow rate is 100m 3 /h;
  • Annealing The above-mentioned reduced powder is annealed in a reduction furnace.
  • the annealing preheating section temperature of the reduction furnace is 650°C; the preheating section stroke is 4m; the high temperature section temperature is 800°C; the high temperature section stroke is 10m; cooling The temperature of the section is 700°C; the stroke of the cooling section is 6m; the operating speed: 200mm/min; the thickness of the material layer: 38mm, the ammonia flow rate is 150m 3 /h; the 600MPa compressibility of the discharged powder is ⁇ 7.17g/cm 3 ;
  • Diffusion The above-mentioned semi-finished products are diffused through the reduction furnace, the temperature of the diffusion preheating section of the reduction furnace is 700°C, the preheating section stroke is 4m; the high temperature section temperature is 1000°C, the high temperature section stroke is 12m; the cooling section temperature is 900°C, cooling The section stroke is 5m; the ammonia flow is 120m 3 /h, the control diffusion time is 100min, the thickness of the material layer: 28mm, and the finished copper-containing iron powder is obtained from the furnace.
  • the powder metallurgy material FC0208 contains 20% copper-containing iron powder, 0.8% graphite, 0.6% lubricant, and the rest is water atomized pure iron powder. Among them, copper accounts for 10% of copper-containing iron powder.
  • the sintered product numbers are A1, A2, A3.
  • the content of powder metallurgy material FC0208 by mass percentage includes: copper powder 2.0%, graphite 0.8%, lubricant 0.6%, and the rest water atomized iron powder.
  • the sintered product numbers are B1, B2, and B3.
  • the copper-containing iron powder of the present invention can directly prepare powder metallurgy materials without adding copper powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种粉末冶金用含铜铁粉,其化学成分按重量百分比组成:C≤0.02%;Si≤0.030%;Mn≤0.15%;P≤0.015%;S≤0.015%;Cu8~30%;Mo0~4.0%,其余Fe及不可避免的杂质。还公开了一种粉末冶金用含铜铁粉的制备方法,首先制备高压缩性水雾化纯铁粉,然后加入电解铜粉混合,通过高温扩散附着的方式,制备含铜水雾化钢铁粉末。还公开了一种粉末冶金用含铜铁粉的应用。铜粉直接附着在铁粉颗粒表面,不产生铜偏析,而且铜粉颗粒高温扩散至铁粉颗粒表面能减少团聚,有利于改善烧结件的机械性能。含铜铁粉600MPa压缩性≥7.10g/cm 3。可直接用于粉末冶金配制,不需额外添加铜粉,且保持烧结制品零件表面清洁。

