WO2021248288A1 - 云台控制方法、手持云台及计算机可读存储介质 - Google Patents

云台控制方法、手持云台及计算机可读存储介质 Download PDF

Info

Publication number
WO2021248288A1
WO2021248288A1 PCT/CN2020/094984 CN2020094984W WO2021248288A1 WO 2021248288 A1 WO2021248288 A1 WO 2021248288A1 CN 2020094984 W CN2020094984 W CN 2020094984W WO 2021248288 A1 WO2021248288 A1 WO 2021248288A1
Authority
WO
WIPO (PCT)
Prior art keywords
pan
tilt
euler angle
target
change
Prior art date
Application number
PCT/CN2020/094984
Other languages
English (en)
French (fr)
Inventor
刘帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/094984 priority Critical patent/WO2021248288A1/zh
Priority to CN202080006508.6A priority patent/CN113168193A/zh
Publication of WO2021248288A1 publication Critical patent/WO2021248288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head

Definitions

  • This application relates to the technical field of pan-tilt control, and in particular to a method of pan-tilt control, a handheld pan-tilt, and a computer-readable storage medium.
  • the handheld PTZ is small in size and easy to carry. It can be installed with small shooting devices, such as video cameras, cameras, smart phones, etc., or the shooting device and the handheld PTZ can be integrated.
  • the handheld PTZ can achieve rapid and stable control when shooting while moving. The effect of keeping the camera in a certain posture.
  • the posture of the gimbal changes with the posture of the handle, so as to maintain the stability of the camera mounted on the gimbal.
  • the existing gimbal follow-up control method is mainly combined with the conventional dead zone It is implemented with a proportional controller. In actual use, it is found that the shooting screen will be jittery, the pan-tilt's following effect is poor, and the user experience is not good.
  • the present application provides a pan-tilt control method, a handheld pan-tilt, and a computer-readable storage medium, which aim to improve the stability of the handheld pan-tilt and reduce image jitter.
  • this application provides a pan/tilt control method applied to a handheld pan/tilt.
  • the handheld pan/tilt includes a handle and a pan/tilt provided on the handle.
  • the pan/tilt is used to carry a camera.
  • the method includes:
  • the present application also provides a handheld pan/tilt, the handheld pan/tilt includes a memory and a processor, the handheld pan/tilt includes a handle portion and a pan/tilt provided on the handle portion, the pan/tilt Used to carry a camera;
  • the memory is used to store a computer program
  • the processor is configured to execute the computer program and, when the computer program is executed, realize the steps of the above-mentioned pan-tilt control method.
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor realizes the aforementioned pan-tilt Steps of the control method.
  • the embodiment of the application provides a pan/tilt control method, a handheld pan/tilt and a computer-readable storage medium.
  • the current posture of the handle and the historical expected posture of the pan/tilt in the follow mode are used to determine the amount of change in the attitude of the pan/tilt, and Jitter attenuation is performed on the amount of attitude change to determine the target attitude change amount of the pan/tilt, and the attitude of the pan/tilt head is adjusted based on the target attitude change amount.
  • the jitter attenuation is performed on the amount of posture change to reduce the influence of the jitter of the handle on the tracking of the pan/tilt, which greatly improves the stability of the handheld pan/tilt and reduces the jitter of the picture.
  • FIG. 1 is a schematic diagram of the structure of a handheld PTZ that implements the PTZ control method provided by the present application;
  • FIG. 2 is a schematic flowchart of steps of a method for controlling a PTZ according to an embodiment of the present application
  • Fig. 3 is a schematic flow chart of a sub-step of the PTZ control method in Fig. 2;
  • FIG. 4 is a schematic flowchart of another sub-step of the PTZ control method in FIG. 2;
  • FIG. 5 is a schematic block diagram of the structure of a handheld pan/tilt head provided by an embodiment of the present application.
  • This application provides a pan/tilt control method, a handheld pan/tilt and a computer-readable storage medium.
  • the pan/tilt control method is applied to a handheld pan/tilt. Please refer to FIG. 1. Schematic diagram of the structure of the pan-tilt.
  • the handheld pan/tilt head in the embodiment of the present application will be described with reference to FIG. 1.
  • the handheld pan/tilt 100 includes a handle 101 and a pan/tilt 102 provided on the handle 101.
  • the pan/tilt 102 is also equipped with a camera 103.
  • the camera 103 and the pan/tilt 102 set in one.
  • the photographing device 103 is a smart phone, of course, it is also other photographing equipment, such as a camera.
  • the pan/tilt 102 includes three-axis motors, namely a pitch axis motor 1021, a roll axis motor 1022 and a yaw axis motor 1023, which are used to adjust the balance posture of the camera 103 for anytime and anywhere Take high-precision and stable images.
  • An inertial measurement unit is provided on the gimbal 102, which may be, for example, at least one of an accelerometer or a gyroscope, which can be used to measure the attitude and acceleration of the gimbal 102, so as to adjust the gimbal according to the attitude. 102 posture.
  • the handle portion 101 is also provided with an inertial measurement unit (IMU), which may be, for example, at least one of an accelerometer or a gyroscope, which may be used to measure the attitude and acceleration of the handle portion 101, etc. , In order to adjust the attitude of the pan/tilt 102 according to the attitude of the handle 101 and the attitude of the pan/tilt 102.
  • the handle part 101 is also provided with an operation control key, so that the user can operate the operation control key to control the pan/tilt 102 or the camera 103.
  • the operation control key can be, for example, a button, a trigger, a knob, or a joystick, etc., and of course, it also includes other forms of physical keys.
  • the joystick can be used to control the movement of three rotating shafts, thereby controlling the movement of the pan-tilt 102. It is understandable that the joystick can also be used for other functions.
  • the handheld pan/tilt 101 includes a processor, and the processor is used to process input control instructions, or send and receive signals.
  • the processor may be provided inside the handle part 101.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (application specific integrated circuits). circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • FIG. 2 is a schematic flowchart of steps of a method for controlling a pan/tilt head provided by an embodiment of the present application.
  • the pan/tilt control method includes steps S101 to S104.
  • the historical expected posture of the gimbal is the expected posture of the gimbal at the previous moment.
  • the last time and the current time are separated by a preset time.
  • the historical expected posture is stored in the preset register. After the desired posture, replace the historical expected posture in the preset register with the expected posture of the pan/tilt at the current moment to update the historical expected posture.
  • the preset time can be set based on actual conditions. This application does not specifically limit this, for example , The preset time is 0.2 seconds.
  • the gimbal in the follow mode changes with the posture of the handle, specifically the Euler angle of the yaw axis of the gimbal changes with the posture of the handle, and the pitch of the gimbal changes
  • the Euler angles of the axis and the roll axis do not change with the change of the posture of the handle, or the Euler angles of the yaw axis and the pitch axis of the gimbal change with the posture of the handle, while the Euler angle of the roll axis of the gimbal changes.
  • the pull angle does not follow the change of the posture of the handle.
  • the current posture of the pan/tilt and the joint angle data of each axis motor of the pan/tilt are acquired; the current posture of the handle is determined according to the current posture and joint angle data of the pan/tilt.
  • the pan/tilt is equipped with an inertial measurement unit, through which the current posture of the pan/tilt can be measured, and the joint angle data is determined by the encoder of the handheld pan/tilt.
  • the current posture of the handle can be inversely calculated through the current posture and joint angle data of the pan/tilt, and there is no need to install an inertial measurement unit on the handle, which reduces the cost of the device.
  • an inertial measurement unit is installed on the handle portion, and the current posture of the handle portion is obtained through the inertial measurement unit.
