WO2021243993A1 - 一种换热装置及单晶炉 - Google Patents
一种换热装置及单晶炉 Download PDFInfo
- Publication number
- WO2021243993A1 WO2021243993A1 PCT/CN2020/133942 CN2020133942W WO2021243993A1 WO 2021243993 A1 WO2021243993 A1 WO 2021243993A1 CN 2020133942 W CN2020133942 W CN 2020133942W WO 2021243993 A1 WO2021243993 A1 WO 2021243993A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- heat exchange
- exchange device
- central axis
- crystal
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 89
- 239000002826 coolant Substances 0.000 claims abstract description 34
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 28
- 229910052710 silicon Inorganic materials 0.000 claims description 28
- 239000010703 silicon Substances 0.000 claims description 28
- 230000007423 decrease Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 25
- 229910021421 monocrystalline silicon Inorganic materials 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/14—Heating of the melt or the crystallised materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
- C30B15/22—Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
Definitions
- the present disclosure relates to the technical field of single crystal silicon manufacturing, in particular to a heat exchange device and a single crystal furnace.
- the production method of single crystal silicon is mainly the Czochralski method, and the single crystal silicon rod is grown vertically from the molten silicon liquid surface during the drawing process.
- a heat shield surrounding the single crystal silicon rod is arranged above the crystal growth interface, and working gas is used to enter the pulling channel of the single crystal silicon rod along the inner side of the heat shield to purge the interface.
- this method has limited heat absorption effect on single crystal silicon rods, which is not conducive to providing an optimized longitudinal temperature gradient, and limits the further increase of the crystal growth speed.
- the present disclosure provides a heat exchange device and a single crystal furnace, aiming at increasing the crystal growth speed.
- an embodiment of the present disclosure provides a heat exchange device, comprising: an inner wall and an outer wall, wherein the inner wall is close to the central axis of the heat exchange device; the inner wall and the outer wall jointly form a flow for cooling medium Cavity
- the inner wall is provided with at least one protruding structure with an inner cavity; the protruding direction of the protruding structure faces the central axis; the inner cavity of the protruding structure and the cavity formed by the inner wall and the outer wall
- the body is connected.
- the outer wall is close to the lower surface of the bottom of the crucible and is parallel to the molten silicon level.
- the inner wall includes at least a section of vertical inner wall parallel to the central axis, and the protruding structure is located on the vertical inner wall.
- the protruding structure is located on the vertical inner wall near the bottom of the crucible.
- the convex structures are evenly distributed on the inner wall.
- the angle between the protrusion direction of the protrusion structure and the central axis of the heat exchange device is greater than 0° and less than or equal to 90°.
- the included angle between the convex direction of the convex structure and the central axis of the heat exchange device is at least one of 30°, 45°, and 60°.
- the cross section of the protruding structure is: one of a parallelogram, a trapezoid, a triangle, and an ⁇ shape;
- the protruding structure is integrally formed with the inner wall.
- the distance between the inner wall and the central axis decreases.
- the cooling medium is at least one of water or inert gas.
- the heat exchange device provided by the embodiment of the present disclosure includes: an inner wall and an outer wall, the inner wall is close to the central axis of the heat exchange device, the inner wall and the outer wall together form a cavity for the flow of cooling medium, and at least one protrusion with an inner cavity is provided on the inner wall Structure, the convex direction of the convex structure is toward the central axis.
- the crystal rod and the central axis of the heat exchange device are collinear or very close, that is to say, the inner wall of the crystal rod is provided with a cavity At least one protruding structure, the protruding direction of the protruding structure faces the crystal rod, the inner cavity of the protruding structure is connected with the cavity formed by the inner and outer walls, and the cooling medium will also flow through the inner cavity of the aforementioned protruding structure, increasing Heat exchange area; the convex direction of the convex structure faces the crystal rod, which reduces the horizontal distance between the cooling medium and the crystal rod, increases the longitudinal temperature gradient during the crystal pulling process, improves the crystal pulling speed, and saves the crystal pulling. time.
- the embodiments of the present disclosure also provide a single crystal furnace, including a crucible and any of the above-mentioned heat exchange devices;
- the heat exchange device is arranged above the crucible.
- the single crystal furnace further includes a heat shield located outside the heat exchange device, and the central axis of the heat exchange device coincides with the central axis of the heat shield.
- the above-mentioned single crystal furnace has the same or similar beneficial effects as the above-mentioned heat exchange device, and in order to avoid repetition, it will not be repeated here.
- Figure 1 shows a cross-sectional view of a heat exchange device according to an embodiment of the present disclosure
- Fig. 2 shows a partial enlarged schematic diagram of a heat exchange device according to an embodiment of the present disclosure
- Figure 3 shows a cross-sectional view of another heat exchange device according to an embodiment of the present disclosure
- Fig. 4 shows a partial enlarged schematic diagram of another heat exchange device according to an embodiment of the present disclosure
- Fig. 5 shows a schematic diagram of the flow of cooling medium in a heat exchange device according to an embodiment of the present disclosure
- FIG. 6 shows a schematic diagram of the angle between the protrusion direction of a protrusion structure and the central axis of the heat exchange device according to an embodiment of the present disclosure.
- Fig. 1 shows a cross-sectional view of a heat exchange device according to an embodiment of the present disclosure.
- Fig. 2 shows a partial enlarged schematic diagram of a heat exchange device according to an embodiment of the present disclosure.
- the embodiment of the present disclosure provides a heat exchange device, including: an outer wall 1 and an inner wall 2, the inner wall 2 and the outer wall 1 are relatively distributed, the inner wall 2 and the outer wall 1 together form a cavity for the flow of cooling medium body.
