WO2021244200A1 - 焊带及太阳能电池组件 - Google Patents

焊带及太阳能电池组件 Download PDF

Info

Publication number
WO2021244200A1
WO2021244200A1 PCT/CN2021/091603 CN2021091603W WO2021244200A1 WO 2021244200 A1 WO2021244200 A1 WO 2021244200A1 CN 2021091603 W CN2021091603 W CN 2021091603W WO 2021244200 A1 WO2021244200 A1 WO 2021244200A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
core
bending
ribbon
bending portion
Prior art date
Application number
PCT/CN2021/091603
Other languages
English (en)
French (fr)
Inventor
黄强
黄儒彬
Original Assignee
东方日升(义乌)新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方日升(义乌)新能源有限公司 filed Critical 东方日升(义乌)新能源有限公司
Priority to US17/920,501 priority Critical patent/US20230141617A1/en
Priority to EP21818222.8A priority patent/EP4120369A4/en
Publication of WO2021244200A1 publication Critical patent/WO2021244200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to the technical field of solar cells, and in particular to a welding ribbon and solar cell components.
  • the industry's pursuit of high power and low cost is getting closer and closer to the extreme.
  • the battery module technology related to ultra-large and ultra-thin silicon wafers has become a key technology to promote the development of the industry.
  • the area of a single silicon chip is getting larger and larger, from the size of 125mm to the size of 166mm and 210mm.
  • the thickness of a single silicon chip is becoming thinner and thinner, rapidly expanding from 200um thickness to 175um (back passivation PERC cell technology), and even 130um (heterojunction HJT cell technology).
  • Ultra-large and ultra-thin silicon wafers have brought unprecedented challenges to the manufacture of photovoltaic cells, especially the manufacture of photovoltaic modules.
  • One of the biggest challenges in the manufacture of ultra-large and ultra-thin solar cells is to avoid yield problems such as fragments and cracks in the process of welding and interconnecting the solar cells.
  • the cells with metal grid lines on the front surface and the back surface are interconnected on the front surface through welding belts to realize the series connection between the cells.
  • Patent document CN202473995U provides a solar module welding ribbon, on which a bending structure is fabricated, and the bending structure is located at the position where the welding ribbon and the edge of the cell are welded.
  • the method of bending the welding ribbon at the edge of the battery the reduction of the effective material length of the welding ribbon is small, and the impact on the length variation of the welding ribbon is small, so it cannot effectively solve the problem between the welding ribbon and the battery.
  • the stress problem between time is a solar module welding ribbon, on which a bending structure is fabricated, and the bending structure is located at the position where the welding ribbon and the edge of the cell are welded.
  • Patent document CN103972317A provides an interconnection strip for solar cells, which includes a metal substrate including a plurality of interwoven metal wires formed by weaving.
  • these braided metal wires affect the light-receiving area of the battery surface on the surface of the battery sheet, and the steps for making the braided pattern are complicated and difficult to manipulate.
  • the purpose of the present disclosure is at least to provide a solder ribbon and a solar cell module, which can buffer the stress between the solder ribbon and the cell, and reduce the probability of occurrence of debris or the formation of cracks in the cell.
  • a welding tape which includes a composite core and a surface coating layer wrapped around the composite core.
  • the composite core includes a plurality of welding cores, and each of the welding cores is provided with at least one A first bending portion, wherein a plurality of the welding cores are wound with each other through the respective first bending portions to form the composite core.
  • the plurality of welding cores are arranged as a plurality of welding core groups, each of the welding core groups includes one welding core or a plurality of welding cores, and the plurality of welding core groups are entangled with each other to form the Composite core.
  • each of the welding core groups includes a plurality of welding cores, and in each welding core group, the plurality of welding cores are arranged side by side or the plurality of welding cores are entangled with each other.
  • the two welding core sets are wound with each other to form the composite core in the shape of a thread, a twisted pair, or a sailor knot.
  • the bending direction of the first bending portion is inclined or perpendicular to the length direction of the welding core.
  • the radial cross section of the welding core is circular, elliptical, rectangular, square, trapezoidal or triangular.
  • the welding tape is formed by subjecting the composite welding core to a high temperature annealing treatment and then wrapping the surface coating layer.
  • the material of the surface coating layer is tin, bismuth, lead, indium, tin alloy, bismuth alloy, lead alloy or indium alloy; preferably, the surface coating layer is made by electroplating or hot infiltration Way of formation.
  • the material of the welding core is copper or steel.
  • each welding core is the same.
  • the embodiment of the present disclosure also provides a welding tape, including a single welding core and a surface coating layer wrapped around the single welding core; and at least one third bending part is provided on the welding tape, so The bending direction of the third bending portion is perpendicular to the length direction of the single welding core.
  • the bending direction of the third bending portion is parallel to the surface of the corresponding battery sheet; preferably, the structure of the third bending portion is one of the following: a circular structure , Triangular structure, trapezoidal structure, square structure or wave-shaped structure.
  • the embodiment of the present disclosure also proposes a solar cell module, which includes a plurality of welding ribbons and a plurality of battery pieces, and the plurality of battery pieces are connected by the plurality of welding ribbons.
  • the welding ribbon is the above-mentioned welding ribbon; wherein each of the welding ribbons is provided with at least one second bending portion, and the second bending portion is provided between two adjacent battery sheets; The bending direction of the second bending portion is along the thickness direction of the battery sheet.
  • At least one third bending portion is provided on each of the welding ribbons, at least one of the third bending portions is closely attached to the middle part of the corresponding battery sheet, and the first The bending direction of the three bending parts is perpendicular to the length direction of the welding core; preferably, the bending direction of the third bending part is parallel to the surface of the corresponding battery sheet; preferably, the The structure of the third bending part is one of the following: a circular structure, a triangular structure, a trapezoidal structure, a square structure or a wave-shaped structure.
  • the solar cell module includes a plurality of reinforcing blocks, and the plurality of reinforcing blocks are arranged on the grid lines of the battery sheet, wherein the soldering tape is arranged on all the corresponding battery sheets.
  • the grid line On the grid line, and each of the third bending portions is located between two adjacent reinforcement blocks; preferably, the number of the grid lines is 9, 10, or 12; preferably, the reinforcement block Evenly distributed on the grid line and the interval between the adjacent third bending parts is equal; preferably, on each grid line of the corresponding battery sheet, the number of the reinforcing blocks is 5 .
  • the embodiment of the present disclosure also proposes a solar cell module, which includes a plurality of welding ribbons and a plurality of battery pieces, and the plurality of battery pieces are connected by the plurality of welding ribbons.
  • Each of the welding ribbons includes a welding core and a surface coating layer wrapped around the welding core; wherein, each of the welding ribbons is provided with at least one second bending part and at least one third bending Part, the second bent part is provided between two adjacent battery pieces, the third bent part is in close contact with the middle part of the corresponding battery piece;
  • the bending direction is along the thickness direction of the battery sheet, and the bending direction of the third bending portion is perpendicular to the length direction of the solder core.
  • the welding core is a single welding core; preferably, the welding core is a cylindrical linear structure; preferably, the welding core is a round thin copper wire of 0.25 mm to 0.35 mm.
  • the bending direction of the third bending portion is parallel to the surface of the corresponding battery sheet; preferably, the structure of the third bending portion is one of the following: a circular structure , Triangular structure, trapezoidal structure, square structure or wave-shaped structure.
  • the welding core is a single welding core and a plurality of the welding ribbons are wound with each other through the respective third bending parts to form a composite welding tape; preferably, the composite welding tape is threaded and twisted.
  • a composite welding tape is threaded and twisted.
  • the solar cell module includes a plurality of reinforcing blocks, and the plurality of reinforcing blocks are arranged on the grid line of the battery sheet, wherein the soldering tape is arranged on the grid line of the battery sheet.
  • each of the third bending portions is located between two adjacent reinforcement blocks; preferably, the number of the grid lines is 9, 10, or 12; preferably, the reinforcement blocks are evenly distributed The intervals between the adjacent third bending portions on the grid lines are equal; preferably, on each grid line of the corresponding battery sheet, the number of the reinforcing blocks is 5.
  • the first bending part on each welding core in the composite core buffers the stress between the welding ribbon and the battery sheet, and reduces the probability of the occurrence of debris or the formation of cracks in the battery sheet. , Can improve the yield rate, but also help to improve the power generation and reliability of solar cell modules.
  • the embodiment of the present disclosure buffers the stress between the solder ribbon and the cell by adding a third bending part on the solder ribbon, reduces the probability of occurrence of debris or the formation of cracks inside the cell, and can improve The yield rate also helps to improve the power generation and reliability of solar cell modules.
  • Figure 1 is a schematic diagram of the interconnection of a 9-bus-bar (9BB) half-cell battery in the related art
  • Figure 2 is a schematic diagram of the structure of the tin-coated copper tape in Figure 1;
  • Fig. 3 is a schematic structural diagram of a solar cell module according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the structure of a solar cell module according to an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the structure of a welding tape shown in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a composite core shown in an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the internal structure of a welding ribbon shown in an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the internal structure of a welding ribbon shown in an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a composite core shown in an embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of a composite core shown in an embodiment of the disclosure.
  • FIG. 11 is a schematic structural diagram of a solar cell module according to an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the structure of a welding tape shown in an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a welding tape shown in an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of the structure of a welding tape shown in an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of the structure of a welding tape shown in an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of the structure of a welding tape shown in an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a part of the structure of a solar cell module according to an embodiment of the disclosure.
  • Icon 100-solar cell module; 101-half cell; 102-half cell; 103-tinned copper tape; 104-metal electrode busbar line 104; 105-welding reinforcement block; 200-welding tape; 201 -Copper core; 202-tin coating layer; 210-surface coating layer; 220-composite core; 221-first bending part; 230-welding core; 241-first welding core group; 242-second welding core group 243-third core group; 240a-interface; 250-second bending part; 251-first section; 252-second section; 253-third section; 260-third bending part; 300-battery Sheet; 300a-front surface; 300b-back surface; 310-first cell; 320-second cell; 301-reinforcing block.
  • the terms “set”, “install”, “connected”, and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in the present disclosure can be understood in specific situations.
  • the metal grid lines on the front and back surfaces are generally Ag or Al alloys, such as Ag paste grid lines, Al paste grid lines, AgAl paste grid lines formed by screen printing and sintering; or Cu alloys, such as NiCuSn formed by electroplating process alloy.
  • Tin-coated copper strips are divided into flat tin-coated copper strips and round tin-coated copper strips.
  • the flat tin-coated copper strip is usually a long strip with a width of 1 mm and a thickness of 0.25 mm.
  • the inside of the solder ribbon is a copper ribbon, and the surface is covered with a Sn alloy layer or SnPb alloy layer with a thickness of about 15um.
  • the length of the welding ribbon is cut according to the needs. Generally, it is about 2 times the side length of the cell to be welded and interconnected.
  • This kind of ribbon is suitable for the design of cell interconnection with less than 6 bus bars (6BB), and has been basically eliminated in recent years. .
  • a typical solder ribbon is a copper wire with a diameter of about 0.3mm covered with a SnPb alloy layer of about 15um.
  • the length of the welding strip is cut as required, and is generally about 2 times the length of the side of the cell to be welded and interconnected.
  • FIG. 1 is a schematic diagram of the interconnection of a 9-bus-bar (9BB) half-cell battery in the related art.
  • the front surface of half of the cell piece 101 and the back surface of the other half of the cell piece 102 are connected to each other by 9 solder ribbons 103 coated with a 15 um tin layer on the surface.
  • the right side of FIG. 1 further shows the metal electrode busbar 104 on the surface of the half cell.
  • a welding reinforcement block 105 can also be provided on the main grid line of the metal battery.
  • the welding reinforcement blocks 105 can be evenly or unevenly distributed on the 9 metal bus bars. Without loss of generality, as a schematic diagram, only the reinforcement block 105 on the outermost main grid line is drawn in FIG. 1.
