WO2021246844A1 - 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 - Google Patents

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2021246844A1
WO2021246844A1 PCT/KR2021/007095 KR2021007095W WO2021246844A1 WO 2021246844 A1 WO2021246844 A1 WO 2021246844A1 KR 2021007095 W KR2021007095 W KR 2021007095W WO 2021246844 A1 WO2021246844 A1 WO 2021246844A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning reference
spatial filter
various embodiments
information
Prior art date
Application number
PCT/KR2021/007095
Other languages
English (en)
French (fr)
Inventor
이정수
차현수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/924,276 priority Critical patent/US20230188288A1/en
Priority to KR1020227039142A priority patent/KR20230020957A/ko
Publication of WO2021246844A1 publication Critical patent/WO2021246844A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • Various embodiments are directed to a wireless communication system.
  • Massive MTC Machine Type Communications
  • a communication system design considering a service/UE sensitive to reliability and latency is being considered.
  • Various embodiments may provide a method for transmitting and receiving a signal in a wireless communication system and an apparatus supporting the same.
  • the base station When the terminal transmits reception beam index information used for PRS reception, the base station depends on whether the information of the reception beam index indicates index information regarding the absolute spatial beam direction or information indicating the physical beam index information in the terminal. / In the server, the procedure for determining the location and situation of the terminal may be different. Various embodiments provide for positioning measurement procedures in the terminal and the base station so that the base station/server can efficiently utilize the location information provided by the terminal.
  • a method performed by a terminal in a wireless communication system may be provided.
  • the method includes: receiving first configuration information including resource allocation information on a supplementary uplink (SUL); receiving second configuration information including resource allocation information on non-SUL; and transmitting a positioning sounding reference signal (SRS) through the SUL based on satisfaction of any one of predefined conditions.
  • SUL supplementary uplink
  • SRS positioning sounding reference signal
  • the positioning SRS may be transmitted through the non-SUL on the basis that all of the predefined conditions are not satisfied.
  • the predefined condition may include receiving indication information indicating transmission of a positioning SRS through the SUL.
  • the method includes: receiving a downlink reference signal (DL RS); and detecting the strength of the reference signal.
  • DL RS downlink reference signal
  • the predefined condition includes that the strength of the DL RS is less than a predefined threshold
  • the reference signal is a synchronization signal block (SSB) or a channel state information reference signal (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • the method may further include: receiving information on a number of repeated transmissions and a transmission period related to the positioning SRS.
  • the first configuration information and the second configuration information may include information about frequency hopping for the positioning SRS.
  • the method may further include: receiving information for setting a compensation value that compensates power for SUL switching.
  • the transmission power of the positioning SRS transmitted through the SUL is (i) a path loss value based on a downlink reference signal (DL RS) measured in a non-SUL, and (ii) ) may be determined based on the compensation value.
  • DL RS downlink reference signal
  • a transceiver in a terminal operating in a wireless communication system, a transceiver (transceiver); and one or more processors connected to the transceiver.
  • the one or more processors are configured to: receive first configuration information including resource allocation information on a supplementary uplink (SUL); receiving second configuration information including resource allocation information on non-SUL; and a positioning sounding reference signal (SRS) may be configured to be transmitted through the SUL based on satisfaction of any one of a predefined condition.
  • SUL supplementary uplink
  • SRS positioning sounding reference signal
  • the one or more processors may be configured to communicate with one or more of: a mobile terminal, a network, and an autonomous vehicle other than a vehicle in which the terminal is included.
  • a method performed by a base station in a wireless communication system comprising: transmitting first configuration information including resource allocation information on a supplementary uplink (SUL); transmit second configuration information including resource allocation information on non-SUL; and receiving a positioning sounding reference signal (SRS) through the SUL based on satisfaction of any one of predefined conditions.
  • SUL supplementary uplink
  • SRS positioning sounding reference signal
  • a base station operating in a wireless communication system comprising: a transceiver; and one or more processors coupled to the transceiver, wherein the one or more processors are configured to: transmit first configuration information including resource allocation information on a supplementary uplink (SUL); transmit second configuration information including resource allocation information on non-SUL; And it may be configured to receive a positioning sounding reference signal (SRS) through the SUL based on satisfaction of any one of a predefined condition.
  • SRS positioning sounding reference signal
  • an apparatus operating in a wireless communication system comprising: one or more processors; and one or more memories operatively coupled to the one or more processors and storing one or more instructions that cause the one or more processors to perform an operation based on being executed.
  • the operation comprises: providing resource allocation information on a supplementary uplink (SUL).
  • the method includes: receiving at least one positioning reference signal; and transmitting location information generated based on the at least one positioning reference signal, wherein the location information includes (i) at least one reception beam index of a reception beam used for reception of the at least one positioning reference signal. and (ii) at least one spatial filter used to receive the at least one positioning reference signal.
  • the method comprises: receiving at t1 one positioning reference signal of the at least one positioning reference signal; and receiving the one positioning reference signal at t2.
  • the t1 and t2 refer to timing in the time domain
  • the at least one reception beam index includes a first reception beam index used for reception of the one positioning reference signal at t1 and the A second reception beam index used for reception of the one positioning reference signal at t2 may be included.
  • the method includes: a first spatial filter used for reception of the one positioning reference signal at t1 and a second spatial filter used for reception of the one positioning reference signal at t2 are the same It may further include determining whether or not
  • the location information may include information on whether the first spatial filter and the second spatial filter are the same.
  • the location information includes an index corresponding to each of the first spatial filter and the second spatial filter, an azimuth difference between the first spatial filter and the second spatial filter, and the first spatial filter and an offset value between the second spatial filter and the second spatial filter.
  • the at least one reception beam index may be allocated to correspond to the at least one spatial filter 1:1.
  • the at least one positioning reference signal includes a first positioning reference signal transmitted through a first transmission beam of the base station and a second positioning reference signal transmitted through a transmission beam adjacent to the first transmission beam of the base station. a reference signal;
  • the first positioning reference signal may be received through a first reception beam
  • the second positioning reference signal may be received through a second reception beam
  • the method may further include: determining whether an angle difference between the first reception beam and the second reception beam is equal to or greater than a predefined value.
  • the at least one reception beam index may be allocated based on an absolute beam direction or a physical beam direction of a reception beam used for reception of the at least one positioning reference signal.
  • a transceiver in a terminal operating in a wireless communication system, a transceiver (transceiver); and one or more processors connected to the transceiver.
  • the one or more processors are configured to: receive at least one positioning reference signal; And it may be configured to transmit the location information generated based on the at least one positioning reference signal.
  • the location information includes (i) at least one reception beam index of a reception beam used for reception of the at least one positioning reference signal and (ii) used for reception of the at least one positioning reference signal. at least one spatial filter.
  • the one or more processors may be configured to communicate with one or more of: a mobile terminal, a network, and an autonomous vehicle other than a vehicle included in the terminal.
  • a method performed by a base station in a wireless communication system comprising: transmitting at least one positioning reference signal; and receiving location information generated based on the at least one positioning reference signal, wherein the location information includes (i) at least one reception beam index of a reception beam used for reception of the at least one positioning reference signal. and (ii) at least one spatial filter used to receive the at least one positioning reference signal.
  • a base station operating in a wireless communication system, comprising: a transceiver; and one or more processors connected to the transceiver.
  • the one or more processors are configured to: transmit at least one positioning reference signal; and position information generated based on the at least one positioning reference signal, wherein the position information includes (i) at least one reception beam index of a reception beam used for reception of the at least one positioning reference signal, and (ii) at least one spatial filter used to receive the at least one positioning reference signal.
  • an apparatus operating in a wireless communication system comprising: one or more processors; and one or more memories operatively coupled to the one or more processors and storing one or more instructions that cause the one or more processors to perform an operation based on being executed.
  • the operation comprises: receiving at least one positioning reference signal; and transmitting location information generated based on the at least one positioning reference signal, wherein the location information includes (i) at least one reception beam index of a reception beam used for reception of the at least one positioning reference signal. and (ii) at least one spatial filter used to receive the at least one positioning reference signal.
  • a non-transitory processor-readable medium storing one or more instructions to cause one or more processors to perform an operation, comprising: The operation includes: receiving at least one positioning reference signal; and transmitting location information generated based on the at least one positioning reference signal, wherein the location information includes (i) at least one reception beam index of a reception beam used for reception of the at least one positioning reference signal. and (ii) at least one spatial filter used to receive the at least one positioning reference signal.
  • a signal may be effectively transmitted and received in a wireless communication system.
  • positioning may be effectively performed in a wireless communication system.
  • the terminal additionally transmitting beam information related to the beam index reported by the terminal, the beam information of the terminal may be more efficiently utilized.
  • 1 is a diagram for explaining physical channels that can be used in various embodiments and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments are applicable.
  • FIG. 3 is a diagram illustrating a resource grid based on an NR system to which various embodiments are applicable.
  • FIG. 4 is a diagram illustrating a self-contained slot structure to which various embodiments are applicable.
  • FIG. 5 is a diagram illustrating an example of a scheduling method in case of carrier aggregation to which various embodiments are applicable.
  • FIG. 6 is a flowchart illustrating an example of a UL BM process using SRS to which various embodiments are applicable.
  • FIG. 7 is a diagram illustrating an example of an uplink transmission power control procedure to which various embodiments are applicable.
  • FIG. 8 is a diagram illustrating an example of a positioning protocol configuration for measuring the location of a terminal to which various embodiments are applicable.
  • FIG. 9 is a diagram illustrating an example of the architecture of a system for measuring the location of a terminal to which various embodiments are applicable.
  • FIG. 10 is a diagram illustrating an example of a procedure for measuring a location of a terminal to which various embodiments are applicable.
  • FIG. 11 is a diagram illustrating an example of a protocol layer for supporting LTE positioning protocol (LPP) message transmission to which various embodiments are applicable.
  • LTP LTE positioning protocol
  • NRPPa NR positioning protocol a
  • PDU protocol data unit
  • OTDA observed time difference of arrival
  • FIG. 14 is a diagram illustrating an example of a Multi RTT (round trip time) positioning method to which various embodiments are applicable.
  • 15 is a diagram briefly illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • 16 is a diagram briefly illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • FIG. 17 is a diagram illustrating a case in which a positioning reference signal (PRS) reception beam index (Rx beam index) is allocated according to various embodiments.
  • PRS positioning reference signal
  • FIG. 18 is a diagram briefly illustrating a method of operating a terminal and a network node according to various embodiments of the present disclosure
  • FIG. 19 is a diagram briefly illustrating a method of operating a terminal according to various embodiments.
  • FIG. 20 is a diagram briefly illustrating a method of operating a network node according to various embodiments of the present disclosure
  • 21 is a diagram illustrating an apparatus in which various embodiments may be implemented.
  • 22 illustrates a communication system applied to various embodiments.
  • 23 illustrates a wireless device applied to various embodiments.
  • FIG. 24 shows another example of a wireless device applied to various embodiments.
  • 25 illustrates a portable device applied to various embodiments.
  • 26 illustrates a vehicle or an autonomous driving vehicle applied to various embodiments.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP 3rd Generation Partnership Project
  • Long Term Evolution is a part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced)/LTE-A pro is an evolved version of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • a terminal receives information from a base station through a downlink (DL) and transmits information to the base station through an uplink (UL).
  • Information transmitted and received between the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • 1 is a diagram for explaining physical channels that can be used in various embodiments and a signal transmission method using the same.
  • a terminal newly entering a cell performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the terminal receives a synchronization signal block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the UE synchronizes with the base station based on PSS/SSS and acquires information such as cell identity.
  • the UE may acquire intra-cell broadcast information based on the PBCH.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to information on the physical downlink control channel to receive more specific system information. can be obtained (S12).
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure to complete access to the base station (S13 to S16).
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and RAR for the preamble through a physical downlink control channel and a corresponding physical downlink shared channel ( Random Access Response) may be received (S14).
  • the UE transmits a Physical Uplink Shared Channel (PUSCH) using the scheduling information in the RAR (S15), and a contention resolution procedure such as reception of a physical downlink control channel signal and a corresponding physical downlink shared channel signal. ) can be performed (S16).
  • PRACH physical random access channel
  • PUSCH Physical Uplink Shared Channel
  • S13/S15 are performed as one operation in which the terminal performs transmission (eg, transmission operation of message A including a PRACH preamble and/or PUSCH), and S14/S16 is one operation in which the base station performs transmission operation (eg, transmission operation of message B including RAR and/or collision resolution information).
  • the UE After performing the procedure as described above, the UE performs reception of a physical downlink control channel signal and/or a shared physical downlink channel signal (S17) and a shared physical uplink channel (PUSCH) as a general up/downlink signal transmission procedure thereafter.
  • Transmission (S18) of an Uplink Shared Channel) signal and/or a Physical Uplink Control Channel (PUCCH) signal may be performed.
  • UCI uplink control information
  • UCI includes HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) information, etc. .
  • UCI is generally transmitted periodically through PUCCH, but may be transmitted through PUSCH when control information and data are to be transmitted simultaneously.
  • the UE may aperiodically transmit UCI through PUSCH.
  • FIG. 2 is a diagram illustrating a radio frame structure based on an NR system to which various embodiments are applicable.
  • the NR system can support multiple Numerology.
  • the numerology may be defined by a subcarrier spacing (SCS) and a cyclic prefix (CP) overhead.
  • the plurality of subcarrier spacings may be derived by scaling the basic subcarrier spacing by an integer N (or ⁇ ).
  • N or ⁇
  • the numerology used can be selected independently of the frequency band of the cell.
  • various frame structures according to a number of numerologies may be supported.
  • OFDM orthogonal frequency division multiplexing
  • NR supports multiple numerologies (eg, subcarrier spacing) to support various 5G services. For example, when the subcarrier spacing is 15kHz, it supports a wide area in traditional cellular bands, and when the subcarrier spacing is 30kHz/60kHz, dense-urban, lower latency latency) and wider carrier bandwidth, and when subcarrier spacing is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • numerologies eg, subcarrier spacing
  • the NR frequency band is defined by two types of frequency ranges, FR1 and FR2.
  • FR1 is a sub 6GHz range
  • FR2 is a millimeter wave (mmWave) in the above 6GHz range.
  • mmWave millimeter wave
  • Table 2 illustrates the definition of the NR frequency band.
  • T c 1/( ⁇ f max * N f ), which is a basic time unit for NR.
  • ⁇ f max 480*10 3 Hz
  • N f 4096, which is a value related to the size of a fast Fourier transform (FFT) or an inverse fast Fourier transform (IFFT).
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the slots are in ascending order within the subframe n ⁇ s ⁇ ⁇ 0,... , N slot, ⁇ subframe -1 ⁇ , in ascending order within the radio frame, n ⁇ s,f ⁇ ⁇ 0,... , N slot, ⁇ frame -1 ⁇ .
  • One slot consists of N ⁇ symb consecutive OFDM symbols, and N ⁇ symb depends on a cyclic prefix (CP).
  • the start of slot n ⁇ s in a subframe is temporally aligned with the start of OFDM symbol n ⁇ s * N ⁇ symb in the same subframe.
  • Table 3 shows the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the normal CP is used
  • Table 4 shows the number of symbols per slot according to the SCS when the extended CSP is used. Indicates the number of symbols, the number of slots per frame, and the number of slots per subframe.
  • N slot symb indicates the number of symbols in a slot
  • N frame indicates the number of slots in a frame
  • ⁇ slot indicates the number of slots in a frame
  • N subframe indicates the number of slots in a subframe
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • the (absolute time) interval of a time resource eg, SF, slot, or TTI
  • TU Time Unit
  • one subframe may include four slots.
  • a mini-slot may contain 2, 4, or 7 symbols or may contain more or fewer symbols.
  • an antenna port In relation to a physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. can be considered.
  • a resource grid In relation to a physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. can be considered.
  • the physical resources that can be considered in the NR system will be described in detail.
  • an antenna port is defined such that a channel through which a symbol on an antenna port is conveyed can be inferred from a channel through which another symbol on the same antenna port is conveyed.
  • the two antenna ports are QCL (quasi co-located or quasi It can be said that there is a co-location relationship.
  • the wide range characteristics include delay spread, Doppler spread, frequency shift, average received power, received timing, average delay, It includes one or more of spatial (spatial) reception (Rx) parameters.
  • the spatial Rx parameter refers to a spatial (reception) channel characteristic parameter such as an angle of arrival.
  • FIG 3 shows an example of a resource grid to which various embodiments are applicable.
  • a resource grid of OFDM symbols is defined, where is indicated by RRC signaling from the BS. may be different between uplink and downlink as well as SCS (subcarrier spacing) configuration ⁇ .
  • Each element of the resource grid for the SCS configuration ⁇ and antenna port p is referred to as a resource element, and is uniquely identified by an index pair (k,l), where k is an index in the frequency domain. and l refers to the symbol position in the frequency domain relative to the reference point.
  • the resource element (k,l) for the SCS configuration ⁇ and the antenna port p is a physical resource and a complex value. corresponds to A resource block (RB) in the frequency domain It is defined as consecutive (consecutive) subcarriers.
  • the UE may not be able to support the wide bandwidth to be supported in the NR system at once, the UE may be configured to operate in a part of the cell's frequency bandwidth (bandwidth part (BWP)).
  • BWP bandwidth part
  • FIG. 4 is a diagram illustrating a self-contained slot structure to which various embodiments are applicable.
  • the independent slot structure is a slot structure in which a downlink control channel, downlink/uplink data, and an uplink control channel can all be included in one slot.
  • the base station and the UE may sequentially perform DL transmission and UL transmission within one slot, and may transmit/receive DL data and transmit/receive UL ACK/NACK in the single slot.
  • this structure reduces the time taken until data retransmission when a data transmission error occurs, thereby minimizing the delay of final data transmission.
  • a type gap of a certain length is required for the base station and the UE to switch from the transmission mode to the reception mode or to switch from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the independent slot structure may be set as a guard period (GP).
  • the independent slot structure includes both the DL control region and the UL control region has been described, but the control regions may be selectively included in the independent slot structure.
  • the independent slot structure may include a case including both a DL control region and a UL control region as shown in FIG. A4 as well as a case including only a DL control region or a UL control region.
  • one slot may be configured in the order of DL control region / DL data region / UL control region / UL data region, or may be configured in the order of UL control region / UL data region / DL control region / DL data region.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • the PUCCH may be transmitted in the UL control region, and the PUSCH may be transmitted in the UL data region.
  • the base station transmits a related signal to the terminal through a downlink channel to be described later, and the terminal receives the related signal from the base station through a downlink channel to be described later.
  • PDSCH Physical Downlink Shared Channel
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are available. applies.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers (Layer mapping). Each layer is mapped to a resource together with a demodulation reference signal (DMRS), is generated as an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • the PDCCH carries downlink control information (DCI) and the QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, or 16 CCEs (Control Channel Elements) according to an Aggregation Level (AL).
  • One CCE consists of six REGs (Resource Element Groups).
  • One REG is defined as one OFDM symbol and one (P)RB.
  • CORESET is defined as a set of REGs with a given pneumonology (eg, SCS, CP length, etc.). A plurality of OCRESETs for one UE may overlap in the time/frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling. Specifically, the number of RBs and the number of symbols (maximum 3) constituting CORESET may be set by higher layer signaling.
  • the UE obtains DCI transmitted through the PDCCH by performing decoding (aka, blind decoding) on the set of PDCCH candidates.
  • a set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire DCI by monitoring PDCCH candidates in one or more search space sets configured by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more search space sets, and each search space set is associated with one CORESET setting.
  • One search space set is determined based on the following parameters.
  • the terminal transmits a related signal to the base station through an uplink channel to be described later, and the base station receives the related signal from the terminal through an uplink channel to be described later.
  • PUSCH Physical Uplink Shared Channel
  • PUSCH carries uplink data (eg, UL-shared channel transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform (waveform)
  • CP-OFDM Cyclic Prefix - Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing
  • the UE transmits the PUSCH by applying transform precoding.
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE transmits the CP-OFDM PUSCH may be transmitted based on a waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by a UL grant in DCI, or based on higher layer (eg, RRC) signaling (and/or Layer 1 (L1) signaling (eg, PDCCH)) semi-statically. Can be scheduled (configured grant).
  • PUSCH transmission may be performed on a codebook-based or non-codebook-based basis.
  • PUCCH Physical Uplink Control Channel
  • PUCCH carries uplink control information, HARQ-ACK and/or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • SR scheduling request
  • CA Carrier Aggregation
  • 5 is a diagram illustrating an example of a scheduling method in case of carrier aggregation to which various embodiments are applicable. 5 illustrates scheduling when multi-cells are merged.
  • PCell Primary Component Carrier
  • a primary frequency at which the terminal performs an initial connection establishment procedure or initiates a connection re-establishment procedure eg, Primary Component Carrier, PCC.
  • DC Dual Connectivity
  • MCG Master Cell Group
  • SCell In the case of a terminal in which carrier aggregation is configured, a cell that provides additional radio resources in addition to a special cell.
  • - PSCell Primary SCG Cell/Primary Second Cell: In the case of DC, when performing RRC reconfiguration and synchronization process, SCG (Secondary Cell Group) cell in which the UE performs random access.
  • SCG Secondary Cell Group
  • the special cell represents the PCell of MCG or PSCell of SCG. Otherwise (ie, non-DC), the special cell represents the PCell.
  • - Serving Cell indicates a cell configured to the UE in the RRC_CONNECTED state.
  • CA/DC When CA/DC is not configured, only one serving cell (ie, PCell) exists.
  • the serving cell When CA/DC is configured, the serving cell indicates a special cell(s) and a cell set including all SCells.
  • the BM process is a set of BS (or transmission and reception point (TRP)) and/or UE beams that can be used for downlink (DL) and uplink (UL) transmission/reception ) as processes for acquiring and maintaining, the following processes and terms may be included.
  • TRP transmission and reception point
  • UE beams that can be used for downlink (DL) and uplink (UL) transmission/reception ) as processes for acquiring and maintaining, the following processes and terms may be included.
  • the BM process is a set of BS (or transmission and reception point (TRP)) and/or UE beams that can be used for downlink (DL) and uplink (UL) transmission/reception ) as processes for acquiring and maintaining, the following processes and terms may be included.
  • TRP transmission and reception point
  • UE beams that can be used for downlink (DL) and uplink (UL) transmission/reception ) as processes for acquiring and maintaining, the following processes and terms may be included.
  • Beam measurement the operation of measuring the characteristics of the received beamforming signal by the BS or UE.
  • Beam determination the operation of the BS or UE to select its own transmission beam (Tx beam) / reception beam (Rx beam).
  • Beam report an operation in which the UE reports information of a beamformed signal based on beam measurement.
  • the BM process can be divided into (1) a DL BM process using SSB or CSI-RS, and (2) a UL BM process using a sounding reference signal (SRS).
  • each BM process may include Tx beam sweeping to determine a Tx beam and Rx beam sweeping to determine an Rx beam.
  • beam reciprocity (or beam correspondence) between Tx beams and Rx beams may or may not be established according to UE implementation. If the correlation between the Tx beam and the Rx beam is established in both the BS and the UE, the UL beam pair may be aligned through the DL beam pair. However, when the correlation between the Tx beam and the Rx beam is not established in either of the BS and the UE, a UL beam pair determination process is required separately from the DL beam pair determination.
  • the BS may use the UL BM procedure for DL Tx beam determination without the UE requesting a report of a preferred beam.