Description

一种粉末冶金用含铜铁粉及其制备方法
本申请要求于2020年06月10日提交中国专利局、申请号为CN202010524645.0、发明名称为“一种粉末冶金用含铜铁粉及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及粉末冶金技术领域,特别涉及一种粉末冶金用含铜铁粉及其制备方法。
背景技术
水雾化铁粉常用作制备粉末冶金制品零件用基础原材料,但在使用过程中常常需要添加石墨、铜粉(电解铜粉、雾化铜粉等)等合金辅料用以提高最终制品零件产品的各种性能,以达到其最佳的使用效果。
目前,铜粉往往在混合制粉的过程中加入,一般采取直接加入,或通过粘接混粉技术加入,但两者均有以下局限性:1、直接加入优势在于成本低,但若出现铜粉添加量过多的情况,则容易存在偏析情况,最终造成制品零件烧结后出现烧结尺寸稳定性差,性能偏差大,严重者会产生游离铜的现象,破坏基体组织性能;2、粘接混粉技术可有效将铜粉粘接至基粉表面,改善烧结尺寸波动大的问题,但若粘接剂挥发不完全,则容易对制品零件表面造成污染,影响外观。
发明内容
本发明所要解决的技术问题是提供一种粉末冶金用含铜铁粉,铜粉直接附着在铁粉颗粒表面,不产生铜偏析,含铜铁粉直接用于粉末冶金制品的混合制粉过程中,不需再额外添加铜粉。
为实现上述目的,本发明采用以下技术方案实现:
本发明提供了一种粉末冶金用含铜铁粉,其化学成分按重量百分比组成:C≤0.02%;Si≤0.030%;Mn≤0.15%;P≤0.015%;S≤0.015%;Cu 8~30%;Mo 0~4.0%,其余Fe及不可避免的杂质。
优选的,所述粉末冶金用含铜铁粉中铜粉直接附着在铁粉颗粒表面。
优选的,所述含铜铁粉中铜的质量含量为9.65%、10%或20%。
优选的,所述粉末冶金用含铜铁粉的化学成分按重量百分比组成:C 0.002%;Si 0.022%;Mn 0.10%;P 0.008%;S 0.010%;Cu 10.0%;Mo 0%,其余Fe及不可避免的杂质。
优选的,所述粉末冶金用含铜铁粉的化学成分按重量百分比组成:C 0.009%;Si 0.029%;Mn 0.12%;P 0.013%;S 0.014%;Cu 9.65%;Mo 0%,其余Fe及不可避免的杂质。
优选的,所述粉末冶金用含铜铁粉的化学成分按重量百分比组成:C 0.003%;Si 0.025%;Mn 0.11%;P 0.012%;S 0.012%;Cu 20.0%;Mo 0.5%,其余Fe及不可避免的杂质。
本发明提供了一种制备粉末冶金用含铜铁粉的方法,包括:冶炼、雾化、还原、退火、混料、扩散;具体步骤如下:
1)冶炼:钢液中Mo含量为0~4.0%,出钢温度:1620~1800℃;
2)雾化制粉:雾化压力为10~15MPa,雾化开始温度为1580~1700℃,雾化结束温度为1550~1630℃、钢液流直径为14~28mm、流量为140~240m 3/h、喷射角度为30~50°;
3)还原:将上述雾化后粉体经过还原炉进行还原,还原炉还原预热段温度为550~800℃,预热段行程为4~6m;高温段温度为800~1000℃,高温段行程为6~12m;冷却段温度为500~800℃,冷却段行程为4~8m;运行速度为90~300mm/min;料层厚度为12~48mm;氨气流量为60~190m 3/h;
4)退火:将上述还原后粉体,经过还原炉进行退火处理,还原炉还原预热段温度为550~800℃;预热段行程为4~6m;高温段温度为800~900℃;高温段行程为6~12m;冷却段温度为500~800℃;冷却段行程为4~8m;运行速度为90~300mm/min;料层厚度为12~48mm,氨气流量为60~190m 3/h;出炉粉体600MP压缩性≥7.17g/cm 3
5)混料:将退火后的粉体经过破碎、筛分、合批,然后加入0.1~2.0%比例的油性粘接剂,再加入8~30%比例电解铜粉,混料机转速控制为10~20r/min,混料时间控制为30~90min,制成半成品;
6)扩散:将上述半成品经还原炉扩散,还原炉扩散预热段温度为650~900℃,预热段行程为2~4m;高温段温度为900~1000℃,高温段行程为4~14m;冷却段温度为650~900℃,冷却段行程为4~8m;氨气流量 为60~190m 3/h,控制扩散时间为60~120min,料层厚度为20~35mm,出炉制得成品。