- At least one convex structure 12 with an inner cavity is provided on the inner wall 2 close to the central axis L1 of the heat exchange device.
- the crystal rod 5 is collinear or very close to the central axis L1 of the heat exchange device. That is, at least one convex structure 12 with an inner cavity is provided on the inner wall close to the crystal rod 5, and the number of the convex structures 12 is not specifically limited.
- the protrusion direction of the protrusion structure 12 faces the central axis L1 of the heat exchange device, that is, the protrusion direction of the protrusion structure 12 faces the crystal rod 5, and the inner cavity of the protrusion structure 12 communicates with the cavity formed by the outer wall 1 and the inner wall 2 ,
- the cooling medium will also flow through the inner cavity of the above-mentioned convex structure 12, increasing the heat exchange area; the convex direction of the convex structure 12 faces the crystal rod 5, which reduces the level between the cooling medium and the crystal rod 5.
- the distance increases the longitudinal temperature gradient in the crystal pulling process, increases the crystal pulling speed, and saves the crystal pulling time.
- the inner wall 2 close to the central axis L1 of the heat exchange device may include a first inner wall, a second inner wall, and a third inner wall from top to bottom along the height direction of the heat exchange device, wherein the first inner wall Located at the end of the heat exchange device farthest from the molten silicon level 4, the third inner wall is located at the end of the heat exchange device closest to the molten silicon level 4, and the distance between the third inner wall and the molten silicon level 4 can be 40-60mm , The second inner wall is located between the first inner wall and the third inner wall.
- first inner wall, the second inner wall, and the third inner wall are each provided with a protruding structure with a cavity, and the protruding direction of the protruding structure faces the central axis L1, or the protruding structure is provided on the first inner wall and the second inner wall. At least one of the two inner walls and the third inner wall is used to increase the contact area between the cooling medium and the heat exchange device, thereby increasing the longitudinal temperature gradient of crystal growth and increasing the crystal growth speed.
- two through holes can be opened on the surface between the inner wall and the outer wall away from the bottom of the crucible.
- the upper surface of the end away from the bottom of the crucible 3 between the inner wall 2 and the outer wall 1 There are cooling medium inlets and cooling medium outlets, such as 13 and 14.
- the cooling medium flows from the inlet into the cavity formed by the inner wall 2 and the outer wall 1, and flows out of the cavity from the outlet, so that the cooling medium can be made into the inner wall 2.
- the cavity formed with the outer wall 1 and the inner cavity of the protruding structure 12 circulate in circulation.
- the cooling medium circulates in the cavity formed by the inner wall 2 and the outer wall 1 and the inner cavity of the convex structure 12, it takes away the heat from the molten silicon liquid surface 4 and the surface of the crystal rod 5 to increase the crystal pulling process. Longitudinal temperature gradient increases the crystal pulling speed and saves the crystal pulling time.
- 3 in FIG. 1 may be a crucible, and the crucible 3 may store molten silicon.
- the lower surface of the outer wall 1 close to the bottom of the crucible 3 may be the bottom surface of the heat exchange device, as shown by 11 in FIG. 1.
- the lower surface 11 of the outer wall 1 close to the bottom of the crucible 3 is parallel to the molten silicon surface 4.
- the entire surface 11 of the bottom of the heat exchange device is opposite to the crystal surface or the molten silicon surface 4, that is, the bottom of the heat exchange device is opposite to the crystal surface or molten silicon surface 4.
- the area where the silicon liquid surface 4 is closer is larger, that is, the cooling medium in more areas of the heat exchange device is closer to the crystal surface or the molten silicon liquid surface 4, which can absorb the molten silicon released during crystallization in time
- the heat increases the longitudinal temperature gradient in the crystal pulling process, improves the crystal pulling speed, and saves the crystal pulling time.
- the cooling medium is at least one of water or an inert gas, and those skilled in the art can select a suitable cooling medium according to actual conditions, which is not limited in the embodiments of the present disclosure.
- the inner wall 2 includes at least a section of vertical inner wall parallel to the central axis L1 of the heat exchange device.
- the inner wall on the inner wall close to the central axis L1 of the heat exchange device with the convex structure 12 is the vertical inner wall parallel to the central axis L1 of the heat exchange device.
- the protruding structure 12 is located on the vertical inner wall. The horizontal distance between the vertical inner wall and the crystal rod 5 is smaller, thereby increasing the longitudinal temperature gradient in the crystal pulling process, increasing the crystal pulling speed, and saving the crystal pulling time.
- the raised structure 12 is located on the vertical inner wall close to the bottom of the crucible 3. Then, the distance between the raised structure 12 and the molten silicon surface 4 is also small, and further, the cooling medium and the crystal surface Or the molten silicon liquid level 4 is closer, which can absorb the heat released during the crystallization of the molten silicon in time, increase the longitudinal temperature gradient in the crystal pulling process, increase the crystal pulling speed, and save the crystal pulling time.
- the inner wall 2 may include a first inner wall, a second inner wall, and a third inner wall from top to bottom along the height direction of the heat exchange device.
- the first inner wall is located farthest from the bottom of the crucible 3 of the heat exchange device.
- the third inner wall is located at the end of the heat exchange device closest to the bottom of the crucible 3, and the second inner wall is located between the first inner wall and the third inner wall.
- the third inner wall is a vertical inner wall parallel to the central axis L1 of the heat exchange device, and the protruding structure 12 is located on the third inner wall closest to the bottom of the crucible 3.
- Fig. 3 shows a cross-sectional view of another heat exchange device according to an embodiment of the present disclosure.
- Fig. 4 shows a partial enlarged schematic diagram of another heat exchange device according to an embodiment of the present disclosure.