  • UL BM may be performed through beamformed UL SRS transmission, and whether the UL BM of the SRS resource set is applied is set by an RRC parameter in (RRC parameter) usage. If the purpose is set to 'BeamManagement (BM)', only one SRS resource may be transmitted to each of a plurality of SRS resource sets at a given time instant.
  • RRC parameter RRC parameter
  • the UE may receive one or more sounding reference signal (SRS) resource sets configured by (RRC parameter) SRS-ResourceSet (via RRC signaling, etc.).
  • SRS sounding reference signal
  • RRC parameter SRS-ResourceSet
  • K K is a natural number
  • SRS_capability the maximum value of K is indicated by SRS_capability.
  • the UL BM process may be divided into Tx beam sweeping of the UE and Rx beam sweeping of the BS.
  • FIG. 6 is a flowchart illustrating an example of a UL BM process using SRS to which various embodiments are applicable.
  • the UE receives the RRC signaling (eg, SRS-Config IE) including the (RRC parameter) usage parameter set to 'beam management' from the BS (1010).
  • SRS-Config IE is used for SRS transmission configuration.
  • the SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
  • the UE determines Tx beamforming for the SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE (1020).
  • the SRS-SpatialRelation Info is set for each SRS resource and indicates whether to apply the same beamforming as that used in SSB, CSI-RS, or SRS for each SRS resource.
  • SRS-SpatialRelationInfo is configured in the SRS resource, the same beamforming as that used in SSB, CSI-RS or SRS is applied and transmitted. However, if SRS-SpatialRelationInfo is not configured in the SRS resource, the UE arbitrarily determines Tx beamforming and transmits the SRS through the determined Tx beamforming (1030).
  • the UE transmits the SRS by applying the same spatial domain transmission filter as the spatial domain Rx filter used for reception of the SSB/PBCH (or generated from the filter) send; or
  • the UE transmits the SRS by applying the same spatial domain transmission filter used for reception of the CSI-RS;
  • the UE may or may not receive feedback for the SRS from the BS as in the following three cases (1040).
  • Spatial_Relation_Info When Spatial_Relation_Info is configured for all SRS resources in the SRS resource set, the UE transmits the SRS in the beam indicated by the BS. For example, when Spatial_Relation_Info all indicate the same SSB, CRI, or SRI, the UE repeatedly transmits the SRS in the same beam.
  • Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set.
  • the UE can freely transmit while changing SRS beamforming.
  • Spatial_Relation_Info may be configured only for some SRS resources in the SRS resource set. In this case, for the configured SRS resource, the SRS is transmitted with the indicated beam, and for the SRS resource for which Spatial_Relation_Info is not configured, the UE may arbitrarily apply Tx beamforming to transmit.
  • the transmission power control method is a requirement (eg, SNR (Signal-to-Noise Ratio), BER (Bit Error Ratio), BLER (Block Error Ratio)) in the base station (eg, gNB, eNB, etc.) etc.) can be applied to satisfy
  • the power control as described above may be performed by an open-loop power control method and a closed-loop power control method.
  • the open-loop power control method is a method of controlling transmission power without feedback from a transmitting device (eg, a base station, etc.) to a receiving device (eg, a terminal, etc.) and/or without feedback from the receiving device to the transmitting device.
  • a transmitting device eg, a base station, etc.
  • a receiving device eg, a terminal, etc.
  • the terminal may receive a specific channel/signal from the base station, and estimate the strength of the received power using the received. Thereafter, the terminal may control the transmission power using the estimated strength of the received power.
  • the closed-loop power control method refers to a method of controlling transmit power based on feedback from the transmitting device to the receiving device and/or feedback from the receiving device to the transmitting device.
  • the base station receives a specific channel/signal from the terminal, and based on the power level, SNR, BER, BLER, etc. measured by the received specific channel/signal, the optimal power level of the terminal to decide
  • the base station transmits information (ie, feedback) on the determined optimal power level to the terminal through a control channel, etc., and the corresponding terminal may control transmission power using the feedback provided by the base station.
  • a transmission occasion for SRS (ie, transmission time unit) (i) is a slot index (slot index) (n_s) in a frame of a system frame number (SFN), a slot in It may be defined by the first symbol (S), the number of consecutive symbols (L), and the like.
  • the terminal may calculate a linear power value of the transmission power determined by Equation A below. Thereafter, the terminal can control the transmission power by equally dividing the calculated linear power value for the antenna port(s) configured for SRS.
  • the UE performs SRS transmission in the activated UL BWP (b) of the carrier (f) of the serving cell (c) using the SRS power control adjustment state based on the index l.
  • the UE transmits SRS transmission power at the SRS transmission opportunity (i) based on Equation 7 below. (dBm) can be determined.
  • q_s is an open-loop power control parameter (eg, P_o, alpha ), measuring path loss (PL), e.g. ) for DL RS resources, etc.), and may be set for each SRS resource set.
  • Index l indicates an index for a closed-loop power control process, and the corresponding index may be set independently of the PUSCH or set in association with the PUSCH.
  • the maximum number of closed-loop power control processes for SRS may be one.
  • P_o is a parameter broadcast as part of system information, and may indicate a target reception power at the receiving end.
  • the corresponding P_o value may be set in consideration of the throughput of the UE, the capacity of the cell, noise and/or interference, and the like.
  • alpha e.g.
  • alpha may represent a rate at which compensation for path loss is performed. Alpha may be set to a value from 0 to 1, and full pathloss compensation or fractional pathloss compensation may be performed according to the set value. In this case, the alpha value may be set in consideration of interference between terminals and/or data rate. Also, may indicate the configured terminal transmission power.
  • the configured terminal transmission power may be interpreted as 'configured maximum UE output power' defined in 3GPP TS 38.101-1 and/or TS38.101-2.
  • the subcarrier spacing ( ) may indicate the bandwidth of SRS resource allocation expressed as the number of resource blocks (RBs) for SRS transmission opportunities based on the .
  • related to the SRS power control adjustment state may be set or indicated based on the TPC command field and/or RRC parameter (eg, srs-PowerControlAdjustmentStates, etc.) of the DCI (eg, DCI format 2_3, etc.) received or detected by the UE.
  • Resources for SRS transmission may be applied as a reference for a base station and/or a terminal to determine a beam, a panel, and/or a spatial domain transmission filter, and the like. , and/or in units of spatial domain transmission filters.
  • parameters and/or information for SRS power control may be individually (ie, independently) set for each BWP.
  • corresponding parameters and/or information may be set or indicated through higher layer signaling (eg, RRC signaling, MAC-CE, etc.) and/or DCI.
  • parameters and/or information for SRS power control may be transmitted through RRC signaling SRS-Config, SRS-TPC-CommandConfig, or the like.
  • RRC signaling SRS-Config SRS-TPC-CommandConfig
  • An example of the configuration of SRS-Config and SRS-TPC-CommandConfig may be shown in Table 9 below, and for more detailed definitions of each parameter, refer to 3GPP TS Rel.16 38.331, etc.
  • the UE may determine or calculate the SRS transmission power through the method as described above, and may transmit the SRS using the determined or calculated SRS transmission power.
  • FIG. 7 is a diagram illustrating an example of an uplink transmission power control procedure to which various embodiments are applicable.
  • a user equipment may receive a parameter and/or information related to transmission power (Tx power) from a base station ( 1005 ).
  • the UE may receive the corresponding parameter and/or information through higher layer signaling (eg, RRC signaling, MAC-CE, etc.).
  • higher layer signaling eg, RRC signaling, MAC-CE, etc.
  • the UE may receive the above-described parameters and/or information related to transmission power control.
  • the terminal may receive a transmission power control (TPC) command related to transmission power from the base station (1010).
  • TPC transmission power control
  • the UE may receive the corresponding TPC command through lower layer signaling (eg, DCI).
  • DCI lower layer signaling
  • the UE transmits information about the TPC command to be used for determining the power control adjustment state, etc. as described above through the TPC command field of a predefined DCI format.
  • the corresponding step may be omitted.
  • the terminal may determine (or calculate) the transmission power for uplink transmission based on the parameter, information, and/or the TPC command received from the base station (1015).
  • the UE may determine PUSCH transmission power, PUCCH transmission power, SRS transmission power, and/or PRACH transmission power. And/or, when two or more uplink channels and/or signals need to be transmitted to be overlapped, such as in a situation such as carrier aggregation, the terminal considers priority order, etc. for uplink transmission Power can also be determined.
  • the terminal may transmit one or more uplink channels and/or signals (eg, PUSCH, PUCCH, SRS, PRACH, etc.) to the base station based on the determined (or calculated) transmission power.
  • uplink channels and/or signals eg, PUSCH, PUCCH, SRS, PRACH, etc.
  • Positioning may mean determining the geographic location and/or speed of the UE by measuring a radio signal.
  • the location information may be requested by a client (eg, an application) associated with the UE and reported to the client.
  • the location information may be included in the core network or may be requested by a client connected to the core network.
  • the location information may be reported in a standard format such as cell-based or geographic coordinates, and in this case, the estimation error value for the location and speed of the UE and/or the positioning method used for positioning. We can report together.
  • FIG. 8 is a diagram illustrating an example of a positioning protocol configuration for measuring a location of a terminal to which various embodiments are applicable.
  • the LPP is a location server (E) to position a target device (UE and/or SET) using position-related measurements obtained from one or more reference sources.
  • -SMLC and/or SLP and/or LMF position-related measurements obtained from one or more reference sources.
  • LPP allows the target device and the location server to exchange measurement and/or location information based on signal A and/or signal B.
  • NRPPa may be used for information exchange between a reference source (ACCESS NODE and/or BS and/or TP and/or NG-RAN node) and a location server.
  • a reference source ACCESS NODE and/or BS and/or TP and/or NG-RAN node
  • Functions provided by the NRPPa protocol may include:
  • This function allows location information to be exchanged between the reference source and the LMF for E-CID positioning purposes.
  • This function allows information to be exchanged between the reference source and the LMF for OTDOA positioning purposes.
  • a positioning reference signal For positioning, a positioning reference signal (PRS) may be used.
  • the PRS is a reference signal used for estimating the location of the UE.
  • a positioning frequency layer may include one or more PRS resource sets, and each of the one or more PRS resource sets may include one or more PRS resources.
  • c(i) may be a pseudo-random sequence.
  • a pseudo-random sequence generator may be initialized by Equation 3 below.
  • DL PRS sequence ID (downlink PRS sequence ID) may be given by a higher layer parameter (eg, DL-PRS-SequenceId ).
  • l may be an OFDM symbol in a slot to which a sequence is mapped.
  • Sequence of PRS silver can be scaled by It may be mapped to a resource element (RE). More specifically, it can be based on Equation 4 below. may mean RE (k,l) for antenna port p and SCS configuration ⁇ .
  • - RE is included in the RB (resource block) occupied by the DL PRS resource configured for the UE;
  • Symbol l is not used by any SS/PBCH block used from the serving cell for DL PRS transmitted from the serving cell or is not indicated by SSB-positionInBurst for DL PRS transmitted from a non-serving cell (the symbol l is not used by any SS/PBCH block used by the serving cell for downlink PRS transmitted from the serving cell or indicated by the higher-layer parameter SSB-positionInBurst for downlink PRS transmitted from a non-serving cell);
  • DL-PRS-ResourceSymbolOffset is the first symbol of the DL PRS in the slot, and may be given by the higher layer parameter DL-PRS-ResourceSymbolOffset. Size of DL PRS resource in time domain may be given by the higher layer parameter DL-PRS-NumSymbols. Comb size (comb size) may be given by the upper layer parameter transmissionComb. Wow combination of is ⁇ 2, 2 ⁇ , ⁇ 4, 2 ⁇ , ⁇ 6, 2 ⁇ , ⁇ 12, 2 ⁇ , ⁇ 4, 4 ⁇ , ⁇ 12, 4 ⁇ , ⁇ 6, 6 ⁇ , ⁇ 12, 6 ⁇ and/ or ⁇ 12, 12 ⁇ .
  • RE offset can be given by combOffset.
  • frequency offset is as in Table 6 can be a function of
  • Point A may be given by a higher layer parameter dl-PRS-PointA-r16.
  • the DL PRS resource in the DL PRS resource set may be transmitted in slots and frames satisfying Equation 5 below.
  • slot offset may be given by the higher layer parameter DL-PRS-ResourceSetSlotOffset.
  • DL PRS Resource Slot Offset may be given by the higher layer parameter DL-PRS-ResourceSlotOffset.
  • Cycle may be given by the higher layer parameter DL-PRS-Periodicity.
  • repetition factor may be given by the higher layer parameter DL-PRS-ResourceRepetitionFactor.
  • muting repetition factor may be given by the higher layer parameter DL-PRS-MutingBitRepetitionFactor.
  • time gap may be given by the higher layer parameter DL-PRS-ResourceTimeGap.
  • FIG. 9 is a diagram illustrating an example of the architecture of a system for measuring the location of a terminal to which various embodiments are applicable.
  • AMF Core Access and Mobility Management Function
  • the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF.
  • the AMF may transmit the processing result received from the LMF to the other entity.
  • New generation evolved-NB and gNB are network elements of NG-RAN that can provide a measurement result for location tracking, and can measure a radio signal for a target UE and deliver the result to the LMF.
  • the ng-eNB may control some TPs (Transmission Points) such as remote radio heads or PRS-only TPs supporting a PRS-based beacon system for E-UTRA.
  • TPs Transmission Points
  • the LMF is connected to an Enhanced Serving Mobile Location Center (E-SMLC), and the E-SMLC may enable the LMF to access the E-UTRAN.
  • E-SMLC uses a downlink measurement obtained by the target UE through a signal transmitted from the LMF eNB and/or PRS-dedicated TPs in the E-UTRAN to OTDOA, which is one of the positioning methods of the E-UTRAN. (Observed Time Difference Of Arrival) can be supported.
  • the LMF may be connected to a SUPL Location Platform (SLP).
  • the LMF may support and manage different location services for target UEs.
  • the LMF may interact with the serving ng-eNB or serving gNB for the target UE to obtain the UE's location measurement.
  • the LMF is a Location Service (LCS) client type, required Quality of Service (QoS), UE positioning capabilities, gNB positioning capabilities and ng-eNB positioning capabilities based on a positioning method based on and may apply this positioning method to the serving gNB and/or the serving ng-eNB.
  • the LMF may determine a position estimate for the target UE and additional information such as accuracy of the position estimate and velocity.
  • the SLP is a SUPL (Secure User Plane Location) entity responsible for positioning through a user plane.
  • the UE may measure the location of the UE by using a downlink reference signal transmitted from the NG-RAN and the E-UTRAN.
  • the downlink reference signal transmitted from the NG-RAN and the E-UTRAN to the UE may include an SS/PBCH block, CSI-RS and/or PRS, etc., and the location of the UE using any downlink reference signal.
  • Whether to measure the LMF/E-SMLC/ng-eNB/E-UTRAN may depend on a setting.
  • RAT utilizing different Global Navigation Satellite System (GNSS), Terrestrial Beacon System (TBS), Wireless local area network (WLAN) access point, Bluetooth beacon, and a sensor (eg, barometric pressure sensor) embedded in the UE, etc.
  • GNSS Global Navigation Satellite System
  • TBS Terrestrial Beacon System
  • WLAN Wireless local area network
  • Bluetooth beacon and a sensor (eg, barometric pressure sensor) embedded in the UE, etc.
  • the UE may include the LCS application, and may access the LCS application through communication with a network to which the UE is connected or other applications included in the UE.
  • the LCS application may include measurement and calculation functions necessary to determine the location of the UE.
  • the UE may include an independent positioning function such as a Global Positioning System (GPS), and may report the location of the UE independently of NG-RAN transmission.
  • GPS Global Positioning System
  • the independently acquired positioning information may be utilized as auxiliary information of positioning information acquired from the network.
  • FIG. 10 is a diagram illustrating an example of a procedure for measuring a location of a terminal to which various embodiments are applicable.
  • CM-IDLE Connection Management - IDLE
  • the AMF When the UE is in the CM-IDLE (Connection Management - IDLE) state, when the AMF receives a location service request, the AMF establishes a signaling connection with the UE, and provides a network trigger service to allocate a specific serving gNB or ng-eNB you can request This operation process is omitted in FIG. 10 . That is, in FIG. 10 , it may be assumed that the UE is in a connected mode. However, the signaling connection may be released during the positioning process by the NG-RAN for reasons such as signaling and data inactivity.
  • a 5GC entity such as a GMLC may request a location service for measuring the location of a target UE as a serving AMF.
  • the serving AMF may determine that the location service is necessary for measuring the location of the target UE. For example, to measure the location of the UE for an emergency call (emergency call), the serving AMF may determine to directly perform a location service.
  • the AMF sends a location service request to the LMF, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB; You can start with the serving gNB.
  • the LMF may request the NG-RAN for location-related information related to one or more UEs, and may indicate the type of location information required and the associated QoS.
  • the NG-RAN may transmit location-related information to the LMF to the LMF.
  • the method for determining the location by the request is E-CID
  • the NG-RAN may transmit additional location-related information to the LMF through one or more NRPPa messages.
  • 'location-related information' may mean all values used for location calculation, such as actual location estimation information and wireless measurement or location measurement.
  • the protocol used in step 3a may be an NRPPa protocol, which will be described later.
  • the LMF may initiate location procedures for downlink positioning with the UE.
  • the LMF may send location assistance data to the UE, or obtain a location estimate or location measurement.
  • a capability transfer process may be performed in step 3b.
  • the LMF may request capability information from the UE, and the UE may transmit capability information to the LMF.
  • the capability information refers to various aspects of a specific location measurement method, such as information on a location measurement method that can be supported by LFM or UE, and various types of assistance data for A-GNSS. ) and information on common features that are not limited to any one location measurement method, such as the ability to handle multiple LPP transactions, and the like. Meanwhile, in some cases, even if the LMF does not request capability information from the UE, the UE may provide capability information to the LMF.
  • a location assistance data transfer (Assistance data transfer) process may be performed.
  • the UE may request location assistance data from the LMF, and may indicate required specific location assistance data to the LMF.
  • the LMF may transmit location assistance data corresponding thereto to the UE, and additionally, may transmit additional assistance data to the UE through one or more additional LPP messages.
  • the location assistance data transmitted from the LMF to the UE may be transmitted through a unicast method, and in some cases, without the UE requesting the assistance data from the LMF, the LMF sends the location assistance data and / Alternatively, additional assistance data may be transmitted to the UE.
  • a location information transfer process may be performed in step 3b.
  • the LMF may request the UE for location-related information related to the UE, and may indicate the type of location information required and the related QoS. Then, in response to the request, the UE may transmit the location-related information to the LMF to the LMF. In this case, the UE may additionally transmit additional location-related information to the LMF through one or more LPP messages.
  • 'location-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement, representatively from a plurality of NG-RANs and/or E-UTRANs.
  • RSTD reference signal time difference
  • step 3b is performed in the order of a capability transfer process, an assistance data transfer process, and a location information transfer process, but is not limited to this order.
  • step 3b is not limited to a specific order in order to improve the flexibility of location measurement.
  • the UE may request location assistance data at any time to perform a location measurement request already requested by the LMF.
  • the LMF may request location information such as a location measurement value or a location estimate at any time.
  • capability information may be transmitted to the LMF at any time.
  • an Error message may be transmitted/received, and an Abort message may be transmitted/received for stopping location measurement.
  • the protocol used in step 3b may be an LPP protocol, which will be described later.
  • step 3b may be additionally performed after step 3a is performed, or may be performed instead of step 3a.
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether the location estimation of the UE was successful and the location estimate of the UE.
  • the AMF may transmit a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 10 is initiated by step 1b, the AMF is a location related to an emergency call, etc.
  • a location service response may be used.
  • LTP LTE Positioning Protocol
  • LPP LTE positioning protocol
  • AMF Access and Mobility Management Function
  • LPP is a target device (eg, UE in the control plane or SUPL Enabled Terminal (SET) in the user plane) and a location server (eg, LMF in the control plane or SLP in the user plane). ) can be terminated.
  • the LPP message may be transmitted in the form of a transparent PDU through an intermediate network interface using an appropriate protocol such as NGAP through the NG-C interface, NAS/RRC through the LTE-Uu and NR-Uu interfaces.
  • the LPP protocol enables positioning for NR and LTE using multiple positioning methods.
  • the target device and the location server may exchange capability information, exchange auxiliary data for positioning, and/or exchange location information.
  • error information exchange and/or an instruction to stop the LPP procedure may be performed through the LPP message.
  • NRPPa NR Positioning Protocol A
  • NRPPa NR positioning protocol a
  • PDU protocol data unit
  • NRPPa may be used for information exchange between the NG-RAN node and the LMF. Specifically, NRPPa may exchange E-CID for measurement transmitted from ng-eNB to LMF, data for supporting OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method, and the like. The AMF may route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface even if there is no information on the associated NRPPa transaction.
  • the procedures of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for transmitting information about a specific UE (eg, location measurement information, etc.)
  • the second type is information applicable to the NG-RAN node and related TPs ( For example, it is a non-UE associated procedure for transmitting gNB/ng-eNG/TP timing information, etc.).
  • the two types of procedures may be supported independently or may be supported simultaneously.
  • the positioning methods supported by NG-RAN include GNSS (Global Navigation Satellite System), OTDOA, E-CID (enhanced cell ID), barometric pressure sensor positioning, WLAN positioning, Bluetooth positioning and TBS (terrestrial beacon system), UTDOA (Uplink Time). Difference of Arrival) and the like.
  • GNSS Global Navigation Satellite System
  • OTDOA enhanced cell ID
  • E-CID enhanced cell ID
  • barometric pressure sensor positioning WLAN positioning
  • Bluetooth positioning and TBS terrestrial beacon system
  • UTDOA Uplink Time). Difference of Arrival
  • any one positioning method may be used to measure the location of the UE, but two or more positioning methods may be used to measure the location of the UE.
  • OTDA observed time difference of arrival
  • the OTDOA positioning method uses the measurement timing of downlink signals received by the UE from multiple TPs including an eNB, an ng-eNB, and a PRS dedicated TP.
  • the UE measures the timing of the received downlink signals by using the location assistance data received from the location server.
  • the location of the UE may be determined based on the measurement result and the geographic coordinates of the neighboring TPs.
  • a UE connected to the gNB may request a measurement gap for OTDOA measurement from the TP. If the UE does not recognize the SFN for at least one TP in the OTDOA assistance data, the UE requests a measurement gap for performing Reference Signal Time Difference (RSTD) measurement.
  • RSTD Reference Signal Time Difference
  • OTDOA reference cell reference cell An autonomous gap can be used to obtain an SFN of .
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of two subframes respectively received from the reference cell and the measurement cell. That is, it may be calculated based on the relative time difference between the start time of the subframe of the closest reference cell to the start time of the subframe received from the measurement cell. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • TP 1, TP 2, and TP 3 measure the TOA for each of TP 1, TP 2, and TP 3, and based on the three TOAs, the RSTD for TP 1-TP 2, RSTD for TP 2-TP 3, and TP 3-TP 1
  • a geometric hyperbola can be determined based on this, and a point where the hyperbola intersects can be estimated as the location of the UE.
  • the estimated location of the UE may be known as a specific range according to the measurement uncertainty.
  • the RSTD for the two TPs may be calculated based on Equation (6).
  • c is the speed of light, is the (unknown) coordinates of the target UE, is the coordinates of the (known) TP, may be the coordinates of the reference TP (or other TP).