  • the attitude change of the gimbal includes the Euler angle change of the yaw axis of the gimbal, or the Euler angle change of the yaw axis and the pitch axis of the gimbal, that is, the Euler angle of the yaw axis of the gimbal follows the Euler angle
  • the attitude change of the gimbal is the Euler angle change of the yaw axis.
  • the amount includes the Euler angle change of the yaw axis and the pitch axis.
  • the way to determine the amount of change of the gimbal’s posture can be as follows: the Euler angle on the yaw axis of the gimbal changes with the posture of the handle, and the gimbal’s When the Euler angles of the pitch axis and the roll axis do not change with the change of the posture of the handle, the Euler angle change of the yaw axis of the gimbal is determined according to the current posture and the historical expected posture, that is, the current expected posture is subtracted from the current posture.
  • the yaw component of the posture obtains the Euler angle change of the yaw axis of the gimbal; the Euler angle of the yaw axis and the pitch axis of the gimbal changes with the change of the posture of the handle, while the Euler angle of the roll axis of the gimbal changes
  • the Euler angle change of the yaw axis and pitch axis of the gimbal is determined according to the current posture and the historical expected posture, that is, the historical expected posture is used to subtract the yaw component of the current posture and the sum
  • the pitch component obtains the Euler angle variation of the yaw axis and pitch axis of the pan/tilt.
  • the method of determining the Euler angle change of the yaw axis of the gimbal may be: obtaining the first posture quaternion of the historical expected posture, and adding the first posture to four Convert the quaternion to the first Euler angle; obtain the quaternion of the second attitude of the current attitude, and convert the quaternion of the second attitude to the second Euler angle; according to the first Euler angle and the second Euler angle
  • the yaw component determines the Euler angle change of the yaw axis of the gimbal.
  • the way to determine the Euler angle change of the yaw and pitch axis of the gimbal can be: obtain the first posture quaternion of the historical expected posture, and then combine the first posture quaternion The number is converted to the first Euler angle; the second attitude quaternion of the current attitude is obtained, and the second attitude quaternion is converted to the second Euler angle; according to the yaw of the first Euler angle and the second Euler angle The component and the pitch component determine the Euler angle change of the yaw axis and the pitch axis of the gimbal.
  • the user When the user uses the handheld gimbal, the user holds the handle of the handheld gimbal. During the movement of the user, the posture of the handle will change due to the movement of the user. Therefore, the posture of the gimbal must follow the change of the posture of the handle.
  • the current follow-up control method does not distinguish between the amount of jitter and the amount of follow-up of the pan-tilt's attitude change, so that when the pan-tilt's attitude changes following the change of the handle's attitude, the pan-tilt will also shake. This results in jitter in the shooting screen, which prevents the user from taking good videos or photos.
  • the jitter attenuation is performed on the change in the attitude of the pan/tilt to obtain the change in the target posture, thereby attenuating the jitter in the change in the target posture.
  • the posture of the pan/tilt is changed following the change of the posture of the handle part, the shaking of the pan/tilt can be reduced, thereby reducing the shaking of the shooting picture.
  • step S103 specifically includes: sub-steps S1031 to S1032.
  • the target filter includes any one of a notch filter and a band rejection filter.
  • the jitter of the PTZ's posture change is mainly caused by the user's body shaking due to the landing of the soles of the feet while walking or running, and the landing of the soles can be expressed by stride frequency, which is the sole per minute.
  • stride frequency which is the sole per minute.
  • the number of landings for example, if you take a total of 140 steps in one minute, the step frequency is 140 times per minute. Therefore, the jitter amount of the jitter frequency corresponding to the step frequency can be attenuated by the filter, thereby reducing the gimbal Of jitter.
  • a preset filter is obtained, and the preset filter is used as the target filter.
  • the frequency of the preset filter is related to the step frequency of the user, and the frequency and attenuation ratio of the preset filter are obtained based on multiple experiments, which is not specifically limited in this application.
  • the frequency of the preset filter is 1.9 Hz
  • the attenuation ratio is 30dB
  • the frequency of the preset filter is 2 Hz
  • the attenuation ratio is 10dB.
  • a preset filter is obtained, and the user's jitter frequency is obtained; according to the jitter frequency, the frequency and attenuation ratio of the preset filter are adjusted to obtain the target filter.
  • the user's jitter frequency is determined according to the user's stride frequency, and the user's jitter frequency is roughly twice the user's stride frequency.
  • the user's stride frequency can be determined according to the wearable device worn by the user. The wearable device communicates with the handheld pan-tilt. .
  • the method of obtaining the user's jitter frequency may also be: determining the user's walking speed through a three-axis accelerometer installed on the handle, and obtaining the step frequency corresponding to the walking speed; Frequency determines the user's jitter frequency. Among them, when the user’s stride length is constant, the faster the walking speed, the higher the user’s stride frequency, and the higher the user’s jitter frequency. The slower the walking speed, the lower the user’s stride frequency, and the user’s stride frequency. The jitter frequency is also lower. The user's walking speed is determined by a three-axis accelerometer installed on the handle, and the user's jitter frequency can be determined based on the walking speed, without the need for external wearable devices.
  • the method of adjusting the frequency and attenuation ratio of the preset filter may be: determining the target frequency and the target attenuation ratio according to the user's jitter frequency; adjusting the frequency of the preset filter to the target Frequency and adjust the attenuation ratio of the preset filter to the target attenuation ratio.
  • the memory of the handheld gimbal stores a relationship table between the user's jitter frequency, the target frequency, and the target attenuation ratio.
  • the relationship table and the user's jitter frequency can determine the target frequency and the target attenuation ratio, and the user's jitter frequency
  • the relationship table between the target frequency and the target attenuation ratio is obtained through multiple experiments, and this application does not specifically limit it.
  • the posture change After determining the target filter, input the posture change to the target filter for jitter attenuation processing to obtain the target posture change, that is, attenuate the jitter in the posture change to reduce the jitter in the target posture change .
  • the target attitude change includes the Euler angle change of the yaw axis of the gimbal, or the target attitude change includes the Euler angle change of the yaw axis and the pitch axis of the gimbal, that is, the Euler angle of the yaw axis of the gimbal.
  • the target attitude change includes the Euler angle of the yaw axis of the gimbal.
  • the attitude change includes the Euler angle change of the yaw axis and the pitch axis.
  • step S104 specifically includes: sub-steps S1041 to S1042.
  • the Euler angle on the yaw axis of the gimbal changes with the attitude of the handle, while the Euler angle of the pitch axis and roll axis of the gimbal does not follow the change of the attitude of the handle.
  • the way to determine the expected Euler angle of the yaw axis of the gimbal may be: according to the preset scale factor and the Euler angle of the yaw axis of the pan/tilt. Change amount, determine the target Euler angle change amount of the yaw axis of the gimbal; obtain the historical expected Euler angle of the yaw axis of the gimbal, and according to the historical expected Euler angle and the target Euler angle change of the yaw axis of the gimbal , Determine the expected Euler angle of the yaw axis of the gimbal.
  • the preset scale factor can be set based on actual conditions, which is not specifically limited in this application, for example, the preset scale factor is 0.1.