本发明提供了上述技术方案所述的粉末冶金用含铜铁粉或上述技术方案所述方法制备得到的粉末冶金用含铜铁粉在制备粉末冶金材料中的应用。
优选的,所述粉末冶金材料为粉末冶金材料FC0208。
优选的,所述粉末冶金材料FC0208按质量百分含量包括:含铜铁粉20%,石墨0.8%,润滑剂0.6%,其余为水雾化纯铁粉;
所述含铜铁粉中铜的质量含量为10%。
与现有的技术相比,本发明的有益效果是:
1.本发明采用首先制备高压缩性水雾化纯铁粉,然后加入电解铜粉混合,通过高温扩散附着的方式,制备含铜水雾化钢铁粉末。
2.铜粉直接附着在铁粉颗粒表面,不产生铜偏析,而且铜粉颗粒高温扩散至铁粉颗粒表面能减少团聚,有利于改善烧结件的机械性能。含铜铁粉600MPa压缩性≥7.10g/cm 3。可直接用于粉末冶金配制,不需额外添加铜粉,且保持烧结制品零件表面清洁。
3.本发明采用电解铜粉,而非雾化铜粉,因电解铜粉具有纯度高,形状呈树枝状,有利于扩散过程的均匀性;采取高温扩散方式,可使铜粉附着至铁粉颗粒面,以保证铁粉的压缩性及烧结尺寸稳定性。
说明书附图
图1为应用例的FC0208烧结制品金相试样图;
图2为对比例的FC0208烧结制品金相试样图。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
以下实施例对本发明进行详细描述。这些实施例仅是对本发明的最佳实施方案进行描述,并不对本发明的范围进行限制。
实施例1
按设计成分,以含10%的铜,铁余量为目标,按以下方法制备含铜铁粉:
一种制备粉末冶金用含铜铁粉的方法,包括:冶炼、雾化、还原、退 火、混料、扩散;具体步骤如下:
1)冶炼:钢液中Mo含量为0,出钢温度:1620~1700℃;
2)雾化制粉:雾化压力为10~15Mpa,雾化开始温度为1700℃,雾化结束温度为1630℃、钢液流直径为28mm、流量为240m 3/h、喷射角度为30~50°;
3)还原:将上述雾化后粉体经过还原炉进行还原,还原炉还原预热段温度为800℃,预热段行程为6m;高温段温度为1000℃,高温段行程为12m;冷却段温度为800℃,冷却段行程为8m;运行速度为300mm/min;料层厚度为48mm;氨气流量为190m 3/h;
4)退火:将上述还原后粉体,经过还原炉进行退火处理,还原炉退火预热段温度为800℃;预热段行程为6m;高温段温度为900℃;高温段行程为2m;冷却段温度为800℃;冷却段行程为8m;运行速度:300mm/min料层厚度:48mm,氨气流量为190m 3/h;出炉粉体600MPa压缩性≥7.17g/cm 3
5)混料:将退火后的粉体经过破碎、筛分、合批,然后加入2.0%比例的油性粘接剂,再加入10%比例电解铜粉,混料机转速控制为20r/min,混料时间控制为90min,制成半成品;
6)扩散:将上述半成品经还原炉扩散,还原炉扩散预热段温度为900℃,预热段行程为4m;高温段温度为1000℃,高温段行程为14m;冷却段温度为900℃,冷却段行程为8m;氨气流量为190m 3/h,控制扩散时间为120min,料层厚度:35mm,出炉制得成品。
实施例2
按设计成分,以含9.65%的铜,铁余量为目标,按以下方法制备含铜铁粉:
1)冶炼:钢液中Mo含量为0,出钢温度:1720~1800℃;
2)雾化制粉:雾化压力为10MPa,雾化开始温度为1580℃,雾化结束温度为1550℃、钢液流直径为14mm、流量为140~240m 3/h、喷射角度为30~50°;
3)还原:将上述雾化后粉体经过还原炉进行还原,还原炉还原预热段温度为550~800℃,预热段行程为4m;高温段温度为800~1000℃,高温 段行程为10m;冷却段温度为600℃,冷却段行程为7m;运行速度:220mm/min;料层厚度为22mm;氨气流量为160m 3/h;
4)退火:将上述还原后粉体,经过还原炉进行退火处理,还原炉退火预热段温度为550℃;预热段行程为4m;高温段温度为800℃;高温段行程为6m;冷却段温度为500℃;冷却段行程为4m;运行速度:180mm/min料层厚度:12mm,氨气流量为160m 3/h;出炉粉体600MPa压缩性≥7.17g/cm 3
