WO2021244406A1 - 天然气水合物溶液体系中气体溶解度的测量装置及方法 - Google Patents

天然气水合物溶液体系中气体溶解度的测量装置及方法 Download PDF

Info

Publication number
WO2021244406A1
WO2021244406A1 PCT/CN2021/096590 CN2021096590W WO2021244406A1 WO 2021244406 A1 WO2021244406 A1 WO 2021244406A1 CN 2021096590 W CN2021096590 W CN 2021096590W WO 2021244406 A1 WO2021244406 A1 WO 2021244406A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
valve
balance
pressure
solubility
Prior art date
Application number
PCT/CN2021/096590
Other languages
English (en)
French (fr)
Inventor
宋永臣
赵佳飞
张伦祥
王天
孙灵杰
张毅
孙翔
杨磊
凌铮
李洋辉
刘卫国
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/764,476 priority Critical patent/US11561158B2/en
Publication of WO2021244406A1 publication Critical patent/WO2021244406A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples

Definitions

  • the invention relates to the field of gas solubility measurement, in particular to a device and method for measuring gas solubility in a natural gas hydrate solution system.
  • Gas solubility measurement plays an important role in practical engineering and scientific research related to natural gas hydrates.
  • the natural gas hydrate solution contains high concentration of methane gas. Therefore, it is necessary to accurately measure the solubility of methane gas in the natural gas hydrate solution system.
  • the formation and accumulation of hydrates and the prediction of the formation, distribution and evolution of natural gas hydrates in porous marine sediments are of great significance.
  • the solubility of methane gas in seawater can be determined by measuring the solubility of methane gas in seawater.
  • the purpose of the present invention is to provide a device and method for measuring the solubility of gas in a natural gas hydrate solution system to solve the technical problem that the solubility of gas in the solution in the presence of hydrate is difficult to predict, and is required for obtaining the experimental research of natural gas hydrate
  • the solubility data of methane gas provides a technical basis.
  • a measuring device for gas solubility in a natural gas hydrate solution system includes a reaction system, a sampling system and a data analysis system; the core equipment of the reaction system is a balance chamber, which is used as a gas dissolution and hydrate generation device;
  • the auxiliary equipment of the cavity includes a gas sample bottle, a water storage tank, an electromagnetic stirring rod, an electromagnetic stirrer, a buffer tank, a gas injection high-pressure metering pump, a water injection high-pressure metering pump, and a temperature adjustment tank;
  • the core equipment of the sampling system is an expansion chamber, As a collection device for liquid samples; auxiliary equipment of the expansion chamber includes a micro filter, a balance chamber, a buffer tank and an electric pump;
  • the data analysis system includes a data acquisition device, a gas meter and an analytical balance;
  • the reaction system includes a gas sample bottle, a gas injection high-pressure metering pump, a buffer tank, a balance cavity, an electromagnetic stirring rod, an electromagnetic stirrer, a water storage tank, a water-injection high-pressure metering pump, a temperature adjustment tank; the buffer tank, a balance cavity, and The electromagnetic stirrers are all located in the temperature adjustment tank;
  • the gas sample bottle is connected to the gas injection high-pressure metering pump through a pipeline with a first valve;
  • the buffer tank is built with a piston, and the piston divides the buffer tank into upper and lower parts,
  • the upper chamber of the buffer tank is equipped with a temperature sensor and a pressure sensor, which are connected to the gas injection high-pressure metering pump through a pipeline with a second valve;
  • the balance chamber is used as a gas dissolution and hydrate generation device, and is equipped with a viewing window and a temperature sensor
  • the pressure sensor is connected to the water injection high-pressure metering pump through the injection valve, and is connected to the
  • the sampling system includes an electric pump, a micro filter, an expansion chamber, and a buffer tank and a balance chamber shared with the reaction system; the electric pump is connected to the lower chamber of the buffer tank through a third valve.
  • the electric pump Together with a buffer tank equipped with a movable piston, it is used to maintain a constant pressure in the balance chamber;
  • the microfilter is connected to the balance chamber through the first sampling valve;
  • a temperature sensor and a pressure sensor are set in the expansion chamber, and the pipeline passes through the second sampling valve Connected to the micro filter; the micro filter and the expansion chamber are also placed in the temperature regulating tank;
  • the main devices of the data analysis system include a data acquisition device, a gas meter, an analytical balance, and an expansion cavity shared with the sampling system; the buffer tank, balance cavity, temperature sensor and pressure sensor in the expansion cavity are all connected to the data acquisition device ; The gas meter and analytical balance are used for flash data analysis of samples taken from the expansion cavity.
  • An agitator driven by a motor is installed in the temperature regulating tank.
  • a magnetic stirring rod is installed inside the balance cavity, which is driven by an electromagnetic stirrer installed at the bottom.
  • the balance chamber is connected to a vacuum pump through a pipeline with a valve for system degassing.
  • the temperature sensor and pressure sensor in the balance cavity, buffer tank, and expansion cavity are all connected with the data acquisition device in the data analysis system.
  • the volume and mass of the expansion cavity are known, and are used for sample flash data analysis together with an analytical balance and a gas meter.
  • a method for measuring the solubility of gas in hydrate liquid by using the above-mentioned device includes the following steps:
  • the gas solubility S H in the natural gas hydrate aqueous solution is determined by the number of moles of gas in the aqueous solution n g and the number of moles of water n w through the formula
  • n g and n w can be calculated from the molar mass of gas M g , the molar mass of water M w , the gas constant R, the flash temperature T, the gas fugacity f g , the Henry coefficient H, and the sample mass obtained in step 9) m.
  • the gas volume V g after the sample is flashed by the formula and Calculated.
  • the present invention has the beneficial effects that the magnetic stirring device can stir during gas dissolution and hydrate formation, accelerate the speed of gas dissolution, and effectively promote the formation of hydrate.
  • the use of an electric pump and a buffer tank with a piston ensures that the pressure in the balance chamber is constant during sampling and avoids damaging the phase balance and solution balance of the system.
  • the micro filter is used to filter the hydrate crystals when sampling to ensure the accuracy of the measurement results.
  • Figure 1 is a schematic diagram of the structure of the device of the present invention.
  • the present invention proposes a device for measuring the solubility of gas in a natural gas hydrate solution system, including: a gas sample bottle 1, a first valve 2, a gas injection high-pressure metering pump 3, an electric pump 4, and a second valve 5.
  • the device for measuring gas solubility in a natural gas hydrate solution system includes a reaction system, a sampling system, and a data analysis system.
  • the reaction system includes a gas sample bottle 1, a gas injection high-pressure metering pump 3, a buffer tank 7, and a balance chamber 12.
  • the buffer tank 7 is built with a piston 8, which divides the buffer tank 7 into upper and lower parts,
  • the upper chamber of the buffer tank 7 is equipped with a temperature sensor and a pressure sensor, which are connected to the gas injection high-pressure metering pump 3 through a pipeline with a second valve 5;
  • the balance chamber 12 is the core equipment of the reaction system and serves as a gas dissolution and hydrate