  • the historical expected Euler angle of the yaw axis is the expected Euler angle of the yaw axis of the gimbal at the previous time, and the previous time and the current time are separated by a preset time, according to the historical expected Euler angle of the yaw axis
  • the way to determine the expected Euler angle of the yaw axis of the gimbal can be: determine the product of the target Euler angle change and the preset time; determine the sum of the product and the historical expected Euler angle, and The sum of the product and the historical expected Euler angle is used as the expected Euler angle of the yaw axis of the gimbal at the current moment.
  • the preset time can be set based on actual conditions, which is not specifically limited in this application, for example, the preset time is 0.2 seconds.
  • the preset scale factor is k
  • the Euler angle change of the yaw axis is err_yaw_filtered
  • the historical expected Euler angle of the yaw axis is Yaw_target_last
  • the expected Euler angle of the yaw axis of the gimbal is Yaw_target.
  • the preset time interval from the current time is deltat
  • the target Euler angle change is Yaw_spd
  • the target Euler angle change Yaw_spd k*err_yaw_filtered
  • the expected Euler angle of the yaw axis of the pan/tilt Yaw_target Yaw_target_last+Yaw_spd*deltat .
  • the way to determine the expected Euler angle of the pitch axis of the gimbal can be: according to the preset scale factor and the Euler angle change of the pitch axis of the gimbal, Determine the target Euler angle change of the pitch axis of the gimbal; obtain the historical expected Euler angle of the pitch axis of the gimbal, and determine the cloud based on the historical expected Euler angle of the pitch axis of the gimbal and the target Euler angle change The expected Euler angle of the pitch axis of the station.
  • the historical expected Euler angle of the pitch axis is the expected Euler angle of the pitch axis of the gimbal at the previous time, and the previous time and the current time are separated by a preset time, based on the historical expected Euler angle of the pitch axis
  • the way to determine the expected Euler angle of the pitch axis of the gimbal can be: determine the product of the target Euler angle change of the pitch axis and the preset time; determine the product and the historical expectation of the pitch axis. Pull the sum of angles, and use the sum of the product and the historical expected Euler angle of the pitch axis as the expected Euler angle of the pitch axis of the gimbal at the current moment.
  • the preset scale factor is k
  • the Euler angle change of the pitch axis is err_pitch_filtered
  • the historical expected Euler angle of the pitch axis is Pitch_target_last
  • the expected Euler angle of the pitch axis of the gimbal is Pitch_target
  • the last moment The preset time interval from the current time is deltat
  • the target Euler angle change is Pitch_spd
  • the target Euler angle change Pitch_spd k*err_pitch_filtered
  • the expected Euler angle of the pitch axis of the pan/tilt Pitch_target Pitch_target_last+Pitch_spd*deltat .
  • the current attitude of the handle part and the historical expected attitude of the pan-tilt in the follow mode are used to determine the attitude change of the pan-tilt, and jitter attenuation is performed on the attitude change to determine the pan-tilt.
  • the target attitude change amount of the target attitude change amount, and the attitude of the pan/tilt head is adjusted based on the target attitude change amount.
  • FIG. 5 is a schematic block diagram of the structure of a handheld pan/tilt head provided by an embodiment of the present application.
  • the handheld pan/tilt head 200 includes a processor 201 and a memory 202.
  • the processor 201 and the memory 202 are connected by a bus 203, which is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the handheld pan/tilt head 200 includes a handle portion and a pan/tilt mounted on the handle portion.
  • the pan/tilt is also equipped with a camera.
  • the camera and the pan/tilt are integrated.
  • the photographing device is a smart phone, of course, it is also other photographing equipment, such as a camera.
  • the pan/tilt includes three-axis motors, which are pitch (pitch) axis motors, roll (roll) axis motors and translation (yaw) axis motors, which are used to adjust the balance posture of the shooting device so that high-precision shots can be taken anytime and anywhere. Stabilize the picture.
  • An inertial measurement unit is provided on the gimbal, which can be at least one of an accelerometer or a gyroscope, which can be used to measure the attitude and acceleration of the gimbal, so as to adjust the attitude of the gimbal according to the attitude .
  • an inertial measurement unit is also provided on the handle, which may be, for example, at least one of an accelerometer or a gyroscope, which may be used to measure the attitude and acceleration of the handle, so as to Adjust the posture of the gimbal according to the posture of the handle and the posture of the gimbal.
  • the handle part is also provided with an operation control key, so that the user can operate the operation control key to control the pan/tilt or the camera.
  • the operation control key can be, for example, a button, a trigger, a knob, or a joystick, etc., and of course, it also includes other forms of physical keys.
  • the joystick can be used to control the movement of three rotating shafts, and then control the movement of the pan/tilt. It is understandable that the joystick can also be used for other functions.
  • the processor 201 may be a micro-controller unit (MCU), a central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 202 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor 201 is configured to run a computer program stored in the memory 202, and implement the following steps when executing the computer program:
  • the historical expected posture is the expected posture of the pan/tilt at a previous moment
  • the change in the posture includes the change in the Euler angle of the yaw axis of the gimbal.
  • the amount of change in attitude includes the amount of change in Euler angles of the yaw axis and the pitch axis of the pan/tilt.
  • the performing jitter attenuation on the attitude change to obtain the target attitude change includes:
  • the amount of change in attitude is input to the target filter for jitter attenuation processing to obtain the amount of change in target attitude.
  • the target filter includes any one of a notch filter and a band rejection filter.
  • the acquiring the target filter includes:
  • the acquiring the target filter includes:
  • the frequency and the attenuation ratio of the preset filter are adjusted to obtain the target filter.
  • the adjusting the frequency and the attenuation ratio of the preset filter according to the jitter frequency includes:
  • the frequency of the preset filter is adjusted to the target frequency, and the attenuation ratio of the preset filter is adjusted to the target attenuation ratio.
  • the target attitude change amount includes the Euler angle change amount of the yaw axis of the pan/tilt; the adjusting the attitude of the pan/tilt head according to the target attitude change amount includes:
  • the determining the expected Euler angle of the yaw axis of the pan/tilt head according to the variation of the Euler angle of the yaw axis of the pan/tilt head includes:
  • the historical expected Euler angle is the expected Euler angle of the yaw axis of the pan/tilt at the last time, and the last time is separated from the current time by a preset time;
  • the expected Euler angle and the target Euler angle change, and the determination of the expected Euler angle of the yaw axis of the gimbal includes:
  • the sum of the product and the historical expected Euler angle is determined, and the sum of the product and the historical expected Euler angle is used as the expected Euler angle of the yaw axis of the pan/tilt at the current moment.
  • the acquiring the current posture of the handle includes:
  • the handle portion is equipped with an inertial measurement unit; the acquiring the current posture of the handle portion includes:
  • the current posture of the handle portion is acquired by the inertial measurement unit.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation The steps of the PTZ control method provided in the example.
  • the computer-readable storage medium may be the internal storage unit of the handheld pan/tilt head described in any of the foregoing embodiments, such as the hard disk or memory of the handheld pan/tilt head.
  • the computer-readable storage medium may also be an external storage device of the handheld PTZ, such as a plug-in hard disk equipped on the handheld PTZ, a smart memory card (Smart Media Card, SMC), and Secure Digital (Secure Digital). , SD) card, flash card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)