5)混料:将退火后的粉体经过破碎、筛分、合批,然后加入2.0%比例的油性粘接剂,再加入9.65%比例电解铜粉,混料机转速控制15r/min,混料时间控制60min,制成半成品;
6)扩散:将上述半成品经还原炉扩散,还原炉扩散预热段温度为650℃,预热段行程为4m;高温段温度为1000℃,高温段行程为10m;冷却段温度为700℃,冷却段行程为8m;氨气流量为170m 3/h,控制扩散时间为80min,料层厚度:25mm,出炉制得成品含铜铁粉。
实施例3
按设计成分,以含20%的铜,铁余量为目标,按以下方法制备含铜铁粉:
1)冶炼:钢液中Mo含量为0.5%,出钢温度:1620~1800℃;
2)雾化制粉:雾化压力为11MPa,雾化开始温度为1600℃,雾化结束温度为1550℃、钢液流直径为20mm、流量为150m 3/h、喷射角度为30~50°;
3)还原:将上述雾化后粉体经过还原炉进行还原,还原炉还原预热段温度为600℃,预热段行程为4~6m;高温段温度为600℃,高温段行程为10m;冷却段温度为600℃,冷却段行程为8m;运行速度:200mm/min;料层厚度为38mm;氨气流量为100m 3/h;
4)退火:将上述还原后粉体,经过还原炉进行退火处理,还原炉退火预热段温度为650℃;预热段行程为4m;高温段温度为800℃;高温段行程为10m;冷却段温度为700℃;冷却段行程为6m;运行速度:200mm/min;料层厚度:38mm,氨气流量为150m 3/h;出炉粉体600MPa压缩性≥7.17g/cm 3
5)混料:将退火后的粉体经过破碎、筛分、合批,然后加入0.1%比例的油性粘接剂,再加入20%比例电解铜粉,混料机转速控制20r/min,混料时间控制为90min,制成半成品;
6)扩散:将上述半成品经还原炉扩散,还原炉扩散预热段温度700℃,预热段行程为4m;高温段温度为1000℃,高温段行程为12m;冷却段温度为900℃,冷却段行程为5m;氨气流量为120m 3/h,控制扩散时间为100min,料层厚度:28mm,出炉制得成品含铜铁粉。
含铜铁粉的性能指标见表1;
表1实施例1~3制备的含铜铁粉的性能指标
Figure PCTCN2021083122-appb-000001
比较含铜铁粉制备粉末冶金材料FC0208与添加铜粉制备粉末冶金材料FC0208的性能。
应用例:粉末冶金材料FC0208按质量百分含量包括:含铜铁粉20%,石墨0.8%,润滑剂0.6%,其余为水雾化纯铁粉,其中,铜占含铜铁粉的10%,烧结制品编号为A1、A2、A3。
对比例:粉末冶金材料FC0208按质量百分含量包括:铜粉2.0%、石墨0.8%、润滑剂0.6%、其余水雾化铁粉,烧结制品编号为B1、B2、B3。
粉末冶金制品综合性能见表2;
表2应用例和对比例制备的粉末冶金制品综合性能
Figure PCTCN2021083122-appb-000002
Figure PCTCN2021083122-appb-000003
综合上表2,本发明含铜铁粉可直接制备粉末冶金材料,无需添加铜粉。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种粉末冶金用含铜铁粉,其特征在于,化学成分按重量百分比组成:C≤0.02%;Si≤0.030%;Mn≤0.15%;P≤0.015%;S≤0.015%;Cu 8~30%;Mo 0~4.0%,其余Fe及不可避免的杂质。
  2. 根据权利要求1所述的粉末冶金用含铜铁粉,其特征在于,所述粉末冶金用含铜铁粉中铜粉直接附着在铁粉颗粒表面。
  3. 根据权利要求1所述的粉末冶金用含铜铁粉,其特征在于,所述含铜铁粉中铜的质量含量为9.65%、10%或20%。
  4. 根据权利要求1~3任一项所述的粉末冶金用含铜铁粉,其特征在于,所述粉末冶金用含铜铁粉的化学成分按重量百分比组成:C 0.002%;Si 0.022%;Mn 0.10%;P 0.008%;S 0.010%;Cu 10.0%;Mo 0%,其余Fe及不可避免的杂质。