- the number of raised structures 12 is greater than one, and the raised structures 12 are evenly distributed on the inner wall.
- the distance between the raised structures is less than 15 mm, and those skilled in the art can select an appropriate distance according to the actual situation, which is not limited in the embodiment of the present disclosure.
- the protruding structure is integrally formed with the inner wall, which is convenient for processing.
- a molding method or the like can be used. In the embodiments of the present disclosure, this is not specifically limited.
- Fig. 5 shows a schematic diagram of the flow of cooling medium in a heat exchange device according to an embodiment of the present disclosure.
- 13 may be an inlet of the cooling medium
- 14 may be an outlet of the cooling medium.
- the arrowed line in FIG. 5 shows a schematic diagram of the flow of the cooling medium in a heat exchange device in an embodiment of the present disclosure.
- the angle between the protrusion direction of the protrusion structure 12 and the central axis of the heat exchange device is within the above-mentioned angle range, so that the flow direction of the cooling medium spirally descends along the arrangement direction of the protrusion structure of the heat exchange device.
- Increase the residence time of the cooling medium on the crystal rod, the crystal interface and the crystal surface can fully absorb the heat of the crystal rod 5 and the crystal surface or the molten silicon liquid surface 4, take away more latent heat of crystallization, and increase the crystal pulling process
- the vertical temperature gradient in the middle increases the pulling speed and saves the pulling time.
- the angle between the protrusion direction of the protrusion structure 12 and the central axis of the heat exchange device is within the above-mentioned angle range, and the protrusion structure 12 is easy to process.
- FIG. 6 shows a schematic diagram of the angle between the protrusion direction of a protrusion structure and the central axis of the heat exchange device according to an embodiment of the present disclosure.
- FIG. 6 may be a schematic diagram of the angle between the protrusion direction of the protrusion structure 12 shown in FIG. 3 or FIG. 4 and the central axis of the heat exchange device.
- 6 L2 may be a dashed line parallel to the central axis of the heat exchange device, and the value range of the angle ⁇ between the convex direction of the convex structure 12 and the central axis of the heat exchange device is greater than 0° and less than or equal to 90°.
- the angle between the protrusion direction of the protrusion structure 12 and the central axis of the heat exchange device is at least one of 30°, 45°, and 60°.
- the angle between the convex direction of the convex structure 12 and the central axis of the heat exchange device is 30°, 45°, 60°, on the one hand, it is easier to meet the processing accuracy requirements than other angles; on the other hand, The resistance of the flow direction of the cooling medium to change is small, and it is easy to reduce the rotation of the cooling medium while taking away more latent heat of crystallization.
- the processing technology is simpler, and the resistance to the flow direction of the cooling medium is smaller, which is easy to achieve.
- the cooling medium rotates and drops while taking away more latent heat of crystallization.
- the shape of the heat exchange device may be any one of a cylindrical shape, a conical shape, a circular arc shape, or a combination thereof.
- the inner walls of the heat exchange device close to the central axis of the heat exchange device may all be vertical inner walls, and then the horizontal distance between all vertical inner walls and the crystal rods on the side close to the central axis of the heat exchange device that are perpendicular to the molten silicon liquid surface It is smaller, thereby increasing the longitudinal temperature gradient in the crystal pulling process, increasing the crystal pulling speed, and saving the crystal pulling time.
- the convex structure with the inner cavity is located on all the vertical inner walls
- the convex structure with the inner cavity is located on a partial area of all the vertical inner walls. In the embodiments of the present disclosure, this is not specifically limited.
- the cross section of the convex structure is one of a parallelogram, a trapezoid, a triangle, and an ⁇ shape.
- the parallelogram may include a rectangle or the like.
- the inner cavity of the convex structure of the above shape reduces the horizontal distance between the heat exchange device and the crystal rod 5, can fully absorb the heat of the crystal rod, increases the longitudinal temperature gradient in the crystal pulling process, improves the crystal pulling speed, and saves Time to pull the crystal.
- the cross-section of the convex structure can also have other regular or irregular shapes, which are used to increase the inner cavity or barrel structure of the cooling medium and the convex structure.
- the contact time and contact area of the cavity In the embodiments of the present disclosure, this is not specifically limited.
- the cross-section of the raised structure is rectangular.
- the cross-section of the convex structure is a parallelogram.
- the protruding structure 12 may be a larger unit or a plurality of small protruding structures arranged along the direction of the inner wall. In the embodiments of the present disclosure, this is not specifically limited.
- the protruding structure is a plurality of strip-shaped structures arranged along the direction of the inner wall.
- the protruding structure may be composed of multiple segments arranged along the direction of the inner wall.
- the distance between the inner wall and the central axis of the heat exchange device is reduced.
- the crystal rod is collinear or very close to the center axis of the heat exchange device, that is to say, the distance between the inner wall of the crucible and the crystal rod is reduced. That is, the closer to the molten silicon surface, the smaller the distance between the inner wall and the crystal rod, which can absorb more heat from the crystal rod and the crystal surface or the molten silicon surface at the same time, increasing the longitudinal temperature gradient during the crystal pulling process.
- the crystal pulling speed is improved and the crystal pulling time is saved.
- the embodiment of the present disclosure also provides a single crystal furnace.
- the single crystal furnace includes a crucible 3 and a heat exchange device, and the heat exchange device is arranged above the crucible.
- the crucible, heat exchange device, etc. reference may be made to the aforementioned related records.
- the single crystal furnace can achieve the same or similar beneficial effects as the aforementioned heat exchange device. In order to avoid repetition, details are not repeated here.
- the single crystal furnace may further include a heat shield located outside the heat exchange device, and the central axis of the heat exchange device coincides with the central axis of the heat shield.