  • the tin-coated copper tape 103 is placed on the metal electrode bus bars 104 or the welding reinforcement block 105 of the cell, between the tin-coated copper tape 103 and the metal electrode bus bar 104 or the welding reinforcement block 105 Close contact, and then be heated to a high temperature of about 200 °C. At this time, the tin-coated layer on the surface of the tin-coated copper strip 103 melts, and the tin-coated copper strip 103 merges with the metal electrode bus bar 104 or the welding reinforcement block 105 to form a benign conductive connection. Therefore, the tin-coated copper tape 103 can effectively derive the photo-generated current generated by the photovoltaic cell.
  • FIG. 2 is a schematic diagram of the structure of the tin-coated copper tape 103 in FIG. 1.
  • 201 is a copper core of tin-coated copper tape, usually a round thin copper wire of 0.25mm to 0.35mm.
  • the thin copper wire is continuously squeezed and thinned by a wire drawing mechanism through a thicker copper column or copper strip.
  • the copper metal is subjected to strong extrusion stress. Therefore, the stress can be relieved by high-temperature heating of the furnace tube or high-current high-temperature heating and annealing.
  • the copper wire is passed through a molten liquid in Sn or Sn alloy to form a surface tin coating 202.
  • the tin coating layer 202 on the surface can also be formed by electroplating.
  • FIG. 3 is a schematic structural diagram of a solar cell module 100 according to an embodiment of the present disclosure.
  • a solar cell assembly 100 includes a plurality of soldering ribbons 200 and a plurality of battery pieces 300, and the plurality of battery pieces 300 are connected by the plurality of soldering ribbons 200.
  • At least one second bending portion 250 is provided on each welding ribbon 200, and the second bending portion 250 is provided between two adjacent battery sheets 300.
  • the thickness direction of the cell 300 is defined as the Z axis
  • the length direction of the welding ribbon 200 is defined as the Y axis
  • a diameter coordinate system is established, and the X axis is determined.
  • the positive direction of the Z-axis is called upward
  • the positive direction of the Y-axis is called rightward
  • the positive direction of the X-axis is called forward, thereby defining the six directions of front, rear, left, up, and down.
  • the front surface 300 a of the battery sheet 300 is the upper surface of the battery sheet 300
  • the back surface 300 b of the battery sheet 300 is the lower surface of the battery sheet 300.
  • the material of the cell 300 is silicon.
  • the bending direction of the second bending portion 250 is along the thickness direction of the battery sheet 300, that is, the Z direction.
  • the second bending portion 250 can prevent the solder ribbon 200 from directly contacting the side surface of the cell 300, thereby preventing the solder from flowing during the soldering process from causing the positive and negative electrodes of the positive surface 300a of the cell 300 to be connected to the back surface 300b of the cell 300. And the problem that the solar cell module 100 fails.
  • the solar cell module 100 may be a passivated cell (PERC) cell module, a contact passivation (TOPCon) cell module, an N-type back passivation (N-PERC) cell module, or an N-type heterojunction (HJT) cell module.
  • PERC passivated cell
  • TOPCon contact passivation
  • N-PERC N-type back passivation
  • HJT N-type heterojunction
  • laminated battery battery assembly composed of the above battery.
  • FIG. 4 is a schematic structural diagram of a solar cell module 100 according to an embodiment of the disclosure.
  • the cell 300 may be a multi-bus grid cell.
  • the battery slice 300 on the left is called a first battery slice 310
  • the battery slice 300 on the right is called a second battery slice 320.
  • the second bending portion 250 may be in a "Z" shape, and has a first section 251, a second section 252, and a third section 253 that are connected to each other.
  • the first section 251 is in contact with the edge of the front surface 300 a of the first battery piece 310
  • the third section 253 is in contact with the edge of the back surface 300 b of the first battery piece 310.
  • the second bending portion 250 is provided with the first section 251 and the third section 253, thereby increasing the distance between the second section 252 and the edge of the adjacent battery sheet 300.
  • a manufacturing method of solar cell module 100 includes the following steps:
  • the first step cut 72 pieces of finished square solar cells with a side length of 158.75 mm designed with 9 main grid (9BB) electrodes in half to obtain a first cell 310 and a second cell 320 of the same size.
  • 9BB main grid
  • Step 2 Cut the initial welding ribbon 200 to an appropriate size, where the appropriate size is about twice the side length of the first cell 310.
  • the third step the welding ribbon 200 cut to a suitable size is bent along the Z direction (along the thickness direction of the cell 300) through a mechanical extrusion molding mechanism to obtain the welding ribbon with the second bending part 250 200.
  • Step 4 Place the first cell 310 on the welding table of the stringer, and then pull the welding ribbon 200 onto the front surface 300a of the first cell 310 through a traction mechanism.
  • Step 5 Place the second cell 300 on top of the solder ribbon 200, so that one end of the solder ribbon 200 is connected to the front surface 300a of the first cell 310, and the other end of the solder ribbon 200 is connected to the back of the second cell 320.
  • the surfaces 300b are connected to form a series connection of the first cell 310 and the second cell 320.
  • Step 6 Repeat the above process to complete the series connection of all the cells 300, and then go through conventional processes such as typesetting, lamination, and framing to form the finished solar cell module 100.
  • the third step can be completed before the fourth step, or the third step and the fourth step can be performed at the same time.
  • FIG. 5 is a schematic structural diagram of a welding ribbon 200 according to an embodiment of the present disclosure.
  • Fig. 5 shows an embodiment based on Fig. 3 and Fig. 4.
  • the welding tape 200 includes a welding core 230 made of a metal material with excellent electrical conductivity and a surface coating layer 210 that facilitates welding.
  • the welding core 230 is a single wire, and the surface coating layer 210 is wrapped around the single welding core 230.
  • the solder tape 200 may be a flat tin-coated copper tape or a round tin-coated copper tape.
  • the welding core 230 has a cylindrical linear structure, and the material of the welding core 230 is copper.
  • the solder core 230 may be a round thin copper wire of 0.25-0.35 mm.
  • the welding core 230 may be formed by a thicker copper column or a copper strip, which is continuously squeezed and thinned by a wire drawing mechanism. In the process of forming small copper wires, the copper metal is subjected to strong extrusion stress, so after the extrusion is completed, high-temperature heating of the furnace tube or high-current high-temperature heating annealing is used to eliminate the stress.
  • the material of the surface coating layer 210 is tin, tin alloy or tin-lead alloy, so that the solder core 230 can pass through the molten liquid of tin, tin alloy or tin-lead alloy to form the surface coating layer 210.
  • the solder ribbon 200 When the cell 300 is a cell 300 with 6 bus bars (6BB), the solder ribbon 200 includes a flat solder core 230 with a width of 1 mm and a thickness of 0.25 mm, and a surface coating layer 210 with a thickness of about 15 um.
  • the solder ribbon 200 When the cell 300 is a cell 300 of multi-bar line technology such as 9 bus bar (9BB), 10 bus bar (10BB) or 12 bus bar (12BB), the solder ribbon 200 includes a round solder core with a diameter of about 0.3mm 230, and a surface coating layer 210 with a thickness of about 15um.
  • FIG. 6 is a schematic structural diagram of a composite core 220 according to an embodiment of the present disclosure.
  • Fig. 6 is an embodiment based on Fig. 3 and Fig. 4.
  • the welding ribbon 200 includes a composite core 220, the composite core 220 includes a plurality of welding cores 230, each of the welding cores 230 is provided with at least one first bending portion 221, and the plurality of welding cores 230 are entangled with each other through the respective first bending portions 221
  • the composite core 220 is formed.
  • each welding core 230 may be the same or different.
  • the radial cross section of the welding core 230 is circular, elliptical, rectangular, square, trapezoidal or triangular.
  • the material of the welding core 230 is metal such as copper or steel.
  • the radial cross section of the solder core 230 is circular, and the material of the solder core 230 is copper.
  • the plurality of solder cores 230 are arranged as two solder core groups, and each solder core group includes one solder core 230.
  • the two welding core groups are the first welding core group 241 and the second welding core group 242, the first welding core group 241 passes through the first bending part 221 of the second welding core group 242, and the second welding core group 242 passes through Past the first bending portion 221 of the first core group 241.
  • the first welding core group 241 and the second welding core group 242 are mutually rotatably wound and interwoven into a composite core 220 in the shape of a twisted pair.
  • the bending direction of the first bending portion 221 is along the X direction, and is perpendicular to the length direction of the solder core 230 (ie, the Y direction).
  • two identical welding cores 230 (diameter of 0.15mm, metal cylindrical) are obtained, and they are twisted two by one in the same way as in Fig. 6 to form a composite core 220 (diameter of 0.3) in the shape of a twisted pair. mm).
  • FIG. 7 is a schematic diagram of the internal structure of the welding ribbon 200 according to an embodiment of the present disclosure.
  • Fig. 7 can be obtained by deforming on the basis of Fig. 6.
  • the welding cores 230 are entangled with each other to form a composite core 220 resembling a thread shape.
  • the bending direction of the first bending portion 221 is along the W direction, and is arranged obliquely with respect to the length direction of the solder core 230 (ie, the Y direction).
  • the interface 240a there is an interface 240a at the junction of the first core group 241 and the second core group 242.
  • the interface 240a has an effect similar to the reflective welding tape 200, and the interface 240a can effectively reflect light to the front surface 300a or the back surface of the cell 300 next to the welding tape 200 300b, thereby reducing the shading loss, reducing the shading effect of the metal ribbon 200, and improving the power generation efficiency of the solar cell module 100.
  • the welding ribbon 200 further includes a surface coating layer 210, and the surface coating layer 210 is wrapped around the composite core 220.
  • the surface coating layer 210 is arranged outside the composite core 220, and the outer structure of the welding ribbon 200 may be linear, or may be additionally provided with a bent part. In this embodiment, the outer structure of the welding ribbon 200 is linear.
  • the surface coating layer 210 is made of low-temperature soldering materials such as tin (Sn), bismuth (Bi), lead (Pb), indium (In), or alloys of tin, bismuth, lead, and indium, or tin, bismuth, Alloys of lead, indium and other metals.
  • the material of the surface coating layer 210 is tin or tin alloy.
  • the surface coating layer 210 is added to the composite core 220 by electroplating or hot dipping.
  • the composite core 220 is electroplated with a surface coating layer 210 of about 10-15um.
  • the surface coating layer 210 is made of tin-containing metal, and the reflective effect of the interface 240a (please refer to FIG. 7) will be further enhanced.
  • the composite core 220 is first subjected to high-temperature annealing treatment, and then the surface coating layer 210 is added by electroplating or hot dipping. After the composite core 220 is subjected to high temperature annealing treatment, stress can be relieved, so that the structure of the composite core 220 is more stable.
  • the following table is a list of the linear thermal expansion coefficients of commonly used materials for photovoltaic modules.
  • the material of the cell 300 is silicon
  • the material of the solder core 230 and the composite core 220 in the solder ribbon 200 is copper
  • the surface coating layer 210 in the solder ribbon 200 has little influence and is negligible.
  • the thermal expansion performance of the cell 300 and the solder ribbon 200 is very different. Near the temperature range of 20-200°C, the linear thermal expansion coefficient of copper is 17 ⁇ 10 ⁇ -6/°C, and the linear thermal expansion coefficient of silicon is 2.5 ⁇ 10 ⁇ -6/°C.
  • FIG. 5 Please refer to Figure 5, Figure 3 and Figure 4, suppose that a square silicon wafer with a side length of 210mm is cut into two solar cells 300.
  • the welding length of the solar cells 300 is 100mm, that is, the material length of the welding ribbon 200 is equal to the welding of the solar cells 300 Length, calculated as 100mm.
  • the length variation of the soldering strip 200 is 0.34mm.
  • the length variation of the cell 300 is about one-seventh of that of the solder ribbon 200, and the difference between the length variation of the two is about 0.29 mm.
  • the length variation of the welding strip 200 can reach 0.75mm.
  • the length variation of the cell 300 is still only about one-seventh of that of the solder ribbon 200, and the difference between the length variation of the two is about 0.64 mm. Therefore, it is easy to generate strong stress between the battery sheet 300 and the solder ribbon 200, and therefore, it is easy to form fragments or to form cracks in the battery sheet 300.