  • RTDs Real Time Differences
  • n i and n 1 may represent values related to UE TOA measurement errors.
  • E-CID Enhanced Cell ID
  • the location of the UE may be measured through geographic information of the UE's serving ng-eNB, serving gNB and/or serving cell.
  • geographic information of the serving ng-eNB, the serving gNB, and/or the serving cell may be obtained through paging, registration, or the like.
  • the E-CID positioning method may use additional UE measurement and/or NG-RAN radio resources for improving the UE position estimate in addition to the CID positioning method.
  • some of the same measurement methods as the measurement control system of the RRC protocol may be used, but in general, additional measurement is not performed only for the location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided, and the UE does not expect an additional measurement operation only for location measurement to be requested.
  • the UE may report a measurement value obtained through generally measurable measurement methods.
  • the serving gNB may implement the E-CID positioning method using the E-UTRA measurement provided from the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA reception-transmission time difference Rx-Tx Time difference
  • GERAN/WLAN RSSI Reference Signal Strength
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • ng-eNB reception-transmission time difference Rx-Tx Time difference
  • Timing Advance T ADV
  • Angle of Arrival AoA
  • T ADV may be divided into Type 1 and Type 2 as follows.
  • T ADV Type 1 (ng-eNB reception-transmission time difference) + (UE E-UTRA reception-transmission time difference)
  • T ADV Type 2 ng-eNB receive-transmit time difference
  • AoA may be used to measure the direction of the UE.
  • AoA may be defined as an estimated angle for the position of the UE in a counterclockwise direction from the base station/TP. In this case, the geographic reference direction may be north.
  • the base station/TP may use an uplink signal such as a sounding reference signal (SRS) and/or a demodulation reference signal (DMRS) for AoA measurement.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the larger the antenna array arrangement the higher the AoA measurement accuracy.
  • signals received from adjacent antenna elements may have a constant phase-rotate.
  • the DL AoD positioning method is based on RSRP of PRS transmitted from a plurality of TPs on the terminal side.
  • the terminal measures the RSRP of the PRSs based on the assistance data delivered from the positioning server, and measures the location of the terminal based on the geographical coordinates and the relative time difference of a plurality of TRPs. based) calculation method and the method calculated by the base station based on information transmitted from the terminal (UE-assistance).
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • the location of the UE may be estimated through the difference in arrival time with another cell (or base station/TP) by using the serving cell as a reference cell.
  • the E-SMLC may indicate a serving cell of the target UE to instruct the target UE to transmit SRS.
  • the E-SMLC may provide configuration such as whether the SRS is periodic/aperiodic, bandwidth, and frequency/group/sequence hopping.
  • Multi-cell RTT Multi-cell RTT
  • FIG. 14 is a diagram illustrating an example of a Multi RTT (round trip time) positioning method to which various embodiments are applicable.
  • an RTT process in which TOA measurement is performed by an initiating device and a responding device, and the responding device provides TOA measurement to an initiating device for RTT measurement (calculation) is exemplified.
  • the initiating device may be a TRP and/or a terminal
  • the responding device may be a terminal and/or a TRP.
  • the initiating device may transmit an RTT measurement request, and the responding device may receive it.
  • the initiating device may transmit an RTT measurement signal at t 0 , and the responding device may acquire a TOA measurement t 1 .
  • the responding device may transmit an RTT measurement signal at t 2 , and the initiating device may acquire a TOA measurement t 3 .
  • the responding device may transmit information on [t 2 -t 1 ], and the initiating device may receive the information and calculate the RTT based on Equation (7).
  • Corresponding information may be transmitted/received based on a separate signal, or may be transmitted/received by being included in the RTT measurement signal of 1305.
  • the RTT may correspond to double-range measurement between two devices. Positioning estimation may be performed from the corresponding information. Based on the measured RTT, d 1 , d 2 , d 3 can be determined , and the circumferences centered on each BS 1 , BS 2 , BS 3 (or TRP) and with each d 1 , d 2 , d 3 as the radius. The target device location can be determined by the intersection of
  • a sounding reference signal (SRS) for positioning may be used.
  • An SRS-Config information element may be used to configure SRS transmission.
  • SRS resource (list of) and/or SRS resource set (list of) may be defined, and each resource set may define a set of SRS resources.
  • SRS-Config may include SRS configuration information (for other purposes) and SRS configuration information for positioning separately.
  • the configuration information of the SRS resource set for SRS (for other purposes) eg, SRS-ResourceSet
  • the configuration information of the SRS resource set for SRS for positioning eg, SRS-PosResourceSet
  • SRS resource configuration information for SRS eg, SRS-ResourceSet
  • SRS resource configuration information for SRS for positioning eg, SRS-PosResource
  • the SRS resource set for positioning may include one or more SRS resources for positioning.
  • Information for setting the SRS resource set for positioning includes information on ID (identifier) that is assigned/allocated/corresponding to the SRS resource set for positioning, and is assigned/allocated/corresponding to each of one or more SRS resources for included positioning. ID may be included.
  • information for configuring an SRS resource for positioning may include an ID assigned/allocated/corresponding to a UL resource.
  • an SRS resource/SRS resource set for each positioning may be identified based on each assigned/allocated/corresponding ID.
  • the SRS may be set to periodic/semi-persistent/aperiodic.
  • Aperiodic SRS may be triggered from DCI.
  • DCI may include an SRS request field.
  • SRS request field may refer to Table 7.
  • srs-TPC-PDCCH-Group is a parameter that sets the triggering type for SRS transmission to typeA or typeB
  • aperiodicSRS-ResourceTriggerList is DCI "code points" at which the UE must transmit SRS according to the SRS resource set configuration.
  • aperiodicSRS-ResourceTrigger is a parameter to set the DCI "code point” at which SRS should be transmitted according to the SRS resource set setting
  • resourceType is a time domain action (time) of the SRS resource setting. domain behavior) (periodic/semi-static/aperiodic).
  • Sections 1 to 2 described above may be applied to various embodiments described below.
  • operations, functions, terms, etc. that are not defined in various embodiments described below may be performed and described based on the contents of the first to second sections.
  • OTDOA observed time difference of arrival
  • the SRS may be used for UL channel estimation using multi input multi output (MIMO) and for positioning measurement.
  • the SRS may include a normal SRS and a positioning SRS.
  • the positioning SRS may be understood as a UL RS configured for and/or used for positioning of the terminal.
  • the normal SRS is in contrast to the positioning SRS, and is configured for UL channel estimation and/or used for UL channel estimation (and/or configured for UL channel estimation and positioning and/or It may be understood as UL RS (used for UL channel estimation and positioning).
  • the positioning SRS may also be referred to as SRS for positioning (SRS) or the like.
  • SRS SRS for positioning
  • the normal SRS may also be referred to as legacy SRS, MIMO SRS, SRS for MIMO (SRS for MIMO), or the like.
  • legacy SRS legacy SRS
  • MIMO SRS SRS for MIMO
  • terms such as normal SRS, legacy SRS, MIMO SRS, and SRS for MIMO may be used interchangeably and may be understood to have the same meaning.
  • the normal SRS and the positioning SRS may be separately set/indicated.
  • the normal SRS and the positioning SRS may be set/indicated from different IEs (information elements) of a higher layer.
  • the normal SRS may be configured based on the SRS-resource.
  • the positioning SRS may be configured based on SRS-PosResource.
  • - SS/PBCH synchronization signal/physical broadcast channel
  • a base station may be understood as an umbrella term including a remote radio head (RRH), an eNB, a gNB, a TP, a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • eNB eNB
  • gNB eNB
  • TP TP
  • RP reception point
  • a greater than/greater than A may be replaced with A greater than/greater than A.
  • less than/less than B may be replaced with less than/below B.
  • 15 is a diagram briefly illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • the location server and/or the LMF may transmit configuration information to the terminal, and the terminal may receive it.
  • the location server and/or the LMF may transmit reference setting information to the TRP, and the TRP may receive it.
  • the TRP may transmit reference setting information to the terminal, and the terminal may receive it.
  • operation 1301 according to various embodiments may be omitted.
  • operations 1303 and 1305 according to various embodiments may be omitted.
  • operation 1301 according to various embodiments may be performed.
  • operations 1301 according to various embodiments and operations 1303 and 1305 according to various embodiments may be optional.
  • the TRP may transmit a signal related to configuration information to the terminal, and the terminal may receive it.
  • the signal related to the configuration information may be a signal for positioning the terminal.
  • the terminal may transmit a signal related to positioning to the TRP, and the TRP may receive it.
  • the TRP may transmit a location related signal to the location server and/or the LMF, and the location server and/or the LMF may receive it.
  • the terminal may transmit a location-related signal to the location server and/or the LMF, and the location server and/or the LMF may receive it.
  • operations 1309 and 1311 according to various embodiments may be omitted.
  • operation 1313 may be omitted. In this case, operations 1311 and 1313 according to various embodiments may be performed.
  • operations 1309 and 1311 according to various embodiments and operations 1313 according to various embodiments may be optional.
  • a signal related to positioning may be obtained based on setting information and/or a signal related to setting information.
  • 16 is a diagram briefly illustrating a method of operating a terminal, a TRP, a location server, and/or an LMF according to various embodiments of the present disclosure.
  • the terminal may receive configuration information.
  • the terminal may receive a signal related to configuration information.
  • the terminal may transmit location-related information.
  • the TRP may receive configuration information from the location server and/or the LMF, and may transmit it to the terminal.
  • the TRP may transmit a signal related to configuration information.
  • the TRP may receive information related to positioning, and may transmit it to the location server and/or the LMF.
  • the location server and/or the LMF may transmit configuration information.
  • the location server and/or the LMF may receive location-related information.
  • the above-described configuration information, reference configuration (information), reference configuration (information), reference configuration (information), location server and / or LMF and / or TRP terminal in the description of various embodiments below It is understood that it is related to one or more pieces of information transmitted/set to and/or the corresponding reference configuration (information), reference configuration (information), reference configuration (information), location server and/or LMF and/or TRP are transmitted/ It may be understood as one or more pieces of information to set.
  • the signal related to the above-described positioning is understood as a signal related to one or more of information reported by the terminal in the description of various embodiments below and/or includes one or more of information reported by the terminal It can be understood as a signal that
  • a base station, a gNB, a cell, etc. may be replaced with a TRP, a TP, or any device that plays the same role.
  • the location server may be replaced with an LMF or any device that performs the same role.
  • the UE measures reference signal received power (RSRP) for resources corresponding to the configured positioning reference signal (PRS) resource set for each configured TRP, and a time stamp (including TRP ID, # of SFN) to the base station / server , # of slot), timing measurement quality, and Rx beam index information are transmitted.
  • RSRP reference signal received power
  • PRS positioning reference signal
  • a time stamp including TRP ID, # of SFN
  • TRP ID, # of SFN time stamp
  • the positioning methods supported by the standard include GNSS / OTDOA / Enhanced Cell ID (E-CID) / barometric pressure sensor / WLAN / Bluetooth (Bluetooth) / TBS (Terrestrial Beacon System) / Motion sensor sensor) / multi-RTT (round trip time) / DL AoD / DL TDoA / UL TDoA / UL AOA.
  • Common (Common) positioning procedure positioning procedure
  • the UE measures the resource sets of the PRS for measuring each RSRP, the RSRP result measured for the resources under the RSRP, and the reception time of the PRS transmitted from different TRPs (transmission and reception points)
  • TRPs transmission and reception points
  • the base station / server calculates the location and determines the situation of the terminal Forecasting and coping procedures may vary. For example, if the reception beam indexes used by the terminal when receiving the PRS resource #0 at time points T1 and T2 are all #0, the base station considers that the terminal has received it using the same spatial filter or the physical reception beam is Although different, it can be interpreted that the absolute directionality is the same in T1 and T2. That is, although the Rx spatial beam in T1 and the Rx spatial beam in T2 are different due to the movement of the UE, the absolute directions may be the same.
  • Various embodiments deal with a beam index related to PRS reception among location information transmitted from a terminal to a base station/server.
  • FIG. 17 is a diagram illustrating a case in which a positioning reference signal (PRS) reception beam index (Rx beam index) is allocated according to various embodiments.
  • PRS positioning reference signal
  • an index is allocated based on the absolute beam direction used for PRS reception in the terminal.
  • the absolute Rx beam index does not change. That is, even if the Rx spatial filter is changed at time points T1 and T2 in the UE, the UE transmits the corresponding Rx beam index based on the absolute direction when transmitting location information.
  • FIG. 17-B shows a method of transmitting an index based on the Rx spatial filter used at the present time in the terminal. Even if the absolute direction indicates the same direction, index information about the Rx beam used for reception is actually transmitted.
  • Various embodiments of a procedure for measuring location information in a base station/server from the above two viewpoints and actions that can be taken for additional measurement performance improvement in the terminal will be described below.
  • the Rx beam index is linked to the absolute direction and a fixed value is always used. That is, even if the Rx spatial filter used to receive the PRS resource #0 at the time T1 and the Rx spatial filter used to receive the PRS resource #0 at the time T2 are different due to the movement/transition of the terminal, if the absolute direction is the same In this case, the UE transmits the same Rx beam index. In this case, when the terminal simply transmits the Rx beam index, the base station receives the same PRS at the current time and the past time, and it is difficult to check whether the spatial filter actually used for reception is changed or maintained.
  • Method 1 for supplementing this is required.
  • Method 2 that can improve the performance of the location measurement in the base station by using the information by allowing the terminal to transmit additional information is needed do.
  • Method 1 Transmission with or without change of Rx spatial beam at the terminal side
  • the spatial filter may be set differently.
  • the UE transmits information on whether the spatial filter used for PRS reception at the previous time point is changed. For example, the terminal allocates an additional 1 bit to the location information information to inform whether the Rx spatial filter is maintained/changed. That is, when the information of the corresponding 1 bit is '0', it indicates that there is no change in the corresponding Rx spatial filter. will do The base station recognizes that the location of the terminal has been changed based on the corresponding information.
  • Method 2 Transmit index information and azimuth difference about spatial filter
  • the base station cannot know about the spatial filter used for reception in the actual PRS method.
  • the base station can predict only the presence or absence of a change in the location of the terminal, but utilization may be limited in terms of beam management.
  • the UE lists the candidate groups of spatial filters that it can support, allocates index information to each, and transmits the index information of the corresponding spatial filter when transmitting location information. The base station can use it for beam management based on the received index of the corresponding spatial filter.
  • the difference in the azimuth of the spatial filter used for PRS reception at time t compared to the beam direction by the spatial filter used for PRS reception by the UE at time t-1, or offset with respect to the azimuth angle relative to the south or north of the station at each time point value can be sent.
  • the azimuth angle is calculated by the terminal itself by performing the azimuth angle calculation while performing digital and analog beamforming in the terminal. Since there may be signaling overhead due to the transmission of the corresponding azimuth information, it is transmitted within the value of [0 Xo], but the X value is automatically set to the value when the spatial filter is maximally separated, or it may be designated as an RRC or LPP message. have.
  • the UE may transmit the azimuth information of the spatial filter used for PRS reception at the present time to the LPP/base station.
  • the base station uses the corresponding azimuth to calculate the location of the terminal.
  • Case 2 is a case in which a spatial beam filter of a terminal and an Rx beam transmitted for location information form a 1:1 relationship as shown in FIG. 17-B. That is, unlike Case 1, even when reception is performed in the same direction, when the spatial filter is different, the Rx beam index transmitted to the location information is changed. In terms of location measurement, the movement and state change of the terminal can be very important factors in terms of accuracy, which also affects the change of the spatial filter for reception and transmission.
  • the UE received the corresponding PRS using Rx spatial filter #1 at time T1, but at time T2, due to the movement of the UE,
  • Rx spatial filter #2 it may be necessary to determine and transmit the corresponding PRS through Rx spatial filter #2 due to excellent reception performance.
  • the UE transmits the Rx spatial filter #2 as the PRS Rx beam index through location information, but the azimuth with the previous and designated RX spatial filter may be transmitted as described in method 2 of case 1.
  • the reason why the UE applies the corresponding Rx spatial filter may be transmitted through location information.
  • the base station finds the location of the terminal based on the received RSRP difference at time T1 and time T2, and the base station predicts the movement path of the terminal based on the additionally transmitted azimuth to increase the accuracy of location measurement.
  • the beam direction described in the various embodiments can be interpreted as a reference direction (boresight direction), and the described information is used for calculating the location of the terminal in the base station / server, or PRS resource setting or the transmission beam of the base station / TRP It may be helpful for identification of a line of sight (LoS)/non line of sight (Nlos) link between the reception beams of the terminal.
  • LoS line of sight
  • Nlos non line of sight
  • the UE includes and transmits the RSRP result measured for each PRS resource(s) in a measurement report based on the PRS configuration received from the base station/server.
  • the Tx/Rx beam associated with the best RSRP will be a LoS link.
  • the base station may be used to determine whether a line of sight (LoS)/non line of sight (Nlos) link continues through the corresponding value.
  • t1 and t2 can be expressed as T1 and T2.
  • the beam used for reception of each of the plurality of PRSs can also be transmitted through an absolute value or a difference in values.
  • the criterion for the difference in values may be a reception beam associated with PRS resource(s) having a maximum RSRP, and the corresponding value may be designated as an absolute value.
  • the base station transmits transmission beams used for PRS #0, PRS #1, and PRS #2 transmission using adjacent beams, respectively.
  • index values of reception beams used for reception of PRS #0, PRS #1, and PRS #2 on the terminal side are index #0, index #1, and index #2, respectively.
  • An angle difference between Rx beam index #0 and Rx beam index #1 is referred to as a1
  • an angle difference between Rx beam index #1 and Rx beam index #2 is referred to as a2.
  • the base station/LMF may utilize the disclosed information for Nlos/LoS identification.
  • a criterion that can be determined to be a very large value may also be set/instructed by the UE from the base station/LMF.
  • a network node may be a TP and/or a base station and/or a cell and/or a location server and/or an LMF and/or any device performing the same task.
  • the network node transmits a positioning reference signal to the terminal (1801).
  • the network node may transmit the same positioning reference signal at different times (eg, t1 and t2).
  • the network node may transmit a plurality of positioning reference signals through adjacent transmission beams, respectively.
  • the terminal transmits location information based on the positioning reference signal (1803).
  • the location information includes information on at least one reception beam used for reception, information on at least one reception spatial filter used for reception of the at least one positioning reference signal, and RSRP measured for the positioning reference signal. It may include at least one of the results.
  • the present invention is not limited thereto and may include information described in the above various embodiments.
  • FIG. 19 is a diagram briefly illustrating a method of operating a terminal according to various embodiments.
  • the terminal receives a positioning reference signal (1901).
  • the terminal transmits the location information generated based on the positioning reference signal (1903).
  • FIG. 20 is a diagram briefly illustrating a method of operating a network node according to various embodiments of the present disclosure
  • the network node sends a positioning reference signal (2001).
  • the network note receives the location information generated based on the positioning reference signal (2003).
  • examples of the above-described proposed method may also be included as one of various embodiments, it is obvious that they may be regarded as a kind of proposed method.
  • the above-described proposed methods may be implemented independently, but may also be implemented in the form of a combination (or merge) of some of the proposed methods.
  • Rules can be defined so that the base station informs the terminal of whether the proposed methods are applied or not (or information on the rules of the proposed methods) through a predefined signal (eg, a physical layer signal or a higher layer signal). have.
  • 21 is a diagram illustrating an apparatus in which various embodiments may be implemented.
  • the device shown in FIG. 21 is a User Equipment (UE) and/or a base station (eg, eNB or gNB, or TP) and/or a location server (or LMF) adapted to perform the above-described mechanism, or the same operation It can be any device that does
  • the apparatus may include a digital signal processor (DSP)/microprocessor 210 and a radio frequency (RF) module (transceiver, transceiver) 235 .
  • DSP/microprocessor 210 is electrically coupled to transceiver 235 to control transceiver 235 .
  • the device includes a power management module 205 , a battery 255 , a display 215 , a keypad 220 , a SIM card 225 , a memory device 230 , an antenna 240 , a speaker ( 245 ) and an input device 250 .
  • FIG. 21 may show a terminal including a receiver 235 configured to receive a request message from a network and a transmitter 235 configured to transmit timing transmit/receive timing information to the network.
  • a receiver and transmitter may constitute the transceiver 235 .
  • the terminal may further include a processor 210 connected to the transceiver 235 .
  • FIG. 21 may show a network device including a transmitter 235 configured to transmit a request message to a terminal and a receiver 235 configured to receive transmission/reception timing information from the terminal.
  • the transmitter and receiver may constitute the transceiver 235 .
  • the network further includes a processor 210 coupled to the transmitter and receiver.
  • the processor 210 may calculate a latency based on transmission/reception timing information.
  • a terminal or a communication device included in the terminal
  • a base station or a communication device included in the base station
  • a location server or a communication device included in the location server
  • the included processor controls the memory and can operate as follows.
  • a terminal or a base station or a location server includes at least one transceiver; one or more memories; and one or more processors connected to the transceiver and the memory.
  • the memory may store instructions that enable one or more processors to perform the following operations.
  • the communication device included in the terminal or the base station or the location server may be configured to include the one or more processors and the one or more memories, and the communication device includes the one or more transceivers or the one or more transceivers It may be configured to be connected to the one or more transceivers without including.
  • a TP and/or a base station and/or a cell and/or a location server and/or an LMF and/or any device performing the same task, etc. may be referred to as a network node.
  • one or more processors included in the terminal include a first configuration including resource allocation information on a supplementary uplink (SUL). receive information; receiving second configuration information including resource allocation information on non-SUL; and a positioning sounding reference signal (SRS) may be configured to be transmitted through the SUL based on satisfaction of any one of a predefined condition.
  • SUL supplementary uplink
  • SRS positioning sounding reference signal
  • the one or more processors included in the network node may include a first resource allocation information related to a supplementary uplink (SUL). 1 transmit setting information; transmit second configuration information including resource allocation information on non-SUL; And it may be configured to receive a positioning sounding reference signal (SRS) through the SUL based on satisfaction of any one of a predefined condition.
  • SUL supplementary uplink
  • a more specific operation such as a processor included in the terminal and/or the network node according to the above-described various embodiments, may be described and performed based on the contents of the first to third sections described above.
  • a terminal and/or a network node (such as a processor included in) according to various embodiments perform a combination/combined operation thereof unless the embodiments of the aforementioned Sections 1 to 3 are incompatible. can do.
  • 22 illustrates a communication system applied to various embodiments.
  • a communication system 1 applied to various embodiments includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
  • XR eXtended Reality
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)).
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, 150c may transmit/receive a signal through various physical channels
  • transmission/reception of a wireless signal At least some of various configuration information setting processes for reception, various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation processes, etc. may be performed.
  • 23 illustrates a wireless device applied to various embodiments.
  • the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 22 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts in accordance with various embodiments.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • the memory 104 may be configured to perform some or all of the processes controlled by the processor 102 , or to perform descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts in accordance with various embodiments. may store software code including instructions for
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • a transceiver 106 may be coupled to the processor 102 and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts in accordance with various embodiments.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may be configured to perform some or all of the processes controlled by the processor 202 , or to perform descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts in accordance with various embodiments. may store software code including instructions for
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 may be configured as one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to descriptions, functions, procedures, proposals, methods, and/or operational flowcharts according to various embodiments. ) can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts in accordance with various embodiments.