- the heat shield and the heat exchange device it can further absorb the heat of the crystal rod and crystal surface, increase the longitudinal temperature gradient in the crystal pulling process, increase the crystal pulling speed, and save the crystal pulling time.
- the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
- any reference signs placed between parentheses should not be constructed as a limitation to the claims.
- the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
- the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
- the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims that list several devices, several of these devices may be embodied in the same hardware item.
- the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种换热装置及单晶炉,涉及单晶硅制造技术领域。换热装置包括:内壁(2)和外壁(1),其中,所述内壁(2)靠近所述换热装置的中心轴线(L1);所述内壁(2)和所述外壁(1)共同形成供冷却介质流动的腔体;所述内壁(2)上设置有带内腔的至少一个凸起结构(12);所述凸起结构(12)的凸起方向朝向所述中心轴线(L1);所述凸起结构(12)的内腔与所述内壁(2)和所述外壁(1)形成的腔体连通。凸起结构(12)的凸起方向朝向晶棒(5),凸起结构(12)的内腔与内壁(2)和外壁(1)形成的腔体连通,增大了换热面积,且减小了冷却介质与晶棒(5)之间的水平距离,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
Description
本申请要求在2020年06月05日提交中国专利局、申请号为202010508184.8、名称为“一种换热装置及单晶炉”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及单晶硅制造技术领域,特别是涉及一种换热装置及单晶炉。
目前,单晶硅的生产方法主要为直拉法,单晶硅棒在拉制过程中由熔硅液面向上垂直生长。
在单晶硅棒生长过程中,需要及时吸收单晶硅棒散发的结晶潜热,以为单晶硅棒的生长提供更大的纵向温度梯度,从而保证单晶硅棒具有较高的生长速度。
现有技术中,在晶体生长界面上方设置围绕单晶硅棒的热屏,并利用工作气体沿热屏内侧进入单晶硅棒的提拉通道、吹扫该界面。然而,该方式对于单晶硅棒的吸热效果有限,不利于提供优化的纵向温度梯度,限制了晶体生长速度的进一步提升。
概述
本公开提供一种换热装置及单晶炉,旨在提升晶体生长速度。
第一方面,本公开实施例提供了一种换热装置,包括:内壁和外壁,其中,所述内壁靠近所述换热装置的中心轴线;所述内壁和所述外壁共同形成供冷却介质流动的腔体;
所述内壁上设置有带内腔的至少一个凸起结构;所述凸起结构的凸起方向朝向所述中心轴线;所述凸起结构的内腔与所述内壁和所述外壁形成的腔体连通。
可选的,所述外壁靠近坩埚底部的下表面,与熔硅液面平行。
可选的,所述内壁包括与所述中心轴线平行的至少一段竖直内壁,所述凸起结构位于所述竖直内壁上。
可选的,所述凸起结构位于靠近坩埚底部的竖直内壁上。
可选的,在所述凸起结构的数量大于1的情况下,所述凸起结构在内壁上均匀分布。
可选的,所述凸起结构的凸起方向与所述换热装置的中心轴线的夹角大于0°,小于等于90°。
可选的,所述凸起结构的凸起方向与所述换热装置的中心轴线的夹角为:30°、45°、60°中的至少一种。
可选的,在与所述熔硅液面垂直的平面上,所述凸起结构的截面为:平行四边形、梯形、三角形、Ω形中的一种;
所述凸起结构与所述内壁一体成型。
可选的,从远离坩埚底部至靠近坩埚底部的方向,所述内壁与所述中心轴线之间的距离减小。
可选的,所述冷却介质为水或惰性气体中的至少一种。
本公开实施例提供的换热装置,包括:内壁和外壁,内壁靠近换热装置的中心轴线,内壁和外壁共同形成供冷却介质流动的腔体,内壁上设置有带内腔的至少一个凸起结构,凸起结构的凸起方向朝向中心轴线,通常情况下,晶棒与换热装置的中心轴线共线或距离很近,也就是说,靠近晶棒的内壁上设置有带有内腔的至少一个凸起结构,凸起结构的凸起方向朝向晶棒,凸起结构的内腔与内外壁形成的腔体连通,进而冷却介质也会流经上述凸起结构的内腔,增大了换热面积;凸起结构的凸起方向朝向晶棒,减小了冷却介质与晶棒之间的水平距离,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
第二方面,本公开实施例还提供一种单晶炉,包括坩埚和上述任一换热装置;
所述换热装置设置于所述坩埚的上方。
可选的,所述单晶炉还包括位于所述换热装置外侧的热屏,且所述换热装置的中心轴线与所述热屏的中心轴线重合。
上述单晶炉与前述换热装置具有相同或相似的有益效果,为了避免重复,此处不再赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开实施例的一种换热装置的剖视图;
图2示出了本公开实施例的一种换热装置的局部放大示意图;
图3示出了本公开实施例的另一种换热装置的剖视图;
图4示出了本公开实施例的另一种换热装置的局部放大示意图;
图5示出了本公开实施例的一种换热装置内冷却介质的流动示意图;
图6示出了本公开实施例的一种凸起结构的凸起方向与换热装置的中心轴线的夹角示意图。
附图标记说明:
1-换热装置的外壁,2-换热装置的内壁,3-坩埚,4-熔硅液面,5-晶棒,11-内壁靠近坩埚底部的表面,12-凸起结构,13-冷却介质的进口,14-冷却介质的出口。