  • the bending direction (W direction) of the first bending portion 221 is relative to the length direction (Y direction) of the solder core 230
  • the extending direction of the welding core 230 in the welding ribbon 200 has two components in the X and Y directions, thereby forming an oblique winding direction. Therefore, when it encounters thermal expansion or contraction, the expansion or contraction direction of the welding core 230 in the welding ribbon 200 includes components in the X and Y directions.
  • the X-direction component is a buffer zone for stress relief, so that the mechanical stress inside the solar cell module 100 can be reduced or partially eliminated.
  • the calculation of the material length of the welding ribbon 200 only needs the component in the Y direction, not Calculate the component in the X direction. Therefore, the effective material length of the welding ribbon 200 becomes smaller, while the material length of the battery 300 does not change, so that the length variation of the welding ribbon 200 becomes smaller, and the length variation of the battery 300 does not change.
  • the difference between the amount of variation in the length of the piece 300 is reduced and is no longer a ratio of one-seventh.
  • the first bending portion 221 on each welding core 230 in the composite core 220 buffers the stress between the welding ribbon 200 and the battery slice 300, reducing the occurrence of debris or forming a hidden inside the battery slice 300.
  • the probability of cracking can improve the yield rate and also help increase the power generation and reliability of the solar cell module 100.
  • the magnitude of the X-direction component is adjusted, thereby adjusting the magnitude of the buffer stress.
  • FIG. 8 is a schematic diagram of the internal structure of the welding ribbon 200 according to an embodiment of the present disclosure.
  • Fig. 8 is an embodiment based on the embodiment shown in Fig. 7.
  • the first welding core group 241 includes two welding cores 230 arranged side by side; the second welding core group 242 includes two welding cores 230 arranged side by side.
  • each welding core group includes a plurality of welding cores 230, and the plurality of welding cores 230 are mutually wound into a thread shape, a twisted pair shape, a sailor knot shape, or a Chinese knot shape.
  • FIG. 9 is a schematic structural diagram of a composite core 220 according to an embodiment of the present disclosure.
  • Fig. 9 is an embodiment based on the embodiment shown in Fig. 7.
  • the plurality of welding cores 230 are arranged as three welding core groups, and the three welding core groups are intertwined and woven into a braided composite core 220.
  • Each core group includes a core 230.
  • the three core groups are a first core group 241, a second core group 242, and a third core group 243.
  • the first welding core group 241 passes through the first bending part 221 of the second welding core group 242, and the second welding core group 242 passes through the first bending part 221 of the third welding core group 243;
  • the third welding core group 243 passes through the first bending part 221 of the first welding core group 241, and is repeatedly wound, so that the first welding core group 241, the second welding core group 242, and the third welding core group 243 are intertwined and braided.
  • a composite core 220 in the shape of a braid.
  • each welding core group includes a plurality of welding cores 230, and the plurality of welding cores 230 are arranged side by side with each other.
  • each welding core group includes a plurality of welding cores 230, and the plurality of welding cores 230 are mutually wound into a thread shape or a twisted pair shape.
  • FIG. 10 is a schematic structural diagram of a composite core 220 according to an embodiment of the present disclosure.
  • Fig. 10 is an embodiment based on the embodiment shown in Fig. 7.
  • the plurality of solder cores 230 are arranged as two solder core groups, and each solder core group includes one solder core 230.
  • the two welding core groups are a first welding core group 241 and a second welding core group 242, respectively.
  • the first welding core group 241 and the second welding core group 242 are intertwined and braided into a composite core 220 in the shape of a sailor knot.
  • the first welding core group 241 is first folded in half, and then the first welding core group 241 is bent to form the first bending portion 221, so that the first welding core group 241 is formed into an " ⁇ " shape as a whole. Then the second core set 242 is folded in half, and then the second core set 242 is bent to form the first bent portion 221, so that the second core set 242 is formed into an " ⁇ " shape as a whole, and then the first core set 241 is passed through After passing through the first bending part 221 of the second welding core group 242, the second welding core group 242 passes through the first bending part 221 of the first welding core group 241. After being tightened, the first welding core group 241 and the second welding core group 241 The two welding core groups 242 are intertwined and braided into a composite core 220 in the shape of a sailor knot.
  • each welding core group includes a plurality of welding cores 230, and the plurality of welding cores 230 are arranged side by side with each other.
  • each welding core group includes a plurality of welding cores 230, and the plurality of welding cores 230 are mutually wound into a thread shape or a twisted pair shape.
  • first welding core group 241 and the second welding core group 242 are intertwined and braided to form a composite core 220 in the shape of a Chinese knot.
  • the stress between the buffer ribbon and the battery sheet can be realized by using the first bending part of the composite welding core, and can also be achieved by adding at least one third bending part on the welding ribbon. Ministry to achieve.
  • the following provides an embodiment of the solar cell module using the solder ribbon of the present disclosure including at least one third bending portion.
  • FIG. 11 is a schematic structural diagram of a solar cell module 100 according to an embodiment of the present disclosure.
  • the welding ribbon 200 may be the embodiment shown in any one of FIGS. 6 to 10 or the embodiment shown in FIG. 5.
  • Each welding ribbon 200 is provided with at least one third bending portion 260, and at least one third bending portion 260 is closely attached to the middle part of the corresponding battery sheet 300, wherein the middle part of the battery sheet 300 refers to the battery The non-edge position of the sheet 300.
  • the bending direction of the third bending portion 260 is along the X direction, which is perpendicular to the bending direction (Z direction) of the second bending portion 250, and is perpendicular to the length direction (Y direction) of the core 230.
  • the bending direction of the third bending portion 260 is parallel to the surface (ie, the front surface 300a, the back surface 300b) of the corresponding cell piece (ie, the cell piece 300).
  • the welding ribbon 200 has the third bending part 260, the bending direction (X direction) of the third bending part 260 is perpendicular to the length direction (Y direction) of the welding core 230, so the welding core in the welding ribbon 200
  • the extension direction of 230 has two components in the X and Y directions, and the third bent portion 260 is the component in the X direction. Therefore, when it encounters thermal expansion or contraction, the expansion or contraction direction of the welding core 230 in the welding ribbon 200 includes two components in the X and Y directions.
  • the X-direction component (the third bending portion 260) is a buffer zone where stress can be released, that is, stress no longer accumulates in the third bending portion 260.
  • the calculation of the material length of the solder ribbon 200 requires the third bending portion 260
  • the length of the Y-direction is reduced, so the effective material length of the solder ribbon 200 becomes smaller, while the material length of the cell 300 does not change, so that the length variation of the solder ribbon 200 becomes smaller, and the length variation of the cell 300 does not change.
  • the difference between the length variation of 200 and the length variation of the cell 300 is reduced, and is no longer a ratio of one-seventh.
  • the stress relief should be solved from the middle part of the cell 300. If the third bending part 260 is provided at the edge of the cell 300, the effective material length of the welding strip 200 decreases less, so The length variation of the welding ribbon 200 has little effect.
  • the third bending portions 260 may be all provided at the non-edge position of the battery sheet 300, that is, at the middle position of the solder tape 200, or may be partially provided at The non-edge position of the battery piece 300 is partially set at the edge position of the battery piece 300. Only the third bending portion 260 provided at the non-edge position of the battery sheet 300 can greatly change the effective material length of the solder ribbon 200, and affect the length variation of the solder ribbon 200, so that stress no longer accumulates.
  • the length variation of the welding ribbon 200 is 0.3 mm
  • the third bending portion 260 is provided at the edge position of the cell 300, that is, at the end of the welding ribbon 200
  • the length variation of the welding ribbon 200 is It is about 0.29mm, which is close to 0.3mm, and the effect of stress relief is low.
  • the length variation of the solder ribbon 200 is 0.15 mm, and the effect of stress relief is better.
  • the four third bending portions 260 are provided at the non-edge positions of the battery sheet 300, that is, the middle position of the welding ribbon 200, the length variation of the welding ribbon 200 is 0.075 mm, which has a better effect of eliminating stress.
  • the third bending portion 260 added on the solder ribbon 200 buffers the stress between the solder ribbon 200 and the cell 300, reducing the occurrence of debris or the formation of cracks in the cell 300.
  • the probability can improve the yield rate and also help to improve the power generation and reliability of the solar cell module 100.
  • the welding ribbon of the solar cell module 100 is a composite welding ribbon
  • the composite welding ribbon includes a plurality of welding ribbons 200, wherein a single welding ribbon 200 includes a single welding core 230 and a single welding core 230.
  • the surface coating layer 210 is provided with a third bending portion 260 on a single welding ribbon 200, and a plurality of welding ribbons 200 are wound with each other through the respective third bending portions 260 to form a composite welding ribbon.
  • the composite welding ribbon may have a structure similar to the composite core 220 shown in FIGS. 6 to 10, that is, a thread shape, a twisted pair shape, a sailor knot shape, a twist braid shape, or a Chinese knot shape.
  • FIG. 12 is a schematic structural diagram of a welding ribbon 200 according to an embodiment of the present disclosure.
  • One third bending portion 260 is provided and has a circular structure.
  • the welding ribbon 200 may be the embodiment shown in any one of FIGS. 6 to 10, and may also be the embodiment shown in FIG. 5.
  • the third bending portion 260 may be formed by bending the welding ribbon 200 along the X direction (please refer to the direction parallel to the front surface 300a of the battery sheet 300 in FIG. 11) by a mechanical extrusion molding mechanism. The forming of the third bending portion 260 may be performed before the welding tape 200 is fixed to the battery sheet 300, that is, before the battery sheet 300 is welded in series.
  • FIG. 13 is a schematic structural diagram of a welding ribbon 200 according to an embodiment of the present disclosure.
  • One third bending portion 260 is provided and has a triangular structure.
  • the welding ribbon 200 may be the embodiment shown in any one of FIGS. 6 to 10, and may also be the embodiment shown in FIG. 5.
  • FIG. 14 is a schematic structural diagram of a welding ribbon 200 according to an embodiment of the present disclosure.
  • One third bending portion 260 is provided and has a trapezoidal structure.
  • the welding ribbon 200 may be the embodiment shown in any one of FIGS. 6 to 10, and may also be the embodiment shown in FIG. 5.
  • FIG. 15 is a schematic structural diagram of a welding ribbon 200 according to an embodiment of the present disclosure.
  • the plurality of third bending portions 260 are arranged at intervals.
  • the welding ribbon 200 may be the embodiment shown in any one of FIGS. 6 to 10, and may also be the embodiment shown in FIG. 5.
  • the bending direction of the two third bending portions 260 is along the negative direction of the X axis
  • the bending direction of the two third bending portions 260 is along the X axis.
  • Positive axis direction is provided.
  • the third bending portion 260 is provided with four or more, and has a triangular structure, a square structure or a trapezoidal structure.
  • the plurality of third bending portions 260 may be arranged such that the intervals between adjacent third bending portions 260 are equal.
  • the bending directions of the plurality of third bending portions 260 can also be set to be the X-axis negative direction or the X-axis positive direction.
  • FIG. 16 is a schematic structural diagram of a welding ribbon 200 according to an embodiment of the present disclosure.
  • the third bending portion 260 has a wave-shaped structure.
  • the plurality of third bending portions 260 are continuously arranged.
  • the welding ribbon 200 may be the embodiment shown in any one of FIGS. 6 to 10, and may also be the embodiment shown in FIG. 5.
  • third bending portions 260 there are seven third bending portions 260, the bending directions of the four third bending portions 260 are along the negative direction of the X axis, and the bending directions of the three third bending portions 260 are along the X axis. Positive axis direction.
  • the length of the welding ribbon 200 is 80 mm.
  • the wave crest width along the X direction is 10 um.
  • the third bending portion 260 is provided on the whole of the solder ribbon 200.
  • the third bending portion 260 is partially provided at a non-edge position of the battery sheet 300, and is partially provided. At the edge of the cell 300.
  • the welding ribbon 200 is slightly bent during the manufacturing process.