  • the generating device is provided with a visible window 10, a temperature sensor and a pressure sensor, and is connected to the water injection high-pressure metering pump 17 through the injection valve 18, and is connected to the upper chamber of the buffer tank 7 through a pipeline with an air inlet valve 9;
  • the buffer tank 7, the balance cavity 12, and the electromagnetic stirrer 14 are all located in the temperature adjustment tank 26;
  • the magnetic stirring rod 13 is placed inside the balance chamber and is driven by the electromagnetic stirrer 14 installed at the bottom to realize the gas in
  • the gas sample bottle 1 is connected to the gas injection high-pressure metering pump 3 through a pipeline with a first valve 2;
  • the water storage tank 15 is passed through a pipeline with a fourth valve 16 Connect with water injection high pressure metering pump 17;
  • the sampling system includes an electric pump 4, a microfilter 22, an expansion chamber 24, and a buffer tank 7 and a balance chamber 12 shared with the reaction system; the electric pump 4 is connected to the lower chamber of the buffer tank 7 through a third valve 6 During the sampling process, the electric pump 4 and the buffer tank 7 equipped with the movable piston 8 are used to maintain a constant pressure in the balance chamber 12 to prevent sampling from destroying the phase balance and dissolution balance of the system; the microfilter 22 passes through the first sampling valve 21 is connected to the balance chamber 12 to remove the hydrate crystals contained in the liquid sample when sampling; the expansion chamber 24 is the core equipment of the sampling system, as a collection device for the liquid sample, is equipped with a temperature sensor and a pressure sensor, and passes through the second The pipeline of the sampling valve 23 is connected to the micro filter 22; the micro filter 22 and the expansion chamber 24 are also placed in the temperature regulating tank 26;
  • the main devices of the data analysis system include a data acquisition device 27, a gas meter 28, an analytical balance 29, and an expansion cavity 24 shared with the sampling system; the buffer tank 7, the balance cavity 12, and the temperature sensor and pressure in the expansion cavity 24
  • the sensors are all connected to the data acquisition device 27; the gas meter 28 is used to measure the volume of the gas phase after the sample is flashed, and the analytical balance 29 is used to measure the mass of the sample taken; the gas meter 28 and the analytical balance 29 are jointly used for expansion
  • the sample taken in the cavity 24 is subjected to flash data analysis.
  • the method of using the above-mentioned gas solubility measurement device in the natural gas hydrate solution system includes the following steps:
  • Step (6 ) The turned-on electromagnetic stirrer 14 can accelerate the formation of hydrate in this step;
  • the micro filter 22 can withstand a pressure difference of 30 MPa and can separate more than 25 nm from the sample Size of crystal particles;
  • the number of moles of gas in the solution needs to be calculated from the number of moles of water n w , gas fugacity f g and Henry’s coefficient H ; Because natural gas hydrates usually exist on the seafloor, seawater contains a lot of NaCl, so if the gas solubility S B in the natural gas hydrate salt solution is measured, the influence of the salting-out constant K s and the ion concentration I need to be considered;
  • the direct measurement results of the gas solubility measurement device in the above-mentioned natural gas hydrate solution system are weight, volume, temperature, pressure, etc., it is necessary to perform data processing on the measurement results and express them as the mole fraction of gas in the liquid to represent the gas Solubility.
  • the calculated solubility data of methane gas was compared with the data of the methane solubility prediction model to verify The measurement effect of this device and method.
  • m 1 is the mass of the expansion cavity before sampling
  • m 2 is the mass of the expansion cavity after sampling; this example takes three samples of the natural gas hydrate aqueous solution
  • the mass of the expansion cavity before sampling m 1 are 300.1368g, 300.1352g, and 300.1381g respectively.
  • the mass m 2 of the expansion cavity is 330.1422g, 330.1301g, 330.1509g, respectively.
  • n g can be calculated by the following formula:
  • n w can be calculated by the following formula:
  • f g is the gas fugacity
  • Z is the gas compressibility factor
  • R is the gas constant
  • T is the room temperature
  • H is the Henry's constant
  • V g is the gas volume in the sample after flashing measured by the gas meter. In this example the measured values of V g 53.5cm 3, 53.2cm 3, 54.0cm 3 .
  • the gas fugacity f g can be calculated by the following formula:
  • n g the number of moles of methane gas dissolved in the sample obtained from the three samplings in this example, n g , are 2.1838 ⁇ 10 -3 mol, 2.1715 ⁇ 10 -3 mol, and 2.2042 ⁇ 10 -3 mol respectively;
  • the moles of water n w in the sample are 1.6631 mol, 1.6626 mol, and 1.6635 mol, respectively.
  • the methane gas solubility S H (mole fraction form) of the natural gas hydrate aqueous solution sample obtained by the three samplings of this example is 1.3113 ⁇ 10 -3 , 1.3044 ⁇ 10 -3 , and 1.3233 ⁇ 10 -3 respectively ;
  • the gas solubility S is H is expressed by the mass molar concentration, and the gas solubility in the three samples can be obtained as 7.2866 ⁇ 10 -2 mol/kg, 7.2483 ⁇ 10 -2 mol/kg, 7.3530 ⁇ 10 -2 mol/kg; at the same temperature and pressure
  • the solubility of methane gas in the natural gas hydrate aqueous solution sample obtained by the solubility prediction model is about 7.2792 ⁇ 10 -2 mol/kg.
  • the error of the measurement results are all within 1%, and the accuracy is high.
  • the gas solubility is represented by S B :
  • n s is the number of moles of NaCl
  • M s is the molar mass of NaCl
  • M s 58.44g/mol.
  • the natural gas hydrate salt solution is sampled three times, and the mass m 1 of the expansion cavity before sampling is 300.1365g respectively.
  • the mass m 2 of the expansion cavity after sampling are 330.1453g, 330.1344g, 330.1419g, respectively.
  • the calculated sample mass m is 30.0088g, 30.0015g, 30.0047g, respectively.
  • ionic strength I The calculation formula of ionic strength I is Among them, c i represents the mass molar concentration of ion i (in mol/L), z i is the number of charges carried by the ion, since the number of charges carried by Na + and Cl - are +1 and -1 respectively, we can get The ionic strength I of NaCl solution is:
  • the measured V g values in this example are 41.8 cm 3 , 42.1 cm 3 , and 41.5 cm 3 respectively ; substituting the known data, the number of moles of methane gas dissolved in the samples obtained from the three samplings in this example can be obtained, respectively, n g 1.7363 ⁇ 10 -3 mol, 1.7485 ⁇ 10 -3 mol, 1.7240 ⁇ 10 -3 mol; the moles of water n w in the sample taken are 1.6055 mol, 1.6051 mol, and 1.6053 mol respectively; the mole of NaCl in the sample taken The numbers n s are 1.7956 ⁇ 10 -2 mol, 1.7951 ⁇ 10 -2 mol, and 1.7954 ⁇ 10 -2 mol, respectively.
  • the methane gas solubility S B (mole fraction form) of the natural gas hydrate salt solution sample obtained by the three samplings of this example is 1.0683 ⁇ 10 -3 , 1.0761 ⁇ 10 -3 , 1.0610 ⁇ 10 -3, respectively ;
  • the gas solubility S B is expressed by mass molar concentration, and the gas solubility in the three samples can be obtained as 5.7913 ⁇ 10 -2 mol/kg, 5.8336 ⁇ 10 -2 mol/kg, 5.7512 ⁇ 10 -2 mol/kg; at the same temperature and Under pressure conditions, the solubility of methane in the natural gas hydrate NaCl salt solution sample obtained by the solubility prediction model is about 5.7241 ⁇ 10 -2 mol/kg. After comparison, the error of the measurement results is within 2%, and the accuracy is high.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种天然气水合物溶液体系中气体溶解度的测量装置及方法,该测量装置主要包括反应系统,取样系统以及数据分析系统。该测量装置可以在不同温度、压力、盐离子条件下,测量天然气水合物溶液体系中的气体溶解度,并且探究在水合物-液态水两相平衡时,不同环境条件对气体溶解度的影响,该测量装置结构简单,操作方便,利用电动泵(4)和带有活塞(8)的缓冲罐(7),可实现在定压下取样,避免取样破坏系统的相平衡及溶解平衡,并且使用微过滤器(22)以确保所取液体样品中不含水合物晶体,使实验数据具有较高精确度。