详细描述
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1示出了本公开实施例的一种换热装置的剖视图。图2示出了本公开 实施例的一种换热装置的局部放大示意图。参照图1、图2所示,本公开实施例提供了一种换热装置,包括:外壁1和内壁2,内壁2和外壁1相对分布,内壁2和外壁1共同形成供冷却介质流动的腔体。
靠近换热装置的中心轴线L1的内壁2上设置有带内腔的至少一个凸起结构12,通常情况下,晶棒5与换热装置的中心轴线L1共线或距离很近,则,也就是靠近晶棒5的内壁上设置有带内腔的至少一个凸起结构12,关于凸起结构12的数量不作具体限定。凸起结构12的凸起方向朝向换热装置的中心轴线L1,也就是凸起结构12的凸起方向朝向晶棒5,凸起结构12的内腔与外壁1和内壁2形成的腔体连通,进而冷却介质也会流经上述凸起结构12的内腔,增大了换热面积;凸起结构12的凸起方向朝向晶棒5,减小了冷却介质与晶棒5之间的水平距离,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
例如,参照图1所示,靠近换热装置的中心轴线L1的内壁2可以包括沿换热装置高度方向,自上向下的第一内壁、第二内壁、第三内壁,其中,第一内壁位于换热装置最远离熔硅液面4的一端,第三内壁位于换热装置最靠近熔硅液面4的一端,且第三内壁与熔硅液面4之间的距离可以为40-60mm,第二内壁位于第一内壁、第三内壁之间。可以是第一内壁、第二内壁、第三内壁上均设置有带有腔体的凸起结构,凸起结构的凸起方向朝向中心轴线L1,或者,凸起结构设置于第一内壁、第二内壁以及第三内壁中的至少一个内壁上,用来增大冷却介质与换热装置之间的接触面积,从而提高晶体生长的纵向温度梯度,提高晶体生长速度。
在实际应用中,内壁和外壁之间远离坩埚底部的一端的表面,可以开设两个通孔,如,参照图1所示,在内壁2和外壁1之间远离坩埚3底部的一端的上表面上开设冷却介质的进口和冷却介质的出口,如13和14,冷却介质从进口中流入内壁2和外壁1共同形成的腔体中,并从出口流出腔体,则可以使得冷却介质在内壁2和外壁1共同形成的腔体以及凸起结构12的内腔中循环流动。冷却介质在内壁2和外壁1共同形成的腔体以及凸起结构12的内腔中循环流动的过程中,将熔硅液面4以及晶棒5表面的热量带走,以增加拉晶过程中的纵向温度梯度,提高拉晶速度,节省拉晶时间。
可选的,图1中3可以为坩埚,坩埚3内可以储存有熔硅。外壁1靠近坩埚3底部的下表面可以为换热装置的底部表面,如图1中11所示。外壁1靠近坩埚3底部的下表面11与熔硅液面4平行,进而,换热装置底部的整个表面11与结晶面或熔硅液面4相对,即换热装置的底部与结晶面或熔硅液面4的距离更近的区域更大,也就是换热装置的内较多区域内的冷却介质与结晶面或熔硅液面4的距离更近,能够及时吸收熔硅在结晶时释放的热量,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
可选的,冷却介质为水或惰性气体中的至少一种,本领域技术人员可以根据实际情况选用合适的冷却介质,本公开实施例对此不做限定。
可选的,参照图1所示,内壁2包括与换热装置的中心轴线L1平行的至少一段竖直内壁。如图1中,靠近换热装置的中心轴线L1的内壁上设置有凸起结构12的内壁即为与换热装置的中心轴线L1平行的竖直内壁。关于该竖直内壁的段数不作具体限定。参照图1所示,凸起结构12位于竖直内壁上。竖直内壁与晶棒5之间的水平距离更小,进而增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
可选的,参照图1所示,凸起结构12位于靠近坩埚3底部的竖直内壁上,则,凸起结构12与熔硅液面4的距离也较小,进而,冷却介质与结晶面或熔硅液面4的距离更近,能够及时吸收熔硅在结晶时释放的热量,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
例如,参照图1所示,内壁2可以包括沿换热装置高度方向,自上向下的第一内壁、第二内壁、第三内壁,其中,第一内壁位于换热装置最远离坩埚3底部的一端,第三内壁位于换热装置最靠近坩埚3底部的一端,第二内壁位于第一内壁、第三内壁之间。第三内壁为与换热装置的中心轴线L1平行的竖直内壁,凸起结构12位于最靠近坩埚3底部的第三内壁上。
可选的,在凸起结构的数量大于1的情况下,凸起结构在内壁上均匀分布,进而,对晶棒的冷却均一性较好,可以提升拉晶速度。图3示出了本公开实施例的另一种换热装置的剖视图。图4示出了本公开实施例的另一种换热装置的局部放大示意图。如,参照图3、图4所示,凸起结构12的数量大于1,凸起结构12在内壁上均匀分布。
需要说明的是,在凸起结构的数量大于1的情况下,凸起结构之间的间距小于15mm,本领域技术人员可以根据实际情况选用合适的间距,本公开实施例对此不做限定。
可选的,凸起结构与内壁一体成型,进而加工方便。例如,可以采用模压法等方式。在本公开实施例中,对此不作具体限定。
图3所示,虚线L1为换热装置的中心轴线。可选的,凸起结构12的凸起方向与换热装置的中心轴线的夹角大于0°,小于等于90°。图5示出了本公开实施例的一种换热装置内冷却介质的流动示意图。图5中13可以为冷却介质的进口,14可以为冷却介质的出口,图5中带箭头的线示出了本公开实施例中,一种换热装置内冷却介质的流动示意图。参照图5所示,凸起结构12的凸起方向与换热装置的中心轴线的夹角在上述角度范围内,使得冷却介质的流动方向沿换热装置的凸起结构的排布方向螺旋下降,增加了冷却介质在晶棒、结晶界面及结晶面上方的停留时间,能够充分吸收晶棒5以及结晶面或熔硅液面4的热量,带走更多的结晶潜热,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。同时,凸起结构12的凸起方向与换热装置的中心轴线的夹角在上述角度范围内,凸起结构12容易加工。
如图1或图2所示,凸起结构12的凸起方向与换热装置的中心轴线的夹角即为90°。参照图6所示,图6示出了本公开实施例的一种凸起结构的凸起方向与换热装置的中心轴线的夹角示意图。该图6可以为图3或图4所示的凸起结构12的凸起方向与换热装置的中心轴线的夹角示意图。图6中L2可以为与换热装置的中心轴线平行的虚线,凸起结构12的凸起方向与换热装置的中心轴线的夹角θ的取值范围为大于0°,小于等于90°。