  • an operation process first take a cylindrical copper wire with a length of 140-220mm, and a plum-shaped hard roller with a corrugation depth of 10um, and a rubber soft With the roller, the cylindrical copper wire is rolled through the two rollers, and the cylindrical copper wire is rolled into a wave copper wire with a uniform wave of 10um, and then tin is applied to the surface of the wave copper wire to form the solder ribbon 200 of this embodiment.
  • This embodiment is simple to manufacture, does not affect welding, and eliminates stress accumulation.
  • FIG. 17 is a partial structural diagram of a solar cell module 100 according to an embodiment of the present disclosure.
  • the grid lines on the front surface 300a and the back surface 300b of the cell 300 are generally made of metal, which can be silver (Ag) or aluminum (Al) alloys (such as silver paste grid lines formed by screen printing and sintering, Aluminum paste grids, silver-aluminum paste grid lines, etc.), can also be copper alloys (such as NiCuSn alloy formed by electroplating process, that is, nickel-copper-tin alloy).
  • the solder ribbon 200 is provided on the grid line of the corresponding cell 300.
  • the cell 300 is a cell of 9-bus grid (9BB) multi-bar technology.
  • the grid line of the cell 300 is provided with a welded reinforcement block 301, and the reinforcement block 301 is provided with multiple reinforcement blocks that can be evenly or unevenly distributed on the cell sheet 300.
  • the reinforcement block 301 is provided with multiple reinforcement blocks that can be evenly or unevenly distributed on the cell sheet 300.
  • the busbar On the busbar.
  • each third bending part of a welding strip 200 is located between two adjacent reinforcing blocks 301.
  • the present disclosure also provides the following examples of solar cell modules using the solder ribbon of the present disclosure.
  • each of the solder ribbons used on the surface of the corresponding cell of the solar cell module is provided with 4 third bending parts with a circular structure, thereby forming 4 circular stress reliefs
  • the buffer area is as follows:
  • the welding ribbon is mechanically squeezed by the shaping mechanism in the thickness direction of the cell (perpendicular to the front surface of the cell) Bending is performed to form at least one second bending part, the position of which is bent between the two battery slices; in addition, the welding tape is also shaped before being drawn to the front surface of the first battery slice
  • the mechanism is bent in a direction perpendicular to the length of the welding core (and parallel to the front surface of the battery sheet) by means of mechanical extrusion to form 4 third bending parts, the bending position is close to the first
  • the middle part of the cell and each third bending part are located between two adjacent reinforcement blocks; at the same time, the welding ribbon is also squeezed by the shaping mechanism in a direction perpendicular to the length of the welding core (and parallel Bending on the back surface of the second cell sheet) to form 4 third bending parts.
  • the bending position is close to the middle part of the second cell sheet and each third bending part is located adjacent
  • the second cell is placed on the solder ribbon, so that one end of the solder ribbon is connected to the front surface of the first cell and the other end is connected to the second cell.
  • the back surfaces of the cells are connected to form a series connection of the two cells.
  • Embodiment 2 In this embodiment, each welding strip used on the surface of the corresponding cell of the solar cell module is provided with a third bending part with a circular structure to form a circular stress relief
  • the implementation method and steps of the buffer zone are the same as those in the first embodiment above.
  • Embodiment 3 In this embodiment, each welding strip used for the surface of the corresponding cell of the solar cell module is provided with a third bending part with a sharp angle structure to form a sharp angle stress relief
  • the implementation method and steps of the buffer zone are the same as those in the first embodiment above.
  • Embodiment 4 In this embodiment, each welding strip used for the surface of the corresponding cell of the solar cell module is provided with 4 third bending parts with a sharp-angled structure to form 4 sharp-angled stress relief
  • the implementation method and steps of the buffer zone are the same as those in the first embodiment above.
  • Embodiment 5 In this embodiment, each welding strip used on the surface of the corresponding cell of the solar cell module is provided with a third bending part of a trapezoidal structure to form a trapezoidal stress relief buffer zone
  • the implementation method and steps are the same as those in the first embodiment.
  • Embodiment 6 In this embodiment, each welding strip used for the surface of the corresponding cell of the solar cell module is provided with 4 third bending parts of trapezoidal structure to form 4 trapezoidal stress relief buffer zones The implementation method and steps are the same as those in the first embodiment.
  • the welding ribbons in the first to sixth embodiments described above can be welding ribbons with a single welding core (for example, as shown in FIG. 5), or a composite core structure (for example, as shown in any one of FIGS. 6 to 10). ) Of the welding tape (ie, multiple welding cores).
  • the plurality of solder cores are entangled with each other through their respective first bending parts, that is, the solder ribbon forms an angle component on the surface of the solar cell with the extension direction of the solder ribbon.
  • This component is also a good stress relief buffer zone, which can be passed through Adjust the manufacturing process of the composite core to adjust the magnitude of the component.
  • the present disclosure also provides the following seventh embodiment:
  • the welding ribbon is mechanically squeezed by the shaping mechanism in the thickness direction of the cell (perpendicular to the front surface of the cell) Performing bending to form at least one second bending portion, where the bending position is between the two battery pieces;
  • the second cell is placed on the solder ribbon, so that one end of the solder ribbon is connected to the front surface of the first cell and the other end is connected to the second cell.