Description

天然气水合物溶液体系中气体溶解度的测量装置及方法 技术领域
本发明涉及气体溶解度测量领域,具体涉及一种天然气水合物溶液体系中气体溶解度的测量装置及方法。
背景技术
天然气水合物作为21世纪替代煤炭、石油和天然气的新型洁净能源资源,因其能量密度高、资源密度优、全球分布广,而被全世界广泛关注,被认为是未来最具商业开发前景的战略资源之一,其主要分布在沿大陆架深海海底和内陆永久冻土地带,其中海洋底部的天然气水合物分布最广,储量最丰富。
气体溶解度测量在与天然气水合物相关的实际工程领域和科学研究领域均发挥着重要作用。在实际工程领域,由于天然气水合物的主要成分是甲烷,在自然界天然气水合物赋存的溶液中含有高浓度的甲烷气体,因而准确测量甲烷气体在天然气水合物溶液体系中的溶解度,对于研究海底水合物的形成和积累以及预测天然气水合物在多孔海洋沉积物中的生成、分布和演化具有重要意义,同时,在海洋天然气水合物开采过程中,通过对海水中甲烷气体溶解度进行测量,可以判断水合物开采过程中是否存在甲烷泄漏,进而提高开采工程的安全性;在科学研究领域,天然气水合物溶液体系中的甲烷气体溶解度将决定相间传质并影响水合物整体转化率,因此在天然气水合物溶液体系中,准确测量甲烷气体的溶解度将有利于增强对水合物形成动力学的理解。
综上所述,迫切需要开展天然气水合物溶液体系中的气体溶解度测量的实验研究,弄清天然气水合物溶液体系中的气体溶解度的准确值以及各影响因素对其溶解度的作用规律。由于水合物的存在会改变气体溶解度随温压条件变化的趋势,这就造成在相同外部条件下,气体在含或不含水合物的溶液中的溶解度具有较大的差异。因此,传统的气体溶解度测量装置已不能满足天然气水合物溶液体系中的气体真实溶解度的测量及预测,针对这一难题,本发明提出了一种天然气水合物溶液体系中气体溶解度的测量装置及方法,利用该测量方法和装置,可开展在不同温度、压力、盐度条件下的天然气水合物溶液体系中甲烷气体溶解度测量实验,从而探明在不同外部条件下其溶解度的准确值,以及各相关因素对溶解度的作用规律。
发明内容
本发明的目的在于提供一种天然气水合物溶液体系中气体溶解度的测量装置及方法,以解决水合物存在下气体在溶液中的溶解度难以预测的技术难题,为获取天然气水合物实验研究所 需的甲烷气体的溶解度数据提供技术依据。
为了实现上述目的,本发明采用了以下技术方案;
一种天然气水合物溶液体系中气体溶解度的测量装置,所述装置包括反应系统,取样系统和数据分析系统;所述反应系统的核心设备是平衡腔,作为气体溶解及水合物的生成装置;平衡腔的辅助设备包括气体样品瓶、储水罐、电磁搅拌棒、电磁搅拌器、缓冲罐、注气高压计量泵、注水高压计量泵以及温度调节槽;所述取样系统的核心设备是膨胀腔,作为液体样品的收集装置;膨胀腔的辅助设备包括微过滤器、平衡腔、缓冲罐和电动泵;所述数据分析系统包括数据采集装置、气量计和分析天平;
所述反应系统包括气体样品瓶、注气高压计量泵、缓冲罐、平衡腔、电磁搅拌棒、电磁搅拌器、储水罐、注水高压计量泵,温度调节槽;所述缓冲罐、平衡腔和电磁搅拌器均位于温度调节槽内;所述气体样品瓶通过带有第一阀门的管路与注气高压计量泵连接;所述缓冲罐内置有活塞,活塞将缓冲罐分隔为上下两部分,缓冲罐的上部腔室内安装有温度传感器和压力传感器,通过带第二阀门的管路与注气高压计量泵连接;平衡腔作为气体的溶解及水合物的生成装置,设置有可视窗、温度传感器和压力传感器,通过进样阀与注水高压计量泵连接,并且通过带有进气阀的管路与缓冲罐的上部腔室连接;所述磁性搅拌棒置于平衡腔内部,通过底部安装的电磁搅拌器驱动;所述储水罐通过带有第四阀门的管路与注水高压计量泵连接;
所述取样系统包括电动泵、微过滤器、膨胀腔以及与反应系统共用的缓冲罐和平衡腔;所述电动泵通过第三阀门与缓冲罐的下部腔室连接,在取样过程中,电动泵和装有可移动活塞的缓冲罐一起用于维持平衡腔内的压力恒定;微过滤器通过第一取样阀与平衡腔连接;膨胀腔内设置温度传感器和压力传感器,通过第二取样阀的管路与微过滤器相连;微过滤器和膨胀腔也均置于温度调节槽内;
所述数据分析系统的主要装置包括数据采集装置、气量计、分析天平以及与取样系统共用的膨胀腔;所述缓冲罐、平衡腔、膨胀腔中的温度传感器和压力传感器均与数据采集装置相连;所述气量计和分析天平用于对膨胀腔所取样品进行闪蒸数据分析。
所述温度调节槽中安装有电机驱动的搅拌器。
所述平衡腔内部安装有磁性搅拌棒,通过底部安装的电磁搅拌器驱动。
所述平衡腔通过带阀门的管路与真空泵相连,用于系统除气。
所述平衡腔、缓冲罐、膨胀腔中的温度传感器和压力传感器均与数据分析系统中的数据采集装置相连。
所述膨胀腔体积和质量已知,与分析天平和气量计共同用于样品闪蒸数据分析。
一种利用上述装置测量气体在含水合物液体中溶解度的方法,具体方案包括以下几个步骤:
1)清洗平衡腔,连接实验装置,并对测量系统进行试压检查;
2)利用真空泵对实验装置和管路抽真空,然后关闭所有阀门;
3)打开进样阀,利用储水罐和注水高压计量泵将平衡腔充满溶剂液体;
4)打开第二阀门和进气阀通过气瓶和注气压计量泵向平衡腔中充入一定体积的目标气体,然后监控平衡腔内的温度和压力;
5)将温度调节槽内的温度调节至水合物生成温度,并保持在此温度保持不变,当检测到平衡腔内压力长时间保持不变时,平衡腔内达到平衡;
6)打开第一取样阀,将溶液样品通过微过滤器,以确保所取液体样品中不含水合物晶体;
7)打开第二取样阀,将一定量样品收集到预先抽真空的膨胀腔后,将膨胀腔从测量系统取出,完成样品采集;