  5. 根据权利要求1~3任一项所述的粉末冶金用含铜铁粉,其特征在于,所述粉末冶金用含铜铁粉的化学成分按重量百分比组:C 0.009%;Si 0.029%;Mn 0.12%;P 0.013%;S 0.014%;Cu 9.65%;Mo 0%,其余Fe及不可避免的杂质。
  6. 根据权利要求1~3任一项所述的粉末冶金用含铜铁粉,其特征在于,所述粉末冶金用含铜铁粉的化学成分按重量百分比组成:C 0.003%;Si 0.025%;Mn 0.11%;P 0.012%;S 0.012%;Cu 20.0%;Mo 0.5%,其余Fe及不可避免的杂质。
  7. 一种根据权利要求1~6任一项所述的粉末冶金用含铜铁粉的方法,其特征在于,包括:冶炼、雾化制粉、还原、退火、混料、扩散;具体步骤如下:
    1)冶炼:钢液中Mo含量为0~4.0%,出钢温度:1620~1800℃;
    2)雾化制粉:雾化压力为10~15MPa,雾化开始温度为1580~1700℃,雾化结束温度为1550~1630℃、钢液流直径为14~28mm、流量为140~240m 3/h、喷射角度为30~50°;
    3)还原:将上述雾化后粉体经过还原炉进行还原,还原炉还原预热段温度为550~800℃,预热段行程为4~6m;高温段温度为800~1000℃,高温段行程为6~12m;冷却段温度为500~800℃,冷却段行程为4~8m;运 行速度:90~300mm/min;料层厚度为12~48mm;氨气流量为60~190m 3/h;
    4)退火:将上述还原后粉体,经过还原炉进行退火处理,还原炉退火预热段温度为550~800℃;预热段行程为4~6m;高温段温度为800~900℃;高温段行程为6~12m;冷却段温度为500~800℃;冷却段行程为4~8m;运行速度:90~300mm/min;料层厚度:12~48mm,氨气流量为60~190m 3/h;出炉粉体600MPa压缩性≥7.17g/cm 3
    5)混料:将退火后的粉体经过破碎、筛分、合批,然后加入0.1~2.0%比例的油性粘接剂,再加入8~30%比例电解铜粉,混料机转速控制为10~20r/min,混料时间控制为30~90min,制成半成品;
    6)扩散:将上述半成品经还原炉扩散,还原炉扩散预热段温度为650~900℃,预热段行程为2~4m;高温段温度为900~1000℃,高温段行程为4~14m;冷却段温度为650~900℃,冷却段行程为4~8m;氨气流量为60~190m 3/h,控制扩散时间为60~120min,料层厚度:20~35mm,出炉制得成品。
  8. 权利要求1~6任一项所述的粉末冶金用含铜铁粉或权利要求7任一项所述方法制备得到的粉末冶金用含铜铁粉在制备粉末冶金材料中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述粉末冶金材料为粉末冶金材料FC0208。
  10. 根据权利要求8所述的应用,其特征在于,所述粉末冶金材料FC0208按质量百分含量包括:含铜铁粉20%,石墨0.8%,润滑剂0.6%,其余为水雾化纯铁粉;所述含铜铁粉中铜的质量含量为10%。
PCT/CN2021/083122 2020-06-10 2021-03-26 一种粉末冶金用含铜铁粉及其制备方法 WO2021248980A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021000016.0T DE112021000016T5 (de) 2020-06-10 2021-03-26 Kupferhaltiges eisenpulver für die pulvermetallurgie und verfahren zu dessen herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010524645.0 2020-06-10
CN202010524645.0A CN111761051B (zh) 2020-06-10 2020-06-10 一种粉末冶金用含铜铁粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2021248980A1 true WO2021248980A1 (zh) 2021-12-16