Abstract

一种云台控制方法、手持云台及计算机可读存储介质,该方法包括:获取手柄部的当前姿态和云台的历史期望姿态;根据当前姿态和历史期望姿态,确定云台的姿态变化量;对姿态变化量进行抖动衰减,得到目标姿态变化量;根据目标姿态变化量,调整云台的姿态。减少了画面抖动。

Description

云台控制方法、手持云台及计算机可读存储介质 技术领域
本申请涉及云台控制技术领域,尤其涉及一种云台控制方法、手持云台及计算机可读存储介质。
背景技术
手持云台体积小巧,携带方便,可以安装小型的拍摄装置,例如摄像机、照相机、智能手机等或者拍摄装置与手持云台一体化设置,手持云台在移动中进行拍摄时能达到迅速稳定地控制拍摄装置保持在确定的姿态上的效果。用户使用手持云台时,云台的姿态跟随手柄部的姿态的变化而变化,从而能够保持安装于云台上的拍摄装置的稳定,现有的云台跟随控制方式主要是通过结合常规死区和比例控制器实现的,在实际使用时发现,拍摄画面会出现抖动,云台的跟随效果较差,用户体验不好。
发明内容
基于此,本申请提供了一种云台控制方法、手持云台及计算机可读存储介质,旨在提高手持云台的稳定性,减少画面抖动。
第一方面,本申请提供了一种云台控制方法,应用于手持云台,所述手持云台包括手柄部和设于所述手柄部上的云台,所述云台用于搭载拍摄装置,所述方法包括:
获取所述手柄部的当前姿态和处于跟随模式的所述云台的历史期望姿态;
根据所述当前姿态和历史期望姿态,确定所述云台的姿态变化量;
对所述姿态变化量进行衰减,得到目标姿态变化量;
根据所述目标姿态变化量,调整所述云台的姿态。
第二方面,本申请还提供了一种手持云台,所述手持云台包括存储器和处理器,所述手持云台包括手柄部和设于所述手柄部上的云台,所述云台用于搭载拍摄装置;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如上所述的云台控制方法的步骤。
第三方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上所述的云台控制方法的步骤。
本申请实施例提供了一种云台控制方法、手持云台及计算机可读存储介质,通过手柄部的当前姿态和处于跟随模式的云台的历史期望姿态,确定云台的姿态变化量,并对该姿态变化量进行抖动衰减,以确定云台的目标姿态变化量,且基于该目标姿态变化量调整云台的姿态,本申请的技术方案在手柄部的姿态发生变化时,通过对云台的姿态变化量进行抖动衰减,减少手柄部的抖动对云台跟随的影响,极大地提高了手持云台的稳定性,减少画面抖动。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施本申请提供的云台控制方法的手持云台的结构示意图;
图2是本申请实施例提供的一种云台控制方法的步骤示意流程图;
图3是图2中的云台控制方法的一子步骤示意流程图;
图4是图2中的云台控制方法的另一子步骤示意流程图;
图5是本申请实施例提供的一种手持云台的结构示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下, 下述的实施例及实施例中的特征可以相互组合。
本申请提供一种云台控制方法、手持云台及计算机可读存储介质,该云台控制方法应用于手持云台,请参阅图1,图1是实施本申请提供的云台控制方法的手持云台的结构示意图。以下将结合图1,对本申请实施例中的手持云台进行说明。
如图1所示,该手持云台100包括手柄部101和设于手柄部101上的云台102,云台102上还搭载有拍摄装置103,在一实施例中,拍摄装置103与云台102一体设置。其中,拍摄装置103为智能手机,当然也为其他摄像设备,比如相机。
其中,云台102包括三轴电机,分别为俯仰(pitch)轴电机1021、横滚(roll)轴电机1022和平移(yaw)轴电机1023,用于调整拍摄装置103的平衡姿态,以便随时随地拍摄出高精度的稳定画面。
云台102上设置有惯性测量单元(Inertial measurement unit,IMU),可例如为加速度计或陀螺仪中的至少一种,可以用于测量云台102的姿态和加速度等,以便根据姿态调整云台102的姿态。在一实施例中,手柄部101上也设置有惯性测量单元(Inertial measurement unit,IMU),可例如为加速度计或陀螺仪中的至少一种,可以用于测量手柄部101的姿态和加速度等,以便根据手柄部101的姿态和云台102的姿态调整云台102的姿态。
其中,手柄部101上还设有操作控键,以便用户操作该操作控键以控制云台102或拍摄装置103。该操作控键可例如为按键、扳机、旋钮或者摇杆等,当然也包括其他形式的物理按键。
比如,摇杆可以用于控制三个转轴的运动,进而控制云台102的运动。可以理解的是,摇杆也可以用于其他功能。
其中,手持云台101包括处理器,处理器用于对输入的控制指令进行处理,或者收发信号等。处理器可以设置在手柄部101的内部。
可选地,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解的,图1中的手持云台以及上述对于手持云台各部件的命名仅仅 出于标识的目的,并不因此对本申请实施例进行限制。
请参阅图2,图2是本申请实施例提供的一种云台控制方法的步骤示意流程图。如图2所示,该云台控制方法包括步骤S101至步骤S104。
S101、获取所述手柄部的当前姿态和处于跟随模式的所述云台的历史期望姿态。
其中,云台的历史期望姿态为云台在上一时刻的期望姿态,上一时刻与当前时刻间隔预设时间,历史期望姿态存储在预设寄存器内,在每次确定云台在当前时刻的期望姿态后,将预设寄存器内的历史期望姿态替换为云台在当前时刻的期望姿态,以更新历史期望姿态,预设时间可基于实际情况进行设置,本申请对此不做具体限定,例如,预设时间为0.2秒。
其中,处于跟随模式的云台,云台的姿态跟随手柄部的姿态的变化而发生变化,具体为云台的yaw轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的pitch轴和roll轴的欧拉角不跟随手柄部的姿态的变化而变化,或者云台的yaw轴和pitch轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的roll轴的欧拉角不跟随手柄部的姿态的变化而变化。
在一实施例中,获取云台的当前姿态和云台的各轴电机的关节角数据;根据云台的当前姿态和关节角数据,确定手柄部的当前姿态。其中,云台设置有惯性测量单元,通过该惯性测量单元可以测量得到云台的当前姿态,关节角数据是通过手持云台的编码器确定的。通过云台的当前姿态和关节角数据可以反算得到手柄部的当前姿态,不需要在手柄部设置惯性测量单元,减少器件成本。
在一实施例中,手柄部安装有惯性测量单元,通过该惯性测量单元获取手柄部的当前姿态。通过在手柄部安装惯性测量单元,不需要基于云台的当前姿态和各轴电机的关节角数据反算手柄部的当前姿态,可以通过安装的惯性测量单元快速的获取手柄部的当前姿态。
S102、根据所述当前姿态和历史期望姿态,确定所述云台的姿态变化量。
其中,云台的姿态变化量包括云台的yaw轴的欧拉角变化量,或者包括云台的yaw轴和pitch轴的欧拉角变化量,即在云台的yaw轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的pitch轴和roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,云台的姿态变化量为yaw轴的欧拉角变化量,在云台的yaw轴和pitch轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,云台的姿态变化量包括yaw轴和pitch轴的欧拉角变化量。
在一实施例中,根据当前姿态和历史期望姿态,确定云台的姿态变化量的方式可以为:在云台的yaw轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的pitch轴和roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,根据当前姿态和历史期望姿态,确定云台的yaw轴的欧拉角变化量,即用历史期望姿态减去当前姿态的yaw分量,得到云台的yaw轴的欧拉角变化量;在云台的yaw轴和pitch轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,根据当前姿态和历史期望姿态,确定云台的yaw轴和pitch轴的欧拉角变化量,即用历史期望姿态减去当前姿态的yaw分量和pitch分量,得到云台的yaw轴和pitch轴的欧拉角变化量。