8)取样过程中,打开第三阀门和进气阀,通过电动泵加压保持取样过程中平衡腔内压力恒定;
9)用分析天平将将膨胀腔进行称重,得出样品质量m,在大气压和室温下样品被闪蒸成气液两相,通过气量计测量闪蒸后气体的体积为V g
10)溶解度计算
天然气水合物水溶液中的气体溶解度S H由水溶液中的气体摩尔数n g和水摩尔数n w通过公式
Figure PCTCN2021096590-appb-000001
计算获得,n g和n w可以由气体的摩尔质量M g、水的摩尔质量M w、气体常数R、闪蒸温度T、气体逸度f g、亨利系数H以及步骤9)得到的样品质量m、样品闪蒸后的气相体积V g通过公式
Figure PCTCN2021096590-appb-000002
Figure PCTCN2021096590-appb-000003
计算获得。
天然气水合物盐溶液中的气体溶解度S B由气体摩尔数n g、水摩尔数n w和盐摩尔数n s通过公式
Figure PCTCN2021096590-appb-000004
计算获得,由于盐溶液中的气体溶解度还受到盐析常数K s和离子浓度I的影响,气体摩尔数
Figure PCTCN2021096590-appb-000005
11)为了保证测试的准确性,重复实验三次以上,以确保实验结果的一致性。
有本发明有益效果为:通过磁力搅拌装置,能够在气体溶解及水合物生成时进行搅拌,加快了气体溶解的速度,并且有效促进水合物的生成。利用电动泵和带有活塞的缓冲罐,保证在取样时平衡腔内压力恒定不变,避免破坏系统相平衡及溶解平衡。利用微过滤器,取样时过滤水合物晶体,保证了测量结果的精确性。
附图说明
图1是本发明装置的结构示意图。
图中:1气体样品瓶;2第一阀门;3注气高压计量泵;4电动泵;5第二阀门;6第三阀门;7缓冲罐;8活塞;9进气阀;10可视窗;11安全阀;12平衡腔;13电磁搅拌棒;14电磁搅拌器;15储水罐;16第四阀门;17注水高压计量泵;18进样阀;19真空泵;20第五阀门;21第一取样阀;22微过滤器;23第二取样阀;24膨胀腔;25搅拌器;26温度调节槽;27数据采集装置;28气量计;29分析天平。
具体实施方式
下面结合附图,对本发明进行溶解度测量做出详细的描述。
参见附图1,本发明提出的一种天然气水合物溶液体系中气体溶解度的测量装置,包括:气体样品瓶1,第一阀门2,注气高压计量泵3,电动泵4,第二阀门5,第三阀门6,缓冲罐7,活塞8,进气阀9,可视窗10,安全阀11,平衡腔12,电磁搅拌棒13,电磁搅拌器14,储水罐15,第四阀门16,注水高压计量泵17,进样阀18,真空泵19,第五阀门20,第一取样阀21,微过滤器22,第二取样阀23,膨胀腔24,搅拌器25,温度调节槽26,数据采集装置27,气量计28,分析天平29。
所述一种天然气水合物溶液体系中气体溶解度的测量装置,包括反应系统,取样系统和数据分析系统,所述反应系统包括气体样品瓶1、注气高压计量泵3、缓冲罐7、平衡腔12、磁性搅拌棒13、电磁搅拌器14、储水罐15、注水高压计量泵17,温度调节槽26;所述缓冲罐7内置有活塞8,活塞8将缓冲罐7分隔为上下两部分,缓冲罐7的上部腔室内安装有温度传感 器和压力传感器,通过带第二阀门5的管路与注气高压计量泵3连接;平衡腔12是反应系统的核心设备,作为气体溶解及水合物的生成装置,设置有可视窗10、温度传感器和压力传感器,通过进样阀18与注水高压计量泵17连接,并且通过带有进气阀9的管路与缓冲罐7的上部腔室连接;所述缓冲罐7、平衡腔12和电磁搅拌器14均位于温度调节槽26内;所述磁性搅拌棒13置于平衡腔内部,由底部安装的电磁搅拌器14驱动,通过搅拌实现气体在溶液中快速溶解以及水合物的快速生成;所述气体样品瓶1通过带有第一阀门2的管路与注气高压计量泵3连接;所述储水罐15通过带有第四阀门16的管路与注水高压计量泵17连接;
所述取样系统包括电动泵4、微过滤器22、膨胀腔24以及与反应系统共用的缓冲罐7和平衡腔12;所述电动泵4通过第三阀门6与缓冲罐7的下部腔室连接,在取样过程中,电动泵4和装有可移动活塞8的缓冲罐7一起用于维持平衡腔12内的压力恒定,避免取样破坏系统相平衡及溶解平衡;微过滤器22通过第一取样阀21与平衡腔12连接,用以取样时去除液体样品中所含的水合物晶体;膨胀腔24是取样系统的核心设备,作为液体样品的收集装置,设置有温度传感器和压力传感器,通过第二取样阀23的管路与微过滤器22相连;微过滤器22和膨胀腔24也均置于温度调节槽26内;
所述数据分析系统的主要装置包括数据采集装置27、气量计28、分析天平29以及与取样系统共用的膨胀腔24;所述缓冲罐7、平衡腔12、膨胀腔24中的温度传感器和压力传感器均与数据采集装置27相连;所述气量计28用于测量样品闪蒸后的气相体积,分析天平29用于测量所取样品质量;所述气量计28和分析天平29共同用于对膨胀腔24所取样品进行闪蒸数据分析。
本实例利用上述天然气水合物溶液体系中气体溶解度的测量装置,针对T 0=3℃、P 0=5.0MPa下的天然气水合物水溶液和T 1=3℃、P 1=20.0MPa、质量分数为3.5%的天然气水合物NaCl盐溶液中的甲烷气体溶解度进行测量,上述天然气水合物溶液体系中气体溶解度的测量装置的使用方法包括以下几个步骤:
(1)在实验开始之前,对平衡腔12和膨胀腔24的容积进行测量标定,使用分析天平29对膨胀腔24质量进行测量,计为m 1
(2)使用去离子水清洗平衡腔12,连接实验装置,关闭所有阀门,然后将温度调节槽26的初始温度设定为15℃并且打开数据采集装置27;