可选的,凸起结构12的凸起方向与换热装置的中心轴线的夹角为:30°、45°、60°中的至少一种。凸起结构12的凸起方向与换热装置的中心轴线的夹角为30°、45°、60°的情况下,一方面相比于其他角度更容易满足加工精度要求;另一方面,对冷却介质的流动方向改变阻力较小,易达到使冷却介质旋转下降,同时带走更多结晶潜热。
需要说明的是,凸起结构12的凸起方向与换热装置的中心轴线的夹角 为45°的情况下,加工工艺更简便,且对冷却介质的流动方向改变阻力更小,易达到使冷却介质旋转下降,同时带走更多结晶潜热。
可选的,上述换热装置的形状可以为:圆柱形、圆锥形或者圆弧形等图形中的中的任意一种或者其相互之间的组合图形。上述换热装置靠近换热装置的中心轴线的内壁可以全部都是竖直内壁,进而靠近换热装置的中心轴线一侧与熔硅液面垂直的所有竖直内壁与晶棒之间的水平距离更小,进而增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
可选的,上述换热装置靠近换热装置的中心轴线的内壁全部都是与换热装置的中心轴线平行的竖直内壁的情况下,带有内腔的凸起结构位于全部竖直内壁上,或者,带有内腔的凸起结构位于全部竖直内壁的部分区域上。在本公开实施例中,对此不作具体限定。
可选的,在与熔硅液面垂直的平面上,凸起结构的截面为:平行四边形、梯形、三角形、Ω形中的一种。该平行四边形可以包括矩形等。上述形状的凸起结构的内腔,减小了换热装置与晶棒5的水平距离,能够充分吸收晶棒的热量,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。需要说明的是,在与熔硅液面垂直的平面上,凸起结构的截面还可以为其余的规则或不规则的形状,用于增大冷却介质与凸起结构的内腔或筒装结构的腔体的接触时间、接触面积。在本公开实施例中,对此不作具体限定。
例如,参照图1或图2所示,在与熔硅液面垂直的平面上,凸起结构的截面为矩形。再例如,参照图3或图4所示,在与熔硅液面垂直的平面上,凸起结构的截面为平行四边形。
可选的,凸起结构12可以为与一个较大的整体或者为沿着内壁方向排布的多个小的凸起结构。在本公开实施例中,对此不作具体限定。例如,凸起结构为沿着内壁方向排布的多个条状结构。或者,凸起结构可以为沿着内壁方向排布的多个分段组成。
可选的,从远离坩埚底部至靠近坩埚底部的方向,内壁与换热装置的中心轴线之间的距离减小。通常情况下,晶棒与换热装置的中心轴线共线或距离很近,也就是说靠近坩埚底部的内壁与晶棒之间的距离减小。即,越靠近熔硅液面,内壁与晶棒之间的距离也越小,能够同时吸收晶棒以及结晶面或 熔硅液面的更多热量,增加了拉晶过程中的纵向温度梯度,提高了拉晶速度,节省了拉晶时间。
本公开实施例还提供一种单晶炉,参照图1所示,该单晶炉包括坩埚3以及换热装置,该换热装置设置在坩埚的上方。关于坩埚、换热装置等可以参照前述有关记载,该单晶炉能够达到与前述换热装置相同或类似的有益效果,为了避免重复,此处不再赘述。
可选的,该单晶炉还可以包括位于换热装置外侧的热屏,且换热装置的中心轴线与热屏的中心轴线重合。通过热屏与换热装置的配合,以进一步吸收晶棒及结晶面的热量,增加拉晶过程中的纵向温度梯度,提高拉晶速度,节省拉晶时间。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本公开的保护之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全 指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (11)
- 一种换热装置,其特征在于,包括:内壁和外壁,其中,所述内壁靠近所述换热装置的中心轴线;所述内壁和所述外壁共同形成供冷却介质流动的腔体;所述内壁上设置有带内腔的至少一个凸起结构;所述凸起结构的凸起方向朝向所述中心轴线;所述凸起结构的内腔与所述内壁和所述外壁形成的腔体连通。
- 根据权利要求1所述的换热装置,其特征在于,所述外壁靠近坩埚底部的下表面,与熔硅液面平行。
- 根据权利要求1或2所述的换热装置,其特征在于,所述内壁包括与所述中心轴线平行的至少一段竖直内壁,所述凸起结构位于所述竖直内壁上。
- 根据权利要求3所述的换热装置,其特征在于,所述凸起结构位于靠近坩埚底部的竖直内壁上。
- 根据权利要求1所述的换热装置,其特征在于,在所述凸起结构的数量大于1的情况下,所述凸起结构在所述内壁上均匀分布。
- 根据权利要求1所述的换热装置,其特征在于,所述凸起结构的凸起方向与所述换热装置的中心轴线的夹角大于0°,小于等于90°。
- 根据权利要求1或6所述的换热装置,其特征在于,所述凸起结构的凸起方向与所述换热装置的中心轴线的夹角为:30°、45°、60°中的至少一种。
- 根据权利要求1所述的换热装置,其特征在于,在与所述熔硅液面垂直的平面上,所述凸起结构的截面为:平行四边形、梯形、三角形、Ω形中的一种;所述凸起结构与所述内壁一体成型。
- 根据权利要求1所述的换热装置,其特征在于,从远离坩埚底部至靠近坩埚底部的方向,所述内壁与所述中心轴线之间的距离减小。
- 一种单晶炉,其特征在于,包括坩埚与权利要求1-9中任一项所述的换热装置;所述换热装置设置于所述坩埚的上方。
- 根据权利要求10所述的单晶炉,其特征在于,还包括位于所述换热装置外侧的热屏,且所述换热装置的中心轴线与所述热屏的中心轴线重合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/073,898 US20230095607A1 (en) | 2020-06-05 | 2022-12-02 | Heat exchange device and single crystal furnace |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010508184.8 | 2020-06-05 | ||
CN202010508184.8A CN113755941A (zh) | 2020-06-05 | 2020-06-05 | 一种换热装置及单晶炉 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/073,898 Continuation US20230095607A1 (en) | 2020-06-05 | 2022-12-02 | Heat exchange device and single crystal furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021243993A1 true WO2021243993A1 (zh) | 2021-12-09 |