在一实施例中,根据当前姿态和历史期望姿态,确定云台的yaw轴的欧拉角变化量的方式可以为:获取历史期望姿态的第一姿态四元数,并将该第一姿态四元数转换为第一欧拉角;获取当前姿态的第二姿态四元数,并将第二姿态四元数转换为第二欧拉角;根据第一欧拉角和第二欧拉角的yaw分量,确定云台的yaw轴的欧拉角变化量。类似的,根据当前姿态和历史期望姿态,确定云台的yaw和pitch轴的欧拉角变化量的方式可以为:获取历史期望姿态的第一姿态四元数,并将该第一姿态四元数转换为第一欧拉角;获取当前姿态的第二姿态四元数,并将第二姿态四元数转换为第二欧拉角;根据第一欧拉角和第二欧拉角的yaw分量和pitch分量,确定云台的yaw轴和pitch轴的欧拉角变化量。
S103、对所述姿态变化量进行抖动衰减,得到目标姿态变化量。
用户使用手持云台时,用户握持手持云台的手柄部,在用户移动的过程中,手柄部的姿态会因为用户的移动而出现变化,因此需要云台的姿态跟随手柄部的姿态的变化而发生变化,但目前的跟随控制方法没有区分云台的姿态变化量的抖动量和跟随量,使得云台的姿态跟随手柄部的姿态的变化而发生变化时,云台也会出现抖动,从而导致拍摄画面出现抖动,使得用户无法拍摄出良好的视频或者照片,为解决上述问题,对云台的姿态变化量进行抖动衰减,得到目标姿态变化量,从而衰减目标姿态变化量中的抖动量,使得云台的姿态跟随手柄部的姿态的变化而发生变化时,能够减少云台的抖动,进而减少拍摄画面的抖动。
在一实施例中,如图3所示,步骤S103具体包括:子步骤S1031至S1032。
S1031、获取目标滤波器。
其中,目标滤波器包括陷波滤波器和带阻滤波器中的任一项。
在用户移动的过程中,云台的姿态变化量的抖动量主要是由用户走路或者 跑步时脚掌落地导致身体晃动引起的,而脚掌落地的情况可以用步频来表示,步频为每分钟脚掌落地的次数,例如,在一分钟内,双脚共踏出140步,则步频为每分钟140次,因此可以通过滤波器对步频对应的抖动频率的抖动量进行衰减,进而减少云台的抖动。
在一实施例中,获取预设滤波器,并将预设滤波器作为目标滤波器。其中,预设滤波器的频率与用户的步频有关,预设滤波器的频率和衰减比例是根据多次试验得到的,本申请对此不做具体限定,例如,预设滤波器的频率为1.9赫兹,衰减比例为30dB,又例如,预设滤波器的频率为2赫兹,衰减比例为10dB。
在一实施例中,获取预设滤波器,并获取用户的抖动频率;根据该抖动频率,调整预设滤波器的频率和衰减比例,得到目标滤波器。其中,用户的抖动频率根据用户的步频确定,用户的抖动频率大致为用户的步频的两倍,用户的步频可以根据用户穿戴的可穿戴设备确定,可穿戴设备与手持云台通信连接。通过用户的抖动频率调整预设滤波器的频率和衰减比例,可以得到更准确的滤波器,便于后续通过滤波器准确的对姿态变化量进行抖动衰减,进一步地减少云台的抖动,进而减少拍摄画面的抖动,提高用户体验。
在一实施例中,获取用户的抖动频率的方式还可以为:通过安装于手柄部的三轴加速度计确定用户的步行速度,并获取该步行速度对应的步频;根据该步行速度对应的步频确定用户的抖动频率。其中,在用户的步幅一定的情况下,步行速度越快,则用户的步频越高,用户的抖动频率也越高,而步行速度越慢,则用户的步频越低,则用户的抖动频率也越低。通过安装于手柄部的三轴加速度计确定用户的步行速度,并基于该步行速度可以确定用户的抖动频率,不需要借助外部的可穿戴设备。
在一实施例中,根据抖动频率,调整预设滤波器的频率和衰减比例的方式可以为:根据用户的抖动频率,确定目标频率和目标衰减比例;将预设滤波器的频率调整为该目标频率,并将预设滤波器的衰减比例调整为目标衰减比例。其中,手持云台的存储器内存储有用户的抖动频率、目标频率和目标衰减比例之间的关系表,通过该关系表和用户的抖动频率即可确定目标频率和目标衰减比例,用户的抖动频率、目标频率和目标衰减比例之间的关系表是通过多次试验得到的,本申请对此不做具体限定。
S1032、将所述姿态变化量输入至所述目标滤波器进行抖动衰减处理,得到目标姿态变化量。
在确定目标滤波器后,将姿态变化量输入至目标滤波器进行抖动衰减处理, 得到目标姿态变化量,即对姿态变化量内的抖动量进行衰减处理,从而减少目标姿态变化量内的抖动量。
S104、根据所述目标姿态变化量,调整所述云台的姿态。
其中,目标姿态变化量包括云台的yaw轴的欧拉角变化量,或者目标姿态变化量包括云台的yaw轴和pitch轴的欧拉角变化量,即在云台的yaw轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的pitch轴和roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,目标姿态变化量包括云台的yaw轴的欧拉角变化量;在云台的yaw轴和pitch轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,云台的姿态变化量包括yaw轴和pitch轴的欧拉角变化量。
在一实施例中,如图4所示,步骤S104具体包括:子步骤S1041至S1042。
S1041、根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角。
S1042、根据所述期望欧拉角控制所述云台的yaw轴转动,以调整所述云台的姿态。
当确定目标姿态变化量之后,在云台的yaw轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的pitch轴和roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,根据云台的yaw轴的欧拉角变化量,确定云台的yaw轴的期望欧拉角;根据云台的yaw轴的期望欧拉角控制云台的yaw轴转动,以调整云台的姿态。
在一实施例中,在云台的yaw轴和pitch轴的欧拉角跟随手柄部的姿态的变化而变化,而云台的roll轴的欧拉角不跟随手柄部的姿态的变化而变化时,根据云台的yaw轴的欧拉角变化量,确定云台的yaw轴的期望欧拉角,并根据云台的pitch轴的欧拉角变化量,确定云台的pitch轴的期望欧拉角;根据云台的yaw轴的期望欧拉角控制云台的yaw轴转动,并根据云台的pitch轴的期望欧拉角控制云台的pitch轴转动,以调整云台的姿态。
在一实施例中,根据云台的yaw轴的欧拉角变化量,确定云台的yaw轴的期望欧拉角的方式可以为:根据预设比例系数和云台的yaw轴的欧拉角变化量,确定云台的yaw轴的目标欧拉角变化量;获取云台的yaw轴的历史期望欧拉角,并根据云台的yaw轴的历史期望欧拉角和目标欧拉角变化量,确定云台的yaw轴的期望欧拉角。其中,预设比例系数可基于实际情况进行设置,本申请对此不做具体限定,例如,预设比例系数为0.1。
在一实施例中,yaw轴的历史期望欧拉角为云台的yaw轴在上一时刻的期望欧拉角,上一时刻与当前时刻间隔预设时间,根据yaw轴的历史期望欧拉角和目标欧拉角变化量,确定云台的yaw轴的期望欧拉角的方式可以为:确定目标欧拉角变化量与预设时间的乘积;确定乘积与历史期望欧拉角之和,并将乘积与历史期望欧拉角之和作为云台的yaw轴在当前时刻的期望欧拉角。其中,预设时间可基于实际情况进行设置,本申请对此不做具体限定,例如,预设时间为0.2秒。
示例性的,设预设比例系数为k、yaw轴的欧拉角变化量为err_yaw_filtered、yaw轴的历史期望欧拉角为Yaw_target_last、云台的yaw轴的期望欧拉角为Yaw_target,上一时刻与当前时刻间隔的预设时间为deltat、目标欧拉角变化量为Yaw_spd,则目标欧拉角变化量Yaw_spd=k*err_yaw_filtered,云台的yaw轴的期望欧拉角Yaw_target=Yaw_target_last+Yaw_spd*deltat。
类似的,根据云台的pitch轴的欧拉角变化量,确定云台的pitch轴的期望欧拉角的方式可以为:根据预设比例系数和云台的pitch轴的欧拉角变化量,确定云台的pitch轴的目标欧拉角变化量;获取云台的pitch轴的历史期望欧拉角,并根据云台的pitch轴的历史期望欧拉角和目标欧拉角变化量,确定云台的pitch轴的期望欧拉角。