Family

ID=72720548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083122 WO2021248980A1 (zh) 2020-06-10 2021-03-26 一种粉末冶金用含铜铁粉及其制备方法

Country Status (3)

Country Link
CN (1) CN111761051B (zh)
DE (1) DE112021000016T5 (zh)
WO (1) WO2021248980A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115740469A (zh) * 2022-11-28 2023-03-07 江苏萌达新材料科技有限公司 一种超细低氧铁镍合金粉及其制备方法
CN117600459A (zh) * 2023-11-06 2024-02-27 广东凯洋新材料有限公司 一种散热支架及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111761051B (zh) * 2020-06-10 2022-07-19 鞍钢(鞍山)冶金粉材有限公司 一种粉末冶金用含铜铁粉及其制备方法
CN113649560A (zh) * 2021-08-03 2021-11-16 鞍钢(鞍山)冶金粉材有限公司 一种汽车用齿毂类专用混合粉的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096001A (ja) * 1996-08-02 1998-04-14 Kawasaki Steel Corp 部分拡散合金化鋼粉の製造方法
CN1410197A (zh) * 2002-11-25 2003-04-16 莱芜钢铁集团粉末冶金有限公司 扩散型合金钢粉的制造方法
CN101658930A (zh) * 2009-09-03 2010-03-03 建德市嘉鑫金属粉材有限公司 一种高压缩性烧结硬化用水雾化钢铁粉及生产方法
CN102101174A (zh) * 2009-12-16 2011-06-22 鞍钢重型机械有限责任公司 水雾化扩散合金粉及其制造方法
CN102554216A (zh) * 2012-02-07 2012-07-11 建德市易通金属粉材有限公司 一种水雾化铁铜合金粉末及制造方法
CN108994309A (zh) * 2018-08-31 2018-12-14 鞍钢重型机械有限责任公司 一种烧结硬化用水雾化合金粉末及其制造方法
CN111761051A (zh) * 2020-06-10 2020-10-13 鞍钢(鞍山)冶金粉材有限公司 一种粉末冶金用含铜铁粉及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156856A1 (ja) * 2013-03-25 2014-10-02 Ntn株式会社 焼結軸受の製造方法、焼結軸受、およびそれを備えた振動モータ
CN105593543B (zh) * 2013-10-03 2019-09-17 Ntn株式会社 烧结轴承及其制造方法
CN108580918B (zh) * 2018-05-21 2020-01-24 金川集团股份有限公司 一种铜铁扩散粉的生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096001A (ja) * 1996-08-02 1998-04-14 Kawasaki Steel Corp 部分拡散合金化鋼粉の製造方法
CN1410197A (zh) * 2002-11-25 2003-04-16 莱芜钢铁集团粉末冶金有限公司 扩散型合金钢粉的制造方法
CN101658930A (zh) * 2009-09-03 2010-03-03 建德市嘉鑫金属粉材有限公司 一种高压缩性烧结硬化用水雾化钢铁粉及生产方法
CN102101174A (zh) * 2009-12-16 2011-06-22 鞍钢重型机械有限责任公司 水雾化扩散合金粉及其制造方法
CN102554216A (zh) * 2012-02-07 2012-07-11 建德市易通金属粉材有限公司 一种水雾化铁铜合金粉末及制造方法
CN108994309A (zh) * 2018-08-31 2018-12-14 鞍钢重型机械有限责任公司 一种烧结硬化用水雾化合金粉末及其制造方法
CN111761051A (zh) * 2020-06-10 2020-10-13 鞍钢(鞍山)冶金粉材有限公司 一种粉末冶金用含铜铁粉及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115740469A (zh) * 2022-11-28 2023-03-07 江苏萌达新材料科技有限公司 一种超细低氧铁镍合金粉及其制备方法
CN117600459A (zh) * 2023-11-06 2024-02-27 广东凯洋新材料有限公司 一种散热支架及其制备方法

Also Published As

Publication number Publication date
CN111761051B (zh) 2022-07-19
CN111761051A (zh) 2020-10-13
DE112021000016T5 (de) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2021248980A1 (zh) 一种粉末冶金用含铜铁粉及其制备方法
CN109487126B (zh) 一种可用于3d打印的铝合金粉末及其制备方法和应用
CN102101174B (zh) 水雾化扩散合金粉及其制造方法
CN110527857B (zh) 一种烧结钛合金及其制备方法
CN110625112B (zh) 表面分布稀土氧化物的钛或钛合金球形粉末及其制备方法
CN112981231B (zh) 一种高锰氮奥氏体不锈钢粉末及其制备方法
CN111621664A (zh) 一种放电等离子烧结制备铜铁合金的方法
CN115044794B (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN110273097B (zh) 一种vc/v10粉末高速钢复合材料及其制备方法
WO2022213590A1 (zh) FeCrAl合金粉末及其制备方法、坯锭和电热元件
CN114703391A (zh) 一种纳米氧化物弥散强化铜合金及其制备方法
CN109550934A (zh) 一种高强度粉末高速钢的制备方法
CN110899692B (zh) 一种铁基合金粉末的制备方法
CN109694969B (zh) 一种预合金粉末及添加预合金粉末的TiCN基金属陶瓷复合材料及其制备方法
CN109136788B (zh) 一种高碳高合金非晶预合金粉末及其制备方法
CN116970854A (zh) laves相沉淀强化钨丝及其制备和应用
CN114959379B (zh) 一种适用于激光选区熔化的耐热高强铝合金及其制备方法
CN110819875B (zh) 一种Fe2B块体耐磨材料及其韧化方法
CN113020605B (zh) 一种面向激光3d打印专用原位增韧高性能球形钨粉及其制备方法
CN108754237A (zh) 一种Ni-Cr-Al-Fe系高温合金的粉末冶金制备方法
CN115121787A (zh) 一种水雾化硼铁合金粉末及其制备方法
CN113649559B (zh) 一种粉末冶金用直齿轮混合铁粉及制备方法
CN110527856A (zh) 一种高表面质量、高强度镍合金带材的制备方法
CN111250693A (zh) 用于增材再制造的高熵合金粉末及其制备方法
CN107723646A (zh) 一种抗磨耐候合金板材的制备工艺及其合金板材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822209

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21822209

Country of ref document: EP

Kind code of ref document: A1