Family
ID=78785201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/133942 WO2021243993A1 (zh) | 2020-06-05 | 2020-12-04 | 一种换热装置及单晶炉 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230095607A1 (zh) |
CN (1) | CN113755941A (zh) |
WO (1) | WO2021243993A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114318522A (zh) * | 2021-12-23 | 2022-04-12 | 北京北方华创微电子装备有限公司 | 半导体腔室的冷却装置及半导体工艺设备 |
CN114790575A (zh) * | 2022-05-18 | 2022-07-26 | 西安奕斯伟材料科技有限公司 | 水冷套和单晶炉 |
CN115738348A (zh) * | 2022-11-14 | 2023-03-07 | 中国科学院过程工程研究所 | 一种防堵塞冷却结晶器、冷却结晶方法及其应用 |
WO2023142640A1 (zh) * | 2022-01-28 | 2023-08-03 | Tcl中环新能源科技股份有限公司 | 用于提高硅晶体拉速的水冷屏及制备该水冷屏的模具 |
WO2023165473A1 (zh) * | 2022-03-01 | 2023-09-07 | Tcl中环新能源科技股份有限公司 | 一种单晶炉用降功耗导气装置及单晶炉 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114737247A (zh) * | 2022-05-18 | 2022-07-12 | 西安奕斯伟材料科技有限公司 | 水冷套装置和单晶炉 |
CN115074829B (zh) * | 2022-07-13 | 2024-01-26 | 西安奕斯伟材料科技股份有限公司 | 拉晶炉 |
WO2024032332A1 (zh) * | 2022-08-09 | 2024-02-15 | 隆基绿能科技股份有限公司 | 一种单晶硅棒拉制装置及拉制方法、换热器及换热组件 |
CN115574744B (zh) * | 2022-11-18 | 2023-03-10 | 浙江晶盛机电股份有限公司 | 对中校准装置及对中校准方法 |
CN116180213B (zh) * | 2023-04-27 | 2023-07-21 | 苏州晨晖智能设备有限公司 | 一种单晶炉硅棒拉制用降氧装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1608147A (zh) * | 2001-03-23 | 2005-04-20 | Memc电子材料有限公司 | 用于拉晶机的热屏蔽组件 |
CN201276609Y (zh) * | 2008-09-01 | 2009-07-22 | 宁晋晶兴电子材料有限公司 | 单晶生长加热装置 |
WO2016111431A1 (ko) * | 2015-01-07 | 2016-07-14 | 주식회사 엘지실트론 | 실리콘 단결정 잉곳 제조 방법 및 그 제조방법에 의해 제조된 실리콘 단결정 잉곳 |
CN106222735A (zh) * | 2016-08-26 | 2016-12-14 | 内蒙古中环光伏材料有限公司 | 提高直拉单晶硅拉速的装置及方法 |
CN208023110U (zh) * | 2018-03-21 | 2018-10-30 | 包头市山晟新能源有限责任公司 | 单晶硅生长装置及导流筒 |
CN109537045A (zh) * | 2018-12-29 | 2019-03-29 | 徐州晶睿半导体装备科技有限公司 | 用于硅晶锭生长的换热器、硅晶锭的生长炉和制备硅晶锭的方法 |
CN210215612U (zh) * | 2019-07-15 | 2020-03-31 | 乐山新天源太阳能科技有限公司 | 大直径高效n型单晶硅的单晶炉 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0696479B2 (ja) * | 1988-10-05 | 1994-11-30 | 三菱マテリアル株式会社 | 単結晶引上装置 |
JP4788029B2 (ja) * | 2000-08-31 | 2011-10-05 | 信越半導体株式会社 | 半導体単結晶の製造装置及びそれを用いた半導体単結晶の製造方法 |
CN107227488B (zh) * | 2016-03-25 | 2019-10-25 | 隆基绿能科技股份有限公司 | 单晶炉用热场及单晶炉 |
CN207035852U (zh) * | 2017-05-05 | 2018-02-23 | 天津中环半导体股份有限公司 | 一种用于直拉炉的锥形水冷套装置 |
CN207452294U (zh) * | 2017-09-20 | 2018-06-05 | 内蒙古中环光伏材料有限公司 | 一种带有冷却装置的炉盖 |
CN208201169U (zh) * | 2017-12-29 | 2018-12-07 | 嘉兴耐进新材料有限公司 | 快速拉制单晶的装置 |
CN208567544U (zh) * | 2018-06-26 | 2019-03-01 | 天津环博科技有限责任公司 | 一种内波纹形锥筒水冷设备 |
CN210394588U (zh) * | 2019-08-20 | 2020-04-24 | 新疆晶科能源有限公司 | 一种提高单晶生长速率装置 |
CN212925224U (zh) * | 2020-06-05 | 2021-04-09 | 隆基绿能科技股份有限公司 | 一种换热装置及单晶炉 |
-