  • the one or more processors 102 and 202 transmit a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to functions, procedures, proposals and/or methods according to various embodiments. generated and provided to one or more transceivers (106, 206).
  • One or more processors 102 , 202 may receive a signal (eg, a baseband signal) from one or more transceivers 106 , 206 , and are described, functional, procedure, proposal, method and/or in accordance with various embodiments.
  • PDU, SDU, message, control information, data or information may be obtained according to the operation flowcharts.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations according to various embodiments may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and/or flow charts of operations according to various embodiments provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . and may be driven by one or more processors 102 , 202 .
  • Descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations according to various embodiments may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in methods and/or operational flowcharts according to various embodiments to one or more other devices.
  • the one or more transceivers 106 and 206 receive user data, control information, radio signals/channels, etc. referred to in descriptions, functions, procedures, suggestions, methods, and/or flow charts, etc. according to various embodiments, from one or more other devices. can do.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106 , 206 may be coupled with one or more antennas 108 , 208 , and the one or more transceivers 106 , 206 may be coupled via one or more antennas 108 , 208 in accordance with various embodiments. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • the one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • one or more memories may store instructions or programs that, when executed, are operably coupled to the one or more memories. It may cause one or more processors to perform operations in accordance with various embodiments or implementations.
  • a computer readable (storage) medium may store one or more instructions or computer programs, wherein the one or more instructions or computer programs are executed by one or more processors. It may cause the above processor to perform operations according to various embodiments or implementations.
  • a processing device or apparatus may include one or more processors and one or more computer memories connectable to the one or more processors.
  • the one or more computer memories may store instructions or programs, which, when executed, cause one or more processors operably coupled to the one or more memories to implement various embodiments or implementations. It is possible to perform operations according to
  • the wireless device may be implemented in various forms according to use-example/service (refer to FIG. 22).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 23 , and various elements, components, units/units, and/or modules ) can be composed of
  • the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
  • the communication unit may include communication circuitry 112 and transceiver(s) 114 .
  • communication circuitry 112 may include one or more processors 102 , 202 and/or one or more memories 104 , 204 of FIG. 23 .
  • transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG. 23 .
  • the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 .
  • control unit 120 transmits information stored in the memory unit 130 to the outside (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally (eg, through the communication unit 110 ) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
  • the additional element 140 may be configured in various ways according to the type of the wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • the wireless device includes a robot ( FIGS. 22 and 100a ), a vehicle ( FIGS. 22 , 100b-1 , 100b-2 ), an XR device ( FIGS. 22 and 100c ), a portable device ( FIGS. 22 and 100d ), and a home appliance. (FIG. 22, 100e), IoT device (FIG.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device ( FIGS. 22 and 400 ), a base station ( FIGS. 22 and 200 ), and a network node.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be all interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 , 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
  • each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 24 will be described in more detail with reference to the drawings.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c .
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 24 .
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling the components of the portable device 100 .
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support a connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved.
  • the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130 , it may be output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
  • various forms eg, text, voice, image, video, haptic
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like.
  • AV aerial vehicle
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 24, respectively.
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (e.g., base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • a certain device is a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) It may be a module, a robot, an augmented reality (AR) device, a virtual reality (VR) device, or other devices.
  • UAV Unmanned Aerial Vehicle
  • AI Artificial Intelligence
  • It may be a module, a robot, an augmented reality (AR) device, a virtual reality (VR) device, or other devices.
  • the terminal includes a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a Global System for Mobile (GSM) phone, a Wideband CDMA (WCDMA) phone, and an MBS ( It may be a Mobile Broadband System) phone, a smart phone, or a multi-mode multi-band (MM-MB) terminal.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS It may be a Mobile Broadband System
  • smart phone or a multi-mode multi-band (MM-MB) terminal.
  • MM-MB multi-mode multi-band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may refer to a terminal in which data communication functions such as schedule management, fax transmission and reception, and Internet access, which are functions of a personal portable terminal, are integrated into the mobile communication terminal. have.
  • a multi-mode multi-band terminal has a built-in multi-modem chip so that it can operate in both portable Internet systems and other mobile communication systems (eg, CDMA (Code Division Multiple Access) 2000 system, WCDMA (Wideband CDMA) system, etc.). refers to the terminal with CDMA (Code Division Multiple Access) 2000 system, WCDMA (Wideband CDMA) system, etc.). refers to the terminal with CDMA (Code Division Multiple Access) 2000 system, WCDMA (Wideband CDMA) system, etc.). refers to the terminal with CDMA (Code Division Multiple Access) 2000 system, WCDMA (Wideband CDMA) system, etc.). refers to the terminal with CDMA (Code Division Multiple Access) 2000 system, W
  • the terminal may be a notebook PC, a hand-held PC, a tablet PC, an ultrabook, a slate PC, a digital broadcasting terminal, a PMP (portable multimedia player), a navigation system, It may be a wearable device, for example, a watch-type terminal (smartwatch), a glass-type terminal (smart glass), a head mounted display (HMD), etc.
  • a wearable device for example, a watch-type terminal (smartwatch), a glass-type terminal (smart glass), a head mounted display (HMD), etc.
  • a drone is operated by a wireless control signal without a human being. It may be a flying vehicle.
  • the HMD may be a display device in the form of being worn on the head.
  • the HMD may be used to implement VR or AR.
  • the wireless communication technology in which various embodiments are implemented may include LTE, NR, and 6G as well as Narrowband Internet of Things (NB-IoT) for low-power communication.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat (category) NB1 and/or LTE Cat NB2, It is not limited.
  • a wireless communication technology implemented in a wireless device according to various embodiments may perform communication based on LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • a wireless communication technology implemented in a wireless device may include at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. may include, and is not limited to the above-mentioned names.
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • Various embodiments may be implemented through various means. For example, various embodiments may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to various embodiments may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs (field programmable gate arrays), a processor, a controller, a microcontroller, may be implemented by a microprocessor.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processor a controller, a microcontroller, may be implemented by a microprocessor.
  • the method according to various embodiments may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in a memory and driven by a processor.
  • the memory may be located inside or outside the processor, and data may be exchanged with the processor by various known means.
  • Various embodiments may be applied to various wireless access systems.
  • various radio access systems there is a 3rd Generation Partnership Project (3GPP) or a 3GPP2 system.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • Various embodiments may be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied.
  • the proposed method can be applied to a mmWave communication system using a very high frequency band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

다양한 실시예들은 4G (4th generation) 무선 통신 시스템 이후 보다 높은 데이터 전송률 등을 지원하기 위한 차세대 무선 통신 시스템과 관련된 것이다. 다양한 실시예들에 따르면 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치가 제공될 수 있으며, 그 밖에 다양한 실시예들이 제공될 수 있다.

Description

무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
다양한 실시예들은 무선 통신 시스템에 대한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT (radio access technology) 에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (Machine Type Communications) 역시 차세대 통신에서 고려되고 있다. 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 에 민감한 서비스/UE 를 고려한 통신 시스템 디자인이 고려되고 있다.
다양한 실시예들은 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치를 제공할 수 있다.
단말이 PRS의 수신에 사용된 수신 빔 인덱스 정보를 전달하는 경우, 수신 빔 인덱스의 정보가 절대적인 spatial beam 방향에 관한 index 정보를 나타내는 것인지, 단말에서의 물리적인 beam index 정보를 나타내는 정보인지에 따라 기지국/서버에서는 단말의 위치 및 상황을 파악하는 절차가 달라질 수 있다. 다양한 실시예들은 기지국/서버에서 단말이 제공하는 위치 정보를 효율적으로 활용할 수 있도록 단말과 기지국에서의 포지셔닝 측정 절차에 대하여 제공한다.
다양한 실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다
다양한 실시예들에 따르면, 무선 통신 시스템에서 단말에 의하여 수행되는 방법이 제공될 수 있다.
다양한 실시예들에 따르면, 상기 방법은: 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 포함하는 제1 설정 정보를 수신하고; non-SUL에 관한 자원 할당 정보를 포함하는 제2 설정 정보를 수신하고; 및 미리 정의된 조건 중 어느 하나가 만족됨에 기초하여 상기 SUL를 통해 포지셔닝 사운딩 기준 신호 (sounding reference signal, SRS)를 전송하는 것을 포함할 수 있다.
다양한 실시예들에 따르면, 상기 미리 정의된 조건이 모두 만족되지 못함에 기초하여, 상기 포지셔닝 SRS는 상기 non-SUL을 통해 전송될 수 있다.
다양한 실시예들에 따르면, 상기 미리 정의된 조건은 상기 SUL을 통한 포지셔닝 SRS의 전송을 지시하는 지시 정보를 수신하는 것을 포함할 수 있다.
다양한 실시예들에 따르면, 상기 방법은: 하향링크 기준 신호 (downlink reference signal, DL RS)를 수신하고; 및 상기 기준 신호의 세기를 검출하는 것을 더 포함할 수 있다.
다양한 실시예들에 따르면, 상기 미리 정의된 조건은 상기 DL RS 의 세기가 미리 정의된 임계값 미만인 것을 포함하고, 상기 기준 신호는 SSB(synchronization signal block), CSI-RS(channel state information reference signal), 또는 PRS(positioning reference signal) 중 하나 이상을 포함할 수 있다.
다양한 실시예들에 따르면, 상기 방법은: 상기 포지셔닝 SRS에 관련된 반복 전송 횟수 및 전송 주기에 대한 정보를 수신하는 것을 더 포함할 수 있다.
다양한 실시예들에 따르면, 상기 제1 설정 정보 및 상기 제2 설정 정보는 상기 포지셔닝 SRS에 대한 주파수 호핑에 관한 정보를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 방법은: SUL 스위칭에 대한 전력을 보상해주는 보상값을 설정하는 정보를 수신하는 을 더 포함할 수 있다.
다양한 실시예들에 따르면, 상기 SUL를 통해 전송되는 포지셔닝 SRS의 전송 전력은 (i) non-SUL에서 측정된 하향링크 기준 신호 (downlink reference signal, DL RS)를 기초로한 경로 손실 값 및 (ii) 상기 보상값에 기초하여 결정될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 동작하는 단말에 있어서, 송수신기 (transceiver); 및 상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 하나 이상의 프로세서는: 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 포함하는 제1 설정 정보를 수신하고; non-SUL에 관한 자원 할당 정보를 포함하는 제2 설정 정보를 수신하고; 및 미리 정의된 조건 중 어느 하나가 만족됨에 기초하여 상기 SUL를 통해 포지셔닝 사운딩 기준 신호 (sounding reference signal, SRS)를 전송하도록 설정될 수 있다.
다양한 실시예들에 따르면, 상기 하나 이상의 프로세서는: 이동 단말기, 네트워크 및 상기 단말이 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신하도록 설정될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 기지국에 의하여 수행되는 방법에 있어서, 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 포함하는 제1 설정 정보를 전송하고; non-SUL에 관한 자원 할당 정보를 포함하는 제2 설정 정보를 전송하고; 및 미리 정의된 조건 중 어느 하나가 만족됨에 기초하여 상기 SUL를 통해 포지셔닝 사운딩 기준 신호 (sounding reference signal, SRS)를 수신하는 것을 포함할 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 동작하는 기지국에 있어서, 송수신기 (transceiver); 및 상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함하고, 상기 하나 이상의 프로세서는: 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 포함하는 제1 설정 정보를 전송하고; non-SUL에 관한 자원 할당 정보를 포함하는 제2 설정 정보를 전송하고; 및 미리 정의된 조건 중 어느 하나가 만족됨에 기초하여 상기 SUL를 통해 포지셔닝 사운딩 기준 신호 (sounding reference signal, SRS)를 수신하도록 설정될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 동작하는 장치에 있어서, 하나 이상의 프로세서 (processor); 및 상기 하나 이상의 프로세서와 동작 가능하도록 연결되고, 실행됨에 기초하여 상기 하나 이상의 프로세서가 동작을 수행하도록 하는 하나 이상의 인스트럭션 (instruction) 을 저장하는 하나 이상의 메모리 (memory) 를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 동작은: 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 다양한 실시예들에 따르면, 상기 방법은: 적어도 하나의 포지셔닝 참조 신호를 수신하고; 및 상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하는 것을 포함하되, 상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 방법은: t1 에서 상기 적어도 하나의 포지셔닝 참조 신호 중 하나의 포지셔닝 참조 신호를 수신하고; 및 t2 에서 상기 하나의 포지셔닝 참조 신호를 수신하는 것을 더 포함할 수 있다.
다양한 실시예들에 따르면, 상기 t1 및 t2는 시간 도메인상에서의 타이밍을 의미하고, 상기 적어도 하나의 수신 빔 인덱스는 상기 t1에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제1 수신 빔 인덱스 및 상기 t2에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제2 수신 빔 인덱스를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 방법은: 상기 t1에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제1 공간 필터와 상기 t2에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제2 공간 필터가 동일한지 여부를 판단하는 것을 더 포함할 수 있다.
다양한 실시예들에 따르면, 상기 위치 정보는 상기 제1 공간 필터 및 상기 제2 공간 필터가 동일한지 여부에 관한 정보를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 위치 정보는 상기 제1 공간 필터 및 상기 제2 공간 필터 각각에 대응하는 인덱스, 상기 제1 공간 필터와 상기 제2 공간 필터 사이의 방위각 차이, 및 상기 제1 공간 필터와 상기 제2 공간 필터 사이의 오프셋 값 중 적어도 하나를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 적어도 하나의 수신 빔 인덱스는 상기 적어도 하나의 공간 필터에 1:1로 대응되도록 할당될 수 있다.
다양한 실시예들에 따르면, 상기 적어도 하나의 포지셔닝 참조 신호는 기지국의 제1 송신 빔을 통해 전송된 제1 포지셔닝 참조 신호 및 상기 기지국의 상기 제1 송신 빔에 인접한 송신 빔을 통해 전송된 제2 포지셔닝 참조 신호를 포함하고,
상기 제1 포지셔닝 참조 신호는 제1 수신 빔을 통해 수신되고, 상기 제2 포지셔닝 참조 신호는 제2 수신 빔을 통해 수신될 수 있다.
다양한 실시예들에 따르면, 상기 방법은: 상기 상기 제1 수신 빔 및 상기 제2 수신 빔 사이의 앵글 (angle) 차이가 미리 정의된 값 이상인지 여부를 판단하는 것을 더 포함할 수 있다.
다양한 실시예들에 따르면, 상기 적어도 하나의 수신 빔 인덱스는 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 절대적인 빔 방향 또는 물리적인 빔 방향에 기반하여 할당될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 동작하는 단말에 있어서, 송수신기 (transceiver); 및 상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 하나 이상의 프로세서는: 적어도 하나의 포지셔닝 참조 신호를 수신하고; 및 상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하도록 설정될 수 있다.
다양한 실시예들에 따르면, 상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 하나 이상의 프로세서는: 이동 단말기, 네트워크 및 상기 단말에 포함된 차량 이외의 자율 주행 차량 중 하나 이상과 통신하도록 설정될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 기지국에 의하여 수행되는 방법에 있어서, 적어도 하나의 포지셔닝 참조 신호를 전송하고; 및 상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 수신하는 것을 포함하되, 상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함할 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 동작하는 기지국에 있어서, 송수신기 (transceiver); 및 상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 하나 이상의 프로세서는: 적어도 하나의 포지셔닝 참조 신호를 전송하고; 및 상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 수신하도록 설정되고, 상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함할 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 동작하는 장치에 있어서, 하나 이상의 프로세서 (processor); 및 상기 하나 이상의 프로세서와 동작 가능하도록 연결되고, 실행됨에 기초하여 상기 하나 이상의 프로세서가 동작을 수행하도록 하는 하나 이상의 인스트럭션 (instruction) 을 저장하는 하나 이상의 메모리 (memory) 를 포함할 수 있다.
다양한 실시예들에 따르면, 상기 동작은: 적어도 하나의 포지셔닝 참조 신호를 수신하고; 및 상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하는 것을 포함하되, 상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함할 수 있다.
다양한 실시예들에 따르면, 하나 이상의 프로세서 (processor) 가 동작을 수행하도록 하는 하나 이상의 인스트럭션 (instruction) 을 저장하는 비-휘발성 (non-transitory) 프로세서-판독 가능 매체 (processor-readable medium) 에 있어서, 상기 동작은: 적어도 하나의 포지셔닝 참조 신호를 수신하고; 및 상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하는 것을 포함하되, 상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함할 수 있다.
상술한 다양한 실시예들은 다양한 실시예들 중 일부에 불과하며, 다양한 실시예들의 기술적 특징들이 반영된 여러 가지 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 상세한 설명을 기초로 도출되고 이해될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 신호가 효과적으로 송수신될 수 있다.
다양한 실시예들에 따르면, 무선 통신 시스템에서 측위가 효과적으로 수행될 수 있다.
또한, 다양한 실시예들에 따르면, 단말이 자신이 보고하는 빔 인덱스와 관련된 빔 정보를 추가로 전송함으로써, 단말의 빔 정보를 보다 효율적으로 활용할 수 있다.
또한, 다양한 실시예들에 따르면, 단말에서 보고하는 빔 인덱스를 활용한 위치 계산 및 관련 포지셔닝 참조 신호의 자원 설정을 보다 효율적으로 할 수 있다.
다양한 실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
이하에 첨부되는 도면들은 다양한 실시예들에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 다양한 실시예들을 제공한다. 다만, 다양한 실시예들의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다. 각 도면에서의 참조 번호 (reference numerals) 들은 구조적 구성요소 (structural elements) 를 의미한다.
도 1은 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
도 3은 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 자원 그리드를 나타낸 도면이다.
도 4는 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
도 5는 다양한 실시예들이 적용 가능한 캐리어 병합의 경우의 스케줄링 방법의 일 예를 나타낸 도면이다.
도 6 은 다양한 실시예들이 적용 가능한 SRS를 이용한 UL BM 과정의 일 예를 나타낸 흐름도이다.
도 7은 다양한 실시예들이 적용 가능한 상향링크 전송 전력 제어 절차의 일 예를 나타낸 도면이다.
도 8은 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 포지셔닝 프로토콜 설정(positioning protocol configuration)의 일 예를 나타낸 도면이다.
도 9는 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 시스템의 아키텍쳐의 일 예를 나타낸 도면이다.
도 10 은 다양한 실시예들이 적용 가능한 단말의 위치를 측정하는 절차의 일 예를 나타낸 도면이다.
도 11 은 다양한 실시예들이 적용 가능한 LPP (LTE positioning protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
도 12 는 다양한 실시예들이 적용 가능한 NRPPa (NR positioning protocol a) PDU (protocol data unit) 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
도 13 은 다양한 실시예들이 적용 가능한 OTDOA (observed time difference of arrival) 측위(Positioning) 방법의 일 예를 나타낸 도면이다.
도 14 은 다양한 실시예들이 적용 가능한 Multi RTT (round trip time) 측위 방법의 일 예를 나타낸 도면이다.
도 15 은 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 16 은 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 17 은 다양한 실시예들에 따른 PRS (positioning reference signal) 수신 빔 인덱스 (Rx beam index)가 할당되는 경우를 도시한 도면이다.
도 18 은 다양한 실시예들에 따른 단말과 네트워크 노드의 동작 방법을 간단히 나타낸 도면이다.
도 19 는 다양한 실시예들에 따른 단말의 동작 방법을 간단히 나타낸 도면이다.
도 20 은 다양한 실시예들에 따른 네트워크 노드의 동작 방법을 간단히 나타낸 도면이다.
도 21는 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 22은 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 23은 다양한 실시예들에 적용되는 무선 기기를 예시한다.
도 24는 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다.
도 25는 다양한 실시예들에 적용되는 휴대 기기를 예시한다.
도 26은 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 다양한 실시예들은 3GPP 통신 시스템(예, LTE, NR, 6G 및 차세대 무선 통신 시스템을 포함)을 기반으로 설명되지만 다양한 실시예들의 기술적 사상이 이에 제한되는 것은 아니다. 다양한 실시예들에 대한 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.300, 3GPP TS 36.321, 3GPP TS 36.331, 3GPP TS 36.355, 3GPP TS 36.455, 3GPP TS 37.355, 3GPP TS 37.455, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.214, 3GPP TS 38.215, 3GPP TS 38.300, 3GPP TS 38.321, 3GPP TS 38.331, 3GPP TS 38.355, 3GPP TS 38.455 등의 문서들을 참조할 수 있다.
1. 3GPP 시스템
1.1. 물리 채널들 및 신호 송수신
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 다양한 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 기준 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다 (S12).
이후, 단말은 기지국에 접속을 완료하기 위해 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다 (S13 ~ S16). 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 RAR (Random Access Response)를 수신할 수 있다(S14). 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH (Physical Uplink Shared Channel)을 전송하고 (S15), 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다(S16).
한편, 위와 같은 4 단계로 수행되는 임의 접속 과정 (4-스텝 RACH, 타입-1 임의 접속 절차) 외, 임의 접속 과정이 2 단계로 수행되는 경우 (2-스텝 RACH, 타입-2 임의 접속 절차), S13/S15 는 단말이 송신을 수행하는 하나의 동작으로 수행되고 (예를 들어, PRACH 프리앰블 및/또는 PUSCH 를 포함하는 메시지A 의 송신 동작), S14/S16 이 기지국이 송신을 수행하는 하나의 동작 (예를 들어, RAR 및/또는 충돌 해결 정보를 포함하는 메시지B 의 송신 동작)으로 수행될 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
1.2. 물리 자원
도 2는 다양한 실시예들이 적용 가능한 NR 시스템에 기초한 무선 프레임 구조를 나타낸 도면이다.
NR 시스템은 다수의 뉴머롤로지(Numerology)들을 지원할 수 있다. 여기에서, 뉴머롤로지는 부반송파 간격(subcarrier spacing, SCS)과 순환 프리픽스(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 부반송파 간격은 기본 부반송파 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 부반송파 간격을 이용하지 않는다고 가정할지라도, 이용되는 뉴머롤로지는 셀의 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1와 같이 정의될 수 있다. 대역폭 파트에 대한 μ 및 순환 프리픽스는 BS에 의해 제공되는 RRC 파라미터들로부터 얻어진다.
Figure PCTKR2021007095-appb-img-000001
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤러지(예, 부반송파 간격(subcarrier spacing))를 지원한다. 예를 들어, 부반송파 간격이 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, 부반송파 간격이 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 레이턴시(lower latency) 및 더 넓은 반송파 대역폭(wider carrier bandwidth)를 지원하며, 부반송파 간격이 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 대역(frequency band)은 FR1과 FR2라는 2가지 타입의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz 범위이며, FR2는 above 6GHz 범위로 밀리미터 웨이브(millimiter wave, mmWave)를 의미할 수 있다.
아래 표 2는 NR 주파수 대역의 정의를 예시한다.