(3)对实验系统的密封性进行检查,将进气阀9、第一取样阀21和第二取样阀23打开,然后打开第五阀门20,使用真空泵19对实验装置和管路抽真空,通过数据采集装置27对系统压力进行监测,直至系统压力低于1kPa,等待30min,如果系统压力依旧低于1kPa,依次打开进气阀9和第二阀门5,利用高压计量泵3向系统充入10MPa的甲烷气体,2个小时以后,如果系统压力变化小于1kPa,则认为系统气密性良好;
(4)打开减压阀11,放出甲烷气体,当数据采集装置27监测到系统压力下降至大气压左右(101.325kPa)时,关闭减压阀11,打开第五阀门20,利用真空泵19对实验装置和管路抽真空,然后关闭所有阀门;
(5)打开进样阀18,利用注水高压计量泵17将储水罐15中的液体注入到平衡腔12中,直至平衡腔12中充满目标液体,然后关闭进样阀18;
(6)依次打开进气阀9和第二阀门5,通过注气高压计量泵3向平衡腔12中充入一定量的甲烷气体使平衡腔12内的压力高于目标温度下的甲烷水合物相平衡压力,然后依次关闭进气阀9和第二阀门5,通过数据采集装置27监控平衡腔12内的温度和压力,同时开启电磁搅拌器14利用电磁搅拌棒13对平衡腔12内的液体进行搅拌,加快气体溶解速度;
(7)将温度调节槽26内的温度以2.5℃/h的速度从15℃调节至3℃,并保持在3℃不变,此温度下水溶液中甲烷水合物体系相平衡压力为3.85MPa,质量分数为3.5%的NaCl溶液中甲烷水合物体系相平衡压力为3.98MPa,保证平衡腔内的压力高于甲烷水合物相平衡压力,确保反应体系的温压条件处于水合物稳定区内,同时开启搅拌器25,使温度调节槽内的温度分布更加均匀,当检测到平衡腔12内压力有明显下降并保持不变超过18h时,证明平衡腔内有水合物生成且达到平衡,步骤(6)开启的电磁搅拌器14在此步骤中可以加快水合物的生成速度;
(8)打开第一取样阀21,将溶液样品通过微过滤器22,以确保所取液体样品中不含水合物晶体,微过滤器22能够承受30MPa的压差,可从样品中分离大于25nm大小的晶体颗粒;
(9)迅速打开第二取样阀23,将一定量样品收集到预先抽真空的膨胀腔24后,关闭第二取样阀23,将膨胀腔24从测量系统取出,完成样品采集;
(10)取样过程中,打开第二阀门5和进气阀9,开启电动泵4推动缓冲罐7中的可移动活塞8向上移动,保持取样过程中平衡腔12内压力恒定,避免破坏水合物体系相平衡及溶解 平衡,取样完成后关闭第二阀门5和进气阀9;
(11)用分析天平29将膨胀腔24进行称重,计为m 2,所取样品在大气压(101.325kPa)和室温(20℃)下被闪蒸成气液两相,通过气量计28测量闪蒸后气体的体积为V g
(12)溶解度计算,气体溶解度S H由步骤(1)和(11)中样品质量m=m 2-m 1、闪蒸后的气相体积V g、闪蒸后溶液中所含气体量以及闪蒸温度T和气体逸度f g计算获得,气相体积V g可由气量计直接测量,闪蒸后溶液中所含气体摩尔数需要由水摩尔数n w、气体逸度f g及亨利系数H计算;由于天然气水合物通常存在于海底,海水中含有大量NaCl,因此若测量天然气水合物盐溶液中气体溶解度S B,则还需要考虑盐析常数K s和离子浓度I的影响;
(13)实验结束后,打开安全阀11将实验装置泄压,并打开第一取样阀21、第二取样阀23及进气阀9,对测试系统抽真空,使气体样品排出,进行下一次实验;
(14)为了保证测试的准确性,对每个实验点进行三次以上的测量,以确保实验结果的一致性。
实验数据处理方法:
由于上述天然气水合物溶液体系中气体溶解度的测量装置的直接测量结果是重量、体积、温度、压力等,因此需要对测量结果进行数据处理将其表示为气体在液体中的摩尔分数来表示气体的溶解度。
为了检验本装置及方法测量的可行性与准确性,本实例针对T 0=3℃、P 0=5.0MPa下的天然气水合物水溶液和T 1=3℃、P 1=20.0MPa、质量分数为3.5%的天然气水合物NaCl盐溶液分别进行三次取样,样品在T=20℃,P=101.325kPa下进行闪蒸,计算得到的甲烷气体的溶解度数据与甲烷溶解度预测模型的数据进行对比,以检验本装置及方法的测量效果。
当含水合物的液体仅为纯净水时,甲烷气体溶解度用S H表示:
m=n gM g+n wM w          (1)
其中,m是样品质量且m=m 2-m 1,m 1为取样前膨胀腔质量,m 2为取样后膨胀腔质量;本实例对天然气水合物水溶液进行三次取样,取样前膨胀腔质量m 1分别为300.1368g,300.1352g,300.1381g,取样后膨胀腔质量m 2分别为330.1422g,330.1301g,330.1509g,计算得出所取样品质量m分别为30.0054g,29.9949g,30.0128g;n g和n w分别是溶液中所溶解的甲烷气体和水的摩尔数;M g和M w分别是溶液中所溶解的甲烷气体和水的摩尔质量,M g=16.04g/mol,M w=18.02g/mol。
n g可以由下式计算:
Figure PCTCN2021096590-appb-000006
n w可以由下式计算:
Figure PCTCN2021096590-appb-000007
式中,f g为气体逸度,Z是气体压缩因子,R是气体常数,T代表室温,H是亨利常数,V g是气量计测得的闪蒸后样品中的气体体积,本实例中所测得的V g值分别为53.5cm 3,53.2cm 3,54.0cm 3
已知T=20℃=293.15K,R=8.314J/(mol·K),对于甲烷气体,Z=0.995,亨利常数H可由下式计算:
log 10(H/atm)=A+B×10 3/T+C×log 10(T)+D×T      (4)
对于甲烷气体,A=146.8858;B=-5.76834;C=-51.9144;D=0.0184936,可以得出T=20℃时,H=35695.49atm=3616.85MPa
气体逸度f g可由下式计算:
Figure PCTCN2021096590-appb-000008
式中,
Figure PCTCN2021096590-appb-000009
是逸度系数,由于闪蒸在常压(P=101.325kPa)下进行,逸度系数
Figure PCTCN2021096590-appb-000010
近似等于1;P g是气相分压;P为大气压力;P w是水在室温(T=20℃)下的蒸汽压,等于水在气相中的分压;已知P=101.325kPa,通过查温度和水蒸汽压对照表,可得P w=2.3381kPa,因此气体逸度f g=98.9869kPa。
代入已知数据,可得本实例三次取样所获得的样品中所溶解的甲烷气体摩尔数n g分别为2.1838×10 -3mol,2.1715×10 -3mol,2.2042×10 -3mol;所取样品中水的摩尔数n w分别为1.6631mol,1.6626mol,1.6635mol。
综上,天然气水合物水溶液中甲烷的气体溶解度S H
Figure PCTCN2021096590-appb-000011
计算得出本实例三次取样所得到的天然气水合物水溶液样品中甲烷气体溶解度S H(摩尔分数形式)分别为1.3113×10 -3,1.3044×10 -3,1.3233×10 -3;将气体溶解度S H用质量摩尔浓度表示,可得三次取样的样品中气体溶解度分别为7.2866×10 -2mol/kg,7.2483×10 -2mol/kg,7.3530×10 -2mol/kg;在相同温度和压力条件下,溶解度预测模型所得到的天然气水合物水溶 液样品中甲烷气体溶解度约为7.2792×10 -2mol/kg,经过对比,本测量结果误差均在1%以内,准确度较高。
当含水合物的液体为盐溶液(本实例以质量分数为3.5%的NaCl溶液为研究对象)时,气体溶解度用S B表示:
所取样品的质量:
m=m 2-m 1=n gM g+n wM w+n sM s        (7)
式中,n s为NaCl的摩尔数,M s为NaCl的摩尔质量,M s=58.44g/mol,本实例对天然气水合物盐溶液进行三次取样,取样前膨胀腔质量m 1分别为300.1365g,300.1329g,300.1372g,取样后膨胀腔质量m 2分别为330.1453g,330.1344g,330.1419g,计算得出所取样品质量m分别为30.0088g,30.0015g,30.0047g。
考虑到盐的质量浓度C s可能在计算过程中作为计算参数:
Figure PCTCN2021096590-appb-000012
本实例中C s=3.5%。
考虑到盐析常数K s和离子强度I的影响,样品中溶解的气体摩尔数:
Figure PCTCN2021096590-appb-000013
所取溶液样品中的水摩尔数:
Figure PCTCN2021096590-appb-000014
NaCl溶液的盐析常数K s计算公式为:
Figure PCTCN2021096590-appb-000015
S 0和S分别指溶质在纯水和摩尔浓度为C'的盐溶液中的溶解度,根据甲烷气体在纯水和摩尔浓度为1mol/L的NaCl溶液中的溶解度可以得出K s=0.128mol/L。
离子强度I的计算公式为
Figure PCTCN2021096590-appb-000016
其中,c i代表离子i的质量摩尔浓度(单位mol/L),z i是离子所带的电荷数,由于Na +和Cl -所带的电荷数分别为+1和-1,可以得出NaCl溶液的离子强度I为:
Figure PCTCN2021096590-appb-000017
ρ是质量分数为3.5%的NaCl溶液的密度,ρ=1.0235g/cm 3,可以得出I=0.585mol/L。
T=20℃下,甲烷在质量分数为3.5%的NaCl溶液中的亨利常数H=4445MPa。
本实例中所测得的V g值分别为41.8cm 3,42.1cm 3,41.5cm 3;代入已知数据,可得本实例三次取样所获得的样品中所溶解的甲烷气体摩尔数n g分别为1.7363×10 -3mol,1.7485×10 -3mol,1.7240×10 -3mol;所取样品中水的摩尔数n w分别为1.6055mol,1.6051mol,1.6053mol;所取样品中NaCl的摩尔数n s分别为1.7956×10 -2mol,1.7951×10 -2mol,1.7954×10 -2mol。
综上,天然气水合物NaCl盐溶液中的甲烷气体溶解度S B
Figure PCTCN2021096590-appb-000018
计算得出本实例三次取样所得到的天然气水合物盐溶液样品中甲烷气体溶解度S B(摩尔分数形式)分别为1.0683×10 -3,1.0761×10 -3,1.0610×10 -3;将气体溶解度S B用质量摩尔浓度表示,可得三次取样的样品中气体溶解度分别为5.7913×10 -2mol/kg,5.8336×10 -2mol/kg,5.7512×10 -2mol/kg;在相同温度和压力条件下,溶解度预测模型所得到的天然气水合物NaCl盐溶液样品中甲烷气体溶解度约为5.7241×10 -2mol/kg,经过对比,本测量结果误差均在2%以内,准确度较高。