  • the back surfaces of the cells are connected to form a series connection of the two cells.
  • the welding tape provided by the present disclosure and the solar cell module including the welding tape can reduce or even eliminate the thermal stress between the welding tape and the cell; reduce other mechanical stresses during the manufacturing process of the solar cell module, and help reduce overall Fragmentation and cracking problems; the composite welding ribbon provided by the present disclosure can also reduce the shading effect of the welding ribbon and increase the power generation of the solar cell module.
  • the present disclosure also provides the following solutions to the problems caused by the thermal expansion stress between the solder ribbon 200 and the cell 300:
  • the solder ribbon 200 is eliminated, and the edge of the cell 300 is directly connected.
  • this solution requires that the current conduction distance is very short. Therefore, the battery slice 300 generally needs to be cut into 5-6 small slices. Even so, the effective conduction distance of 6 small pieces can only be compared with the conventional 3 bus bar (3BB) battery. The effective conduction distance of this solution is small, and multiple slices are needed.
  • the consumption of silver paste of the battery is greatly increased compared with that of a conventional 9-bus grid (9BB) battery, and the cost is higher.
  • the welding tape provided by the present disclosure and the solar cell module including the welding tape can reduce or even eliminate the thermal stress between the welding tape and the cell; reduce other mechanical stress in the manufacturing process of the solar cell module, which is helpful for comprehensive The problem of fragments and cracks is reduced; the composite welding ribbon provided in the present disclosure can also reduce the shading effect of the welding ribbon and increase the power generation of the solar cell module.
  • solder ribbon of the present disclosure and the solar cell module including the solder ribbon are reproducible and can be used in any application that requires the use of solar energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种焊带(200)及太阳能电池组件,涉及太阳能电池的技术领域。所述焊带(200)包括复合芯(220)和包裹于所述复合芯(220)外的表面涂覆层(210),所述复合芯(220)包括多个焊芯(230),各个所述焊芯(230)上设有至少一个第一弯折部(221),多个所述焊芯(230)通过各自的所述第一弯折部(221)相互缠绕形成所述复合芯(220);此外,所述焊带(200)上还设有至少一个第三弯折部(260),至少一个该第三弯折部(260)紧贴于相应的电池片(300)的中间部位,且该第三弯折部(260)的弯折方向与所述焊芯(230)的长度方向成垂直设置。通过复合芯(220)内各个焊芯(230)上的第一弯折部(221)和/或焊带(200)上的至少一个第三弯折部(260)均缓冲了焊带(200)与电池片(300)之间的应力,减小了出现碎片,或者在电池片(300)的内部形成隐裂的状况的概率,提高了良率,也有助于提升太阳能电池组件的发电功率和可靠性。

Description

焊带及太阳能电池组件
相关申请的交叉引用
本公开要求于2020年6月5日提交中国专利局的申请号为202021026993.7、名称为“焊带及太阳能电池组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请文件中。
技术领域
本公开涉及太阳能电池的技术领域,具体而言,涉及一种焊带及太阳能电池组件。
背景技术
随着光伏技术的发展,行业对高功率和低成本的追求也越来越接近极致。超大超薄硅片相关的电池组件技术成为推动行业发展的关键技术。一方面,为追求生产方面的通量成本优势,单一硅片的面积越来越大,从125mm的尺寸边长迅速扩展到166mm、210mm的尺寸边长。另一方面,为降低单片电池片成本,单一硅片的厚度也越来越薄,从200um厚度迅速扩展到175um(背面钝化PERC电池技术),甚至130um(异质结HJT电池技术)。超大超薄硅片(如210mm边长,130um厚度的硅片),给光伏电池制造,尤其是光伏组件的制造带来前所未有的挑战。超大超薄电池片制造中最大的挑战之一,就是避免电池片焊接互联过程中的碎片、隐裂等良率问题。
现有技术中,在电池片焊接互联过程中,正表面和背表面带金属栅线的电池片,都是通过焊带来实现正面表面互联,实现电池片间的串联。
但是,由于焊带与电池片材料不同,使得焊带与电池片热膨胀系数不同,使得焊带与电池片之间会有强烈的应力,因此容易产生良率问题,出现碎片,或者在电池片的内部形成隐裂的状况。
专利文件CN202473995U提供了一种太阳能组件焊带,在焊带上制作有弯折结构,弯折结构位于焊带与电池片边沿焊接的部位。但是焊带在电池片边沿进行打弯的方式,焊带的有效材料长度的减小值较小,则对焊带的长度变异量影响较小,因此并不能有效地解决焊带与电池片之间的应力问题。
专利文件CN103972317A提供了一种太阳电池用互连条,其包括金属基材,该金属基材包括通过编织形成的多条相互交织的金属线。但是,这些编织的金属线在电池片表面影响电池表面受光面积并且编织图案制作步骤复杂且难以操控。
发明内容
本公开的目的至少在于提供一种焊带及太阳能电池组件,其能够缓冲焊带与电池片之间的应力,减小出现碎片,或者在电池片的内部形成隐裂的状况的概率。
本公开的实施例是这样实现的:
本公开的实施例中提出了一种焊带,包括复合芯和包裹于所述复合芯外的表面涂覆层,所述复合芯包括多个焊芯,各个所述焊芯上设有至少一个第一弯折部,多个所述焊芯通过各自的所述第一弯折部相互缠绕形成所述复合芯。
于一实施例中,多个所述焊芯被设置为多个焊芯组,每个所述焊芯组包括一个焊芯或者多个焊芯,多个所述焊 芯组相互缠绕形成所述复合芯。
于一实施例中,每个所述焊芯组包括多个焊芯,且每个焊芯组内,多个焊芯为并列设置或者多个焊芯相互缠绕。
于一实施例中,所述焊芯组设有两个,两个所述焊芯组相互缠绕形成螺纹形、双绞线形状或者水手结形状的所述复合芯。
于一实施例中,所述焊芯组设有三个,三个所述焊芯组相互缠绕编织成麻花辫形状的所述复合芯。
于一实施例中,所述第一弯折部的弯折方向相对于所述焊芯的长度方向成倾斜设置或者垂直设置。
于一实施例中,所述焊芯的径向截面为圆形、椭圆形、长方形、正方形、梯形或者三角形。
于一实施例中,所述焊带是通过将所述复合焊芯进行高温退火处理之后再包裹所述表面涂覆层而形成的。
于一实施例中,所述表面涂覆层的材质为锡、铋、铅、铟、锡合金、铋合金、铅合金或者铟合金;优选地,所述表面涂覆层是通过电镀或热浸润的方式形成的。
于一实施例中,所述焊芯的材质为铜或者钢。
于一实施例中,各个焊芯的长度和直径均相同。
本公开的实施例还提供了一种焊带,包括单个焊芯和包裹于所述单个焊芯外的表面涂覆层;以及在所述焊带上设有至少一个第三弯折部,所述第三弯折部的弯折方向与所述单个焊芯的长度方向成垂直设置。
于一实施例中,所述第三弯折部的弯折方向平行于相应的所述电池片的表面;优选地,所述第三弯折部的结构是以下各者之一:圆形结构、三角形结构、梯形结构、方形结构或波浪形结构。
本公开的实施例还提出了一种太阳能电池组件,包括多个焊带和多个电池片,多个所述电池片通过多个所述焊带连接。所述焊带为上述的焊带;其中,每个所述焊带上均设有至少一个第二弯折部,所述第二弯折部设于相邻两个所述电池片之间;所述第二弯折部的弯折方向为沿所述电池片的厚度方向。
于一实施例中,每个所述焊带上均设有至少一个第三弯折部,至少一个所述第三弯折部紧贴于相应的所述电池片的中间部位,且所述第三弯折部的弯折方向与所述焊芯的长度方向成垂直设置;优选地,所述第三弯折部的弯折方向平行于相应的所述电池片的表面;优选地,所述第三弯折部的结构是以下各者之一:圆形结构、三角形结构、梯形结构、方形结构或波浪形结构。
于一实施例中,所述太阳能电池组件包括多个加强块,多个所述加强块设于所述电池片的栅线上,其中,所述焊带设于相应的所述电池片的所述栅线上,且各个所述第三弯折部均位于相邻两个所述加强块之间;优选地,所述栅线的数目为9、10或12;优选地,所述加强块均匀地分布在所述栅线上且相邻的第三弯折部之间的间隔相等;优选地,在相应的所述电池片的各个所述栅线上,所述加强块的数目为5。
本公开的实施例还提出了一种太阳能电池组件,包括多个焊带和多个电池片,多个所述电池片通过多个所述焊带连接。每个所述焊带均包括焊芯和包裹于所述焊芯外的表面涂覆层;其中,每个所述焊带上均设有至少一个第二弯折部和至少一个第三弯折部,所述第二弯折部设于相邻两个所述电池片之间,所述第三弯折部紧贴于相应的所述电池片的中间部位;所述第二弯折部的弯折方向为沿所述电池片的厚度方向,所述第三弯折部的弯折方向与所述焊芯的长度方向成垂直设置。
于一实施例中,所述焊芯是单个焊芯;优选地,所述焊芯为圆柱形的直线型结构;优选地,所述焊芯是0.25mm至0.35mm的圆形细铜丝。
于一实施例中,所述第三弯折部的弯折方向平行于相应的所述电池片的表面;优选地,所述第三弯折部的结构是以下各者之一:圆形结构、三角形结构、梯形结构、方形结构或波浪形结构。
于一实施例中,所述焊芯为单个焊芯且多个所述焊带通过各自的第三弯折部相互缠绕形成复合焊带;优选地,所述复合焊带是螺纹状、双绞线形状、水手结形状、麻花辫形状或者中国结形状中的一者。
于一实施例中,所述太阳能电池组件包括多个加强块,多个所述加强块设于所述电池片的栅线上,其中,所述焊带设于相应所述电池片的栅线上,且各个所述第三弯折部均位于相邻两个所述加强块之间;优选地,所述栅线的数目为9、10或12;优选地,所述加强块均匀地分布在所述栅线上且相邻的第三弯折部之间的间隔相等;优选地,在相应的所述电池片的各个所述栅线上,所述加强块的数目为5。
本公开与现有技术相比的有益效果包括,例如:
本公开的实施例通过复合芯内各个焊芯上的第一弯折部缓冲了焊带与电池片之间的应力,减小了出现碎片,或者在电池片的内部形成隐裂的状况的概率,可以提高良率,也有助于提升太阳能电池组件的发电功率和可靠性。
本公开的实施例通过焊带上增设的第三弯折部缓冲了焊带与电池片之间的应力,减小了出现碎片,或者在电池片的内部形成隐裂的状况的概率,可以提高良率,也有助于提升太阳能电池组件的发电功率和可靠性。
附图说明
包括附图以提供对实施例的进一步理解并且附图被并入本说明书中并且构成本说明书的一部分。为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,而不是全部实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为相关技术的9主栅(9BB)半片电池互联示意图;
图2为图1中的涂锡铜带的结构示意图;
图3为本公开一实施例示出的太阳能电池组件的结构示意图;
图4为本公开一实施例示出的太阳能电池组件的结构示意图;
图5为本公开一实施例示出的焊带的结构示意图;
图6为本公开一实施例示出的复合芯的结构示意图;
图7为本公开一实施例示出的焊带的内部结构示意图;
图8为本公开一实施例示出的焊带的内部结构示意图;
图9为本公开一实施例示出的复合芯的结构示意图;
图10为本公开一实施例示出的复合芯的结构示意图;
图11为本公开一实施例示出的太阳能电池组件的结构示意图;
图12为本公开一实施例示出的焊带的结构示意图;
图13为本公开一实施例示出的焊带的结构示意图;
图14为本公开一实施例示出的焊带的结构示意图;
图15为本公开一实施例示出的焊带的结构示意图;
图16为本公开一实施例示出的焊带的结构示意图;
图17为本公开一实施例示出的太阳能电池组件的部分结构示意图。
图标:100-太阳能电池组件;101-半片电池片;102-另一半片电池片;103-涂锡铜带;104-金属电极主栅线104;105-焊接加强块;200-焊带;201-铜芯;202-涂锡层;210-表面涂覆层;220-复合芯;221-第一弯折部;230-焊芯;241-第一焊芯组;242-第二焊芯组;243-第三焊芯组;240a-界面;250-第二弯折部;251-第一段;252-第二段;253-第三段;260-第三弯折部;300-电池片;300a-正表面;300b-背表面;310-第一电池片;320-第二电池片;301-加强块。