在一实施例中,pitch轴的历史期望欧拉角为云台的pitch轴在上一时刻的期望欧拉角,上一时刻与当前时刻间隔预设时间,根据pitch轴的历史期望欧拉角和目标欧拉角变化量,确定云台的pitch轴的期望欧拉角的方式可以为:确定pitch轴的目标欧拉角变化量与预设时间的乘积;确定乘积与pitch轴的历史期望欧拉角之和,并将乘积与pitch轴的历史期望欧拉角之和作为云台的pitch轴在当前时刻的期望欧拉角。
示例性的,设预设比例系数为k、pitch轴的欧拉角变化量为err_pitch_filtered、pitch轴的历史期望欧拉角为Pitch_target_last、云台的pitch轴的期望欧拉角为Pitch_target,上一时刻与当前时刻间隔的预设时间为deltat、目标欧拉角变化量为Pitch_spd,则目标欧拉角变化量Pitch_spd=k*err_pitch_filtered,云台的pitch轴的期望欧拉角Pitch_target=Pitch_target_last+Pitch_spd*deltat。
上述实施例提供的云台控制方法,通过手柄部的当前姿态和处于跟随模式的云台的历史期望姿态,确定云台的姿态变化量,并对该姿态变化量进行抖动衰减,以确定云台的目标姿态变化量,且基于该目标姿态变化量调整云台的姿态,本申请的技术方案在手柄部的姿态发生变化时,通过对云台的姿态变化量 进行抖动衰减,减少手柄部的抖动对云台跟随的影响,极大地提高了手持云台的稳定性,减少画面抖动。
请参阅图5,图5是本申请实施例提供的一种手持云台的结构示意性框图。
如图5所示,该手持云台200包括处理器201和存储器202,处理器201和存储器202通过总线203连接,该总线203比如为I2C(Inter-integrated Circuit)总线。
其中,该手持云台200包括手柄部和设于手柄部上的云台,云台上还搭载有拍摄装置,在一实施例中,拍摄装置与云台一体设置。其中,拍摄装置为智能手机,当然也为其他摄像设备,比如相机。
其中,云台包括三轴电机,分别为俯仰(pitch)轴电机、横滚(roll)轴电机和平移(yaw)轴电机,用于调整拍摄装置的平衡姿态,以便随时随地拍摄出高精度的稳定画面。
云台上设置有惯性测量单元(Inertial measurement unit,IMU),可例如为加速度计或陀螺仪中的至少一种,可以用于测量云台的姿态和加速度等,以便根据姿态调整云台的姿态。在一实施例中,手柄部上也设置有惯性测量单元(Inertial measurement unit,IMU),可例如为加速度计或陀螺仪中的至少一种,可以用于测量手柄部的姿态和加速度等,以便根据手柄部的姿态和云台的姿态调整云台的姿态。
其中,手柄部上还设有操作控键,以便用户操作该操作控键以控制云台或拍摄装置。该操作控键可例如为按键、扳机、旋钮或者摇杆等,当然也包括其他形式的物理按键。
比如,摇杆可以用于控制三个转轴的运动,进而控制云台的运动。可以理解的是,摇杆也可以用于其他功能。
具体地,处理器201可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器202可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器201用于运行存储在存储器202中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取所述手柄部的当前姿态和处于跟随模式的所述云台的历史期望姿态;
根据所述当前姿态和历史期望姿态,确定所述云台的姿态变化量;
对所述姿态变化量进行抖动衰减,得到目标姿态变化量;
根据所述目标姿态变化量,调整所述云台的姿态。
在一实施例中,所述历史期望姿态为所述云台在上一时刻的期望姿态,所述姿态变化量包括所述云台的yaw轴的欧拉角变化量。
在一实施例中,所述姿态变化量包括所述云台的yaw轴和pitch轴的欧拉角变化量。
在一实施例中,所述对所述姿态变化量进行抖动衰减,得到目标姿态变化量,包括:
获取目标滤波器;
将所述姿态变化量输入至所述目标滤波器进行抖动衰减处理,得到目标姿态变化量。
在一实施例中,所述目标滤波器包括陷波滤波器和带阻滤波器中的任一项。
在一实施例中,所述获取目标滤波器,包括:
获取预设滤波器,并将所述预设滤波器作为所述目标滤波器。
在一实施例中,所述获取目标滤波器,包括:
获取预设滤波器,并获取用户的抖动频率,其中,所述抖动频率是根据用户的步频确定的;
根据所述抖动频率,调整所述预设滤波器的频率和衰减比例,得到所述目标滤波器。
在一实施例中,所述根据所述抖动频率,调整所述预设滤波器的频率和衰减比例,包括:
根据所述抖动频率,确定目标频率和目标衰减比例;
将所述预设滤波器的频率调整为所述目标频率,并将所述预设滤波器的衰减比例调整为所述目标衰减比例。
在一实施例中,所述目标姿态变化量包括所述云台的yaw轴的欧拉角变化量;所述根据所述目标姿态变化量,调整所述云台的姿态,包括:
根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角;
根据所述期望欧拉角控制所述云台的yaw轴转动,以调整所述云台的姿态。
在一实施例中,所述根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角,包括:
根据预设比例系数和所述云台的yaw轴的欧拉角变化量,确定所述云台的 yaw轴的目标欧拉角变化量;
获取所述云台的yaw轴的历史期望欧拉角,并根据所述历史期望欧拉角和目标欧拉角变化量,确定所述云台的yaw轴的期望欧拉角。
在一实施例中,所述历史期望欧拉角为所述云台的yaw轴在上一时刻的期望欧拉角,所述上一时刻与当前时刻间隔预设时间;所述根据所述历史期望欧拉角和目标欧拉角变化量,确定所述云台的yaw轴的期望欧拉角,包括:
确定所述目标欧拉角变化量与所述预设时间的乘积;
确定所述乘积与所述历史期望欧拉角之和,并将所述乘积与所述历史期望欧拉角之和作为所述云台的yaw轴在当前时刻的期望欧拉角。
在一实施例中,所述获取所述手柄部的当前姿态,包括:
获取所述云台的当前姿态和所述云台的各轴电机的关节角数据;
根据所述云台的当前姿态和所述关节角数据,确定所述手柄部的当前姿态。
在一实施例中,所述手柄部安装有惯性测量单元;所述获取所述手柄部的当前姿态,包括:
通过所述惯性测量单元获取所述手柄部的当前姿态。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的手持云台的具体工作过程,可以参考前述云台控制方法实施例中的对应过程,在此不再赘述。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的云台控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的手持云台的内部存储单元,例如所述手持云台的硬盘或内存。所述计算机可读存储介质也可以是所述手持云台的外部存储设备,例如所述手持云台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这 些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种云台控制方法,应用于手持云台,其特征在于,所述手持云台包括手柄部和设于所述手柄部上的云台,所述云台用于搭载拍摄装置,所述方法包括:
    获取所述手柄部的当前姿态和处于跟随模式的所述云台的历史期望姿态;
    根据所述当前姿态和历史期望姿态,确定所述云台的姿态变化量;
    对所述姿态变化量进行抖动衰减,得到目标姿态变化量;
    根据所述目标姿态变化量,调整所述云台的姿态。
  2. 根据权利要求1所述的云台控制方法,其特征在于,所述历史期望姿态为所述云台在上一时刻的期望姿态,所述姿态变化量包括所述云台的yaw轴的欧拉角变化量。
  3. 根据权利要求2所述的云台控制方法,其特征在于,所述姿态变化量包括所述云台的yaw轴和pitch轴的欧拉角变化量。
  4. 根据权利要求1所述的云台控制方法,其特征在于,所述对所述姿态变化量进行抖动衰减,得到目标姿态变化量,包括:
    获取目标滤波器;