2020
- 2020-06-05 CN CN202010508184.8A patent/CN113755941A/zh active Pending
- 2020-12-04 WO PCT/CN2020/133942 patent/WO2021243993A1/zh active Application Filing
-
2022
- 2022-12-02 US US18/073,898 patent/US20230095607A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1608147A (zh) * | 2001-03-23 | 2005-04-20 | Memc电子材料有限公司 | 用于拉晶机的热屏蔽组件 |
CN201276609Y (zh) * | 2008-09-01 | 2009-07-22 | 宁晋晶兴电子材料有限公司 | 单晶生长加热装置 |
WO2016111431A1 (ko) * | 2015-01-07 | 2016-07-14 | 주식회사 엘지실트론 | 실리콘 단결정 잉곳 제조 방법 및 그 제조방법에 의해 제조된 실리콘 단결정 잉곳 |
CN106222735A (zh) * | 2016-08-26 | 2016-12-14 | 内蒙古中环光伏材料有限公司 | 提高直拉单晶硅拉速的装置及方法 |
CN208023110U (zh) * | 2018-03-21 | 2018-10-30 | 包头市山晟新能源有限责任公司 | 单晶硅生长装置及导流筒 |
CN109537045A (zh) * | 2018-12-29 | 2019-03-29 | 徐州晶睿半导体装备科技有限公司 | 用于硅晶锭生长的换热器、硅晶锭的生长炉和制备硅晶锭的方法 |
CN210215612U (zh) * | 2019-07-15 | 2020-03-31 | 乐山新天源太阳能科技有限公司 | 大直径高效n型单晶硅的单晶炉 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114318522A (zh) * | 2021-12-23 | 2022-04-12 | 北京北方华创微电子装备有限公司 | 半导体腔室的冷却装置及半导体工艺设备 |
WO2023142640A1 (zh) * | 2022-01-28 | 2023-08-03 | Tcl中环新能源科技股份有限公司 | 用于提高硅晶体拉速的水冷屏及制备该水冷屏的模具 |
WO2023165473A1 (zh) * | 2022-03-01 | 2023-09-07 | Tcl中环新能源科技股份有限公司 | 一种单晶炉用降功耗导气装置及单晶炉 |
CN114790575A (zh) * | 2022-05-18 | 2022-07-26 | 西安奕斯伟材料科技有限公司 | 水冷套和单晶炉 |
WO2023221388A1 (zh) * | 2022-05-18 | 2023-11-23 | 西安奕斯伟材料科技有限公司 | 水冷套和单晶炉 |
CN115738348A (zh) * | 2022-11-14 | 2023-03-07 | 中国科学院过程工程研究所 | 一种防堵塞冷却结晶器、冷却结晶方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
US20230095607A1 (en) | 2023-03-30 |
CN113755941A (zh) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021243993A1 (zh) | 一种换热装置及单晶炉 | |
TWI683042B (zh) | 矽單晶長晶設備 | |
TWI830174B (zh) | 用於單晶爐的導流筒、單晶爐及導流筒的加工方法 | |
TW201726566A (zh) | 具有冷卻裝置的玻璃製造設備及其使用方法 | |
TWI838758B (zh) | 溫區控制系統和晶體生長設備 | |
WO2023142640A1 (zh) | 用于提高硅晶体拉速的水冷屏及制备该水冷屏的模具 | |
CN212925224U (zh) | 一种换热装置及单晶炉 | |
CN115216832B (zh) | 长晶炉 | |
CN113481591A (zh) | 一种用于提升单晶生长速度的装置及方法 | |
CN208701250U (zh) | 一种用于晶体生长炉的水冷式籽晶杆 | |
TW202331022A (zh) | 冷卻裝置及其控制方法、晶體生長設備 | |
WO2023185536A1 (zh) | 一种直拉单晶用导流筒及设有该导流筒的单晶炉 | |
CN107513765B (zh) | 一种带有载气加热装置的多晶铸锭炉 | |
CN218491883U (zh) | 一种提升单晶拉速的水冷结构 | |
CN216738629U (zh) | 一种单晶硅棒生产用水冷屏 | |
CN211367802U (zh) | 一种新型直拉硅单晶炉直壁式水冷套 | |
CN107419332A (zh) | 一种内置换热器、导流装置及载气加热装置的多晶铸锭炉 | |
CN221052044U (zh) | 一种换热装置和单晶炉 | |
CN108950681A (zh) | 多晶铸锭炉的石墨底盘及多晶铸锭炉 | |
CN219157035U (zh) | 一种水冷屏及单晶硅生长装置 | |
CN221166846U (zh) | 坩埚及单晶炉 | |
CN220555726U (zh) | 水冷屏及单晶炉 | |
US11377752B2 (en) | Mono-crystalline silicon growth method | |
CN220099262U (zh) | 一种换热装置及单晶炉 | |
CN207193347U (zh) | 一种大型铜管真空热处理炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20939045 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20939045 Country of ref document: EP Kind code of ref document: A1 |