具体实施方式
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,并不表示排列序号,也不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,术语“内”、“外”、“左”、“右”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该公开产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
下面将结合附图对本公开的技术方案进行清楚、完整地描述。
在产业通用的光伏电池组件制造工艺中,正表面和背表面带金属栅线的电池片,通过表面涂锡铜焊带实现正背表面互联,从而实现电池片间的串联。这里正表面和背表面的金属栅线一般为Ag或Al合金,如丝网印刷烧结形成的Ag浆栅线、Al浆栅线、AgAl浆栅线等;或Cu合金,如电镀工艺形成的NiCuSn合金。
涂锡铜带分为扁平式涂锡铜带,和圆形涂锡铜带两种。其中扁平式涂锡铜带,通常为宽度为1mm,厚度0.25mm的长条。焊带的内部为铜带,表面覆盖有厚度约为15um左右的Sn合金层或SnPb合金层。焊带长度根据需要进行裁切,一般为要焊接互联的电池片的边长的2倍左右,这种焊带适用于6条主栅(6BB)以下的电池片互联设计,近年来已基本淘汰。
当前产业使用最多的是9主栅(9BB)、10主栅(10BB)或12主栅(12BB)等多栅线技术。典型的焊带为直径0.3mm左右的铜线表面覆盖15um左右的SnPb合金层。焊带长度根据需要进行裁切,一般为要焊接互联的电池片的边长的2 倍左右。
请参照图1,其为相关技术的9主栅(9BB)半片电池互联示意图。如图1所示,半片电池片101的正表面和另一半片电池片102的背表面通过9根表面涂覆有15um锡层的焊带103相互连接。为便于说明,图1的右侧进一步示出了半片电池片表面的金属电极主栅线104。为增强涂锡铜带103和电池表面金属电极的焊接强度,在金属电池的主栅线上,还可以设置焊接加强块105。焊接加强块105可以均匀或不均匀地分布在9根金属主栅线上。不失去一般性,作为示意图,图1中仅仅画出了最边缘主栅线上的加强块105。
在组件的制备过程中,涂锡铜带103被放置到电池片的金属电极主栅线104或焊接加强块105上,涂锡铜带103和金属电极主栅线104或焊接加强块105之间紧密接触,然后被加热到200℃左右的高温。这时,涂锡铜带103表面的涂锡层融化,涂锡铜带103与金属电极主栅线104或焊接加强块105融合形成良性导电连接。因此,涂锡铜带103就能有效地将光伏电池产生的光生电流导出。
请参照图2,其为图1中的涂锡铜带103的结构示意图。201为涂锡铜带的铜芯,通常为0.25mm至0.35mm的圆形细铜丝。细铜丝通过较粗的铜柱或铜条,由拉丝机构不断挤压拉细形成。在形成细小铜丝的过程中,铜金属受到很强的挤压应力。所以会通过炉管高温加热或大电流的高温加热退火消除应力。然后,铜线被在Sn或Sn合金中的融熔液体中通过形成表面涂锡层202。表面涂锡层202也可以通过电镀的方式形成。
请参照图3,其为本公开一实施例示出的太阳能电池组件100的结构示意图。一种太阳能电池组件100,包括多个焊带200和多个电池片300,多个电池片300通过多个焊带200连接。每个焊带200上均设有至少一个第二弯折部250,第二弯折部250设于相邻两个电池片300之间。
将电池片300的厚度方向定义为Z轴,将焊带200的长度方向定义为Y轴,建立直径坐标系,确定X轴。并将Z轴正方向的称作向上,将Y轴正方向的称作向右,将X轴正方向的称作向前,从而定义前后左右上下六个方向。其中,电池片300的正表面300a为电池片300的上表面,电池片300的背表面300b为电池片300的下表面。电池片300的材质为硅。
第二弯折部250的弯折方向为沿电池片300的厚度方向即Z方向。第二弯折部250可以避免焊带200直接与电池片300的侧面接触,从而可以防止在焊接过程中焊锡流动造成电池片300正表面300a与电池片300背表面300b的正负电极连接导通而使得太阳能电池组件100失效的问题。
其中,太阳能电池组件100可以是被钝化电池(PERC)电池组件、接触钝化(TOPCon)电池组件、N型背面钝化(N-PERC)电池组件、N型异质结(HJT)电池组件、以及上述电池组成的叠层电池电池组件。
请参照图4,其为本公开一实施例示出的太阳能电池组件100的结构示意图。电池片300可以是多主栅电池片。将左边的电池片300称作第一电池片310,将右边的电池片300称作第二电池片320。第二弯折部250可以是“Z”字形,具有相互连接的第一段251、第二段252和第三段253。第一段251与第一电池片310的正表面300a的边缘处相接,第三段253与第一电池片310的背表面300b的边缘处相接。第二弯折部250通过设置第一段251和第三段253,从而增加了第二段252与相邻电池片300边缘之间的距离。
一种太阳能电池组件100的制作方法包括如下步骤:
第一步:将72片9主栅(9BB)电极设计的158.75mm边长的正方形成品电池片进行切半,得到相同大小的第一电池片310和第二电池片320。
第二步:将初始焊带200裁剪好合适尺寸,其中,合适尺寸为第一电池片310边长的2倍左右。
第三步:将裁剪好合适尺寸的焊带200通过一个机械挤压的塑型机构在沿Z方向(沿电池片300的厚度方向)进行打弯,得到具有第二弯折部250的焊带200。
第四步:将第一电池片310放置到串焊机的焊接台上,接着通过一个牵引机构将焊带200牵引到第一电池片310的正表面300a上。
第五步:第二片电池片300放置到焊带200的上面,使得焊带200的一端与第一电池片310的正表面300a连接,焊带200的另一端与第二电池片320的背表面300b连接,形成第一电池片310和第二电池片320的串联连接。
第六步:重复上述过程,就可以完成所有电池片300的串联连接,然后经过排版、层压、装框等常规工艺,形成成品的太阳能电池组件100。
其中,第三步可以在第四步之前完成,也可以令第三步与第四步同时进行。
请参照图5,其为本公开一实施例示出的焊带200的结构示意图。在图5为在图3和图4的基础上的实施例。焊带200包括具有优良导电性能的金属材质的焊芯230和有助于焊接的表面涂覆层210,焊芯230为单根,表面涂覆层210包裹在单根焊芯230外。
焊带200可以是扁平式涂锡铜带或者圆形涂锡铜带。焊芯230为圆柱形的直线型结构,焊芯230的材质为铜。焊芯230可以是0.25-0.35mm的圆形细铜丝。焊芯230可以是通过较粗的铜柱或铜条,由拉丝机构不断挤压拉细形成。在形成细小铜丝的过程中,铜金属受到很强的挤压应力,所以在挤压完成后会通过炉管高温加热或大电流的高温加热退火消除应力。
表面涂覆层210的材质为锡、锡合金或者锡铅合金,令焊芯230在锡、锡合金或者锡铅合金的融熔液体中通过可以形成表面涂覆层210。
当电池片300为6条主栅(6BB)的电池片300时,焊带200包括宽度为1mm,厚度0.25mm的扁平式焊芯230,以及厚度为15um左右的表面涂覆层210。当电池片300为9主栅(9BB)、10主栅(10BB)或12主栅(12BB)等多栅线技术的电池片300时,焊带200包括直径是0.3mm左右的圆形焊芯230,以及厚度为15um左右的表面涂覆层210。
请参照图6,其为本公开一实施例示出的复合芯220的结构示意图。图6为在图3和图4的基础上的实施例。焊带200包括复合芯220,复合芯220包括多个焊芯230,各个焊芯230上设有至少一个第一弯折部221,多个焊芯230通过各自的第一弯折部221相互缠绕形成复合芯220。
其中,各个焊芯230的长度、直径等尺寸可以是相同的,也可以是不同的。焊芯230的径向截面为圆形、椭圆形、长方形、正方形、梯形或者三角形。焊芯230的材质为铜或者钢等金属。本实施例中,焊芯230的径向截面为圆形,焊芯230的材质为铜。
多个焊芯230被设置为两个焊芯组,每个焊芯组包括一个焊芯230。两个焊芯组分别为第一焊芯组241和第二焊芯组242,第一焊芯组241穿过第二焊芯组242的第一弯折部221,第二焊芯组242穿过第一焊芯组241的第一弯折 部221。第一焊芯组241和第二焊芯组242相互旋转缠绕交织成双绞线形状的复合芯220。
其中,第一弯折部221的弯折方向为沿X方向,相对于焊芯230的长度方向(即Y方向)成垂直设置。
于一操作过程中,获取两个相同的焊芯230(直径为0.15mm,金属圆柱形),采用像图6一样的方式两两相互缠绕,形成双绞线形状的复合芯220(直径为0.3mm)。
请参照图7,其为本公开一实施例示出的焊带200的内部结构示意图。图7可以在图6的基础上进行变形得到。获取两个相同的焊芯230,将两个焊芯230分作第一焊芯组241和第二焊芯组242,采用像图6类似的方式两两相互缠绕,并拉紧以令两个焊芯230相互抱合,形成类似螺纹形的复合芯220。
其中,第一弯折部221的弯折方向为沿W方向,相对于焊芯230的长度方向(即Y方向)成倾斜设置。
第一焊芯组241和第二焊芯组242的交界处存在一个界面240a。使用激光笔令激光照射到复合芯220的表面上时,界面240a具有类似反光焊带200的效果,界面240a可以有效地将光线反射到焊带200旁边的电池片300的正表面300a或者背表面300b上,从而可以降低遮光损失,减低金属焊带200的遮光效应,提升太阳能电池组件100的发电效率。
焊带200还包括表面涂覆层210,表面涂覆层210包裹于复合芯220外。表面涂覆层210设置在复合芯220外,焊带200外部结构可以是直线型,也可以另外设置折弯部。本实施例中,焊带200外部结构是直线型。
表面涂覆层210的材质为锡(Sn)、铋(Bi)、铅(Pb)、铟(In)等的低温焊接材料或者是锡、铋、铅、和铟的合金,或者锡、铋、铅、铟和其他金属的合金。本实施例中,表面涂覆层210的材质为锡或锡合金。
于一操作过程中,复合芯220通过电镀,或热浸润的方式添加表面涂覆层210。
于一操作过程中,复合芯220通过电镀的方式添加一层10-15um左右表面涂覆层210。表面涂覆层210的材质为含锡金属,界面240a(请参照图7)的反光效果会进一步加强。
于一操作过程中,复合芯220首先通过高温退火处理后再通过电镀,或热浸润的方式添加表面涂覆层210。复合芯220经过高温退火处理后可以消除应力,使得复合芯220的结构更为稳定。
下表为光伏组件常用材料线性热膨胀系数列表。
Figure PCTCN2021091603-appb-000001
Figure PCTCN2021091603-appb-000002
电池片300的材质为硅,焊带200内焊芯230和复合芯220的材质为铜,焊带200内的表面涂覆层210影响较小忽略不计。电池片300和焊带200的热膨胀性能有非常大的差距。在20-200℃温度区间附近,铜的线性热膨胀系数为17×10^-6/℃,硅的线性热膨胀系数为2.5×10^-6/℃。焊带200和电池片300之间的热膨胀系数相差7倍。其中,对应部件长度变异量=线性热膨胀系数×温度变化量×材料长度。
请参照图5、图3和图4,假设210mm边长的正方形结构硅片裁成两个电池片300,电池片300的焊接长度为100mm,即焊带200的材料长度等于电池片300的焊接长度,计算为100mm。在室温和200℃焊接温度下,焊带200的长度变异量为0.34mm。而电池片300的长度变异量为焊带200的七分之一左右,两者长度变化量之间的差距约为0.29mm。
若提升产能,令焊接温度达到280℃,电池片300的焊接长度为158mm,即焊带200计算为158mm时,则焊带200的长度变异量可以达到0.75mm。而电池片300的长度变异量仍然只有焊带200的七分之一左右,两者长度变化量之间的差距约为0.64mm。从而容易令电池片300和焊带200之间产生强烈的应力,因此容易形成碎片,或者在电池片300的内部形成隐裂。
请参照图7、图3和图4,由于焊芯230具有第一弯折部221,第一弯折部221的弯折方向(W方向),相对于焊芯230的长度方向(Y方向)成倾斜设置,则焊带200内焊芯230的延伸方向具有X和Y两个方向的分量,从而形成倾斜的缠绕方向。因此当遇到冷热膨胀或者收缩的时候,焊带200内焊芯230的膨胀或收缩方向就包含X和Y两个方向的分量。该X方向的分量就是一个可以进行应力释放的缓冲区,从而可以减少或部分消除太阳能电池组件100内部的机械应力。
因此,图7所示实施例在与图5所示实施例相同条件下,计算电池片300和焊带200的长度变异量时,计算焊带200的材料长度只需Y方向的分量,而不必计算X方向的分量。故焊带200的有效材料长度变小,而电池片300的材料长度不变,使得焊带200的长度变异量变小,电池片300的长度变异量不变,焊带200的长度变异量与电池片300的长度变异量之间的差值减小,不再是七分之一的比值。
故本实施例通过复合芯220内各个焊芯230上的第一弯折部221缓冲了焊带200与电池片300之间的应力,减小了出现碎片,或者在电池片300的内部形成隐裂的状况的概率,可以提高良率,也有助于提升太阳能电池组件100的发电功率和可靠性。
于一操作过程中,通过调整第一弯折部221的弯折方向(W方向),来调节X方向分量的大小,从而调整缓冲应力的大小。
请参照图8,其为本公开一实施例示出的焊带200的内部结构示意图。图8为在图7所示实施例基础上的实施例。第一焊芯组241包括两个并列设置的焊芯230;第二焊芯组242包括两个并列设置的焊芯230。
于一实施例中,每个焊芯组包括多个焊芯230,多个焊芯230相互缠绕成螺纹状、双绞线形状、水手结形状或者中国结形状。
请参照图9,其为本公开一实施例示出的复合芯220的结构示意图。图9为在图7所示实施例基础上的实施例。多个焊芯230被设置为三个焊芯组,三个焊芯组相互缠绕编织成麻花辫形状的复合芯220。每个焊芯组各包括一个焊芯230。3个焊芯组分别为第一焊芯组241、第二焊芯组242和第三焊芯组243。
于一操作过程中,第一焊芯组241穿过第二焊芯组242的第一弯折部221,第二焊芯组242穿过第三焊芯组243的第一弯折部221;第三焊芯组243又穿过第一焊芯组241的第一弯折部221,反复缠绕,使得第一焊芯组241、第二焊芯组242和第三焊芯组243相互缠绕编织成麻花辫形状的复合芯220。
于一实施例中,每个焊芯组包括多个焊芯230,多个焊芯230相互成并列设置。
于一实施例中,每个焊芯组包括多个焊芯230,多个焊芯230相互缠绕成螺纹状、或者双绞线形状。
请参照图10,其为本公开一实施例示出的复合芯220的结构示意图。图10为在图7所示实施例基础上的实施例。多个焊芯230被设置为两个焊芯组,每个焊芯组包括一个焊芯230。两个焊芯组分别为第一焊芯组241和第二焊芯组242,第一焊芯组241和第二焊芯组242相互缠绕编织成水手结形状的复合芯220。