Figure PCTKR2021007095-appb-img-000002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 도메인의 다양한 필드들의 크기는 NR용 기본 시간 유닛(basic time unit)인 T c = 1/(△f max*N f)의 배수로 표현된다. 여기서, △f max = 480*103 Hz이고, 고속 푸리에 변환(fast Fourier transform, FFT) 혹은 역 고속 푸리에 변환(inverse fast Fourier transform, IFFT) 크기와 관련이 있는 값인 N f = 4096이다. T c는 LTE용 기반 시간 유닛이자 샘플링 시간인 T s = 1/((15kHz)*2048)와 다음의 관계를 갖는다: T s/T c = 64. 하향링크 및 상향링크(uplink) 전송들은 T f = (△f max*N f/100)*T c = 10ms 지속기간(duration)의 (무선) 프레임들로 조직화(organize)된다. 여기서, 각 무선 프레임은 각각이 T sf = (△f max*N f/1000)*T c = 1ms 지속기간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 뉴머롤로지 μ에 대하여, 슬롯(slot)들은 서브프레임 내에서는 오름차순(increasing order)으로 n μ s ∈ {0,…,N slot,μ subframe-1}로 번호가 매겨지고, 무선 프레임 내에서는 오름차순으로 n μ s,f ∈ {0,…,N slot,μ frame-1}으로 번호가 매겨진다. 하나의 슬롯은 N μ symb개의 연속하는(consecutive) OFDM 심볼들로 구성되고, N μ symb는 순환 프리픽스(cyclic prefix, CP)에 의존한다. 서브프레임에서 슬롯 n μ s의 시작은 동일 서브프레임 내에서 OFDM 심볼 n μ s*N μ symb의 시작과 시간적으로 정렬된다.
표 3은 일반 CP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타내고, 표 4은 확장된 CSP가 사용되는 경우, SCS에 따른 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수 및 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2021007095-appb-img-000003
Figure PCTKR2021007095-appb-img-000004
상기 표에서, Nslot symb 는 슬롯 내 심볼의 개수를 나타내고, Nframe,μ slot는 프레임 내 슬롯의 개수를 나타내고, Nsubframe,μ slot는 서브프레임 내 슬롯의 개수를 나타낸다.
다양한 실시예들이 적용 가능한 NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머롤로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 2은, μ=2인 경우(즉, 부반송파 간격이 60kHz)의 일례로서, 표 3을 참고하면 1개 서브프레임은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1개 서브프레임 = {1,2,4}개 슬롯들은 예시이며, 1개 서브프레임에 포함될 수 있는 슬롯(들)의 개수는 표 3 또는 표 4과 같이 정의된다.
또한, 미니-슬롯은 2, 4 또는 7개 심볼들을 포함할 수 있거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 반송파 파트(carrier part) 등이 고려될 수 있다. 이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반(convey)되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 상기 2개 안테나 포트들은 QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기서, 상기 광범위 특성은 딜레이 확산(delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(frequency shift), 평균 수신 파워(average received power), 수신 타이밍(received Timing), 평균 딜레이(average delay), 공간(spatial) 수신(reception, Rx) 파라미터 중 하나 이상을 포함한다. 공간 Rx 파라미터는 도착 앵글(angle of arrival)과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다.
도 3 은 다양한 실시예들이 적용 가능한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 각 부반송파 간격 설정 및 반송파에 대해,
Figure PCTKR2021007095-appb-img-000005
개 부반송파들 및
Figure PCTKR2021007095-appb-img-000006
OFDM 심볼들의 자원 그리드가 정의되며, 여기서
Figure PCTKR2021007095-appb-img-000007
는 BS로부터의 RRC 시그널링에 의해 지시된다.
Figure PCTKR2021007095-appb-img-000008
는 SCS (subcarrier spacing) 설정 μ뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. SCS 설정 μ, 안테나 포트 p 및 전송 방향 (상향링크 또는 하향링크) 에 대해 하나의 자원 그리드가 있다. SCS 설정 μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소 (resource element) 로 지칭되며, 인덱스 쌍 (k,l) 에 의해 고유하게 (uniquely) 식별되며, 여기서 k는 주파수 도메인에서의 인덱스이고 l은 참조 포인트에 상대적인 주파수 도메인 내 심볼 위치를 지칭한다. SCS 설정 μ 및 안테나 포트 p에 대한 자원 요소 (k,l) 은 물리 자원 및 복소 값 (complex value)
Figure PCTKR2021007095-appb-img-000009
에 해당한다. 자원 블록 (resource block, RB)는 주파수 도메인에서
Figure PCTKR2021007095-appb-img-000010
개의 연속적인 (consecutive) 부반송파들로 정의된다.
NR 시스템에서 지원될 넓은 대역폭을 UE가 한 번에 지원할 수 없을 수 있다는 점을 고려하여, UE가 셀의 주파수 대역폭 중 일부(대역폭 파트(bandwidth part, BWP))에서 동작하도록 설정될 수 있다.
도 4는 다양한 실시예들이 적용 가능한 자립적 슬롯 구조 (Self-contained slot structure)를 나타낸 도면이다.
자립적 슬롯 구조란, 하나의 슬롯 내에 하향링크 제어 채널(downlink control channel), 하향링크/상향링크 데이터(downlink/uplink data), 그리고 상향링크 제어 채널(uplink control channel)이 모두 포함될 수 있는 슬롯 구조일 수 있다.
도 4를 참조하면, 빗금 친 영역 (예: symbol index =0)은 하향링크 제어 (downlink control) 영역을 나타내고, 검정색 영역 (예: symbol index =13)은 상향링크 제어 (uplink control) 영역을 나타낸다. 이외 영역 (예: symbol index = 1 ~ 12)은 하향링크 데이터 전송을 위해 사용될 수도 있고, 상향링크 데이터 전송을 위해 사용될 수도 있다.
이러한 구조에 따라 기지국 및 UE는 한 개의 슬롯 내에서 DL 전송과 UL 전송을 순차적으로 진행할 수 있으며, 상기 하나의 슬롯 내에서 DL 데이터를 송수신하고 이에 대한 UL ACK/NACK도 송수신할 수 있다. 결과적으로 이러한 구조는 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연을 최소화할 수 있다.
이와 같은 자립적 슬롯 구조에서 기지국과 UE가 송신 모드에서 수신 모드로 전환 또는 수신모드에서 송신 모드로 전환을 위해서는 일정 시간 길이의 타입 갭(time gap)이 필요하다. 이를 위하여 자립적 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼은 가드 구간(guard period, GP)로 설정될 수 있다.
앞서 상세한 설명에서는 자립적 슬롯 구조가 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우를 설명하였으나, 상기 제어 영역들은 상기 자립적 슬롯 구조에 선택적으로 포함될 수 있다. 다시 말해, 다양한 실시예들에 따른 자립적 슬롯 구조는 도 A4와 같이 DL 제어 영역 및 UL 제어 영역을 모두 포함하는 경우뿐만 아니라 DL 제어 영역 또는 UL 제어 영역만을 포함하는 경우도 포함할 수 있다.
또한, 하나의 슬롯을 구성하는 상기 영역들의 순서는 실시예에 따라 달라질 수 있다. 일 예로, 하나의 슬롯은 DL 제어 영역 / DL 데이터 영역 / UL 제어 영역 / UL 데이터 영역 순서로 구성되거나, UL 제어 영역 / UL 데이터 영역 / DL 제어 영역 / DL 데이터 영역 순서 등으로 구성될 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다.
1.3. 채널 구조
1.3.1 하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
1.3.1.1. 물리 하향링크 공유 채널 (PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
1.3.1.2. 물리 하향링크 제어 채널 (PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
1.3.2. 상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
1.3.2.1. 물리 상향링크 공유 채널 (PUSCH)
PUSCH는 상향링크 데이터(예, UL-shared channel transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
1.3.2.2. 물리 상향링크 제어 채널 (PUCCH)
PUCCH는 상향링크 제어 정보, HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다.
1.4 캐리어 병합 (Carrier Aggregation, CA)
도 5 는 다양한 실시예들이 적용 가능한 캐리어 병합의 경우의 스케줄링 방법의 일 예를 나타낸 도면이다. 도 5 는 멀티-셀이 병합된 경우의 스케줄링을 예시한다.
도 5 를 참조하면, 3개 셀이 병합되었다고 가정한다. CIF가 디스에이블 되면, 각 셀에서는 자신의 PDSCH/PUSCH를 스케줄링 하는 PDCCH만 전송될 수 있다(self-carrier scheduling, SCS). 반면, 단말-특정 (또는 단말-그룹-특정 또는 셀-특정) 상위 계층 시그널링에 의해 CIF가 이네이블 되고, 셀 A가 스케줄링 셀로 설정되면, 셀 A에서는 셀 A의 PDSCH/PUSCH를 스케줄링 하는 PDCCH뿐만 아니라 다른 셀(즉, 스케줄드 셀)의 PDSCH/PUSCH를 스케줄링 하는 PDCCH도 전송될 수 있다(cross-carrier scheduling, CCS). 이 경우, 셀 B/C에서는 자신의 셀을 스케줄링 하는 PDCCH가 전송되지 않는다.
다양한 실시예들에 대한 설명에서 사용되는 용어는 다음과 같을 수 있다.
- PCell(Primary Cell): 반송파 병합이 설정된 단말의 경우, 단말이 초기 연결 확립(initial connection establishment) 절차를 수행하거나 연결 재-확립(re-establishment) 절차를 개시하는 프라이머리 주파수(예, Primary Component Carrier, PCC)에서 동작하는 셀. DC(Dual Connectivity)의 경우, 단말이 초기 연결 확립 절차를 수행하거나 연결 재-확립 절차를 개시하는 프라이머리 주파수에서 동작하는 MCG(Master Cell Group) 셀.
- SCell(Secondary Cell): 반송파 병합이 설정된 단말의 경우, 스페셜 셀 외에 추가로 무선 자원을 제공하는 셀.
- PSCell(Primary SCG Cell/Primary Second Cell): DC의 경우, RRC 재구성(reconfiguration)과 동기화 과정을 수행할 때, 단말이 랜덤 접속을 수행하는 SCG(Secondary Cell Group) 셀.
- 스페셜 셀(Special Cell, SpCell): DC의 경우, 스페셜 셀은 MCG의 PCell 또는 SCG의 PSCell을 나타낸다. 그렇지 않은 경우(즉, 논-DC), 스페셜 셀은 PCell을 나타낸다.
- 서빙 셀(Serving Cell, ServCell): RRC_CONNECTED 상태의 단말에게 설정된 셀을 나타낸다. CA/DC가 설정되지 않은 경우, 하나의 서빙 셀(즉, PCell)만 존재한다. CA/DC가 설정된 경우, 서빙 셀은 스페셜 셀(들) 및 모든 SCell을 포함하는 셀 세트는 나타낸다.
1.4 빔 관리(Beam Management, BM)
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.
BM 과정은 하향링크(downlink, DL) 및 상향링크(uplink, UL) 전송/수신에 사용될 수 있는 BS(혹은 전송 및 수신 포인트(transmission and reception point, TRP)) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 과정들로서, 아래와 같은 과정 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): BS 또는 UE가 수신된 빔포밍 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): BS 또는 UE가 자신의 전송 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 빔 스위핑(beam sweeping): 미리 결정된 방식으로 일정 시간 인터벌 동안 전송 및/또는 수신 빔을 이용하여 공간 도메인을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔포밍된 신호의 정보를 보고하는 동작.
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
UL BM 과정
UL BM은 UE 구현에 따라 Tx 빔 - Rx 빔 간 빔 상호관계(reciprocity)(또는 빔 대응성)가 성립할 수 있거나 또는, 성립하지 않을 수 있다. 만약 BS와 UE 모두에서 Tx 빔 - Rx 빔 간 상호관계가 성립하는 경우, DL 빔 쌍(pair)를 통해 UL 빔 쌍을 맞출 수 있다. 하지만, BS와 UE 중 어느 하나라도 Tx 빔 - Rx 빔 간 상호관계가 성립하지 않는 경우, DL 빔 쌍 결정과 별개로 UL 빔 쌍 결정 과정이 필요하다.
또한, BS와 UE 모두 빔 대응성을 유지하고 있는 경우에도, UE가 선호(preferred) 빔의 보고를 요청하지 않고도 BS는 DL Tx 빔 결정을 위해 UL BM 과정을 사용할 수 있다.
UL BM은 빔포밍된 UL SRS 전송을 통해 수행될 수 있으며, SRS 자원 세트의 UL BM의 적용 여부는 (RRC 파라미터) 용도(usage)에 RRC 파라미터의해 설정된다. 용도가 'BeamManagement(BM)'로 설정되면, 주어진 시간 순간(time instant)에 복수의 SRS 자원 세트들 각각에 하나의 SRS 자원만 전송될 수 있다.
UE는 (RRC 파라미터) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 사운딩 참조 신호(sounding reference signal, SRS) 자원 세트들을 (RRC 시그널링 등을 통해) 설정받을 수 있다. 각각의 SRS 자원 세트에 대해, UE는 K≥1 SRS 자원들이 설정될 수 있다. 여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다.
UL BM 과정은 UE의 Tx 빔 스위핑과 BS의 Rx 빔 스위핑으로 구분될 수 있다.
도 6 는 다양한 실시예들이 적용 가능한 SRS를 이용한 UL BM 과정의 일 예를 나타낸 흐름도이다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다(1010). SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다(1020). 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다(1030).
보다 구체적으로, 'SRS-ResourceConfigType'가 'periodic'으로 설정된 P-SRS에 대해:
i) SRS-SpatialRelationInfo가 'SSB/PBCH'로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 공간 도메인 Rx 필터와 동일한 (혹은 해당 필터로부터 생성된) 공간 도메인 전송 필터를 적용하여 해당 SRS를 전송한다; 또는
ii) SRS-SpatialRelationInfo가 'CSI-RS'로 설정되는 경우, UE는 CSI-RS의 수신을 위해 사용되는 동일한 공간 도메인 전송 필터를 적용하여 SRS를 전송한다; 또는
iii) SRS-SpatialRelationInfo가 'SRS'로 설정되는 경우, UE는 SRS의 전송을 위해 사용된 동일한 공간 도메인 전송 필터를 적용하여 해당 SRS를 전송한다.
- 추가적으로, UE는 BS로부터 SRS에 대한 피드백을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(1040).
i) SRS 자원 세트 내의 모든 SRS 자원들에 대해 Spatial_Relation_Info가 설정되는 경우, UE는 BS가 지시한 빔으로 SRS를 전송한다. 예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, UE는 동일 빔으로 SRS를 반복 전송한다.
ii) SRS 자원 세트 내의 모든 SRS 자원들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다. 이 경우, UE는 자유롭게 SRS 빔포밍을 바꾸어가면서 전송할 수 있다.
iii) SRS 자원 세트 내의 일부 SRS 자원들에 대해서만 Spatial_Relation_Info가 설정될 수 있다. 이 경우, 설정된 SRS 자원에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS 자원에 대해서는 UE가 임의로 Tx 빔포밍을 적용해서 전송할 수 있다.
1.6. 상향링크 전력 제어 (Uplink Power Control)
무선 통신 시스템에서는 상황에 따라 단말(예: User Equipment, UE) 및/또는 이동 장치(mobile device)의 전송 전력을 증가 또는 감소시킬 필요가 있을 수 있다. 이와 같이 단말 및/또는 이동 장치의 전송 전력을 제어하는 것은 상향링크 전력 제어(uplink power control)로 지칭될 수 있다. 일례로, 전송 전력 제어 방식은 기지국(예: gNB, eNB 등)에서의 요구 사항(requirement)(예: SNR(Signal-to-Noise Ratio), BER(Bit Error Ratio), BLER(Block Error Ratio) 등)을 만족시키기 위해 적용될 수 있다.
상술한 바와 같은 전력 제어는 개루프(open-loop) 전력 제어 방식과 폐루프(closed-loop) 전력 제어 방식으로 수행될 수 있다.
구체적으로, 개루프 전력 제어 방식은 전송 장치(예: 기지국 등)로부터 수신 장치(예: 단말 등)로의 피드백(feedback) 및/또는 수신 장치로부터 전송 장치로의 피드백 없이 전송 전력을 제어하는 방식을 의미한다. 일례로, 단말은 기지국으로부터 특정 채널/신호(pilot channel/signal)를 수신하고, 이를 이용하여 수신 전력의 강도(strength)를 추정할 수 있다. 이후, 단말은 추정된 수신 전력의 강도를 이용하여 전송 전력을 제어할 수 있다.
이와 달리, 폐루프 전력 제어 방식은 전송 장치로부터 수신 장치로의 피드백 및/또는 수신 장치로부터 전송 장치로의 피드백에 기반하여 전송 전력을 제어하는 방식을 의미한다. 일례로, 기지국은 단말로부터 특정 채널/신호를 수신하며, 수신된 특정 채널/신호에 의해 측정된 전력 수준(power level), SNR, BER, BLER 등에 기반하여 단말의 최적 전력 수준(optimum power level)을 결정한다. 기지국은 결정된 최적 전력 수준에 대한 정보(즉, 피드백)를 제어 채널(control channel) 등을 통해 단말에게 전달하며, 해당 단말은 기지국에 의해 제공된 피드백을 이용하여 전송 전력을 제어할 수 있다.
이하, 무선 통신 시스템에서 단말 및/또는 이동 장치가 기지국으로의 상향링크 전송을 수행하는 경우들에 대한 전력 제어 방식에 대해 구체적으로 살펴본다. 구체적으로, 사운딩 참조 신호(Sounding Reference Signal, SRS) 전송에 대한 전력 제어 방식들이 설명된다. 이 때, SRS 에 대한 전송 기회(transmission occasion)(즉, 전송 시간 단위)(i)는 시스템 프레임 번호(system frame number, SFN)의 프레임 내에서의 슬롯 인덱스(slot index)(n_s), 슬롯 내의 첫 번째 심볼(S), 연속하는 심볼의 수(L) 등에 의해 정의될 수 있다.
SRS (sounding reference signal) 의 전력 제어
서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP에서의 사운딩 참조 신호(SRS) 전송과 관련하여, 단말은 이하 수학식 A에 의해 결정되는 전송 전력의 선형 전력 값을 산출할 수 있다. 이후, 해당 단말은 산출된 선형 전력 값을 SRS를 위해 설정된 안테나 포트(들)에 대해서 균등하게 분할하여 전송 전력을 제어할 수 있다.
구체적으로, 단말이 인덱스 l에 기반한 SRS 전력 제어 조정 상태(SRS power control adjustment state)를 이용하여, 서빙 셀(c)의 캐리어(f)의 활성화된 UL BWP(b)에서의 SRS 전송을 수행하는 경우, 단말은 아래 수학식 7에 기반하여 SRS 전송 기회(i)에서의 SRS 전송 전력
Figure PCTKR2021007095-appb-img-000011
(dBm)를 결정할 수 있다.
[수학식 1]
Figure PCTKR2021007095-appb-img-000012
수학식 7에서, q_s는 개루프 전력 제어 파라미터(예: P_o, 알파(alpha,
Figure PCTKR2021007095-appb-img-000013
), 경로 손실(PL) 측정(예:
Figure PCTKR2021007095-appb-img-000014
)에 대한 DL RS 자원 등)에 대한 인덱스를 나타내며, SRS 자원 집합(SRS resource set) 별로 설정될 수 있다. 인덱스 l은 폐루프 전력 제어 프로세스(process)에 대한 인덱스를 나타내며, 해당 인덱스는 PUSCH와 독립적으로 설정되거나, 연관되어 설정될 수도 있다. SRS 전력 제어가 PUSCH와 연관되지 않는 경우, SRS를 위한 폐루프 전력 제어 프로세스의 최대 수는 1일 수 있다.
또한, P_o(예:
Figure PCTKR2021007095-appb-img-000015
)는 시스템 정보의 일부로 브로드캐스트되는 파라미터로, 수신 측에서의 목표(target) 수신 전력을 나타낼 수 있다. 해당 P_o 값은 단말의 처리량(throughput), 셀의 용량(capacity), 잡음(noise) 및/또는 간섭(interference) 등을 고려하여 설정될 수 있다. 또한, 알파(예:
Figure PCTKR2021007095-appb-img-000016
)는 경로 손실에 대한 보상을 수행하는 비율을 나타낼 수 있다. 알파는 0부터 1까지의 값으로 설정될 수 있으며, 설정되는 값에 따라 완전 경로 손실 보상(full pathloss compensation) 또는 부분 경로 손실 보상(fractional pathloss compensation)이 수행될 수 있다. 이 경우, 상기 알파 값은 단말들 간의 간섭 및/또는 데이터 속도 등을 고려하여 설정될 수 있다. 또한,
Figure PCTKR2021007095-appb-img-000017
는 설정된 단말 전송 전력을 나타낼 수 있다. 일례로, 상기 설정된 단말 전송 전력은 3GPP TS 38.101-1 및/또는 TS38.101-2에서 정의된 '설정된 단말의 최대 출력 전력(configured maximum UE output power)'으로 해석될 수 있다. 또한,
Figure PCTKR2021007095-appb-img-000018
는 서브캐리어 간격(
Figure PCTKR2021007095-appb-img-000019
)에 기반하여 SRS 전송 기회에 대한 자원 블록(RB)의 수로 표현되는 SRS 자원 할당의 대역폭을 나타낼 수 있다. 또한, SRS 전력 제어 조정 상태와 관련된
Figure PCTKR2021007095-appb-img-000020
는, 단말이 수신한 또는 검출한 DCI(예: DCI format 2_3 등)의 TPC 명령 필드 및/또는 RRC 파라미터(예: srs-PowerControlAdjustmentStates 등)에 기반하여 설정 또는 지시될 수 있다.
SRS 전송에 대한 자원은 기지국 및/또는 단말이 빔, 패널, 및/또는 공간 영역 전송 필터 등을 결정하기 위한 기준(reference)으로 적용될 수 있으며, 이러한 점을 고려할 때 SRS 전송 전력 제어는 빔, 패널, 및/또는 공간 영역 전송 필터 단위로 수행될 수 있다.
상술한 SRS 전력 제어를 위한 파라미터들 및/또는 정보는 BWP 별로 개별적(즉, 독립적)으로 설정될 수 있다. 이 경우, 해당 파라미터들 및/또는 정보는 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 및/또는 DCI 등을 통해 설정 또는 지시될 수 있다. 일례로, SRS 전력 제어를 위한 파라미터 및/또는 정보는 RRC 시그널링 SRS-Config, SRS-TPC-CommandConfig 등을 통해 전달될 수 있다. SRS-Config, SRS-TPC-CommandConfig 의 구성이 일 예는 아래 표 9와 같을 수 있으며, 각 파라미터에 대한 보다 상세한 정의 등은 3GPP TS Rel.16 38.331등을 참조할 수 있다.
Figure PCTKR2021007095-appb-img-000021
Figure PCTKR2021007095-appb-img-000022
Figure PCTKR2021007095-appb-img-000023
Figure PCTKR2021007095-appb-img-000024
단말은 상술한 바와 같은 방식을 통해 SRS 전송 전력을 결정 또는 산출할 수 있으며, 결정된 또는 산출된 SRS 전송 전력을 이용하여 SRS를 전송할 수 있다.
도 7은 다양한 실시예들이 적용 가능한 상향링크 전송 전력 제어 절차의 일 예를 나타낸 도면이다.
먼저, 단말(User equipment)은 기지국(Base station)으로부터 전송 전력(Tx power)와 관련된 파라미터 및/또는 정보를 수신할 수 있다(1005). 이 경우, 단말은 상위 계층 시그널링(예: RRC 시그널링, MAC-CE 등) 등을 통해 해당 파라미터 및/또는 정보를 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송, SRS 전송, 및/또는 PRACH 전송과 관련하여, 단말은 상술한 전송 전력 제어와 관련된 파라미터 및/또는 정보를 수신할 수 있다.
이후, 단말은 기지국으로부터 전송 전력과 관련된 TPC (transmission power control) 명령(TPC command)를 수신할 수 있다(1010). 이 경우, 단말은 하위 계층 시그널링(예: DCI) 등을 통해 해당 TPC 명령을 수신할 수 있다. 일례로, PUSCH 전송, PUCCH 전송 및/또는 SRS 전송과 관련하여, 단말은 상술한 바와 같이 전력 제어 조정 상태 등을 결정에 이용될 TPC 명령에 대한 정보를 미리 정의된 DCI 포맷의 TPC 명령 필드를 통해 수신할 수 있다. 다만, PRACH 전송의 경우 해당 단계가 생략될 수도 있다.
이후, 단말은 기지국으로부터 수신한 파라미터, 정보, 및/또는 TPC 명령에 기반하여, 상향링크 전송을 위한 전송 전력을 결정(또는 산출)할 수 있다(1015). 일례로, 단말은 PUSCH 전송 전력, PUCCH 전송 전력, SRS 전송 전력, 및/또는 PRACH 전송 전력을 결정할 수 있다. 그리고/또는, 캐리어 병합과 같은 상황과 같이, 두 개 이상의 상향링크 채널 및/또는 신호들이 중첩하여 전송될 필요가 있는 경우, 단말은 우선 순위 순서(priority) 등을 고려하여 상향링크 전송을 위한 전송 전력을 결정할 수도 있다.
이후, 단말은 결정된(또는 산출된) 전송 전력에 기반하여, 기지국에 대해 하나 또는 그 이상의 상향링크 채널들 및/또는 신호들(예: PUSCH, PUCCH, SRS, PRACH 등)의 전송을 수행할 수 있다(1020).
2. 측위 (positioning)
측위(Positioning)는 무선 신호를 측정하여 UE의 지리적 위치 및/또는 속도를 결정하는 것을 의미할 수 있다. 위치 정보는 UE와 관련된 클라이언트(예를 들어, 어플리케이션)에 의해 요청되어, 상기 클라이언트에 보고될 수 있다. 또한, 상기 위치 정보는 코어 네트워크(Core Network) 내에 포함되거나, 상기 코어 네트워크와 접속된 클라이언트에 의해 요청될 수도 있다. 상기 위치 정보는 셀 기반 또는 지리적 좌표와 같은 표준 형식(standard format)으로 보고될 수 있으며, 이 때, 상기 UE의 위치 및 속도에 대한 추정 오류치 및/또는 측위(Positioning)에 사용된 측위 방법을 함께 보고 할 수 있다.
2.1. Positioning Protocol configuration
도 8 은 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 포지셔닝 프로토콜 설정(positioning protocol configuration)의 일 예를 나타낸 도면이다.
도 8 을 참조하면, LPP 는 하나 이상의 기준 소스 (reference source) 로부터 획득된 측위-관련 측정 (position-related measurements) 를 사용하여 대상 장치 (UE 및/또는 SET) 를 측위할 수 있도록 위치 서버 (E-SMLC 및/또는 SLP 및/또는 LMF) 와 대상 장치 사이의 point-to-point 로 사용될 수 있다. LPP 를 통하여 타겟 장치 및 위치 서버는 신호 A 및/또는 신호 B 에 기초한 측정 및/또는 위치 정보를 교환할 수 있다.
NRPPa는 기준 소스 (ACCESS NODE 및/또는BS 및/또는 TP 및/또는 NG-RAN 노드) 와 위치 서버 간의 정보 교환에 사용될 수 있다.
NRPPa 프로토콜이 제공하는 기능 (function) 들은 하기 사항들을 포함할 수 있다:
- E-CID Location Information Transfer. 이 기능을 통하여 E-CID 포지셔닝 목적으로 기준 소스와 LMF 간에 위치 정보가 교환될 수 있다.
- OTDOA Information Transfer. 이 기능을 통하여 OTDOA 포지셔닝 목적으로 기준 소스와 LMF 간에 정보가 교환될 수 있다.
- Reporting of General Error Situations. 이 기능을 통하여 기능 별 오류 메시지가 정의되지 않은 일반적인 오류 상황이 보고될 수 있다.
2.2. PRS (positioning reference signal)
측위를 위하여, PRS (positioning reference signal)가 사용될 수 있다. PRS 는 UE의 위치 추정을 위해 사용되는 기준 신호이다.
측위 주파수 레이어 (positioning frequency layer) 는 하나 이상의 PRS 자원 집합을 포함할 수 있고, 하나 이상의 PRS 자원 집합 각각은 하나 이상의 PRS 자원을 포함할 수 있다.
Sequence generation
PRS 의 시퀀스
Figure PCTKR2021007095-appb-img-000025
는 아래 수학식 2에 의하여 정의될 수 있다.
[수학식 2]
Figure PCTKR2021007095-appb-img-000026
c(i) 는 의사-임의 시퀀스 (pseudo-random sequence) 일 수 있다. 의사-임의 시퀀스 생성기 (pseudo-random sequence generator) 는 아래 수학식 3 에 의하여 초기화 될 수 있다.
[수학식 3]
Figure PCTKR2021007095-appb-img-000027
Figure PCTKR2021007095-appb-img-000028
는 SCS (subcarrier spacing) 설정 μ 에서의 프레임 내 슬롯 넘버 (slot number) 일 수 있다. DL PRS 시퀀스 ID (downlink PRS sequence ID)
Figure PCTKR2021007095-appb-img-000029
는 상위 계층 파라미터 (예를 들어, DL-PRS-SequenceId) 에 의하여 주어질 수 있다. l 은 시퀀스가 매핑되는 슬롯 내의 OFDM 심볼일 수 있다.
Mapping to physical resources in a DL PRS resource
PRS 의 시퀀스
Figure PCTKR2021007095-appb-img-000030
Figure PCTKR2021007095-appb-img-000031
에 의하여 스케일될 수 있으며
Figure PCTKR2021007095-appb-img-000032
RE (resource element) 에 매핑될 수 있다. 보다 구체적으로는 아래 수학식 4 에 의할 수 있다.
Figure PCTKR2021007095-appb-img-000033
은 안테나 포트 p 와 SCS 설정 μ 를 위한 RE (k,l) 을 의미할 수 있다.
[수학식 4]
Figure PCTKR2021007095-appb-img-000034
여기서, 아래 조건들이 만족되어야 할 수 있다:
- RE
Figure PCTKR2021007095-appb-img-000035
는 UE 를 위하여 설정된 DL PRS 자원에 의하여 점유된 RB (resource block) 에 포함됨;
- 심볼 l 은 서빙 셀로부터 송신된 DL PRS 를 위한 서빙 셀로부터 사용된 어떠한 SS/PBCH 블록에 의하여도 사용되지 않거나 비-서빙 셀로부터 송신된 DL PRS 를 위한 SSB-positionInBurst 에 의하여 지시되지 않음 (the symbol l is not used by any SS/PBCH block used by the serving cell for downlink PRS transmitted from the serving cell or indicated by the higher-layer parameter SSB-positionInBurst for downlink PRS transmitted from a non-serving cell);
- 슬롯 넘버는 후술되는 PRS 자원 집합 관련 조건을 만족;
Figure PCTKR2021007095-appb-img-000036
는 슬롯 내 DL PRS 의 첫번째 심볼이고, 상위 계층 파라미터 DL-PRS-ResourceSymbolOffset 에 의하여 주어질 수 있다. 시간 도메인에서의 DL PRS 자원의 크기
Figure PCTKR2021007095-appb-img-000037
는 상위 계층 파라미터 DL-PRS-NumSymbols 에 의하여 주어질 수 있다. 콤 크기 (콤 사이즈)
Figure PCTKR2021007095-appb-img-000038
는 상위 계층 파라미터 transmissionComb 에 의하여 주어질 수 있다.
Figure PCTKR2021007095-appb-img-000039
Figure PCTKR2021007095-appb-img-000040
의 조합
Figure PCTKR2021007095-appb-img-000041
은 {2, 2}, {4, 2}, {6, 2}, {12, 2}, {4, 4}, {12, 4}, {6, 6}, {12, 6} 및/또는 {12, 12} 중 하나일 수 있다. RE 오프셋
Figure PCTKR2021007095-appb-img-000042
combOffset 에 의하여 주어질 수 있다. 주파수 오프셋
Figure PCTKR2021007095-appb-img-000043
는 표 6 에서와 같은
Figure PCTKR2021007095-appb-img-000044
의 함수일 수 있다.
Figure PCTKR2021007095-appb-img-000045
k=0 을 위한 기준 포인트 (reference point) 는 DL PRS 자원이 설정된 측위 주파수 레이어의 포인트 A (point A) 의 위치일 수 있다. 포인트 A 는 상위 계층 파라미터 dl-PRS-PointA-r16 에 의하여 주어질 수 있다.
Mapping to slots in a DL PRS resource set
DL PRS 자원 집합 내의 DL PRS 자원은 아래 수학식 5 을 만족하는 슬롯 및 프레임에서 송신될 수 있다.
[수학식 5]
Figure PCTKR2021007095-appb-img-000046
Figure PCTKR2021007095-appb-img-000047
는 SCS 설정 μ 에서의 프레임 당 슬롯 개수일 수 있다.
Figure PCTKR2021007095-appb-img-000048
는 SFN (system frame number) 일 수 있다.
Figure PCTKR2021007095-appb-img-000049
는 SCS 설정 μ 에서의 프레임 내 슬롯 넘버일 수 있다. 슬롯 오프셋
Figure PCTKR2021007095-appb-img-000050
는 상위 계층 파라미터 DL-PRS-ResourceSetSlotOffset 에 의하여 주어질 수 있다. DL PRS 자원 슬롯 오프셋
Figure PCTKR2021007095-appb-img-000051
은 상위 계층 파라미터 DL-PRS-ResourceSlotOffset 에 의하여 주어질 수 있다. 주기
Figure PCTKR2021007095-appb-img-000052
는 상위 계층 파라미터 DL-PRS-Periodicity 에 의하여 주어질 수 있다. 반복 인자 (repetition factor)
Figure PCTKR2021007095-appb-img-000053
는 상위 계층 파라미터 DL-PRS-ResourceRepetitionFactor 에 의하여 주어질 수 있다. 뮤팅 반복 인자 (muting repetition factor)
Figure PCTKR2021007095-appb-img-000054
는 상위 계층 파라미터 DL-PRS-MutingBitRepetitionFactor 에 의하여 주어질 수 있다. 시간 갭 (time gap)
Figure PCTKR2021007095-appb-img-000055
은 상위 계층 파라미터 DL-PRS-ResourceTimeGap 에 의하여 주어질 수 있다.
2.3. UE Positioning Architecture
도 9 은 다양한 실시예들이 적용 가능한 단말의 위치를 측정하기 위한 시스템의 아키텍쳐의 일 예를 나타낸 도면이다.
도 9을 참조하면, AMF (Core Access and Mobility Management Function)은 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC (Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF (Location Management Function) 에게 위치 서비스 요청을 전송한다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에 AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB (new generation evolved-NB) 및 gNB는 위치 추적을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드 (remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC (Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP (SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS (Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN에서 전송하는 하향링크 참조 신호(Downlink Reference Signal)을 활용하여 UE의 위치를 측정할 수 있다. 이 때, NG-RAN 및 E-UTRAN로부터 UE에게 전송되는 상기 하향링크 참조 신호에는 SS/PBCH 블록, CSI-RS 및/또는 PRS 등이 포함될 수 있으며, 어떠한 하향링크 참조 신호를 사용하여 UE의 위치를 측정할지 여부는 LMF/E-SMLC/ng-eNB/E-UTRAN 등의 설정에 따를 수 있다. 또한, 서로 상이한 GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN (Wireless local area network) 접속 포인트, 블루투스 비콘 및 UE에 내장된 센서(예를 들어, 기압 센서)등을 활용하는 RAT-independent 방식으로 UE의 위치를 측정할 수도 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
2.4. UE의 위치 측정을 위한 동작
도 10 은 다양한 실시예들이 적용 가능한 단말의 위치를 측정하는 절차의 일 예를 나타낸 도면이다.
UE가 CM-IDLE (Connection Management - IDLE)상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 10에서는 생략되어 있다. 즉, 도 10에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 10을 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 예를 들어, LMF가 NG-RAN에 하나 이상의 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, NG-RAN은 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 상기 요청에 의한 위치 결정 방법이 E-CID인 경우, NG-RAN은 추가적인 위치 관련 정보를 LMF에 하나 이상의 NRPPa 메시지를 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있다. 또한, 단계 3a에서 사용되는 프로토콜(Protocol)은 NRPPa 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 예를 들어, 단계 3b에서 성능 정보 교환(Capability Transfer) 과정을 수행할 수 있다. 구체적으로 LMF는 UE에게 성능(Capability) 정보를 요청하고, UE는 LMF에게 성능(Capability) 정보를 전송할 수 있다. 이 때, 성능(Capability) 정보란, LFM 또는 UE가 지원할 수 있는 위치 측정 방법에 대한 정보, A-GNSS를 위한 보조 데이터(Assistance data)의 다양한 타입과 같이 특정 위치 측정 방법에 대한 다양한 측면(aspects)들에 대한 정보 및 다중 LPP 트랜젝션들을 핸들링(handle)할 수 있는 능력 등과 같이 어느 하나의 위치 측정 방법에 국한되지 않는 공통 특징에 대한 정보 등을 포함할 수 있다. 한편, 경우에 따라서 LMF가 UE에게 성능(Capability) 정보를 요청하지 않더라도, UE가 LMF에게 성능(Capability) 정보를 제공할 수 있다.
또 다른 예로, 단계 3b에서 위치 보조 데이터 교환(Assistance data transfer) 과정을 수행할 수 있다. 구체적으로, UE는 LMF에게 위치 보조 데이터(assistance data)를 요청할 수 있고, 필요로 하는 특정 위치 보조 데이터(assistance data)를 LMF에 지시할 수 있다. 그러면, LMF는 이에 대응하는 위치 보조 데이터(assistance data)를 UE에게 전달할 수 있고, 추가적으로, 하나 이상의 추가 LPP 메시지들을 통해 추가 보조 데이터(Additional assistance data)를 UE에게 전송할 수 있다. 한편, LMF에서 UE로 전송되는 위치 보조 데이터는 유니캐스트(unicast) 방식을 통해 전송될 수 있고, 경우에 따라, UE가 LMF에 보조 데이터를 요청하는 과정 없이, LMF가 UE에게 위치 보조 데이터 및/또는 추가 보조 데이터를 UE에게 전송할 수 있다.
또 다른 예로, 단계 3b에서 위치 정보 교환(Location Information Transfer) 과정을 수행할 수 있다. 구체적으로, LMF가 UE에게 해당 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, UE는 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 추가적으로 UE는 추가 위치 관련 정보를 LMF에 하나 이상의 LPP 메시지들을 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있으며, 대표적으로는 복수의 NG-RAN 및/또는 E-UTRAN로부터 UE로 전송되는 하향링크 참조 신호(Downlink Reference Signal)들을 기반으로 UE가 측정하는RSTD(Reference Signal Time Difference) 값이 있을 수 있다. 상술한 바와 유사하게 UE 는 LMF로부터 요청이 없더라도 상기 위치 관련 정보를 LMF에 전송할 수 있다.
한편, 상술한 단계 3b에서 이루어지는 과정들은 단독으로 수행될 수도 있지만, 연속적으로 수행될 수 있다. 일반적으로, 성능 정보 교환(Capability Transfer) 과정, 위치 보조 데이터 교환(Assistance data transfer) 과정, 위치 정보 교환(Location Information Transfer) 과정 순서로 단계 3b가 수행되지만, 이러한 순서에 국한되지 않는다. 다시 말해, 단계 3b는 위치 측정의 유연성을 향상시키기 위해 특정 순서에 구애 받지 않는다. 예를 들어, UE는 LMF가 이미 요청한 위치 측정 요청을 수행하기 위해 언제든지 위치 보조 데이터를 요청할 수 있다. 또한, LMF도 UE가 전달해준 위치 정보가 요구하는 QoS를 만족하지 못하는 경우, 언제든지 위치 측정치 또는 위치 추정치 등의 위치 정보를 요청할 수 있다. 이와 유사하게 UE가 위치 추정을 위한 측정을 수행하지 않은 경우에는 언제든지 LMF로 성능(Capability) 정보를 전송할 수 있다.
또한, 단계 3b에서 LMF와 UE 간에 교환하는 정보 또는 요청에 Error가 발생한 경우, Error 메시지가 송수신될 수 있으며, 위치 측정을 중단하기 위한 중단(Abort)메시지가 송수신될 수도 있다.
한편, 단계 3b 에서 사용되는 프로토콜(Protocol)은 LPP 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 10의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 10의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
2.5. 위치 측정을 위한 프로토콜
LTE Positioning Protocol (LPP)
도 11은 다양한 실시예들이 적용 가능한 LPP (LTE positioning protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다. LPP PDU는 AMF (Access and Mobility management Function) 와 UE 간의 NAS PDU를 통해 전송될 수 있다.
도 11를 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C 인터페이스를 통한 NGAP, LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트 (Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
NR Positioning Protocol A (NRPPa)
도 12은 다양한 실시예들이 적용 가능한 NRPPa (NR positioning protocol a) PDU (protocol data unit) 전송을 지원하기 위한 프로토콜 레이어의 일 예를 나타낸 도면이다.
NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID, OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNG/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
2.6. 측위 방법 (Positioning Measurement Method)
NG-RAN에서 지원하는 측위 방법들에는 GNSS (Global Navigation Satellite System), OTDOA, E-CID (enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA (Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
OTDOA (Observed Time Difference Of Arrival)
도 13은 다양한 실시예들이 적용 가능한 OTDOA (observed time difference of arrival) 측위(Positioning) 방법의 일 예를 나타낸 도면이다.
OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN을 인지하지 못하면, UE는 RSTD (Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추청할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 수학식 6을 기반으로 산출될 수 있다.
[수학식 6]
Figure PCTKR2021007095-appb-img-000056
c는 빛의 속도이고,
Figure PCTKR2021007095-appb-img-000057
는 타겟 UE의 (알려지지 않은) 좌표이고,
Figure PCTKR2021007095-appb-img-000058
는 (알려진) TP의 좌표이며,
Figure PCTKR2021007095-appb-img-000059
은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서,
Figure PCTKR2021007095-appb-img-000060
은 두 TP 간의 전송 시간 오프셋으로서, "Real Time Differences" (RTDs)로 명칭될 수 있으며, ni, n1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정 값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance; TADV), Angle of Arrival (AoA)
여기서, TADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
TADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송신 시간차)
TADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
DL AoD positioning
DL AoD 측위 방법은 단말 측에서 복수 개의 TP들로 부터 전달되는 PRS의 RSRP를 기반으로 이루어 진다. 단말은 positioning server로부터 전달된 assistance data를 기반으로 PRS들의 RSRP를 측정하게 되고 복수개의 TRP들의 지리학적 좌표와 상대적인 시간차를 기반으로 단말의 위치를 측정하게 되며 해당 단말의 위치계산은 단말 스스로 (UE-based) 계산 하는 방식과 단말에서 전송된 정보를 바탕으로 기지국에서 계산하는 방식 (UE-assistance)으로 나뉜다.
UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀을 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(Configuration)을 제공할 수 있다.
Multi RTT (Multi-cell RTT)
도 14 은 다양한 실시예들이 적용 가능한 Multi RTT (round trip time) 측위 방법의 일 예를 나타낸 도면이다.
도 14 (a) 을 참조하면, initiating device 와 responding device 에서 TOA 측정이 수행되고, responding device 가 RTT 측정 (계산) 을 위하여 initiating device) 에 TOA 측정을 제공하는 RTT 과정을 예시한다. 예를 들어, initiating device 는 TRP 및/또는 단말일 수 있고, responding device 는 단말 및/또는 TRP 일 수 있다.
다양한 실시예들에 따른 동작 1301 에서 initiating device 는 RTT 측정 요청을 송신하고, responding device 는 이를 수신할 수 있다.
다양한 실시예들에 따른 동작 1303 에서, initiating device 는 RTT 측정 신호를 t0 에서 송신할 수 있고, responding device 는 TOA 측정 t1 을 획득할 수 있다.
다양한 실시예들에 따른 동작 1305 에서, responding device 는 RTT 측정 신호를 t2 에서 송신할 수 있고, initiating device 는 TOA 측정 t3 을 획득할 수 있다.
다양한 실시예들에 따른 동작 1307 에서, responding device 는 [t2-t1] 에 대한 정보를 송신할 수 있고, initiating device 는 해당 정보를 수신하여, 수학식 7 에 기초하여 RTT 를 계산할 수 있다. 해당 정보는 별개 신호에 기초하여 송수신될 수도 있고, 1305 의 RTT 측정 신호에 포함되어 송수신될 수도 있다.
[수학식 7]
Figure PCTKR2021007095-appb-img-000061
도 14 (b) 을 참조하면, 해당 RTT 는 두 디바이스 간의 double-range 측정과 대응할 수 있다. 해당 정보로부터 측위 추정 (positioning estimation) 이 수행될 수 있다. 측정된 RTT 에 기반하여 d1, d2, d3 가 결정될 수 있으며, 각 BS1, BS2, BS3 (또는 TRP) 를 중심으로 하고 각 d1, d2, d3 를 반지름으로 하는 원주의 교차점으로 target device location 이 결정될 수 있다.
2.7. Sounding Procedure
다양한 실시예들이 적용 가능한 무선 통신 시스템에서는 측위 목적을 위하여 SRS (sounding reference signal) (SRS for positioning) 가 사용될 수 있다.
SRS 송신을 설정하는데 SRS-Config IE (information element) 가 사용될 수 있다. SRS 자원 (의 리스트) 및/또는 SRS 자원 집합 (의 리스트) 가 정의될 수 있으며, 각 자원 집합은 SRS 자원의 집합을 정의할 수 있다.
SRS-Config 에는 (기타 용도의) SRS 의 설정 정보와 측위를 위한 SRS 의 설정 정보가 별개로 포함될 수 있다. 예를 들어, (기타 용도의) SRS 를 위한 SRS 자원 집합의 설정 정보 (예를 들어, SRS-ResourceSet) 과 측위를 위한 SRS 를 위한 SRS 자원 집합의 설정 정보 (예를 들어, SRS-PosResourceSet) 가 별개로 포함될 수 있다. 또한, 예를 들어, (기타 용도의) SRS 를 위한 SRS 자원의 설정 정보 (예를 들어, SRS-ResourceSet) 과 측위를 위한 SRS 를 위한 SRS 자원의 설정 정보 (예를 들어, SRS-PosResource) 가 별개로 포함될 수 있다.
측위를 위한 SRS 자원 집합은 하나 이상의 측위를 위한 SRS 자원을 포함할 수 있다. 측위를 위한 SRS 자원 집합을 설정하는 정보는 측위를 위한 SRS 자원 집합에 부여/할당/대응되는 ID (identifier) 에 대한 정보와, 포함된 측위를 위한 하나 이상의 SRS 자원 각각에 부여/할당/대응되는 ID 를 포함할 수 있다. 예를 들어, 측위를 위한 SRS 자원을 설정하는 정보는 UL 자원에 부여/할당/대응되는 ID 를 포함할 수 있다. 예를 들어, 각 측위를 위한 SRS 자원/SRS 자원 집합은 각 부여/할당/대응되는 ID 에 기초하여 식별될 수 있다
SRS 는 주기적(periodic)/반-정적(semi-persistent)/비주기적(aperiodic) 으로 설정될 수 있다.
비주기적 SRS 는 DCI 로부터 트리거링될 수 있다. DCI 는 SRS 요청 (SRS request) 필드를 포함할 수 있다.
SRS 요청 필드의 일 예는 표 7 을 참조할 수 있다.
Figure PCTKR2021007095-appb-img-000062
표 7 에서, srs-TPC-PDCCH-Group 은 SRS 송신을 위한 트리거링 타입을 typeA 또는 typeB 로 설정하는 파라미터이고, aperiodicSRS-ResourceTriggerList 는 단말이 SRS 자원 집합 설정에 따라 SRS 를 송신해야 하는 DCI "code points" 의 추가 리스트 (additional list) 를 설정하는 파라미터이고, aperiodicSRS-ResourceTrigger 는 SRS 자원 집합 설정에 따라 SRS 를 송신해야 하는 DCI "code point" 를 설정하는 파라미터이고, resourceType 는 SRS 자원 설정의 시간 도메인 행동 (time domain behavior) 을 설정 (주기적/반-정적/비주기적) 하는 파라미터일 수 있다.
3. 다양한 실시예들
이하에서는, 상기와 같은 기술적 사상에 기반하여 다양한 실시예들에 대해 보다 상세히 설명한다. 이하에서 설명되는 다양한 실시예들에 대해서는 앞서 설명한 제 1 절 내지 제 2 절의 내용들이 적용될 수 있다. 예를 들어, 이하에서 설명되는 다양한 실시예들에서 정의되지 않은 동작, 기능, 용어 등은 제 1 절 내지 제 2 절의 내용들에 기반하여 수행되고 설명될 수 있다.
다양한 실시예들에 대한 설명에서 사용되는 기호/약어/용어는 다음과 같을 수 있다.
- 5GC : 5G Core Network
- 5GS : 5G System
- A/B/C : A 및/또는 B 및/또는 C
- AOA (AoA) : angle of arrival
- CSI-RS : channel state information reference signal
- ECID : enhanced cell identifier
- LMF : location management function
- MAC : medium access control
- MAC-CE : MAC-control element
- NRPPa : NR positioning protocol a
- OTDOA (OTDoA) : observed time difference of arrival
- PRS : positioning reference signal
- RAT : radio access technology
- RS : reference signal
- RTT : round trip time
- RSRP : reference signal received power
- RSRQ : reference signal received quality
- RSTD : reference signal time difference / relative signal time difference
- SINR : signal to interference plus noise ratio)
- SNR : signal to noise ratio
- SRS : sounding reference signal. 다양한 실시예들에 따르면, SRS 는 MIMO (multi input multi output) 를 이용한 UL 채널 추정 (UL channel estimation) 용도와 측위 측정 (positioning measurement) 용도가 있을 수 있다. 달리 말하면, 다양한 실시예들에 따르면, SRS 는 노말 (normal) SRS 와 측위 (positioning) SRS 를 포함할 수 있다. 다양한 실시예들에 따르면, 측위 SRS 는 단말의 측위를 위하여 설정되거나 및/또는 단말의 측위를 위하여 사용되는 UL RS 로 이해될 수 있다. 다양한 실시예들에 따르면, 노말 SRS 는 측위 SRS 와 대비되는 것으로, UL 채널 추정을 위하여 설정되거나 및/또는 UL 채널 추정을 위하여 사용되는 (및/또는 UL 채널 추정 및 측위를 위하여 설정되거나 및/또는 UL 채널 추정 및 측위를 위하여 사용되는) UL RS 로 이해될 수 있다. 다양한 실시예들에 따르면 측위 SRS 는 측위를 위한 SRS (SRS for positioning) 등으로도 불릴 수 있다. 다양한 실시예들에 대한 설명에서 측위 SRS, 측위를 위한 SRS 등의 용어는 혼용될 수 있으며, 동일한 의미로 이해될 수 있다. 다양한 실시예들에 따르면, 노말 SRS 는 레거시 (legacy) SRS, MIMO SRS, MIMO 를 위한 SRS (SRS for MIMO) 등으로도 불릴 수 있다. 다양한 실시예들에 대한 설명에서, 노말 SRS, 레거시 SRS, MIMO SRS, MIMO 를 위한 SRS 등의 용어는 혼용될 수 있으며, 동일한 의미로 이해될 수 있다. 예를 들어, 노말 SRS 와 측위 SRS 는 별도로 설정/지시될 수 있다. 예를 들어, 노말 SRS 와 측위 SRS 는 상위 계층의 서로 다른 IE (information element) 로부터 설정/지시될 수 있다. 예를 들어, 노말 SRS 는 SRS-resource 에 기초하여 설정될 수 있다. 예를 들어, 측위 SRS 는 SRS-PosResource 에 기초하여 설정될 수 있다.
- SS : synchronization signal
- SSB : synchronization signal block
- SS/PBCH : synchronization signal/physical broadcast channel
- TA : timing advance / time advance
- TBS : Terrestrial Beacon System
- TDOA (TDoA) : timing difference of arrival
- TOA (ToA) : time of arrival
- TRP : transmission and reception point (TP : transmission point)
- UTDOA (UTDoA) : uplink time difference of arrival
다양한 실시예들에 대한 설명에서, 기지국은 RRH (remote radio head), eNB, gNB, TP, RP (reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 이해될 수 있다.
다양한 실시예들에 대한 설명에서, A 초과/이상인 것은 A 이상/초과인 것으로 대체될 수 있다.
다양한 실시예들에 대한 설명에서, B 미만/이하인 것은 B 이하/미만인 것으로 대체될 수 있다.
도 15 은 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 15을 참조하면, 다양한 실시예들에 따른 동작 1501에서, 위치 서버 및/또는 LMF 는, 단말에게 설정 정보(configuration)를 송신할 수 있으며, 단말은 이를 수신할 수 있다.
한편, 다양한 실시예들에 따른 동작 1303 에서, 위치 서버 및/또는 LMF 는, TRP 에게 기준 설정 정보를 송신할 수 있으며, TRP 는 이를 수신할 수 있다. 다양한 실시예들에 따른 동작 1305 에서, TRP 는 기준 설정 정보를 단말에게 송신할 수 있으며, 단말은 이를 수신할 수 있다. 이 경우, 다양한 실시예들에 따른 동작 1301 은 생략될 수 있다.
반대로, 다양한 실시예들에 따른 동작 1303 및 1305은 생략될 수 있다. 이 경우, 다양한 실시예들에 따른 동작 1301 은 수행될 수 있다.
즉, 다양한 실시예들에 따른 동작 1301 과, 다양한 실시예들에 따른 동작 1303 및 1305 은 선택적일 수 있다.
다양한 실시예들에 따른 동작 1307 에서, TRP 은 단말에게 설정 정보와 관련된 신호를 전송할 수 있으며, 단말은 이를 수신할 수 있다. 예를 들어, 설정 정보와 관련된 신호는 단말의 측위를 위한 신호일 수 있다.
다양한 실시예들에 따른 동작 1309 에서, 단말은 측위와 관련된 신호를 TRP 로 송신할 수 있으며, TRP 는 이를 수신할 수 있다. 다양한 실시예들에 따른 동작 1311 에서, TRP 는 측위와 관련된 신호를 위치 서버 및/또는 LMF 로 송신할 수 있으며, 위치 서버 및/또는 LMF 는 이를 수신할 수 있다.
한편, 다양한 실시예들에 따른 동작 1313 에서, 단말은 측위와 관련된 신호를 위치 서버 및/또는 LMF 로 송신할 수 있으며, 위치 서버 및/또는 LMF 는 이를 수신할 수 있다. 이 경우, 다양한 실시예들에 따른 동작 1309 및 1311 은 생략될 수 있다.
반대로, 다양한 실시예들에 따른 동작 1313은 생략될 수 있다. 이 경우, 다양한 실시예들에 따른 동작 1311 및 1313 은 수행될 수 있다.
즉, 다양한 실시예들에 따른 동작 1309 및 1311 과, 다양한 실시예들에 따른 동작 1313 은 선택적일 수 있다.
다양한 실시예들에 따르면, 측위와 관련된 신호는 설정 정보 및/또는 설정 정보와 관련된 신호에 기초하여 획득된 것일 수 있다.
도 16 은 다양한 실시예들에 따른 단말, TRP, 위치 서버 및/또는 LMF의 동작 방법을 간단히 나타낸 도면이다.
도 16(a) 을 참조하면, 다양한 실시예들에 따른 동작 1401(a) 에서, 단말은 설정 정보를 수신할 수 있다.
다양한 실시예들에 따른 동작 1403(a) 에서, 단말은 설정 정보와 관련된 신호를 수신할 수 있다.
다양한 실시예들에 따른 동작 1405(a) 에서, 단말은 측위와 관련된 정보를 송신할 수 있다.
도 16(b) 를 참조하면, 다양한 실시예들에 따른 동작 1401(b) 에서 TRP 는 위치 서버 및/또는 LMF 로부터 설정 정보를 수신할 수 있으며, 이를 단말에게 송신할 수 있다.
다양한 실시예들에 따른 동작 1403(b) 에서, TRP 는 설정 정보와 관련된 신호를 송신할 수 있다.
다양한 실시예들에 따른 동작 1405(b) 에서, TRP 는 측위와 관련된 정보를 수신할 수 있으며, 이를 위치 서버 및/또는 LMF 로 송신할 수 있다.
도 16(c) 를 참조하면, 다양한 실시예들에 따른 동작 1401(c) 에서, 위치 서버 및/또는 LMF 는 설정 정보를 송신할 수 있다.
다양한 실시예들에 따른 동작 1405(c) 에서, 위치 서버 및/또는 LMF 는 측위와 관련된 정보를 수신할 수 있다.
예를 들어, 상술한 설정 정보는, 이하의 다양한 실시예들에 대한 설명에서 reference configuration (information), 기준 설정 (정보), 참조 설정 (정보), 위치 서버 및/또는 LMF 및/또는 TRP 가 단말로 전송/설정하는 하나 이상의 정보 등과 관련된 것으로 이해되거나 및/또는 해당 reference configuration (information), 기준 설정 (정보), 참조 설정 (정보), 위치 서버 및/또는 LMF 및/또는 TRP 가 단말로 전송/설정하는 하나 이상의 정보 등인 것으로 이해될 수 있다.
예를 들어, 상술한 측위와 관련된 신호는, 이하의 다양한 실시예들에 대한 설명에서 단말이 보고하는 정보 중 하나 이상과 관련된 신호로 이해되거나 및/또는 해당 단말이 보고하는 정보 중 하나 이상을 포함하는 신호로 이해될 수 있다.
예를 들어, 이하의 다양한 실시예들에 대한 설명에서 기지국, gNB, 셀 등은 TRP, TP 나 이와 동일한 역할을 하는 임의의 장치 등으로 대체될 수 있다.
예를 들어, 이하의 다양한 실시예들에 대한 설명에서 위치 서버는 LMF 나 이와 동일한 역할을 하는 임의의 장치 등으로 대체될 수 있다.
각 다양한 실시예들에 따른 동작에서의 보다 구체적인 동작, 기능, 용어 등은 후술되는 다양한 실시예들에 기반하여 수행되고 설명될 수 있다. 한편, 각 다양한 실시예들에 따른 동작들은 예시적인 것으로, 각 실시예의 구체적인 내용에 따라 상술한 동작들 중 하나 이상의 동작은 생략될 수 있다.
이하에서는 다양한 실시예들에 대해 상세히 설명한다. 이하에서 설명되는 다양한 실시예들은 상호 배척되지 않는 한 전부 또는 일부가 결합되어 또 다른 다양한 실시예들을 구성할 수도 있으며, 이는 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.
단말은 설정된 각 TRP별 PRS (positioning reference signal) 자원 세트에 해당하는 자원들에 대하여 RSRP (reference signal received power)를 측정하고, 기지국/서버로 타임 스탬프 (time stamp) (including TRP ID, # of SFN, # of slot), 타이밍 측정 품질 (timing measurement quality), 수신 빔 인덱스 (Rx beam index) 정보를 전달한다. 그러나 단말이 이동하게 될 경우, 특정 방향으로의 빔 방향 (direction)은 변이 된다. 즉, 단말에서 수신에 사용된 Rx 빔 인덱스의 정보가 절대적인 방향에 기준한 것인지 또는 공간 필터 (spatial filter)에 의거한 물리적인 빔 인덱스 정보를 나타내는 정보인지에 따라서, 기지국/서버에서 위치 (location)를 계산 (calculation)하고 단말의 상황을 예측하여 대처하는 절차가 달라질 수 있다.
표준에서 지원하는 포지셔닝 (positioning) 방법에는 크게 GNSS / OTDOA / E-CID(Enhanced Cell ID) / 대기압 센서 (barometric pressure sensor) / WLAN / 블루투스 (Bluetooth) / TBS (Terrestrial Beacon System) / 모션 센서 (Motion sensor) / multi-RTT (round trip time) / DL AoD / DL TDoA / UL TDoA / UL AOA 이 있다. 보통의 (Common) 포지셔닝 절차 (positioning procedure)는 단말의 능력 (capability)의 요청 및 전송 / 보조 데이터 (assistance data)의 요청 및 전송 / 측정한 결과 (location information)에 관한 요청 및 전송으로 이루어진다.
이하 다양한 실시예들에서는 위치 정보 (location information)에 관해 기술한다. 단말은 아래 표 8과 같이 각 RSRP를 측정하는 PRS의 자원 세트들과 그 예하의 자원들에 대하여 측정한 RSRP 결과 그리고 각기 다른 TRP (transmission and reception point) 들로부터 전송된 PRS의 수신 시간 구분을 위한 타임 스탬프 (including TRP ID, # of SFN, # of slot), 타이밍에 관한 정확성을 나타내는 타이밍 측정 품질 정보와 더불어 PRS의 수신에 사용된 Rx 빔 인덱스 정보를 전달하게 된다.
Figure PCTKR2021007095-appb-img-000063
이때 Rx 빔 인덱스의 정보가 절대적인 공간 빔 (spatial beam) 방향에 관한 인덱스 정보를 나타내는 것인지, 단말에서의 물리적인 빔 인덱스 정보를 나타내는 정보인지에 따라, 기지국/서버에서 위치를 계산하고 단말의 상황을 예측 및 대처하는 절차가 달라 질 수 있다. 일 예로, 시점 T1, T2에서 단말이 PRS resource #0를 수신할 때 사용한 수신 빔 인덱스가 모두 #0이라고 할 경우, 기지국은 단말이 동일 공간 필터를 사용하여 수신 했다고 고려되거나 혹은 물리적인 수신 빔은 다르나 절대적인 방향 성에 대해서 T1, T2에서의 같다라고 해석할 수 있다. 즉, T1에서 Rx 공간 빔 (spatial beam)과 T2에서의 Rx spatial beam이 단말의 이동에 의해 다를 지라도 절대적인 방향은 같을 수 있다. 결국, 기지국/서버와 단말간에 약속이 필요하며, 기지국/서버에서 해당 정보를 활용하는 추가적인 방법이 다를 수 있다. 따라서, 이하 다양한 실시예들은 해당 Rx 빔 인덱스의 활용에 따른 단말과 기지국에서의 위치 측정 (positioning measurement)의 절차에 대해 기술한다.
다양한 실시예들에서는 단말로부터 기지국/서버에 전송되는 위치 정보들 중 PRS 수신에관한 빔 인덱스에 관해 다룬다.
도 17은 다양한 실시예들에 따른 PRS (positioning reference signal) 수신 빔 인덱스 (Rx beam index)가 할당되는 경우를 도시한 도면이다.
도17-A의 경우, 단말에서 PRS 수신에 사용된 절대적인 빔 방향을 기준으로 index가 할당이 되는 경우를 나타낸다. 해당 경우는 단말의 이동에 의해서 공간 필터 (spatial filter)가 변경이 되어도 절대적인 Rx 빔 인덱스는 변화가 없다. 즉, 단말에서T1, T2 시점에서 Rx 공간 필터가 변경 될 지라도 단말은 위치 정보를 전송할 때 절대 방향을 기준으로 해당하는 Rx 빔 인덱스를 전송하는 방식이다.
반면, 도 17-B는 단말에서 현시점에 사용되는 Rx 공간 필터를 기반으로 index를 전송하는 방식이다. 절대적인 방향으로 같은 방향을 나타내더라도 실질적으로 수신에 사용된 Rx beam에 관한 index 정보를 전송하게 된다. 상기 두 가지 관점에서 기지국/서버에서 위치 정보를 측정하기 위한 절차 및 단말에서 부가적인 측정 성능 향상을 위해 취할 수 있는 동작의 다양한 실시예들에 대하여 이하 기술한다.
Case 1: 절대 빔 방향에 따른 고정 RS 빔 인덱스 (Fixed RS beam index based on absolute beam direction)
단말의 이동으로 인해 Rx 공간 필터에 의거한 빔 방향이 변동이 있는 경우에도, Rx 빔 인덱스는 절대 적인 방향과 연계되어 항상 고정된 값이 사용되는 것이다. 즉, T1 시점에서 PRS resource #0를 수신하기에 사용된 Rx 공간 필터와 단말의 이동/변이에 의해서 T2 시점에서 PRS resource #0를 수신하는데 사용된 Rx 공간 필터가 다를지라도 만약 절대적인 방향이 동일할 경우 동일한 Rx 빔 인덱스를 단말에서는 전송하게 된다. 이때, 단말에서 단순히 Rx 빔 인덱스만 전송하게 될 경우, 기지국에서는 단말이 현재 시점과 과거 시점에서의 동일 PRS를 수신하는데 실제로 수신에 사용된 공간 필터가 변경 혹은 유지 여부를 확인하기 어렵다. 따라서, 이를 보완하기 위한 방법(방법1)이 필요하다. 더불어, 공간 필터가 변경됨은 단말의 위치 변이와 관련이 있으므로 추가적인 정보를 단말에서 전달하게 해줌으로써, 해당 정보를 활용하여 기지국에서의 위치 측정에 대한 성능을 개선할 수 있는 방법(방법2)이 필요하다.
방법1 : 단말측에서의 Rx 공간 빔의 변경 유무 전송
단말에 이동에 의해 절대적으로 수신하는 수신 빔의 방향은 같으나, 공간 필터를 달리 설정될 수 있다. 이를 위해 단말은 위치 정보를 전달 할 때, 이전 시점에서의 PRS 수신에 사용된 공간 필터의 변경 여부에 대한 정보를 전달하게 된다. 일 예로, 단말은 위치 정보 정보에 추가1 bit를 할당하여 Rx 공간 필터의 유지/변경 유무를 알려주게 된다. 즉, 해당 1 bit의 정보가 '0'일 경우 해당 Rx 공간 필터의 변경이 없음을 나타내며, '1'일 경우 실제 단말에서 PRS 수신에 사용된 공간 필터가 단말의 이동/변이에 의해서 변경됨을 전달하게 된다. 기지국은 해당 정보를 바탕으로 단말의 위치가 변경되었음을 인지하게 된다.
방법 2 : 공간 필터에 관한 인덱스 정보 및 방위각 차이 전송
Case 1의 경우, 절대적인 방향을 기준으로 Rx 빔 인덱스가 설정이 되기 때문에, 실질적인 PRS해당 방식은 수신에 사용된 공간 필터에 관해서는 기지국은 알 수 없다. 또한 방법1을 이용할 경우, 단말의 위치 변화 유무에 대해서만을 기지국기 예측 가능하지만, 빔 관리 (beam management)관점에서 활용이 제한적일 수 있다. 이를 위해 단말은 자신이 지원 가능한 공간 필터들의 후보 군들을 나열하고 각각에 대해 인덱스 정보를 할당 그리고 위치 정보를 전송할 때, 해당 공간 필터의 인덱스 정보를 전달 하게 된다. 기지국은 수신된 해당 공간 필터의 인덱스를 기반으로 빔 관리에 활용할 수 있게 된다. 혹은 단말이 t-1 시점에 PRS 수신에 사용한 공간 필터에 의한 빔 방향 대비 t 시점에 PRS 수신에 사용한 공간 필터의 방위각 차이 혹은 매 시점에서의 정남 혹은 정북을 기준으로한 방위각에 대한 오프셋 (offset) 값을 송신할 수 있다. 이때, 방위각은 단말에서 디지털 및 아날로그 빔포밍을 취하면서 함께 방위각 계산을 수행하여 그 차이를 단말 스스로 계산하게 된다. 해당 방위각 정보 전송에 따른 시그널링 오버헤드가 있을 수 있기 때문에, [0 Xo]의 값 내에서 전송하되 X 값은 공간 필터가 최대로 이격되었을 때의 값으로 자동 설정되거나 RRC 혹은 LPP 메시지로 지정 될 수도 있다. 혹은 정규화 및 양자화된 방위각의 차이를 미리 정의하고 그와 관련된 비트맵이 주어질 경우 단말은 현시점에서의 PRS 수신에 사용된 공간 필터의 방위각 정보를 LPP/기지국으로 전송할 수 있다. 기지국은 해당 방위각 활용하여 단말의 위치 계산에 활용하게 된다.
Case 2: 공간 빔 필터에 기반하는 경우 (Based on Spatial beam filter)
Case 2는 도 17-B에서 도시된 바와 같이 단말의 공간 빔 필터 (spatial beam filter) 와 위치 정보에 전송되는 Rx 빔이 1:1 관계를 맺는 경우이다. 즉 Case1과는 달리, 동일한 방향으로 수신을 했을 지라도, 공간 필터가 다를 경우 위치 정보에 전송되는 Rx 빔 인덱스는 변하게 된다. 위치 측량적 측면에서 단말의 이동 및 상태 변화는 정확도 측면에서 매우 중요한 요소가 될 수 있으며 이는 수신 및 송신에 관한 공간 필터의 변화에도 영향을 미치게 된다. 일 예로, 동일 PRS 자원 ID와 그와 연계된 QCL 정보를 바탕으로 단말이 T1시점에서 Rx spatial filter #1을 사용하여 해당 PRS를 수신 했지만, T2 시점에서는 단말의 이동으로 인해 QCL로 지정된 빔 방향보다 다른 Rx spatial filter #2로 수신하게 될 경우 수신 성능이 뛰어나 Rx 공간 필터 #2를 통해 해당 PRS를 수신하기를 판단 및 전송할 필요가 있을 수 있다. 이에 따라, 단말은 Rx spatial filter #2를 PRS Rx 빔 인덱스로 하여 위치 정보를 통해 전송하되 이전 및 지정된 RX 공간 필터와의 방위각을 case 1의 방법 2에서 기술한 바와 같이 해당 정보를 전송할 수 있다. 추가적으로 단말에서 해당 Rx 공간 필터를 적용하게 된 이유를 위치 정보를 통해 전달할 수 도 있다. 기지국은 T1시점과 T2시점에서의 수신된 RSRP 차이를 기반으로 단말의 위치를 찾는다 그리고, 기지국은 추가 전송된 방위각을 기반으로 단말의 이동경로를 예측하여 위치 측정의 정확성을 높이게 된다.
상기 다양한 실시예들에서 기술된 빔 방향은 기준 방향 (boresight direction) 으로 해석될 수 있으며, 상기 기술된 정보는 기지국/서버에서 단말의 위치 계산에 활용 혹은 PRS 자원 설정 혹은 기지국/TRP의 송신 빔과 단말의 수신 빔 간의 LoS(line of sight)/Nlos(Non line of sight) 링크에 대한 식별 (identification)에 도움 될 수 있다.
일 예로 단말은 기지국/서버로부터 전달 받은 PRS 설정 (configuration)을 바탕으로 각 PRS 자원(들)에 대해 측정된 RSRP 결과를 측정 리포트 (measurement report)에 포함하여 전달한다. 그러나 best RSRP에 연계된 Tx/Rx 빔이 LoS link일것 이라는 보장이 없다.
일 예로, t1 시점에 보고되는 특정 PRS 자원(들)의 수신에 사용된 빔 인덱스와 t2 시점 보고되는 동일 PRS 자원(들)에 사용된 수신 빔 인덱스가 동일할 지라도 상기와 같이 절대적인 boresight direction의 값 혹은 상대적은 차이 값을 전달하게 될 경우, 기지국은 해당 값을 통해 LoS (line of sight)/Nlos (non line of sight)의 링크의 지속 여부를 판단하는데 사용될 수 있다. 여기서, t1 및 t2는 T1 및 T2 로 표현이 가능하다.
또 다른 예로, 단말이 보고하는 측정 리포트에 포함되는 복수의 (multiple) PRS 자원(들)에 대한 다수의 (multiple) Rx 빔 인덱스(들)이 있는 경우, 복수의 PRS 각각의 수신에 사용된 빔의 기준 방향 (boresight direction) 역시 절대 값 혹은 값의 차이를 통해 전달될 수 있다. 값의 차이에 대한 기준은 맥시멈 (maximum) RSRP를 가지는 PRS 자원(들)과 연계된 수신 빔이 기준이 될 수 있으며, 해당 값은 절대 값으로 지정이 될 수 있다. 일 예로, 기지국이 PRS #0, PRS #1, 및 PRS #2 전송시 사용되는 전송 빔들을 각각 인접한 빔을 사용하여 전송했다고 가정한다. 이 경우, 단말 측에서 PRS #0, PRS #1, 및 PRS #2의 수신에 사용된 수신 빔의 인덱스 값이 각각 index #0, index #1, 및 index #2이라고 하자. Rx beam index #0와 Rx beam index #1사이의 각도 차이 (angle difference) 를 a1이라 하고, Rx beam index #1과 Rx beam index #2 사이의 각도 차이를 a2라고 한다. 이때, 만약 a2가 a1대비 매우 큰 값을 가진다면, Rx beam index #1 혹은 Rx beam index #2로 수신된 link는 N-los일 확률이 높을 수 있다고 판단될 수 있다. 이렇듯 기지국/LMF는 상기 개시된 정보를 Nlos/LoS 식별에 활용할 수 있다. 이때 매우 큰 값이라고 판단될 수 있는 기준 역시 단말은 기지국/LMF로부터 설정/지시 받을 수 있다.
도 18 은 다양한 실시예들에 따른 단말과 네트워크 노드의 동작 방법을 간단히 나타낸 도면이다. 예를 들어, 네트워크 노드는 TP 및/또는 기지국 및/또는 셀 및/또는 위치 서버 및/또는 LMF 및/또는 동일한 작업을 수행하는 임의의 장치일 수 있다.
네트워크 노드는 단말로 포지셔닝 참조 신호를 전송한다 (1801). 다양한 실시예에 따르면, 네트워크 노드는 동일한 포지셔닝 참조 신호를 상이한 시점들 (예를들어, t1 및 t2)에 전송할 수 있다. 또는 다양한 실시예에 따르면, 네트워크 노드는 다수의 포지셔닝 참조 신호를 각각 인접한 송신 빔을 통해 전송할 수 있다.
단말은 상기 포지셔닝 참조 신호에 기반하여 위치 정보를 전송한다 (1803). 상기 위치 정보는 수신에 사용된 적어도 하나의 수신 빔에 대한 정보, 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 수신 공간 필터에 대한 정보, 및 상기 포지셔닝 참조 신호에 대해 측정된 RSRP의 결과 중 적어도 하나를 포함할 수 있다. 또한, 이에 한정되지 않고 상기 다양한 실시예들에서 기재된 정보들도 포함할 수 있다.
도 19 는 다양한 실시예들에 따른 단말의 동작 방법을 간단히 나타낸 도면이다.
단말은 포지셔닝 참조 신호를 수신한다 (1901).
단말은 상기 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송한다 (1903).
도 20 은 다양한 실시예들에 따른 네트워크 노드의 동작 방법을 간단히 나타낸 도면이다.
네트워크 노드는 포지셔닝 참조 신호를 전송한다 (2001).
네트워크 노트는 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 수신한다 (2003).
상술한 다양한 실시예들에 따른 단말 및/또는 네트워크 노드의 보다 구체적인 동작은 앞서 설명한 내용에 기반하여 설명되고 수행될 수 있다.
상기 설명한 제안 방식에 대한 일례들 또한 다양한 실시예들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
4. 다양한 실시예들이 구현되는 장치 구성 예
4.1. 다양한 실시예들이 적용되는 장치 구성 예
도 21는 다양한 실시예들이 구현될 수 있는 장치를 나타낸 도면이다.
도 21에 도시된 장치는 상술한 매커니즘을 수행하도록 적응된 사용자 장치(User Equipment, UE) 및/또는 기지국 (예: eNB 또는 gNB, 또는 TP) 및/또는 위치 서버 (또는 LMF) 이거나, 동일한 작업을 수행하는 임의의 장치일 수 있다.
도 21를 참조하면, 장치는 DSP(Digital Signal Processor)/마이크로프로세서(210) 및 RF(Radio Frequency) 모듈(송수신기, Transceiver)(235)을 포함할 수도 있다. DSP/마이크로프로세서(210)는 송수신기(235)에 전기적으로 연결되어 송수신기(235)를 제어한다. 장치는, 설계자의 선택에 따라서, 전력 관리 모듈(205), 베터리(255), 디스플레이(215), 키패드(220), SIM 카드(225), 메모리 디바이스(230), 안테나(240), 스피커(245) 및 입력 디바이스(250)을 더 포함할 수도 있다.
특히, 도 21는 네트워크로부터 요청 메시지를 수신하도록 구성된 수신기(235) 및 네트워크로 타이밍 송/수신 타이밍 정보를 송신하도록 구성된 송신기(235)를 포함하는 단말을 나타낼 수도 있다. 이러한 수신기와 송신기는 송수신기(235)를 구성할 수 있다. 단말은 송수신기(235)에 연결된 프로세서(210)를 더 포함할 수도 있다.
또한, 도 21는 단말로 요청 메시지를 송신하도록 구성된 송신기(235) 및 단말로부터 송수신 타이밍 정보를 수신하도록 구성된 수신기(235)를 포함하는 네트워크 장치를 나타낼 수도 있다. 송신기 및 수신기는 송수신기(235)를 구성할 수도 있다. 네트워크는 송신기 및 수신기에 연결된 프로세서(210)를 더 포함한다. 이 프로세서(210)는 송수신 타이밍 정보에 기초하여 지연(latency)을 계산할 수도 있다.
이에, 다양한 실시예들에 따른 단말 (또는 상기 단말에 포함된 통신 장치) 및/또는 기지국 (또는 상기 기지국에 포함된 통신 장치) 및/또는 위치 서버 (또는 상기 위치 서버 에 포함된 통신 장치)에 포함된 프로세서는 메모리를 제어하며 다음과 같이 동작할 수 있다.
다양한 실시예들에 있어, 단말 또는 기지국 또는 위치 서버는, 하나 이상(at least one)의 송수신기(Transceiver); 하나 이상의 메모리(Memory); 및 송수신기 및 메모리와 연결된 하나 이상의 프로세서(Processor)를 포함할 수 있다. 메모리는 하나 이상의 프로세서가 하기 동작을 수행할 수 있도록 하는 명령들(instructions)을 저장할 수 있다.
이때, 상기 단말 또는 기지국 또는 위치 서버에 포함된 통신 장치라 함은, 상기 하나 이상의 프로세서 및 상기 하나 이상의 메모리를 포함하도록 구성될 수 있고, 상기 통신 장치는 상기 하나 이상의 송수신기를 포함하거나 상기 하나 이상의 송수신기를 포함하지 않고 상기 하나 이상의 송수신기와 연결되도록 구성될 수 있다.
TP 및/또는 기지국 및/또는 셀 및/또는 위치 서버 및/또는 LMF 및/또는 동일한 작업을 수행하는 임의의 장치 등은 네트워크 노드로 불릴 수 있다.
다양한 실시예들에 따르면, 단말에 포함된 하나 이상의 프로세서 (또는 상기 단말에 포함된 통신 장치의 하나 이상의 프로세서)는, 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 포함하는 제1 설정 정보를 수신하고; non-SUL에 관한 자원 할당 정보를 포함하는 제2 설정 정보를 수신하고; 및 미리 정의된 조건 중 어느 하나가 만족됨에 기초하여 상기 SUL를 통해 포지셔닝 사운딩 기준 신호 (sounding reference signal, SRS)를 전송하도록 설정될 수 있다.
다양한 실시예들에 따르면, 네트워크 노드에 포함된 하나 이상의 프로세서 (또는 상기 네트워크 노드에 포함된 통신 장치의 하나 이상의 프로세서)는, 보조 상향 링크 (supplementary uplink, SUL)에 관한 자원 할당 정보를 포함하는 제1 설정 정보를 전송하고; non-SUL에 관한 자원 할당 정보를 포함하는 제2 설정 정보를 전송하고; 및 미리 정의된 조건 중 어느 하나가 만족됨에 기초하여 상기 SUL를 통해 포지셔닝 사운딩 기준 신호 (sounding reference signal, SRS)를 수신하도록 설정될 수 있다.
상술한 다양한 실시예들에 따른 단말 및/또는 네트워크 노드에 포함된 프로세서 등의 보다 구체적인 동작은 앞서 설명한 제1 절 내지 제3 절의 내용에 기반하여 설명되고 수행될 수 있다.
한편, 다양한 실시예들은 서로 양립이 불가능하지 않는 한 서로 조합/결합되어 실시될 수 있다. 예를 들어, 다양한 실시예들에 따른 단말 및/또는 네트워크 노드(에 포함된 프로세서 등)은 앞서 설명한 제 1 절 내지 제 3 절의 실시예들이 양립 불가능하지 않는 한 이들의 조합/결합된 동작을 수행할 수 있다.
4.2. 다양한 실시예들이 적용되는 통신 시스템 예
다양한 실시예들은 무선 통신 시스템에서 기지국과 단말 간의 데이터 송수신 관계를 중심으로 설명되었다. 다만 다양한 실시예들이 이에 한정되는 것은 아니다. 예를 들어, 다양한 실시예들은 다음의 기술 구성들과도 관련될 수 있다.
이로 제한되는 것은 아니지만, 다양한 실시예들에 따른 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 22은 다양한 실시예들에 적용되는 통신 시스템을 예시한다.
도 22을 참조하면, 다양한 실시예들에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 다양한 실시예들에 따른 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
다양한 실시예들이 적용되는 무선 기기 예
도 23은 다양한 실시예들에 적용되는 무선 기기를 예시한다.
도 23을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 22의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 다양한 실시예들에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 다양한 실시예들에 따른 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어(instruction, 인스트럭션) 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 다양한 실시예들에 따른 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 다양한 실시예들에 따른 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 다양한 실시예들에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
다양한 실시예들에 따르면, 하나 이상의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 하나 이상의 메모리에 작동가능하게(operably) 연결되는 하나 이상의 하나의 프로세서로 하여금 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
다양한 실시예들에 따르면, 컴퓨터 판독가능한(readable) 저장(storage) 매체(medium)은 하나 이상의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 하나 이상의 지시 또는 컴퓨터 프로그램은 하나 이상의 프로세서에 의해 실행될 때 상기 하나 이상의 프로세서로 하여금 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
다양한 실시예들에 따르면, 프로세싱 기기(device) 또는 장치(apparatus)는 하나 이상의 프로세서와 상기 하나 이상의 프로세서와 연결 가능한 하나 이상의 컴퓨터 메모리를 포함할 수 있다. 상기 하나 이상의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 하나 이상의 메모리에 작동가능하게(operably) 연결되는 하나 이상의 프로세서로 하여금 다양한 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
다양한 실시예들이 적용되는 무선 기기 활용 예
도 24은 다양한 실시예들에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 22 참조).
도 24을 참조하면, 무선 기기(100, 200)는 도 23의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 23의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 23의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 22, 100a), 차량(도 22, 100b-1, 100b-2), XR 기기(도 22, 100c), 휴대 기기(도 22, 100d), 가전(도 22, 100e), IoT 기기(도 22, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 22, 400), 기지국(도 22, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 24에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 24의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
다양한 실시예들이 적용되는 휴대기기 예
도 25는 다양한 실시예들에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 25를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 24의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
다양한 실시예들이 적용되는 차량 또는 자율 주행 차량 예
도 26는 다양한 실시예들에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 26를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 24의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
요약하면, 다양한 실시예들은 일정 장치 및/또는 단말을 통해 구현될 수 있다.
예를 들어, 일정 장치는, 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론 (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) 모듈, 로봇, AR (Augmented Reality) 장치, VR (Virtual Reality) 장치 또는 그 이외의 장치일 수 있다.
예를 들어, 단말은 개인 휴대 단말기 (PDA: Personal Digital Assistant), 셀룰러 폰, 개인 통신 서비스 (PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA (Wideband CDMA) 폰, MBS (Mobile Broadband System) 폰, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (MM-MB: Multi Mode-Multi Band) 단말기 등일 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
또는, 단말은 노트북 PC, 핸드헬드 PC (Hand-Held PC), 태블릿 PC (tablet PC), 울트라북 (ultrabook), 슬레이트 PC (slate PC), 디지털 방송용 단말기, PMP (portable multimedia player), 네비게이션, 웨어러블 디바이스 (wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD (head mounted display) 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR 또는 AR을 구현하기 위해 사용될 수 있다.
다양한 실시예들이 구현되는 무선 통신 기술은 LTE, NR 및 6G 뿐만 아니라 저전력 통신을 위한 NB-IoT (Narrowband Internet of Things) 를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN (Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat (category) NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 다양한 실시예들에 따른 무선 기기에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC (enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 다양한 실시예들에 따른 무선 기기에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
다양한 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 다양한 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 다양한 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 다양한 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
다양한 실시예들은 그 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 다양한 실시예들의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 다양한 실시예들의 등가적 범위 내에서의 모든 변경은 다양한 실시예들의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
다양한 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다. 다양한 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave 통신 시스템에도 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말에 의하여 수행되는 방법에 있어서,
    적어도 하나의 포지셔닝 참조 신호를 수신하고; 및
    상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하는 것을 포함하되,
    상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함하는, 방법.
  2. 제 1항에 있어서,
    상기 적어도 하나의 포지셔닝 참조 신호를 수신하는 것은:
    t1 에서 상기 적어도 하나의 포지셔닝 참조 신호 중 하나의 포지셔닝 참조 신호를 수신하고; 및
    t2 에서 상기 하나의 포지셔닝 참조 신호를 수신하는 것을 더 포함하되,
    상기 t1 및 t2는 시간 도메인상에서의 타이밍을 의미하고,
    상기 적어도 하나의 수신 빔 인덱스는 상기 t1에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제1 수신 빔 인덱스 및 상기 t2에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제2 수신 빔 인덱스를 포함하는, 방법.
  3. 제 2항에 있어서,
    상기 t1에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제1 공간 필터와 상기 t2에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제2 공간 필터가 동일한지 여부를 판단하는 것을 더 포함하되,
    상기 위치 정보는 상기 제1 공간 필터 및 상기 제2 공간 필터가 동일한지 여부에 관한 정보를 포함하는, 방법
  4. 제 3항에 있어서,
    상기 위치 정보는 상기 제1 공간 필터 및 상기 제2 공간 필터 각각에 대응하는 인덱스, 상기 제1 공간 필터와 상기 제2 공간 필터 사이의 방위각 차이, 및 상기 제1 공간 필터와 상기 제2 공간 필터 사이의 오프셋 값 중 적어도 하나를 포함하는, 방법.
  5. 제 1항에 있어서,
    상기 적어도 하나의 수신 빔 인덱스는 상기 적어도 하나의 공간 필터에 1:1로 대응되도록 할당되는, 방법
  6. 제 1항에 있어서,
    상기 적어도 하나의 포지셔닝 참조 신호는 기지국의 제1 송신 빔을 통해 전송된 제1 포지셔닝 참조 신호 및 상기 기지국의 상기 제1 송신 빔에 인접한 송신 빔을 통해 전송된 제2 포지셔닝 참조 신호를 포함하고,
    상기 제1 포지셔닝 참조 신호는 제1 수신 빔을 통해 수신되고,
    상기 제2 포지셔닝 참조 신호는 제2 수신 빔을 통해 수신되고,
    상기 상기 제1 수신 빔 및 상기 제2 수신 빔 사이의 앵글 (angle) 차이가 미리 정의된 값 이상인지 여부를 판단하는 것을 더 포함하는, 방법.
  7. 제 1항에 있어서,
    상기 적어도 하나의 수신 빔 인덱스는 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 절대적인 빔 방향 또는 물리적인 빔 방향에 기반하여 할당되는, 방법.
  8. 무선 통신 시스템에서 동작하는 단말에 있어서,
    송수신기 (transceiver); 및
    상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함하고,
    상기 하나 이상의 프로세서는:
    적어도 하나의 포지셔닝 참조 신호를 수신하고; 및
    상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하도록 설정되고,
    상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함하는, 단말.
  9. 제 8항에 있어서,
    상기 프로세서는:
    t1 에서 상기 적어도 하나의 포지셔닝 참조 신호 중 하나의 포지셔닝 참조 신호를 수신하고; 및
    t2 에서 상기 하나의 포지셔닝 참조 신호를 수신하도록 설정되는 것을 더 포함하되,
    상기 t1 및 t2는 시간 도메인상에서의 타이밍을 의미하고,
    상기 적어도 하나의 수신 빔 인덱스는 상기 t1에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제1 수신 빔 인덱스 및 상기 t2에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제2 수신 빔 인덱스를 포함하는, 단말.
  10. 제 9항에 있어서,
    상기 프로세서는 상기 t1에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제1 공간 필터와 상기 t2에서 상기 하나의 포지셔닝 참조 신호의 수신에 사용된 제2 공간 필터가 동일한지 여부를 판단하도록 설정되고,
    상기 위치 정보는 상기 제1 공간 필터 및 상기 제2 공간 필터가 동일한지 여부에 관한 정보를 포함하는, 단말.
  11. 제 10 항에 있어서,
    상기 위치 정보는 상기 제1 공간 필터 및 상기 제2 공간 필터 각각에 대응하는 인덱스, 상기 제1 공간 필터와 상기 제2 공간 필터 사이의 방위각 차이, 및 상기 제1 공간 필터와 상기 제2 공간 필터 사이의 오프셋 값 중 적어도 하나를 포함하는, 단말.
  12. 무선 통신 시스템에서 기지국에 의하여 수행되는 방법에 있어서,
    적어도 하나의 포지셔닝 참조 신호를 전송하고; 및
    상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 수신하는 것을 포함하되,
    상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함하는, 방법.
  13. 무선 통신 시스템에서 동작하는 기지국에 있어서,
    송수신기 (transceiver); 및
    상기 송수신기와 연결된 하나 이상의 프로세서 (processor) 를 포함하고,
    상기 하나 이상의 프로세서는:
    적어도 하나의 포지셔닝 참조 신호를 전송하고; 및
    상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 수신하도록 설정되고,
    상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함하는, 기지국.
  14. 무선 통신 시스템에서 동작하는 장치에 있어서,
    하나 이상의 프로세서 (processor); 및
    상기 하나 이상의 프로세서와 동작 가능하도록 연결되고, 실행됨에 기초하여 상기 하나 이상의 프로세서가 동작을 수행하도록 하는 하나 이상의 인스트럭션 (instruction) 을 저장하는 하나 이상의 메모리 (memory) 를 포함하고, 상기 동작은:
    적어도 하나의 포지셔닝 참조 신호를 수신하고; 및
    상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하는 것을 포함하되,
    상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함하는, 장치.
  15. 하나 이상의 프로세서 (processor) 가 동작을 수행하도록 하는 하나 이상의 인스트럭션 (instruction) 을 저장하는 비-휘발성 (non-transitory) 프로세서-판독 가능 매체 (processor-readable medium) 에 있어서, 상기 동작은:
    적어도 하나의 포지셔닝 참조 신호를 수신하고; 및
    상기 적어도 하나의 포지셔닝 참조 신호에 기반하여 생성된 위치 정보를 전송하는 것을 포함하되,
    상기 위치 정보는 (i) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 수신 빔의 적어도 하나의 수신 빔 인덱스 및 (ii) 상기 적어도 하나의 포지셔닝 참조 신호의 수신에 사용된 적어도 하나의 공간 필터를 포함하는, 비-휘발성 프로세서-판독 가능 매체.
PCT/KR2021/007095 2020-06-05 2021-06-07 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치 WO2021246844A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/924,276 US20230188288A1 (en) 2020-06-05 2021-06-07 Method for transmitting and receiving signal in wireless communication system, and apparatus for supporting same
KR1020227039142A KR20230020957A (ko) 2020-06-05 2021-06-07 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0068215 2020-06-05
KR20200068215 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246844A1 true WO2021246844A1 (ko) 2021-12-09

Family

ID=78830506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007095 WO2021246844A1 (ko) 2020-06-05 2021-06-07 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Country Status (3)

Country Link
US (1) US20230188288A1 (ko)
KR (1) KR20230020957A (ko)
WO (1) WO2021246844A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423071B1 (ko) * 2021-10-05 2022-07-20 주식회사 블랙핀 무선 이동 통신 시스템에서 인액티브 상태 사운딩기준신호를 설정하고 전송하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387491A1 (en) * 2015-01-26 2019-12-19 Intel IP Corporation Device and method to improve horizontal and vertical positioning accuracy
WO2020069283A1 (en) * 2018-09-27 2020-04-02 Sony Corporation User equipment positioning estimation in wireless networks with base stations that support multibeam operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387491A1 (en) * 2015-01-26 2019-12-19 Intel IP Corporation Device and method to improve horizontal and vertical positioning accuracy
WO2020069283A1 (en) * 2018-09-27 2020-04-02 Sony Corporation User equipment positioning estimation in wireless networks with base stations that support multibeam operation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on NR Positioning Procedures", 3GPP DRAFT; R1-2003635, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 16 May 2020 (2020-05-16), XP051885410 *
FUTUREWEI: "Remaining details on Measurement Procedures", 3GPP DRAFT; R1-2003810, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 15 May 2020 (2020-05-15), XP051885581 *
HUAWEI, HISILICON: "Maintenance of physical layer procedures to support positioning measurements", 3GPP DRAFT; R1-2001561, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 11 April 2020 (2020-04-11), XP051875152 *

Also Published As

Publication number Publication date
KR20230020957A (ko) 2023-02-13
US20230188288A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2020167057A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020159339A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020145727A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222621A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021230652A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022080992A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222619A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021206521A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021015510A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020204646A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021029759A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021194274A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021206499A1 (ko) 무선 통신 시스템에서 동작하는 장치 및 동작 방법
WO2021215791A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020167023A1 (ko) 무선 통신 시스템에서 측위 방법 및 이를 지원하는 장치
WO2020222616A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020222620A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021162513A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021172963A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021029683A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022080818A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022030963A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022216060A1 (ko) 각도 기반 측위 방법 및 그 장치
WO2022030953A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022030948A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818810

Country of ref document: EP

Kind code of ref document: A1