    将所述姿态变化量输入至所述目标滤波器进行抖动衰减处理,得到目标姿态变化量。
  5. 根据权利要求4所述的云台控制方法,其特征在于,所述目标滤波器包括陷波滤波器和带阻滤波器中的任一项。
  6. 根据权利要求4所述的云台控制方法,其特征在于,所述获取目标滤波器,包括:
    获取预设滤波器,并将所述预设滤波器作为所述目标滤波器。
  7. 根据权利要求4所述的云台控制方法,其特征在于,所述获取目标滤波器,包括:
    获取预设滤波器,并获取用户的抖动频率,其中,所述抖动频率是根据用户的步频确定的;
    根据所述抖动频率,调整所述预设滤波器的频率和衰减比例,得到所述目标滤波器。
  8. 根据权利要求7所述的云台控制方法,其特征在于,所述根据所述抖动 频率,调整所述预设滤波器的频率和衰减比例,包括:
    根据所述抖动频率,确定目标频率和目标衰减比例;
    将所述预设滤波器的频率调整为所述目标频率,并将所述预设滤波器的衰减比例调整为所述目标衰减比例。
  9. 根据权利要求1至8中任一项所述的云台控制方法,其特征在于,所述目标姿态变化量包括所述云台的yaw轴的欧拉角变化量;所述根据所述目标姿态变化量,调整所述云台的姿态,包括:
    根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角;
    根据所述期望欧拉角控制所述云台的yaw轴转动,以调整所述云台的姿态。
  10. 根据权利要求9所述的云台控制方法,其特征在于,所述根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角,包括:
    根据预设比例系数和所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的目标欧拉角变化量;
    获取所述云台的yaw轴的历史期望欧拉角,并根据所述历史期望欧拉角和目标欧拉角变化量,确定所述云台的yaw轴的期望欧拉角。
  11. 根据权利要求10所述的云台控制方法,其特征在于,所述历史期望欧拉角为所述云台的yaw轴在上一时刻的期望欧拉角,所述上一时刻与当前时刻间隔预设时间;所述根据所述历史期望欧拉角和目标欧拉角变化量,确定所述云台的yaw轴的期望欧拉角,包括:
    确定所述目标欧拉角变化量与所述预设时间的乘积;
    确定所述乘积与所述历史期望欧拉角之和,并将所述乘积与所述历史期望欧拉角之和作为所述云台的yaw轴在当前时刻的期望欧拉角。
  12. 根据权利要求1至8中任一项所述的云台控制方法,其特征在于,所述获取所述手柄部的当前姿态,包括:
    获取所述云台的当前姿态和所述云台的各轴电机的关节角数据;
    根据所述云台的当前姿态和所述关节角数据,确定所述手柄部的当前姿态。
  13. 根据权利要求1至8中任一项所述的云台控制方法,其特征在于,所述手柄部安装有惯性测量单元;所述获取所述手柄部的当前姿态,包括:
    通过所述惯性测量单元获取所述手柄部的当前姿态。
  14. 一种手持云台,其特征在于,所述手持云台包括存储器和处理器,所述手持云台包括手柄部和设于所述手柄部上的云台,所述云台用于搭载拍摄装 置;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取所述手柄部的当前姿态和处于跟随模式的所述云台的历史期望姿态;
    根据所述当前姿态和历史期望姿态,确定所述云台的姿态变化量;
    对所述姿态变化量进行抖动衰减,得到目标姿态变化量;
    根据所述目标姿态变化量,调整所述云台的姿态。
  15. 根据权利要求14所述的手持云台,其特征在于,所述历史期望姿态为所述云台在上一时刻的期望姿态,所述姿态变化量包括所述云台的yaw轴的欧拉角变化量。
  16. 根据权利要求15所述的手持云台,其特征在于,所述姿态变化量包括所述云台的yaw轴和pitch轴的欧拉角变化量。
  17. 根据权利要求14所述的手持云台,其特征在于,所述对所述姿态变化量进行抖动衰减,得到目标姿态变化量,包括:
    获取目标滤波器;
    将所述姿态变化量输入至所述目标滤波器进行抖动衰减处理,得到目标姿态变化量。
  18. 根据权利要求17所述的手持云台,其特征在于,所述目标滤波器包括陷波滤波器和带阻滤波器中的任一项。
  19. 根据权利要求17所述的手持云台,其特征在于,所述获取目标滤波器,包括:
    获取预设滤波器,并将所述预设滤波器作为所述目标滤波器。
  20. 根据权利要求17所述的手持云台,其特征在于,所述获取目标滤波器,包括:
    获取预设滤波器,并获取用户的抖动频率,其中,所述抖动频率是根据用户的步频确定的;
    根据所述抖动频率,调整所述预设滤波器的频率和衰减比例,得到所述目标滤波器。
  21. 根据权利要求20所述的手持云台,其特征在于,所述根据所述抖动频率,调整所述预设滤波器的频率和衰减比例,包括:
    根据所述抖动频率,确定目标频率和目标衰减比例;
    将所述预设滤波器的频率调整为所述目标频率,并将所述预设滤波器的衰减比例调整为所述目标衰减比例。
  22. 根据权利要求14至21中任一项所述的手持云台,其特征在于,所述目标姿态变化量包括所述云台的yaw轴的欧拉角变化量;所述根据所述目标姿态变化量,调整所述云台的姿态,包括:
    根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角;
    根据所述期望欧拉角控制所述云台的yaw轴转动,以调整所述云台的姿态。
  23. 根据权利要求22所述的手持云台,其特征在于,所述根据所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的期望欧拉角,包括:
    根据预设比例系数和所述云台的yaw轴的欧拉角变化量,确定所述云台的yaw轴的目标欧拉角变化量;
    获取所述云台的yaw轴的历史期望欧拉角,并根据所述历史期望欧拉角和目标欧拉角变化量,确定所述云台的yaw轴的期望欧拉角。
  24. 根据权利要求23所述的手持云台,其特征在于,所述历史期望欧拉角为所述云台的yaw轴在上一时刻的期望欧拉角,所述上一时刻与当前时刻间隔预设时间;所述根据所述历史期望欧拉角和目标欧拉角变化量,确定所述云台的yaw轴的期望欧拉角,包括:
    确定所述目标欧拉角变化量与所述预设时间的乘积;
    确定所述乘积与所述历史期望欧拉角之和,并将所述乘积与所述历史期望欧拉角之和作为所述云台的yaw轴在当前时刻的期望欧拉角。
  25. 根据权利要求14至21中任一项所述的手持云台,其特征在于,所述获取所述手柄部的当前姿态,包括:
    获取所述云台的当前姿态和所述云台的各轴电机的关节角数据;
    根据所述云台的当前姿态和所述关节角数据,确定所述手柄部的当前姿态。
  26. 根据权利要求14至21中任一项所述的手持云台,其特征在于,所述手柄部安装有惯性测量单元;所述获取所述手柄部的当前姿态,包括:
    通过所述惯性测量单元获取所述手柄部的当前姿态。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至13中任一项所述的云台控制方法的步骤。
PCT/CN2020/094984 2020-06-08 2020-06-08 云台控制方法、手持云台及计算机可读存储介质 WO2021248288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/094984 WO2021248288A1 (zh) 2020-06-08 2020-06-08 云台控制方法、手持云台及计算机可读存储介质
CN202080006508.6A CN113168193A (zh) 2020-06-08 2020-06-08 云台控制方法、手持云台及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094984 WO2021248288A1 (zh) 2020-06-08 2020-06-08 云台控制方法、手持云台及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021248288A1 true WO2021248288A1 (zh) 2021-12-16

Family

ID=76879295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094984 WO2021248288A1 (zh) 2020-06-08 2020-06-08 云台控制方法、手持云台及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113168193A (zh)
WO (1) WO2021248288A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198607A1 (zh) * 2021-03-26 2022-09-29 深圳市大疆创新科技有限公司 手持云台的控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259703A (zh) * 2017-12-31 2018-07-06 深圳市秦墨科技有限公司 一种云台的跟拍控制方法、装置及云台
CN108513651A (zh) * 2017-06-27 2018-09-07 深圳市大疆灵眸科技有限公司 手持云台装置及其控制方法与计算机可读存储介质
CN110770492A (zh) * 2018-08-31 2020-02-07 深圳市大疆创新科技有限公司 手持云台的控制方法、手持云台及图像获取设备
CN110785601A (zh) * 2018-11-15 2020-02-11 深圳市大疆创新科技有限公司 手持云台的控制方法和手持云台
CN111279113A (zh) * 2019-01-04 2020-06-12 深圳市大疆创新科技有限公司 手持云台控制方法和手持云台

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095210A1 (zh) * 2017-11-16 2019-05-23 深圳市大疆创新科技有限公司 智能眼镜及其控制云台的方法、云台、控制方法和无人机
CN110431507A (zh) * 2018-05-31 2019-11-08 深圳市大疆创新科技有限公司 一种云台控制方法及云台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513651A (zh) * 2017-06-27 2018-09-07 深圳市大疆灵眸科技有限公司 手持云台装置及其控制方法与计算机可读存储介质
CN108259703A (zh) * 2017-12-31 2018-07-06 深圳市秦墨科技有限公司 一种云台的跟拍控制方法、装置及云台
CN110770492A (zh) * 2018-08-31 2020-02-07 深圳市大疆创新科技有限公司 手持云台的控制方法、手持云台及图像获取设备
CN110785601A (zh) * 2018-11-15 2020-02-11 深圳市大疆创新科技有限公司 手持云台的控制方法和手持云台
CN111279113A (zh) * 2019-01-04 2020-06-12 深圳市大疆创新科技有限公司 手持云台控制方法和手持云台

Also Published As

Publication number Publication date
CN113168193A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
US10458812B2 (en) Sensor output configuration
US8282219B2 (en) Projector and control method
US20170041545A1 (en) Systems and methods for stabilizing images
US11184548B2 (en) Imaging device, and method and apparatus for controlling the imaging device
WO2021026789A1 (zh) 基于手持云台的拍摄方法、手持云台及存储介质
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2020258164A1 (zh) 对目标进行跟踪的方法、装置及计算机存储介质
TWI705707B (zh) 攝影裝置及攝影裝置的操作方法
WO2021143296A1 (zh) 控制镜头运动的方法、装置、设备及存储介质
WO2020140295A1 (zh) 手持云台控制方法和手持云台
US10911675B2 (en) Method for providing shake correction, signal processing device performing the method, and imaging device including the signal processing device
WO2021248287A1 (zh) 云台控制方法、手持云台及计算机可读存储介质
WO2022061537A1 (zh) 控制方法、手持云台、系统及计算机可读存储介质
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
WO2021026752A1 (zh) 云台控制方法、云台及计算机可读存储介质
WO2019000239A1 (zh) 手持云台装置及其控制方法与计算机可读存储介质
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2021248288A1 (zh) 云台控制方法、手持云台及计算机可读存储介质
WO2021134644A1 (zh) 云台的控制方法和云台
JP2011188345A (ja) 携帯電子機器
WO2015196917A1 (en) Photographing control methods, photographing control apparatuses, and photographing devices
WO2021026784A1 (zh) 跟随拍摄、云台控制方法、拍摄装置、手持云台和拍摄系统
WO2023179440A1 (zh) 拍摄装置的控制方法、控制装置、拍摄装置和电子设备
WO2022061540A1 (zh) 控制方法、调焦控制方法、装置、手持云台及存储介质
CN113965641B (zh) 音量调节方法及装置、终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940321

Country of ref document: EP

Kind code of ref document: A1