于一操作过程中,先将第一焊芯组241对折,再令第一焊芯组241弯曲形成第一弯折部221,使得第一焊芯组241整体成“α”形状。接着将第二焊芯组242对折,再令第二焊芯组242弯曲形成第一弯折部221,使得第二焊芯组242整体成“α”形状,然后令第一焊芯组241穿过第二焊芯组242的第一弯折部221,第二焊芯组242穿过第一焊芯组241的第一弯折部221,拉紧后可以使得第一焊芯组241和第二焊芯组242相互缠绕编织成水手结形状的复合芯220。
于一实施例中,每个焊芯组包括多个焊芯230,多个焊芯230相互成并列设置。
于一实施例中,每个焊芯组包括多个焊芯230,多个焊芯230相互缠绕成螺纹状、或者双绞线形状。
于一实施例中,第一焊芯组241和第二焊芯组242相互缠绕编织成中国结形状的复合芯220。
在本公开的实施例中,缓冲焊带与电池片之间的应力除了可以利用复合焊芯的第一弯折部来实现之外,还可以通过在焊带上增设的至少一个第三弯折部来实现。下面提供使用本公开的包括至少一个第三弯折部的焊带的太阳能电池组件的实施例。
请参照图11,其为本公开一实施例示出的太阳能电池组件100的结构示意图。焊带200可以是图6至图10任一所示的实施例,也可以是图5所示的实施例。每个焊带200上均设有至少一个第三弯折部260,至少一个第三弯折部260紧贴于相应的电池片300的中间部位,其中,电池片300的中间部位指的是电池片300的非边缘位置。
第三弯折部260的弯折方向为沿X方向,与第二弯折部250的弯折方向(Z方向)成垂直设置,与焊芯230的长度方向(Y方向)成垂直设置。在本实施例中,第三弯折部260的弯折方向平行于相应的电池片(即,电池片300)的表面(即,正表面300a、背表面300b)。
由于焊带200具有第三弯折部260,第三弯折部260的弯折方向(X方向),相对于焊芯230的长度方向(Y方向)成垂直设置,则焊带200内焊芯230的延伸方向具有X和Y两个方向的分量,第三弯折部260即为X方向的分量。因此当遇到冷热膨胀或者收缩的时候,焊带200内焊芯230的膨胀或收缩方向就包含X和Y两个方向的分量。该X方向的分量(第三弯折部260)就是一个可以进行应力释放的缓冲区,也就是说,应力在第三弯折部260不再积累。
因此,图11所示实施例在与图5所示实施例相同条件下,计算电池片300和焊带200的长度变异量时,计算焊带200的材料长度需要将第三弯折部260沿Y方向的长度减掉,故焊带200的有效材料长度变小,而电池片300的材料长度不变,使得焊带200的长度变异量变小,电池片300的长度变异量不变,焊带200的长度变异量与电池片300的长度变异量之间的差值减小,不再是七分之一的比值。
需要说明的是,消除应力应该从电池片300的中间部位开始解决,若第三弯折部260设于电池片300的边缘位置,焊带200的有效材料长度的减小值较小,则对焊带200的长度变异量影响较小。
即,当焊带200上设有多个第三弯折部260时,第三弯折部260可以均设于电池片300的非边缘位置即焊带200的中间位置,也可以是部分设于电池片300的非边缘位置,部分设于电池片300的边缘位置。只有设于电池片300的非边缘位置的第三弯折部260可以从很大程度上改变焊带200的有效材料长度,对焊带200的长度变异量产生影响,使得应力不再积累。
例如若图5实施例中,焊带200的长度变异量为0.3mm,当第三弯折部260设于电池片300的边缘位置即焊带200的端部时,焊带200的长度变异量为0.29mm左右,接近0.3mm,消除应力的效果较低。当一个第三弯折部260设于电池片300的非边缘位置即焊带200的中间位置时,焊带200的长度变异量为0.15mm,消除应力的效果较好。当四个第三弯折部260设于电池片300的非边缘位置即焊带200的中间位置时,焊带200的长度变异量为0.075mm,消除应力的效果较好。
故本实施例通过焊带200上增设的第三弯折部260缓冲了焊带200与电池片300之间的应力,减小了出现碎片,或者在电池片300的内部形成隐裂的状况的概率,可以提高良率,也有助于提升太阳能电池组件100的发电功率和可靠性。
于一其他的实施例中,太阳能电池组件100的焊带为复合焊带,复合焊带包括多个焊带200,其中,单个焊带200包括单个焊芯230和包裹在单个焊芯230外的表面涂覆层210,将单个焊带200上设有第三弯折部260,多个焊带200通过各自的第三弯折部260相互缠绕形成复合焊带。复合焊带可以是类似图6至图10中所示复合芯220的结构,即螺纹状、双绞线形状、水手结形状,麻花辫形状或者中国结形状。
请参照图12,其为本公开一实施例示出的焊带200的结构示意图。第三弯折部260设有一个,且为圆形结构。其中,焊带200可以是图6至图10任一所示的实施例,也可以是图5所示的实施例。
第三弯折部260可以是通过一个机械挤压的塑型机构将焊带200沿X方向(请参照图11中平行于电池片300正表面300a的方向)进行打弯形成的。第三弯折部260的成型,可以在焊带200固定在电池片300之前进行,即在电池片300的串联焊接前实现。
请参照图13,其为本公开一实施例示出的焊带200的结构示意图。第三弯折部260设有一个,且为三角形结构。其中,焊带200可以是图6至图10任一所示的实施例,也可以是图5所示的实施例。
请参照图14,其为本公开一实施例示出的焊带200的结构示意图。第三弯折部260设有一个,且为梯形结构。其中,焊带200可以是图6至图10任一所示的实施例,也可以是图5所示的实施例。
请参照图15,其为本公开一实施例示出的焊带200的结构示意图。第三弯折部260设有多个,且为圆形结构。 多个第三弯折部260为间隔设置。其中,焊带200可以是图6至图10任一所示的实施例,也可以是图5所示的实施例。
本实施例中,第三弯折部260设有4个,2个第三弯折部260的弯折方向为沿X轴负方向,2个第三弯折部260的弯折方向为沿X轴正方向。于一其他的实施例中,第三弯折部260设有四个或多个,且为三角形结构、方形结构或者梯形结构。此外,多个第三弯折部260可以设置为相邻的第三弯折部260之间的间隔相等。多个第三弯折部260的弯折方向也可以设置为同为X轴负方向或X轴正方向。
请参照图16,其为本公开一实施例示出的焊带200的结构示意图。第三弯折部260设有多个,且为波浪形结构。多个第三弯折部260为连续设置。其中,焊带200可以是图6至图10任一所示的实施例,也可以是图5所示的实施例。
本实施例中,第三弯折部260设有7个,4个第三弯折部260的弯折方向为沿X轴负方向,3个第三弯折部260的弯折方向为沿X轴正方向。焊带200的长度为80mm,第三弯折部260的波浪弯曲设计中,沿X方向的波峰宽度为10um。
本实施例中,第三弯折部260设于焊带200的整体上,当焊带200与电池片300接触时,第三弯折部260部分设于电池片300的非边缘位置,部分设于电池片300的边缘位置。
焊带200在制造过程中被微小打弯,于一操作过程中,先取长度为140-220mm的圆柱形铜丝,以及一个梅花形硬质,波纹深度为10um的滚轮,一个是橡胶软质的滚轮,令圆柱形铜丝从两个滚轮中滚过,圆柱形铜丝就被滚成了均匀的10um波浪的一条波浪铜线,然后在波浪铜线表面涂锡形成本实施例的焊带200。本实施例制作简单,且既不影响焊接,也消除了应力积累。
请参照图17,其为本公开一实施例示出的太阳能电池组件100的部分结构示意图。电池片300正表面300a和背表面300b(请参照图11)的栅线一般为金属材质的,可以是银(Ag)或铝(Al)合金(如丝网印刷烧结形成的银浆栅线、铝浆栅、银铝浆栅线等),也可以是铜合金(如电镀工艺形成的NiCuSn合金即镍铜锡合金)。焊带200设于相应电池片300的栅线上。电池片300为9主栅(9BB)的多栅线技术的电池片。
为增强焊带200和电池片300表面金属电极的焊接强度,电池片300的栅线上设有焊接的加强块301,加强块301设有多个可以均匀也可以不均匀的分布在电池片300的主栅线上。
本实施例中,一个主栅线上的加强块301设有5个,且一个焊带200上各个第三弯折部均位于相邻两个加强块301之间。
本公开还提供以下几种使用本公开的焊带的太阳能电池组件的实施例。
实施例一:该实施例中的用于太阳能电池组件的相应的电池片的表面的每个焊带上均设有4个圆形结构的第三弯折部从而形成4个圆形的应力释放缓冲区,具体如下:
1、首先将72片9主栅(9BB)电极设计的158.75mm边长的正方形成品电池片进行切半,其中,在切半后的每个电池片的各个表面上(正表面和背表面)的每个栅线上均设有5个焊接的加强块;
2、然后按照预先设定的位置,将第一片电池片放置在串焊机的焊接台上;然后,使用牵引机构来将裁剪好的合 适尺寸的9BB圆形焊带(包括焊芯和包裹于该焊芯外的表面涂覆层)牵引到第一片电池片的正表面上;
3、在焊带被牵引到第一片电池片的正表面之前或者同时,焊带被塑型机构通过机械挤压的方式在沿该电池片的厚度方向(垂直于该电池片的正表面)进行打弯从而形成至少一个第二弯折部,该打弯的位置在两个电池片之间;此外,在焊带被牵引到第一片电池片的正表面之前,焊带还被塑型机构通过机械挤压的方式沿与焊芯的长度垂直的方向(且平行于该电池片的正表面)进行打弯从而形成4个第三弯折部,该打弯的位置紧贴于第一片电池片的中间部位并且各个第三弯折部均位于相邻两个加强块之间;同时,焊带还被塑型机构通过挤压的方式沿与焊芯的长度垂直的方向(且平行于第二片电池片的背表面)进行打弯从而形成4个第三弯折部,该打弯的位置紧贴于第二片电池片的中间部位并且各个第三弯折部均位于相邻两个加强块之间;
4、在第一片电池片和焊带放好之后,第二片电池片被放置到焊带上面,使得焊带的一端与第一片电池片的正表面连接而其另一端与第二片电池片的背表面连接,从而形成该两片电池片的串联连接。
5、重复上述过程,就可以完成所有电池片的串联连接,然后经过排版、层压、装框等常规工艺,形成成品的太阳能电池组件。
实施例二:该实施例中的用于太阳能电池组件的相应的电池片的表面的每个焊带上均设有1个圆形结构的第三弯折部从而形成1个圆形的应力释放缓冲区,其实现方法和步骤与上述实施例一相同。
实施例三:该实施例中的用于太阳能电池组件的相应的电池片的表面的每个焊带上均设有1个尖角形结构的第三弯折部从而形成1个尖角形的应力释放缓冲区,其实现方法和步骤与上述实施例一相同。
实施例四:该实施例中的用于太阳能电池组件的相应的电池片的表面的每个焊带上均设有4个尖角形结构的第三弯折部从而形成4个尖角形的应力释放缓冲区,其实现方法和步骤与上述实施例一相同。
实施例五:该实施例中的用于太阳能电池组件的相应的电池片的表面的每个焊带上均设有1个梯形结构的第三弯折部从而形成1个梯形的应力释放缓冲区,其实现方法和步骤与上述实施例一相同。
实施例六:该实施例中的用于太阳能电池组件的相应的电池片的表面的每个焊带上均设有4个梯形结构的第三弯折部从而形成4个梯形的应力释放缓冲区,其实现方法和步骤与上述实施例一相同。
需要说明的是,在不冲突的情况下,本领域的普通技术人员可以在以上实施例的基础上对用于太阳能电池的焊带上设有的第三弯折部的形状和数量进行任意选择和组合。
上述实施例一至实施例六中的焊带可以是具有单个焊芯的焊带(例如,图5中所示),也可以是具有复合芯结构(例如,图6至图10任一个中所示)的焊带(即,多个焊芯)。所述多个焊芯通过各自的第一弯折部相互缠绕,即焊带在太阳能电池的表面形成了与焊带延伸方向成角度的分量,该分量也是很好的应力释放缓冲区,可以通过调节该复合芯的制造过程来调节该分量的大小。
此外,对于太阳能电池组件具有所述复合芯结构的焊带的情况,本公开还提供以下实施例七:
1、首先将72片9主栅(9BB)电极设计的158.75mm边长的正方形成品电池片进行切半;
2、然后按照预先设定的位置,将第一片电池片放置在串焊机的焊接台上;然后,使用牵引机构来将裁剪好的合适尺寸的9BB圆形焊带(包括复合芯和包裹于该复合芯外的表面涂覆层)牵引到第一片电池片的正表面上;
3、在焊带被牵引到第一片电池片的正表面之前或者同时,焊带被塑型机构通过机械挤压的方式在沿该电池片的厚度方向(垂直于该电池片的正表面)进行打弯从而形成至少一个第二弯折部,该打弯的位置在两个电池片之间;
4、在第一片电池片和焊带放好之后,第二片电池片被放置到焊带上面,使得焊带的一端与第一片电池片的正表面连接而其另一端与第二片电池片的背表面连接,从而形成该两片电池片的串联连接。
5、重复上述过程,就可以完成所有电池片的串联连接,然后经过排版、层压、装框等常规工艺,形成成品的太阳能电池组件。
本公开提供的焊带以及包括该焊带的太阳能电池组件,能够降低甚至消除该焊带与电池片之间的热应力;减少太阳能电池组件在制造过程中的其他机械应力,有助于全面降低碎片和隐裂问题;本公开提供的复合型焊带还可以降低焊带的遮光效应,提升太阳能电池组件的发电功率。
本公开还提供以下几种解决焊带200和电池片300间热膨胀应力所带来问题的方案:
一、降低组件电池片300串焊过程中的焊接温度。但是这可能会影响产能,以及增加工艺控制的难度,还无法彻底避免焊带200和电池片300间的强应力。
二、损失一部分电流收集能力,缩短焊带200的焊接长度。但是这可能会损失组件功率并增加每瓦成本,还无法彻底避免焊带200和电池片300间的强应力。
三、损失一部分电池片300表面受光面积,减薄焊带200的厚度,增加焊带200的宽度。但是这可能会损失太阳能电池组件100功率并增加每瓦成本,还无法彻底避免焊带200和电池片300间的强应力。
四、取消焊带200,采用电池片300边缘直接相连的方案。但是这种方案要求电流的传导距离很短,因此,一般电池片300要切成5-6个小片。即使如此,6个小片的有效导电距离也只能和常规3主栅(3BB)电池相比。本方案有效导电距离较小,还需要增加多次切片,且电池银浆的耗量和常规9主栅(9BB)电池比就大大增加了,成本较高。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供的的焊带以及包括该焊带的太阳能电池组件,能够降低甚至消除该焊带与电池片之间的热应力;减少太阳能电池组件在制造过程中的其他机械应力,有助于全面降低碎片和隐裂问题;本公开提供的复合型焊带还可以降低焊带的遮光效应,提升太阳能电池组件的发电功率。
此外,可以理解的是,本公开的焊带以及包括该焊带的太阳能电池组件是可以重现的,并且可以用在需要利用太阳能的任何应用中。

Claims (18)

  1. 一种焊带,其特征在于,包括:
    复合芯,包括多个焊芯,各个所述焊芯上设有至少一个第一弯折部,多个所述焊芯通过各自的所述第一弯折部相互缠绕形成所述复合芯;以及
    表面涂覆层,包裹于所述复合芯外。
  2. 根据权利要求1所述的焊带,其特征在于,多个所述焊芯被设置为多个焊芯组,每个所述焊芯组包括一个所述焊芯或者多个所述焊芯,
    多个所述焊芯组相互缠绕形成所述复合芯。
  3. 根据权利要求2所述的焊带,其特征在于,每个所述焊芯组包括多个所述焊芯;
    且每个所述焊芯组内,多个所述焊芯为并列设置或者多个所述焊芯相互缠绕。
  4. 根据权利要求2所述的焊带,其特征在于,所述焊芯组设有两个,两个所述焊芯组相互缠绕形成螺纹形、双绞线形状或者水手结形状的所述复合芯。