Claims (7)

  1. 一种天然气水合物溶液体系中气体溶解度的测量装置,其特征在于,所述装置包括反应系统,取样系统和数据分析系统;所述反应系统包括气体样品瓶(1)、注气高压计量泵(3)、缓冲罐(7)、平衡腔(12)、电磁搅拌棒(13)、电磁搅拌器(14)、储水罐(15)、注水高压计量泵(17),温度调节槽(26);所述缓冲罐(7)、平衡腔(12)和电磁搅拌器(14)均位于温度调节槽(26)内;所述气体样品瓶(1)通过带有第一阀门(2)的管路与注气高压计量泵(3)连接;所述缓冲罐(7)内置有活塞(8),活塞(8)将缓冲罐(7)分隔为上下两部分,缓冲罐(7)的上部腔室内安装有温度传感器和压力传感器,通过带第二阀门(5)的管路与注气高压计量泵(3)连接;平衡腔(12)作为气体的溶解及水合物的生成装置,设置有可视窗(10)、温度传感器和压力传感器,通过进样阀(18)与注水高压计量泵(17)连接,并且通过带有进气阀(9)的管路与缓冲罐(7)的上部腔室连接;所述磁性搅拌棒(13)置于平衡腔(12)内部,通过底部安装的电磁搅拌器(14)驱动;所述储水罐(15)通过带有第四阀门(16)的管路与注水高压计量泵(17)连接;
    所述取样系统包括电动泵(4)、微过滤器(22)、膨胀腔(24)以及与反应系统共用的缓冲罐(7)和平衡腔(12);所述电动泵(4)通过第三阀门(6)与缓冲罐(7)的下部腔室连接,在取样过程中,电动泵(4)和装有可移动活塞(8)的缓冲罐(7)一起用于维持平衡腔(12)内的压力恒定;微过滤器(22)通过第一取样阀(21)与平衡腔(12)连接;膨胀腔(24)作为液体样品的收集装置,内设置温度传感器和压力传感器,通过第二取样阀(23)的管路与微过滤器(22)相连;微过滤器(22)和膨胀腔(24)也均置于温度调节槽(26)内;
    所述数据分析系统的主要装置包括数据采集装置(27)、气量计(28)、分析天平(29)以及与取样系统共用的膨胀腔(24);所述缓冲罐(7)、平衡腔(12)、膨胀腔(24)中的温度传感器和压力传感器均与数据采集装置(27)相连;所述气量计(28)和分析天平(29)用于对膨胀腔(24)所取样品进行闪蒸数据分析。
  2. 根据权利要求1所述天然气水合物溶液体系中气体溶解度的测量装置,其特征在于:温度调节槽(26)中设有电机驱动的搅拌器(25)。
  3. 根据权利要求1所述天然气水合物溶液体系中气体溶解度的测量装置,其特征在于:所述平衡腔(12)上设有安全阀(11),用于平衡腔(12)及整个测量装置排气。
  4. 根据权利要求1所述天然气水合物溶液体系中气体溶解度的测量装置,其特征在于:还包括真空泵(19)通过带第五阀门(20)的管路与平衡腔(12)相连,进而作用于整个气体溶解度测量装置中。
  5. 权利要求1-4任一所述天然气水合物溶液体系中气体溶解度的测量装置的方法,其特征在于,包括以下几个步骤:
    1)清洗平衡腔(12),连接实验装置,并对测量系统进行试压检查;
    2)利用真空泵(19)对实验装置和管路抽真空,然后关闭所有阀门;
    3)打开进样阀(18),利用储水罐(15)和注水高压计量泵(17)将平衡腔(12)充满溶剂液体;
    4)打开第二阀门(5)和进气阀(9),通过气瓶(1)和注气高压计量泵(3)向平衡腔(12)中充入甲烷气体,然后监控平衡腔(12)内的温度和压力;
    5)将温度调节槽(26)内的温度调节至水合物生成温度,并保持在此温度保持不变,当检测到平衡腔(12)内压力长时间保持不变时,平衡腔(12)内达到平衡;
    6)打开第一取样阀(21),将溶液样品通过微过滤器(22),以确保所取液体样品不含水合物晶体;
    7)打开第二取样阀(23),将一定量液体样品收集到预先抽真空的膨胀腔(24)后,将膨胀腔(24)从测量装置中取出,完成样品采集;
    8)取样过程中,打开第三阀门(6)和进气阀(9),通过电动泵(4)加压保持取样过程中平衡腔(12)内压力恒定;
    9)使用分析天平(29)对膨胀腔(24)所取样品进行称重,计为m,膨胀腔(24)内的样品在大气压和室温下被闪蒸成气液两相,通过气量计(28)测量闪蒸后气体的体积为V g
    10)溶解度计算
    天然气水合物水溶液中的气体溶解度S H由水溶液中的气体摩尔数n g和水摩尔数n w通过公式
    Figure PCTCN2021096590-appb-100001
    计算获得,n g和n w由气体的摩尔质量M g、水的摩尔质量M w、气体压缩因子Z,气体常数R、闪蒸温度T、气体逸度f g、亨利系数H以及步骤9)得到的样品质量m、样品闪蒸后的气相体积V g通过公式
    Figure PCTCN2021096590-appb-100002
    Figure PCTCN2021096590-appb-100003
    计算获得;
    天然气水合物盐溶液中的气体溶解度S B由气体摩尔数n g、水摩尔数n w和盐摩尔数n s通过公式
    Figure PCTCN2021096590-appb-100004
    计算获得,由于盐溶液中的气体溶解度还受到盐析常数K s和离子浓度I 的影响,气体摩尔数
    Figure PCTCN2021096590-appb-100005
  6. 根据权利要求5所述的方法,其特征在于,所述步骤4)中,利用置于平衡腔(12)中的磁性搅拌棒(13)对液体进行搅拌,直至压力示数保持恒定。
  7. 根据权利要求5所述的方法,其特征在于,操作过程中,为了使温度调节槽(26)内的温度分布均匀,搅拌器(25)一直处于工作状态。
PCT/CN2021/096590 2020-06-03 2021-05-28 天然气水合物溶液体系中气体溶解度的测量装置及方法 WO2021244406A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/764,476 US11561158B2 (en) 2020-06-03 2021-05-28 Measuring device and method for gas solubility in natural gas hydrate solution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010496352.6A CN111579424B (zh) 2020-06-03 2020-06-03 天然气水合物溶液体系中气体溶解度的测量装置及方法
CN202010496352.6 2020-06-03

Publications (1)

Publication Number Publication Date
WO2021244406A1 true WO2021244406A1 (zh) 2021-12-09

Family

ID=72119983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096590 WO2021244406A1 (zh) 2020-06-03 2021-05-28 天然气水合物溶液体系中气体溶解度的测量装置及方法

Country Status (3)

Country Link
US (1) US11561158B2 (zh)
CN (1) CN111579424B (zh)
WO (1) WO2021244406A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486617A (zh) * 2021-12-24 2022-05-13 西安近代化学研究所 一种高压气体中氨、氢含量分析装置及分析方法
CN115452985A (zh) * 2022-09-13 2022-12-09 万华化学集团股份有限公司 一种测定气体在液体中溶解参数的装置及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579424B (zh) 2020-06-03 2021-06-04 大连理工大学 天然气水合物溶液体系中气体溶解度的测量装置及方法
CN114428031B (zh) * 2020-09-25 2024-05-14 中国石油化工股份有限公司 地层流体单次闪蒸快速测定装置及方法
CN112611675B (zh) * 2020-12-11 2024-03-22 中海石油(中国)有限公司海南分公司 一种高温高压条件天然气溶解度测试反应釜、装置及方法
CN113834752A (zh) * 2021-10-27 2021-12-24 中国华能集团清洁能源技术研究院有限公司 气体溶解度测量装置和方法、封存潜力预测系统和方法
CN114878434B (zh) * 2022-05-20 2023-06-30 河南理工大学 一种可变宽度和粗糙度的单裂隙注浆渗流可视化试验方法
CN115824961A (zh) * 2022-11-07 2023-03-21 天津大学 一种测量高温高压条件下气体溶解度的装置和方法
CN117782878B (zh) * 2024-02-26 2024-04-26 太原理工大学 一种实时测量气体在液体中溶解参数的恒压装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099956A (ko) * 2011-03-02 2012-09-12 포항공과대학교 산학협력단 기억 효과를 이용한 가스 하이드레이트의 연속적 상평형 측정 방법
CN105699247A (zh) * 2016-03-04 2016-06-22 西南石油大学 一种天然气水合物合成与分解实验方法及实验系统
CN105806738A (zh) * 2016-03-11 2016-07-27 西安交通大学 一种测量气体在液体中溶解度的变体积定压装置及方法
KR20160123636A (ko) * 2015-04-16 2016-10-26 한국지질자원연구원 측정가스의 분기 포집기능을 갖는 석탄가스 측정장치
CN106950149A (zh) * 2017-04-24 2017-07-14 西南石油大学 一种测量溢流气体溶解度的实验装置及方法
CN110261259A (zh) * 2019-06-28 2019-09-20 中国石油大学(华东) 水合物溶解度的测量装置和测量方法
CN111579424A (zh) * 2020-06-03 2020-08-25 大连理工大学 天然气水合物溶液体系中气体溶解度的测量装置及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095935B1 (ko) * 2010-01-15 2011-12-20 김양우 유증기 회수율 측정장치
CN111157510A (zh) * 2020-01-03 2020-05-15 浙江工业大学 一种原位在线测定co2在烷烃中溶解度的方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099956A (ko) * 2011-03-02 2012-09-12 포항공과대학교 산학협력단 기억 효과를 이용한 가스 하이드레이트의 연속적 상평형 측정 방법
KR20160123636A (ko) * 2015-04-16 2016-10-26 한국지질자원연구원 측정가스의 분기 포집기능을 갖는 석탄가스 측정장치
CN105699247A (zh) * 2016-03-04 2016-06-22 西南石油大学 一种天然气水合物合成与分解实验方法及实验系统
CN105806738A (zh) * 2016-03-11 2016-07-27 西安交通大学 一种测量气体在液体中溶解度的变体积定压装置及方法
CN106950149A (zh) * 2017-04-24 2017-07-14 西南石油大学 一种测量溢流气体溶解度的实验装置及方法
CN110261259A (zh) * 2019-06-28 2019-09-20 中国石油大学(华东) 水合物溶解度的测量装置和测量方法
CN111579424A (zh) * 2020-06-03 2020-08-25 大连理工大学 天然气水合物溶液体系中气体溶解度的测量装置及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486617A (zh) * 2021-12-24 2022-05-13 西安近代化学研究所 一种高压气体中氨、氢含量分析装置及分析方法
CN114486617B (zh) * 2021-12-24 2024-05-28 西安近代化学研究所 一种高压气体中氨、氢含量分析装置及分析方法
CN115452985A (zh) * 2022-09-13 2022-12-09 万华化学集团股份有限公司 一种测定气体在液体中溶解参数的装置及其应用

Also Published As

Publication number Publication date
CN111579424A (zh) 2020-08-25
CN111579424B (zh) 2021-06-04
US11561158B2 (en) 2023-01-24
US20220341833A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2021244406A1 (zh) 天然气水合物溶液体系中气体溶解度的测量装置及方法
CN105806738B (zh) 一种测量气体在液体中溶解度的变体积定压装置及方法
CN201780246U (zh) 压力-体积法碳酸盐含量测定仪
CN104634635B (zh) 高饱和度甲烷水合物沉积物试样的生成装置及生成方法
WO2017008354A1 (zh) 一种研究天然气水合物分解过程中多孔介质骨架变化的实验装置及实验方法
CN101477086A (zh) 气体水合物生成取样分析方法及装置
CN110761749A (zh) 一种天然气水合物的合成及开采模拟实验系统及实验方法
CN107703275B (zh) 一种甲烷水合物相平衡研究的高压实验装置及方法
CN109932272B (zh) 一种co2驱替实验系统及实验方法
WO2022000891A1 (zh) 一种水合物评价实验系统及方法
CN110715880A (zh) 一种可视化co2无水压裂液流变性测试系统及测试方法
WO2019109417A1 (zh) 一种适用于低温高压材料x射线衍射测量的高压冷台装置及使用方法
WO2020048071A1 (zh) 一种变水头渗透系数测量系统和测量方法
CN101377478A (zh) 测定气体水合物相平衡条件的方法
CN108627417A (zh) 一种高温高压气藏条件下凝析水含量测试及计算方法
CN201749071U (zh) 天然气水合物储气量测定的实验装置
CN102042942A (zh) 天然气水合物储气量测定的实验装置
CN113484361B (zh) 一种低温固井用水泥浆体系水化热测定装置
CN107063921A (zh) 一种快速测量水合物沉积物中水合物饱和度的装置及方法
JP5861890B2 (ja) 被圧液体中の溶存気体量の測定方法
CN113125487A (zh) 含甲烷水合物沉积物持水性参数及孔隙水分布特性的测试装置及其方法
CN110057715B (zh) 一种实验与数值模拟过程中水合物饱和度的计算分析方法
CN116223746A (zh) 甲烷在油基钻井液中的溶解度测定实验装置及测定方法
CN112857957B (zh) 碳酸盐团簇同位素测试中平衡气制备装置与制备方法
CN115407052A (zh) 含蜡量对高含蜡凝析油气体系相态影响的测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817694

Country of ref document: EP

Kind code of ref document: A1