  5. 根据权利要求2所述的焊带,其特征在于,所述焊芯组设有三个,三个所述焊芯组相互缠绕形成麻花辫形状的所述复合芯。
  6. 根据权利要求1至5任一项所述的焊带,其特征在于,所述第一弯折部的弯折方向相对于所述焊芯的长度方向成倾斜设置或者垂直设置。
  7. 根据权利要求1至6任一项所述的焊带,其特征在于,所述焊芯的径向截面为圆形、椭圆形、长方形、正方形、梯形或者三角形。
  8. 根据权利要求1至7任一项所述的焊带,其特征在于,所述焊带包括下述特征中的至少一者:
    所述焊带是通过将所述复合焊芯进行高温退火处理之后再包裹所述表面涂覆层而形成的;
    所述表面涂覆层的材质为锡、铋、铅、铟、锡合金、铋合金、铅合金或者铟合金;
    所述表面涂覆层是通过电镀或热浸润的方式形成的;
    所述焊芯的材质为铜或者钢;
    各个焊芯的长度和直径均相同。
  9. 一种焊带,其特征在于,所述焊带包括:
    单个焊芯和包裹于所述单个焊芯外的表面涂覆层;以及
    在所述焊带上设有至少一个第三弯折部,所述第三弯折部的弯折方向与所述单个焊芯的长度方向成垂直设置。
  10. 根据权利要求9所述的焊带,其特征在于,
    所述第三弯折部的弯折方向平行于相应的所述电池片的表面;
    优选地,所述第三弯折部的结构是以下各者之一:圆形结构、三角形结构、梯形结构、方形结构或波浪形结构。
  11. 一种太阳能电池组件,其特征在于,包括:
    多个焊带,所述焊带为权利要求1至8任一项所述的焊带;以及
    多个电池片,通过多个所述焊带连接;
    其中,每个所述焊带上均设有至少一个第二弯折部,所述第二弯折部设于相邻两个所述电池片之间;所述第二弯折部的弯折方向为沿所述电池片的厚度方向。
  12. 根据权利要求11所述的太阳能电池组件,其特征在于,每个所述焊带均设有至少一个第三弯折部,至少一个所述第三弯折部紧贴于相应的所述电池片的中间部位,且所述第三弯折部的弯折方向与所述焊芯的长度方向成垂直设置;
    优选地,所述第三弯折部的弯折方向平行于相应的所述电池片的表面;
    优选地,所述第三弯折部的结构是以下各者之一:圆形结构、三角形结构、梯形结构、方形结构或波浪形结构。
  13. 根据权利要求12所述的太阳能电池组件,其特征在于,包括:
    多个加强块,多个所述加强块设于所述电池片的栅线上,
    其中,所述焊带设于相应的所述电池片的所述栅线上,且各个所述第三弯折部均位于相邻两个所述加强块之间;
    优选地,所述栅线的数目为9、10或12;
    优选地,所述加强块均匀地分布在所述栅线上且相邻的第三弯折部之间的间隔相等;
    优选地,在相应的所述电池片的各个所述栅线上,所述加强块的数目为5。
  14. 一种太阳能电池组件,其特征在于,包括:
    多个焊带,每个所述焊带均包括焊芯和包裹于所述焊芯外的表面涂覆层;以及
    多个电池片,通过多个所述焊带连接;
    其中,每个所述焊带上均设有至少一个第二弯折部和至少一个第三弯折部,所述第二弯折部设于相邻两个所述电池片之间,至少一个所述第三弯折部紧贴于相应的所述电池片的中间部位;
    所述第二弯折部的弯折方向为沿所述电池片的厚度方向,所述第三弯折部的弯折方向与所述焊芯的长度方向成垂直设置。
  15. 根据权利要求14所述的太阳能电池组件,其特征在于,所述焊芯为单个焊芯;
    优选地,所述单个焊芯为圆柱形的直线型结构;
    优选地,所述单个焊芯是0.25mm至0.35mm的圆形细铜丝。
  16. 根据权利要求14或15所述的太阳能电池组件,其特征在于,所述第三弯折部的弯折方向平行于相应的所述电池片的表面;
    优选地,所述第三弯折部的结构是以下各者之一:圆形结构、三角形结构、梯形结构、方形结构或波浪形结构。
  17. 根据权利要求15所述的太阳能电池组件,其特征在于,多个所述焊带通过各自的第三弯折部相互缠绕形成复合焊带;
    优选地,所述复合焊带是螺纹状、双绞线形状、水手结形状、麻花辫形状或者中国结形状中的一者。
  18. 根据权利要求14至16任一项所述的太阳能电池组件,其特征在于,包括:
    多个加强块,多个所述加强块设于所述电池片的栅线上,
    其中,所述焊带设于相应的所述电池片的所述栅线上,且各个所述第三弯折部均位于相邻两个所述加强块之间;
    优选地,所述栅线的数目为9、10或12;
    优选地,所述加强块均匀地分布在所述栅线上且相邻的第三弯折部之间的间隔相等;
    优选地,在相应的所述电池片的各个栅线上,所述加强块的数目为5。
PCT/CN2021/091603 2020-06-05 2021-04-30 焊带及太阳能电池组件 WO2021244200A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/920,501 US20230141617A1 (en) 2020-06-05 2021-04-30 Ribbon and solar cell assembly
EP21818222.8A EP4120369A4 (en) 2020-06-05 2021-04-30 RIBBON AND SOLAR CELL ARRANGEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021026993.7U CN212209516U (zh) 2020-06-05 2020-06-05 焊带及太阳能电池组件
CN202021026993.7 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244200A1 true WO2021244200A1 (zh) 2021-12-09

Family

ID=73807906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091603 WO2021244200A1 (zh) 2020-06-05 2021-04-30 焊带及太阳能电池组件

Country Status (4)

Country Link
US (1) US20230141617A1 (zh)
EP (1) EP4120369A4 (zh)
CN (1) CN212209516U (zh)
WO (1) WO2021244200A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769926A (zh) * 2022-05-30 2022-07-22 英利能源发展有限公司 一种可调焊盘及焊接工艺
US11862744B1 (en) 2022-09-28 2024-01-02 Jinko Solar (Haining) Co., Ltd. Photovoltaic module and method for preparing the photovoltaic module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212209516U (zh) * 2020-06-05 2020-12-22 东方日升(义乌)新能源有限公司 焊带及太阳能电池组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108123A1 (en) * 2007-01-31 2010-05-06 Renewable Energy Corporation Asa Interconnecting reflector ribbon for solar cell modules
CN202473995U (zh) 2012-02-28 2012-10-03 常州天合光能有限公司 一种太阳能组件焊带
CN103972317A (zh) 2013-01-31 2014-08-06 无锡尚德太阳能电力有限公司 一种太阳电池用互连条及其制造方法及太阳电池组件
CN109244169A (zh) * 2018-08-08 2019-01-18 海安县能达电气有限公司 一种新型复合光伏焊带
CN110936053A (zh) * 2019-11-26 2020-03-31 河北联之捷焊业科技有限公司 一种无中心丝绞股焊丝
CN212209516U (zh) * 2020-06-05 2020-12-22 东方日升(义乌)新能源有限公司 焊带及太阳能电池组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130011328A (ko) * 2011-07-21 2013-01-30 엘지전자 주식회사 리본 및 이를 구비한 태양전지 모듈
JP2016219799A (ja) * 2015-05-20 2016-12-22 株式会社マイティ タブ電極および太陽電池モジュール
JPWO2018180922A1 (ja) * 2017-03-28 2020-02-06 株式会社カネカ 太陽電池モジュールおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108123A1 (en) * 2007-01-31 2010-05-06 Renewable Energy Corporation Asa Interconnecting reflector ribbon for solar cell modules
CN202473995U (zh) 2012-02-28 2012-10-03 常州天合光能有限公司 一种太阳能组件焊带
CN103972317A (zh) 2013-01-31 2014-08-06 无锡尚德太阳能电力有限公司 一种太阳电池用互连条及其制造方法及太阳电池组件
CN109244169A (zh) * 2018-08-08 2019-01-18 海安县能达电气有限公司 一种新型复合光伏焊带
CN110936053A (zh) * 2019-11-26 2020-03-31 河北联之捷焊业科技有限公司 一种无中心丝绞股焊丝
CN212209516U (zh) * 2020-06-05 2020-12-22 东方日升(义乌)新能源有限公司 焊带及太阳能电池组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120369A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769926A (zh) * 2022-05-30 2022-07-22 英利能源发展有限公司 一种可调焊盘及焊接工艺
CN114769926B (zh) * 2022-05-30 2023-09-01 英利能源发展有限公司 一种可调焊盘及焊接工艺
US11862744B1 (en) 2022-09-28 2024-01-02 Jinko Solar (Haining) Co., Ltd. Photovoltaic module and method for preparing the photovoltaic module
EP4345912A1 (en) * 2022-09-28 2024-04-03 Jinko Solar (Haining) Co., Ltd. Photovoltaic module and method for preparing the photovoltaic module

Also Published As

Publication number Publication date
US20230141617A1 (en) 2023-05-11
CN212209516U (zh) 2020-12-22
EP4120369A1 (en) 2023-01-18
EP4120369A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2021244200A1 (zh) 焊带及太阳能电池组件
US20230343878A1 (en) Solar cell and front electrode thereof, and manufacturing method
EP2828893B1 (en) Cell and module processing of semiconductor wafers for back-contacted solar photovoltaic module
US11715806B2 (en) Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
US8940998B2 (en) Free-standing metallic article for semiconductors
US8653380B2 (en) Solar cell lead, method of manufacturing the same, and solar cell using the same
JP6126219B2 (ja) バックコンタクト型太陽電池セル
US8569096B1 (en) Free-standing metallic article for semiconductors
CN107799615B (zh) 太阳能电池片单元、光伏电池模组及其制备工艺
WO2022142054A1 (zh) 一种N型TopCOn太阳能电池的背面金属电极及制备方法和电池
JP2005353691A (ja) 電極、太陽電池、これらの製造方法
CN211578765U (zh) 叠瓦组件
JPWO2007037184A1 (ja) 太陽電池用電極線材の製造方法
JPH05326990A (ja) 光電変換装置の製造方法
JP3847188B2 (ja) 太陽電池素子
EP3928357A1 (en) Method for reducing thermomechanical stress in solar cells
CN112133768A (zh) 背接触太阳电池的制作方法及背接触太阳电池
CN215183995U (zh) 一种太阳能电池及光伏组件
TWI478369B (zh) 太陽能電池的製造方法
JP2005191200A (ja) 太陽電池素子接続用インナーリード及び太陽電池モジュール並びに太陽電池モジュールの製造方法
CN112670363A (zh) 一种高导电高散热的镀锡光伏石墨烯铜焊带
TWI470815B (zh) 矽基太陽能電池及其製造方法
CN113725304A (zh) 一种异质结电池焊接方法
CN116110993A (zh) 一种太阳能电池铜铝复合焊带、xbc电池组件及其制备方法
CN118116980A (zh) 一种太阳能电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021818222

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE