WO2021243805A1 - 反射式滤光片及其制备方法、反射式显示装置 - Google Patents

反射式滤光片及其制备方法、反射式显示装置 Download PDF

Info

Publication number
WO2021243805A1
WO2021243805A1 PCT/CN2020/101237 CN2020101237W WO2021243805A1 WO 2021243805 A1 WO2021243805 A1 WO 2021243805A1 CN 2020101237 W CN2020101237 W CN 2020101237W WO 2021243805 A1 WO2021243805 A1 WO 2021243805A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
reflective
area
substrate
light
Prior art date
Application number
PCT/CN2020/101237
Other languages
English (en)
French (fr)
Inventor
陈梅
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/969,642 priority Critical patent/US20210382350A1/en
Publication of WO2021243805A1 publication Critical patent/WO2021243805A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • This application relates to the field of display technology, and in particular to a reflective filter, a preparation method thereof, and a reflective display device.
  • Color filters are widely used in the display field.
  • the traditional color filters are mostly absorption filters, and their light loss rate can reach more than 60%, which greatly limits the light energy utilization rate of liquid crystal displays.
  • the traditional color filter is generally prepared by dispersing red, green, and blue dyes in a photoresist, and then forming the red, green, and blue color resists on the substrate through three yellow light processes. The preparation process is complicated and cumbersome.
  • the embodiments of the present application provide a reflective filter, a preparation method thereof, and a reflective display device, so as to solve the technical problems of the existing absorptive color filter with high light loss rate and complicated preparation process.
  • the embodiment of the present application provides a reflective filter, including: a first substrate and a second substrate that are oppositely disposed, and a liquid crystal layer sandwiched between the first substrate and the second substrate; The side of a substrate facing the second substrate is provided with a first electrode, and the side of the second substrate facing the first substrate is provided with a second electrode; the liquid crystal layer is filled with liquid crystals including cholesteric liquid crystals Composition; wherein the reflective filter includes at least two reflective areas that reflect light of different colors.
  • the reflective filter includes a first reflective area, a second reflective area, and a third reflective area that reflect light of three different colors, respectively.
  • the pitch of the cholesteric liquid crystal in the first reflection zone, the pitch of the cholesteric liquid crystal in the second reflection zone, and the cholesteric phase in the third reflection zone increases successively.
  • the first reflection area reflects blue light
  • the second reflection area reflects green light
  • the third reflection area reflects red light
  • the liquid crystal composition includes a rigid polymer network structure.
  • the liquid crystal composition includes a nematic liquid crystal, a chiral compound, a polymerizable monomer, and a thermal initiator.
  • the first electrode and the second electrode are both arranged on the entire surface.
  • An embodiment of the present application also provides a method for preparing the reflective filter according to any one of the foregoing embodiments, including:
  • liquid crystal composition between the first substrate and the second substrate to form a liquid crystal layer, wherein the liquid crystal composition includes a cholesteric liquid crystal, and the cholesteric liquid crystal has an initial reflection band light;
  • the method before the S40, the method further includes:
  • the second photomask is used to irradiate the liquid crystal layer with secondary ultraviolet light, so that the pitch of the cholesteric liquid crystal in the secondary ultraviolet light irradiation area is greater than that of the primary ultraviolet light irradiation area.
  • Cholesteric liquid crystal is used to irradiate the liquid crystal layer with secondary ultraviolet light, so that the pitch of the cholesteric liquid crystal in the secondary ultraviolet light irradiation area is greater than that of the primary ultraviolet light irradiation area.
  • the initial reflection band light is blue light
  • the cholesteric liquid crystal in the primary ultraviolet light irradiation area reflects green light
  • the cholesteric liquid crystal in the secondary ultraviolet light irradiation area The steroidal liquid crystal reflects red light.
  • the liquid crystal composition includes a nematic liquid crystal, a chiral compound, a polymerizable monomer, and a thermal initiator.
  • An embodiment of the present application also provides a reflective display device, which includes a display panel and a reflective filter provided on a side away from the light-emitting surface of the display panel, the reflective filter including: a first substrate and a first substrate arranged opposite to each other. A second substrate, and a liquid crystal layer sandwiched between the first substrate and the second substrate; the first substrate is provided with a first electrode on the side facing the second substrate, and the second substrate A second electrode is provided on the side facing the first substrate; the liquid crystal layer is filled with a liquid crystal composition including cholesteric liquid crystal; wherein, the reflective filter includes at least two reflectors that reflect light of different colors Area.
  • the reflective filter includes a first reflective area, a second reflective area, and a third reflective area that reflect light of three different colors, respectively.
  • the pitch of the cholesteric liquid crystal in the first reflection zone, the pitch of the cholesteric liquid crystal in the second reflection zone, and the cholesteric phase in the third reflection zone increases successively.
  • the first reflection area reflects blue light
  • the second reflection area reflects green light
  • the third reflection area reflects red light
  • the liquid crystal composition includes a rigid polymer network structure.
  • the liquid crystal composition includes a nematic liquid crystal, a chiral compound, a polymerizable monomer, and a thermal initiator.
  • the first electrode and the second electrode are both arranged on the entire surface.
  • the liquid crystal molecules are aligned by applying an external electric field without additional liquid crystal alignment treatment, which makes the manufacturing process simple and cost-saving.
  • the use of ultraviolet light to induce chiral reversal of chiral compounds, in the same kind of matrix liquid crystal material Realize the partition control of the reflective area, so there is no need to pattern the electrode, just set the entire surface of the common electrode, and there is no need to set the retaining wall, which further simplifies the manufacturing process.
  • the addition of polymer materials makes the reflective color filter It can be formed into a flexible film material, which is conducive to the realization of a large-area roll-to-roll processing method, thereby reducing the production and transportation costs of the filter.
  • FIG. 1 is a schematic structural diagram of a reflective filter provided by an embodiment of the application
  • FIG. 2 is a flow chart of the steps of a method for manufacturing a reflective filter provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of the structure of a liquid crystal layer in an unapplied state according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of the structure of a liquid crystal layer in a voltage-applied state provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of the structure of a liquid crystal layer under one ultraviolet light irradiation provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of the structure of a liquid crystal layer under secondary ultraviolet light irradiation according to an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • the present application provides a reflective filter, a preparation method thereof, and a reflective display device.
  • a reflective filter a preparation method thereof, and a reflective display device.
  • a reflective filter provided in the present application includes a first substrate, a second substrate, and a liquid crystal layer that are arranged oppositely, and a first electrode is provided on the side of the first substrate facing the second substrate.
  • a second electrode is provided on the side of the second substrate facing the first substrate, and the liquid crystal layer is filled with a liquid crystal composition.
  • the liquid crystal composition includes cholesteric liquid crystal (Cholesteric Liquid Crystal, CLC), cholesteric liquid crystals, due to their selective light reflection characteristics, can be used to prepare reflective filters with their unique characteristics.
  • CLC Chargesteric Liquid Crystal
  • the plane-oriented cholesteric liquid crystal can reflect circularly polarized light having the same optical rotation direction as its own spiral axis, while allowing other light to pass through. Since the filter system formed by the above-mentioned reflective filter does not absorb light, it can be used to produce color filters or polarizers with high light energy utilization efficiency.
  • the effective control of the reflection wavelength can be achieved by changing the pitch p of the cholesteric liquid crystal.
  • the reflective filter provided by the embodiment of the present application may include at least two reflective areas that reflect light of different colors. By controlling the pitch of the cholesteric liquid crystals in the corresponding areas, different reflective areas can reflect different colors to achieve filtering. The effect of light.
  • the cholesteric liquid crystal can be a cholesteric compound, or a mixture of a nematic liquid crystal and a chiral compound.
  • the pitch of the cholesteric liquid crystal is determined by the content of the chiral compound in the liquid crystal composition and its helical twisting force. When the types of nematic liquid crystal and chiral compound are fixed, the pitch of the cholesteric liquid crystal can be controlled by controlling the content of the chiral compound.
  • a chiral compound with chiral reversal can be added to the nematic liquid crystal, so that the overall chiral compound content in the liquid crystal layer system, that is, the pitch of the cholesteric liquid crystal, can be controlled by controlling the amount of chiral compound reversal.
  • the amount of inversion of the chiral compound can be controlled by controlling the time during which the ultraviolet light is irradiated to the cholesteric liquid crystal, thereby controlling the pitch of the cholesteric liquid crystal.
  • the reflective filter includes at least two reflective areas that reflect light of different colors.
  • the pitches of the cholesteric liquid crystals in the reflective areas that reflect light of different colors are different.
  • the inversion of the chiral compound is induced by ultraviolet light, so that the light
  • the content of chiral compounds in the region decreases, that is, the pitch increases.
  • the liquid crystal composition may include nematic liquid crystals, chiral compounds, polymerizable monomers, and thermal initiators.
  • the liquid crystal composition may include a negative nematic liquid crystal, an ultraviolet light-induced chiral reversal compound, a liquid crystal thermally polymerizable monomer, and a thermal initiator.
  • the mass percentage of its components can be: 60 ⁇ 98 wt% negative nematic liquid crystal, 1 ⁇ 30 wt% liquid crystal thermally polymerizable monomer, 0.05 ⁇ 10 wt% ultraviolet light-induced isomerization chiral compound, 0.05 ⁇ 2 wt% thermal initiator.
  • the ultraviolet light-induced isomeric chiral compound has a first rotation direction (left-handed or right-handed) under visible light, and can be reversed to a second rotation direction (right-handed or left-handed) after being irradiated with ultraviolet light, that is, under ultraviolet light
  • the structure of the chiral compound will be isomerized, and the corresponding chirality direction will be reversed. Therefore, the amount of chirality can be controlled to control the content of the chiral compound that ultimately exists in the liquid crystal layer in different regions.
  • the ultraviolet light-induced isomerization chiral compound can be at least one of chiral compound materials such as chiral spiroene and chiral diarylethylene.
  • the liquid crystal composition in the liquid crystal layer may include a rigid polymer network structure, which can stabilize the plane orientation state and the pitch of the cholesteric liquid crystal, thereby forming a plurality of different pitch regions inside the liquid crystal layer That is the reflection area.
  • the polymerizable monomer in the liquid crystal composition can be heated to initiate a polymerization reaction of the polymerizable monomer to form a rigid polymer network structure, that is, a rigid polymer network structure.
  • the reflective filter 100 includes a first reflective area 101, a second reflective area 102, and a third reflective area 103 that reflect light of three different colors, respectively.
  • the pitches of the cholesteric liquid crystals in the first reflection area 101, the second reflection area 102, and the third reflection area 103 are sequentially increased, so that the liquid crystals in different reflection areas reflect light of different colors.
  • the liquid crystal composition includes a nematic liquid crystal 31, a chiral compound 33, a polymerizable monomer 32, and a thermal initiator.
  • the first reflection area 101, the second reflection area 102, and the third reflection area 103 respectively correspond to reflect one of red light, green light, and blue light.
  • the first reflective area 101 reflects blue light
  • the second reflective area 102 reflects green light
  • the third reflective area 103 reflects red light.
  • the cholesteric liquid crystal that initially reflects blue light can be irradiated with multiple ultraviolet light to achieve a gradual red shift of the reflection band.
  • the initial selective wavelength band of the cholesteric liquid crystal in the liquid crystal layer 30 can be set to blue, and the liquid crystal layer 30 corresponding to the first reflection area 101 is covered, and the other areas (the second reflection area 102 and the second reflection area 102) are covered.
  • the liquid crystal layer 30 corresponding to the third reflective area 103) is irradiated with ultraviolet light once, so that the pitch of the cholesteric liquid crystal in the irradiated area is increased, and the reflection band is green; then the first reflective area 101 and the second reflective area 102 are covered correspondingly
  • the liquid crystal layer illuminates the third reflective area 103 so that the pitch of the cholesteric liquid crystal in the third reflective area 103 continues to increase, and the reflection band is red; then the liquid crystal layer 30 is heated to initiate the generation of polymerizable monomers 32
  • the polymerization reaction forms a rigid polymer network structure 301.
  • the embodiment of the present application aligns the liquid crystal molecules by applying voltage to the first electrode 11 and the second electrode 21, the inner side of the first substrate 10 and the second substrate 20 do not require additional alignment processing, and the manufacturing process is simple and capable. save costs.
  • the first electrode 11 and the second electrode 21 can be arranged on the entire surface. Since the reflective filter provided in the embodiments of the present application uses ultraviolet light to induce chiral compounds to perform chiral reversal, the same type of matrix liquid crystal material can be used to realize the partition control of the reflective area, so there is no need to pattern the upper and lower electrodes For chemical treatment, it is sufficient to directly coat or deposit the electrode material on the entire surface, and there is no need to set a retaining wall at the junction of the partitions, which further simplifies the process.
  • the first electrode 11 and the second electrode 21 are transparent electrodes, and may be indium tin oxide materials.
  • the first substrate 10 and the second substrate 20 may be flexible substrates or rigid substrates.
  • the flexible substrate may be a polyimide material
  • the rigid substrate may be a glass substrate.
  • an embodiment of the present application also provides a method for preparing an emissive filter. As shown in FIG. 2, the method includes the following steps:
  • liquid crystal composition between the first substrate and the second substrate to form a liquid crystal layer, wherein the liquid crystal composition includes a cholesteric liquid crystal, and the cholesteric liquid crystal has an initial reflection band light.
  • the cholesteric liquid crystal can be a mixture of nematic liquid crystal and a chiral compound, and the initial reflection wavelength and corresponding reflection of the cholesteric liquid crystal can be controlled by changing the content of the chiral compound 33 in the liquid crystal composition. Wavelength of light.
  • the selection criteria for the content of chiral compounds can be selected based on making the initial reflection band of the cholesteric liquid crystal smaller, that is, the smaller the pitch, so that when the subsequent ultraviolet light is irradiated, the reflection band of the cholesteric liquid crystal in the illuminated area is red-shifted. Light that is different from the original color.
  • both the cholesteric liquid crystal and the polymerized monomer are in a planar texture state. Complete the alignment of the cholesteric liquid crystal.
  • the first mask includes a light-shielding area and a light-transmitting area.
  • the liquid crystal layer corresponding to the light-transmitting area is irradiated by ultraviolet light, and the liquid crystal layer corresponding to the light-shielding area is not irradiated by ultraviolet light.
  • the polymerizable monomer undergoes a polymerization reaction to form a rigid polymer to stabilize the planar texture state and pitch of the cholesteric liquid crystal.
  • the voltage applied to the two electrodes is disconnected, the ultraviolet light is stopped, and the heating is stopped, and then the reflective filter described in any of the above embodiments can be obtained.
  • the number of reflection areas and the number of times of ultraviolet light in different reflection areas can be set reasonably, so that the filter can reflect light of multiple different colors.
  • the S40 may also include performing secondary ultraviolet light irradiation on the liquid crystal layer with a second mask under the power-on state, so that the pitch of the cholesteric liquid crystal in the secondary ultraviolet light irradiation area is The cholesteric liquid crystal that is larger than the once ultraviolet light irradiation area.
  • the initial reflection band light is blue light
  • the cholesteric liquid crystal in the primary ultraviolet light irradiation area reflects green light
  • the cholesteric liquid crystal in the secondary ultraviolet light irradiation area reflects red light. Light.
  • an RGB color filter is taken as an example for description.
  • the liquid crystal composition is poured into the liquid crystal cell, the liquid crystal cell is the space sandwiched between the first substrate 10 and the second substrate 20, and the initial selective reflection of the cholesteric liquid crystal is set.
  • the band is blue light.
  • It can be injected by inkjet printing or by roller-to-roller pressing, depending on the material of the substrate.
  • the liquid crystal composition includes a uniformly mixed negative nematic liquid crystal, an ultraviolet photo-induced chiral reversal compound, a liquid crystal thermally polymerizable monomer, and a thermal initiator.
  • the mass content of negative nematic liquid crystal, ultraviolet photo-induced chiral reversal compound, liquid crystal thermally polymerizable monomer, and thermal initiator 60 ⁇ 98 wt% negative nematic liquid crystal, 1 ⁇ 30 wt% liquid crystal Thermally polymerizable monomers, 0.05 ⁇ 10 wt% ultraviolet light-induced isomerization chiral compounds, and 0.05 ⁇ 2 wt% thermal initiators.
  • Ultraviolet light-induced isomerization chiral compounds have the first direction of rotation (left-handed or right-handed) under visible light, which is reversed to the second direction of rotation (right-handed or left-handed) after being irradiated by ultraviolet light, and the ultraviolet light-induced isomerization chirality
  • the compound can be chiral spiroene, chiral diarylethylene and the like.
  • the average refractive index of liquid crystal is 1.55 ⁇ 1.65, and if you want to reflect blue light (the center wavelength is 440nm), p can be set between 270 ⁇ 290nm.
  • a voltage V is applied to the first electrode 11 and the second electrode 21, and under the action of an electric field, both the cholesteric liquid crystal and the liquid crystal polymer monomer are in a planar texture state.
  • the first photomask 200 is then used to irradiate the liquid crystal layer 30 with ultraviolet light once under the voltage applied state, so that the pitch of the cholesteric liquid crystal in the ultraviolet irradiated area is greater than that of the unilluminated area.
  • the cholesteric liquid crystal makes the reflected light of the cholesteric liquid crystal in the ultraviolet light irradiation area green.
  • the first mask 200 includes a light-shielding area 201 and a light-transmitting area 202, the light-shielding area 201 corresponds to the first reflective area 101, and the light-transmitting area 202 corresponds to the second reflective area 102 and the third reflective area 103,
  • the first reflection area 101 is not exposed to ultraviolet light to reflect the blue light of the original wavelength, and the second reflection area 102 and the third reflection area 103 are irradiated by ultraviolet light at this time, so that the pitch increases to reflect green light.
  • the second photomask 300 is used to irradiate the liquid crystal layer 30 with secondary ultraviolet light, so that the pitch of the cholesteric liquid crystal in the secondary ultraviolet light irradiation area is greater than that of the primary ultraviolet light.
  • the cholesteric liquid crystal in the area irradiated by the ultraviolet light in turn causes the area irradiated by the secondary ultraviolet light to reflect red light.
  • the second mask 300 includes a light-shielding area 301 and a light-transmitting area 302, the light-shielding area 301 corresponds to the first reflection area 101 and the second reflection area 102, and the light-transmitting area 302 corresponds to the third reflection area 103. Since the first reflection area 101 is not exposed to ultraviolet light all the time, it maintains the initial reflection band and reflects blue light, and the second reflection area 102 is only irradiated by ultraviolet light once and thus maintains the reflection band after one ultraviolet light irradiation, reflecting green light, and the third reflection area Since 103 is irradiated by primary ultraviolet light and secondary ultraviolet light, it maintains the reflection band after secondary ultraviolet light irradiation and reflects red light.
  • the liquid crystal layer 30 is heated under the state of power-on and ultraviolet light irradiation to initiate the polymerization reaction of the liquid crystalline thermally polymerizable monomer to form a rigid polymer to stabilize the cholesteric liquid crystal.
  • the electric field, the ultraviolet light irradiation device and the heating device are removed to obtain a reflective RGB color filter.
  • the initial reflection band of cholesteric liquid crystals is blue light (the central wavelength is 440nm, and the amount of chiral compounds is recorded as: ⁇ cB ), and when it reflects green (central wavelength is 550nm) and red (central wavelength is 700nm), its The contents of chiral compounds are 0.8 ⁇ cB and 0.63 ⁇ cB, respectively . Therefore, the amount of chiral compound that needs to induce inversion in one ultraviolet light irradiation is 10%, and the amount of chiral compound that needs to induce inversion in the second ultraviolet light irradiation is 18.5%.
  • the ultraviolet integrated light amount of the first ultraviolet light irradiation can be set to 3000 ⁇ 6000mJ, and the ultraviolet integrated light amount of the second ultraviolet light irradiation can be set to 5550 ⁇ 11100mJ.
  • an embodiment of the present application further provides a reflective display device 1000, which includes a display panel 400 and a light source that faces away from the display panel 400.
  • a reflective filter 100 is provided on one side of the surface.
  • the reflective area of the filter 100 reflects the light of the corresponding wavelength band of the cholesteric liquid crystal in the area, and other colors of light pass through the reflective area, thereby achieving the The filter function of the filter 100.
  • the liquid crystal molecules are aligned by applying an external electric field without additional liquid crystal alignment treatment, which makes the manufacturing process simple and cost-saving.
  • the partition control of the reflective area is realized, so there is no need to pattern the electrode, and the entire surface of the common electrode is only required, and there is no need to set the retaining wall, which further simplifies the manufacturing process.
  • the addition of polymer materials makes the reflective type
  • the color filter can be formed into a flexible film material, which is beneficial to realize a large-area roll-to-roll processing method, thereby reducing the production and transportation costs of the filter.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种反射式滤光片,包括设置有第一电极的第一基板、设置有第二电极的第二基板、以及液晶层,第液晶层填充有包括胆甾相液晶的液晶组合物,反射式滤光片包括反射不同颜色光的至少两个反射区。通过施加外电场对液晶分子进行取向,利用紫外光诱导手性化合物手性反转,在同种母体液晶材料中实现反射区的分区控制。

Description

反射式滤光片及其制备方法、反射式显示装置
本申请要求于2020年06月05日提交中国专利局、申请号为202010504161.X、发明名称为“反射式滤光片及其制备方法、反射式显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种反射式滤光片及其制备方法、以及反射式显示装置。
背景技术
彩色滤光片广泛应用于显示领域,传统的彩色滤光片多为吸收型滤光片,其光损耗率可达60%以上,在很大程度上限制了液晶显示器的光能利用率。另外,传统的彩色滤光片的制备一般是将红、绿、蓝染料分散于光阻中,再经过三次黄光制程将红色色阻、绿色色阻、以及蓝色色阻成型于基板上,其制备工艺复杂且繁琐。
综上所述,现有的吸收型彩色滤光片技术有待于改进。
技术问题
本申请实施例提供一种反射式滤光片及其制备方法、反射式显示装置,以解决现有的吸收型彩色滤光片,其光损耗率较高,且制备工艺繁琐复杂的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本申请实施例提供一种反射式滤光片,包括: 相对设置的第一基板和第二基板、以及夹设于所述第一基板和所述第二基板之间的液晶层;所述第一基板朝向所述第二基板的一侧设置有第一电极,所述第二基板朝向所述第一基板的一侧设置有第二电极;所述液晶层填充有包括胆甾相液晶的液晶组合物;其中,所述反射式滤光片包括反射不同颜色光的至少两个反射区。
在本申请的至少一种实施例中,所述反射式滤光片包括分别反射三种不同颜色光的第一反射区、第二反射区、以及第三反射区。
在本申请的至少一种实施例中,所述第一反射区的胆甾相液晶的螺距、所述第二反射区的胆甾相液晶的螺距、以及所述第三反射区的胆甾相液晶的螺距依次增大。
在本申请的至少一种实施例中,所述第一反射区反射蓝光,所述第二反射区反射绿光,以及所述第三反射区反射红光。
在本申请的至少一种实施例中,所述液晶组合物包括刚性高分子网络态结构。
在本申请的至少一种实施例中,所述液晶组合物包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
在本申请的至少一种实施例中,所述第一电极和所述第二电极均整面设置。
本申请实施例还提供上述任一种实施例所述的反射式滤光片的制备方法,包括:
S10,将液晶组合物填充于第一基板和第二基板之间以形成液晶层,其中所述液晶组合物包括胆甾相液晶,所述胆甾相液晶具有初始反射波段光;
S20,对第一电极和第二电极施加电压,以使得所述胆甾相液晶处于平面织构态;
S30,在加电状态下,利用第一光罩对所述液晶层进行一次紫外光照射,以使得一次紫外光照射区域的所述胆甾相液晶的螺距大于未照光区域的所述胆甾相液晶;
S40,在加电和紫外光照状态下,对所述液晶层进行加热,以使得所述液晶组合物形成刚性高分子网络态结构。
在本申请的至少一种实施例中,在所述S40之前,还包括:
在加电状态下,利用第二光罩对所述液晶层进行二次紫外光照射,使得二次紫外光照射区域的所述胆甾相液晶的螺距大于所述一次紫外光照射区域的所述胆甾相液晶。
在本申请的至少一种实施例中,所述初始反射波段光为蓝光,所述一次紫外光照射区域的所述胆甾相液晶反射绿光,所述二次紫外光照射区域的所述胆甾相液晶反射红光。
在本申请的至少一种实施例中,所述液晶组合物包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
本申请实施例还提供一种反射式显示装置,包括显示面板和背离所述显示面板出光面一侧设置的反射式滤光片,所述反射式滤光片包括:相对设置的第一基板和第二基板、以及夹设于所述第一基板和所述第二基板之间的液晶层;所述第一基板朝向所述第二基板的一侧设置有第一电极,所述第二基板朝向所述第一基板的一侧设置有第二电极;所述液晶层填充有包括胆甾相液晶的液晶组合物;其中,所述反射式滤光片包括反射不同颜色光的至少两个反射区。
在本申请的至少一种实施例中,所述反射式滤光片包括分别反射三种不同颜色光的第一反射区、第二反射区、以及第三反射区。
在本申请的至少一种实施例中,所述第一反射区的胆甾相液晶的螺距、所述第二反射区的胆甾相液晶的螺距、以及所述第三反射区的胆甾相液晶的螺距依次增大。
在本申请的至少一种实施例中,所述第一反射区反射蓝光,所述第二反射区反射绿光,以及所述第三反射区反射红光。
在本申请的至少一种实施例中,所述液晶组合物包括刚性高分子网络态结构。
在本申请的至少一种实施例中,所述液晶组合物包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
在本申请的至少一种实施例中,所述第一电极和所述第二电极均整面设置。
有益效果
一方面通过施加外电场对液晶分子进行取向,不需要额外增加液晶配向处理,使得制程简单且节约成本,另一方面利用紫外光诱导手性化合物手性反转,在同种母体液晶材料中,实现反射区的分区控制,因而不需要对电极进行图案化处理,设置整面公共电极即可,且不需要设置挡墙,进一步简化制程,此外由于加入高分子材料,使得反射式彩色滤光片可形成为柔性薄膜材料,有利于实现大面积辊对辊加工方式,从而降低滤光片的生产和运输成本。
附图说明
图1为本申请实施例提供的反射式滤光片的结构示意图;
图2为本申请实施例提供的反射式滤光片的制备方法的步骤流程图;
图3为本申请实施例提供的未加电压状态下的液晶层的结构示意图;
图4为本申请实施例提供的加电压状态下的液晶层的结构示意图;
图5为本申请实施例提供的一次紫外光照射下的液晶层的结构示意图;
图6为本申请实施例提供的二次紫外光照射下的液晶层的结构示意图;
图7为本申请实施例提供的显示装置的结构示意图。
本发明的实施方式
本申请提供一种反射式滤光片及其制备方法、反射式显示装置,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请提供的一种反射式滤光片,包括相对设置的第一基板、第二基板、以及液晶层,所述第一基板朝向所述第二基板的一侧设置有第一电极,所述第二基板朝向所述第一基板的一侧设置有第二电极,所述液晶层中填充有液晶组合物。
所述液晶组合物包括胆甾相液晶(Cholesteric Liquid Crystal,CLC),胆甾相液晶由于其具有选择性反射光的特性,可利用其独有特性制备出反射式滤光片。平面取向的胆甾相液晶能够使与其自身螺旋轴具有同一旋光方向的圆偏振光发生反射,而使其他光透过。由于上述反射式滤光片形成的滤光体系不吸收光线,因此可利用其制作出高光能利用效率的彩色滤光片或者偏光片。胆甾相液晶的选择性反射的波长由胆甾相液晶的螺距和双折射决定,三者之间满足如下关系式:λ=n*p,其中,n为折射率、p为螺距。可通过改变胆甾相液晶的螺距p实现对反射波长的有效调控。
由于传统的滤光片为吸收型滤光片,光损耗率较高,且需要三道黄光制程形成红、绿、蓝色阻,其制备工艺复杂。采用本申请实施例提供的反射式滤光片可包括反射不同颜色光的至少两个反射区,通过控制相应区域的胆甾相液晶的螺距来使得不同反射区反射出不同的颜色,进而达到滤光的效果。
胆淄相液晶可为胆甾醇化合物,也为向列相液晶和手性化合物的混合物,其中,胆淄相液晶的螺距由液晶组合物中的手性化合物的含量及其螺旋扭曲力决定。当向列相液晶和手性化合物的种类固定时,可通过控制手性化合物的含量实现对胆淄相液晶螺距的控制。
可将手性反转的手性化合物加入到向列相液晶中,从而可通过控制手性化合物的反转量来控制液晶层体系中整体的手性化合物含量,即胆甾相液晶的螺距。
进一步地,可通过控制紫外光照射胆甾相液晶的时间来控制手性化合物的反转量,进而控制胆甾相液晶的螺距。
所述反射式滤光片包括至少两个反射不同颜色光的反射区,反射不同颜色光的反射区内的胆甾相液晶的螺距不同,通过利用紫外光诱导手性化合物反转,从而使得照光区域内的手性化合物的含量降低,即螺距增大。
一种实施例中,所述液晶组合物可包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
具体地,所述液晶组合物可包括负性向列相液晶、紫外光致手性反转化合物、液晶性热可聚合单体、热引发剂。相对于组合物总体质量,其组分的质量百分比可为:60~ 98 wt%负性向列相液晶、1~30 wt%液晶性热可聚合单体、0.05~10 wt%紫外光致异构手性化合物、0.05~2 wt %热引发剂。
所述紫外光致异构手性化合物在可见光下具有第一旋向(左旋或右旋),经紫外光辐照后可反转为第二旋向(右旋或左旋),即在紫外光下该手性化合物结构会发生异构,相应的手性方向会发生反转,因此可通过控制手性转的量来控制最终存在于不同区域的液晶层中的手性化合物的含量。
紫外光致异构手性化合物可为手性螺烯、手性二芳基乙烯等手性化合物材料中的至少一种。
所述液晶层中的液晶组合物可包括刚性高分子网络态结构,该刚性高分子网络态结构可稳定胆甾相液晶的平面取向状态和螺距,从而在液晶层内部形成多个不同的螺距区即反射区。
一种实施例中,可通过对液晶组合物中的可聚合单体加热,引发可聚合单体发生聚合反应,形成刚性的聚合物网络结构即刚性高分子网络态结构。
如图1所示,一种实施例中,所述反射式滤光片100包括分别反射三种不同颜色光的第一反射区101、第二反射区102、以及第三反射区103。
所述第一反射区101、所述第二反射区102、以及所述第三反射区103内的胆甾相液晶的螺距依次增大,从而使得不同反射区内的液晶反射不同颜色的光。
所述液晶组合物包括向列相液晶31、手性化合物33、可聚合单体32、以及热引发剂。
一种实施例中,所述第一反射区101、所述第二反射区102、以及所述第三反射区103分别对应反射红光、绿光、以及蓝光中的一种。
例如,所述第一反射区101反射蓝光,所述第二反射区102反射绿光,所述第三反射区103反射红光。可通过对初始反射蓝光的胆淄相液晶进行多次紫外光照射,实现反射波段逐渐红移。
具体地,可设置所述液晶层30内的胆甾相液晶的初始选择性波段为蓝色,所述第一反射区101对应的液晶层30被遮盖,对其他区域(第二反射区102和第三反射区103)对应的液晶层30进行一次紫外光照射,以使得一次照光区域的胆淄相液晶螺距增大,反射波段为绿色;之后遮盖第一反射区101和第二反射区102对应的液晶层,对第三反射区103进行光照,以使得第三反射区103内的胆淄相液晶螺距继续增大,反射波段为红色;之后对液晶层30加热,引发可聚合单体32发生聚合反应,形成刚性高分子网络态结构301。
由于本申请实施例是通过对第一电极11和第二电极21施加电压对液晶分子进行取向,因此第一基板10和第二基板20的内侧均不需要进行额外的配向处理,制程简单且能节约成本。
所述第一电极11和所述第二电极21均可整面设置。由于本申请实施例提供的反射式滤光片是通过紫外光诱导手性化合物进行手性反转,利用同种母体液晶材料便能实现对反射区的分区控制,因此不需对上下电极进行图案化处理,直接涂布或沉积整面电极材料即可,且也不需要在分区交界处设置挡墙,进一步简化工艺制程。
所述第一电极11和所述第二电极21为透明电极,可为氧化铟锡材料。
所述第一基板10和所述第二基板20可为柔性基板,也可为刚性基板,所述柔性基板可选择聚酰亚胺材料,所述刚性基板可选择玻璃基板。
基于上述实施例提供的反射式滤光片,本申请实施例还提供一种发射式滤光片的制备方法,如图2所示,包括以下步骤:
S10,将液晶组合物填充于第一基板和第二基板之间以形成液晶层,其中所述液晶组合物包括胆甾相液晶,所述胆甾相液晶具有初始反射波段光。
一种实施例中,胆甾相液晶可为向列相液晶和手性化合物的混合物,可通过改变液晶组合物中的手性化合物33的含量来控制胆甾相液晶最初的反射波长及对应反射波长的光。
手性化合物含量的选择标准可依据使得胆甾相液晶的初始反射波段较小即螺距较小来进行选择,从而使得后续紫外光照射时,照光区域的胆甾相液晶的反射波段红移,反射不同于初始颜色的光。
S20,对第一电极和第二电极施加电压,以使得所述胆甾相液晶处于平面织构态;
通过施加外加电场,使得胆甾相液晶及聚合单体均处于平面织构态。完成胆甾相液晶的配向。
S30,在加电状态下,利用第一光罩对所述液晶层进行一次紫外光照射,以使得一次紫外光照射区域的所述胆甾相液晶的螺距大于未照光区域的所述胆甾相液晶;
所述第一光罩包括遮光区和透光区,透光区对应的液晶层会受到紫外光照射,遮光区对应的液晶层不会受到紫外光照射。
S40,在加电和紫外光照状态下,对所述液晶层进行加热,以使得所述液晶组合物形成刚性高分子网络态结构。
对液晶层进行加热过程中,可聚合单体发生聚合反应从而形成刚性的高分子来稳定住胆甾相液晶的平面织构态及螺距。
可聚合单体聚合完毕后,断开对两电极施加的电压、停止紫外光照、停止加热,即能得到上述任一实施例所述的反射式滤光片。
根据所述滤光片的应用情形可合理设置反射区的个数、以及不同反射区的紫外光照的次数,从而使得滤光片能够反射出多种不同颜色的光。
例如,在所述S40之前,还可包括在加电状态下,利用第二光罩对所述液晶层进行二次紫外光照射,使得二次紫外光照射区域的所述胆甾相液晶的螺距大于所述一次紫外光照射区域的所述胆甾相液晶。
一种实施例中,所述初始反射波段光为蓝光,所述一次紫外光照射区域的所述胆甾相液晶反射绿光,所述二次紫外光照射区域的所述胆甾相液晶反射红光。
请参照图3~图6,本实施例以RGB彩色滤光片为例进行说明。
如图3所示,首先,将液晶组合物灌入液晶盒中,所述液晶盒即第一基板10和第二基板20之间夹设的空间,设定胆甾相液晶的初始选择性反射波段为蓝光。
可通过喷墨打印灌入或者通过辊对辊压合,根据基板的材质进行具体选择。
所述液晶组合物包括混合均匀的负性向列相液晶、紫外光致手性反转化合物、液晶性热可聚合单体、热引发剂。
其中,负性向列相液晶、紫外光致手性反转化合物、液晶性热可聚合单体、热引发剂的质量含量为:60~ 98 wt%负性向列相液晶、1~30 wt%液晶性热可聚合单体、0.05~10 wt%紫外光致异构手性化合物、0.05~2wt%热引发剂。
紫外光致异构手性化合物在可见光下具有第一旋向(左旋或右旋),经紫外光辐照后反转为第二旋向(右旋或左旋),紫外光致异构手性化合物可为手性螺烯、手性二芳基乙烯等。
胆甾相液晶反射的颜色由液晶的平均折射率(no为寻常光折射率、ne为非寻常光折射率)和手性化合物的螺距p决定,而螺距由手性化合物的含量(χ c)和自身的螺旋扭曲力(HTP)决定,即:λ=n*p,n=1/2 (no+ne),p=1/(HTP·χ c)
一般,液晶的平均折射率为1.55~1.65,想要反射蓝光(中心波长为440nm)则p可设置为270~290nm之间。
如图4所示,再对第一电极11和第二电极21施加电压V,在电场作用下,使得胆甾相液晶及液晶性聚合单体均处于平面织构态。
如图5所示,然后在加电压状态下,利用第一光罩200对液晶层30进行一次紫外光照射,使得一次紫外光照射区域的所述胆甾相液晶的螺距大于未照光区域的所述胆甾相液晶,使得一次紫外光照射区域的胆甾相液晶的反射波段反射光为绿色。
其中,所述第一光罩200包括遮光区201和透光区202,所述遮光区201对应第一反射区101,所述透光区202对应第二反射区102和第三反射区103,所述第一反射区101未受到紫外光照从而反射原始波段的蓝光,第二反射区102和第三反射区103此时受到紫外光照射从而螺距增大到反射绿光。
如图6所示,之后在加电压状态下,利用第二光罩300对液晶层30进行二次紫外光照射,使得二次紫外光照射区域的所述胆甾相液晶的螺距大于所述一次紫外光照射区域的所述胆甾相液晶,进而使得二次紫外光照射的区域反射红光。
其中,所述第二光罩300包括遮光区301和透光区302,所述遮光区301对应于第一反射区101和第二反射区102,所述透光区302对应于第三反射区103。由于第一反射区101始终未受到紫外光照因而保持初始反射波段,反射蓝光,第二反射区102仅受到一次紫外光照射因而保持一次紫外光照射后的反射波段,反射绿光,第三反射区103由于受到一次紫外光照射和二次紫外光照射,因而保持二次紫外光照射后的反射波段,反射红光。
如图1所示,再在加电和紫外光照射状态下,对液晶层30进行加热,以引发液晶性热可聚合单体发生聚合反应,形成刚性的高分子来稳定住胆甾相液晶的平面织构态及紫外光照射后的螺距。
聚合完毕后,撤去电场、紫外光照射装置及加热装置,即得到反射型的RGB彩色滤光片。
胆甾相液晶的初始反射波段为反射蓝光(中心波长为440nm,此时手性化合物量记为:χ cB),则反射绿色(中心波长为550nm)和红色(中心波长为700nm)时,其手性化合物的含量分别为0.8χ cB和0.63χ cB。因此,一次紫外光照射需要诱导反转的手性化合物量为10%,第二次紫外光照射需要诱导反转的手性化合物量为18.5%。第一次紫外光照射的紫外积光量可设定为3000~6000mJ,第二次紫外光照射的紫外积光量可设定为5550~11100mJ。
上述实施例中的反射式滤光片可应用于彩色显示领域,如图7所示,本申请实施例还提供一种反射式显示装置1000,包括显示面板400和背离所述显示面板400的出光面一侧设置的反射式滤光片100。
所述反射式滤光片100的结构及制备方法可参考上述实施例的叙述,这里不再赘述。
当环境光照射进入反射式滤光片100上时,滤光片100的反射区反射出该区域内胆甾相液晶的相应波段颜色的光,其他颜色的光透过该反射区,从而实现该滤光片100的滤光作用。
本申请实施例一方面通过施加外电场对液晶分子进行取向,不需要额外增加液晶配向处理,使得制程简单且节约成本,另一方面利用紫外光诱导手性化合物手性反转,在同种母体液晶材料中,实现反射区的分区控制,因而不需要对电极进行图案化处理,设置整面公共电极即可,且不需要设置挡墙,进一步简化制程,此外由于加入高分子材料,使得反射式彩色滤光片可形成为柔性薄膜材料,有利于实现大面积辊对辊加工方式,从而降低滤光片的生产和运输成本。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (18)

  1. 一种反射式滤光片,其包括:
    相对设置的第一基板和第二基板,所述第一基板朝向所述第二基板的一侧设置有第一电极,所述第二基板朝向所述第一基板的一侧设置有第二电极;以及
    夹设于所述第一基板和所述第二基板之间的液晶层,所述液晶层填充有包括胆甾相液晶的液晶组合物;其中,
    所述反射式滤光片包括反射不同颜色光的至少两个反射区。
  2. 根据权利要求1所述的反射式滤光片,其中,所述反射式滤光片包括分别反射三种不同颜色光的第一反射区、第二反射区、以及第三反射区。
  3. 根据权利要求1所述的反射式滤光片,其中,所述第一反射区的胆甾相液晶的螺距、所述第二反射区的胆甾相液晶的螺距、以及所述第三反射区的胆甾相液晶的螺距依次增大。
  4. 根据权利要求2所述的反射式滤光片,其中,所述第一反射区反射蓝光,所述第二反射区反射绿光,以及所述第三反射区反射红光。
  5. 根据权利要求1所述的反射式滤光片,其中,所述液晶组合物包括刚性高分子网络态结构。
  6. 根据权利要求1所述的反射式滤光片,其中,所述液晶组合物包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
  7. 根据权利要求1所述的反射式滤光片,其中,所述第一电极和所述第二电极均整面设置。
  8. 一种反射式滤光片的制备方法,其包括:
    S10,将液晶组合物填充于第一基板和第二基板之间以形成液晶层,其中所述液晶组合物包括胆甾相液晶,所述胆甾相液晶具有初始反射波段光;
    S20,对第一电极和第二电极施加电压,以使得所述胆甾相液晶处于平面织构态;
    S30,在加电状态下,利用第一光罩对所述液晶层进行一次紫外光照射,以使得一次紫外光照射区域的所述胆甾相液晶的螺距大于未照光区域的所述胆甾相液晶;
    S40,在加电和紫外光照状态下,对所述液晶层进行加热,以使得所述液晶组合物形成刚性高分子网络态结构。
  9. 根据权利要求8所述的反射式滤光片的制备方法,其中,在所述S40之前,还包括:
    在加电状态下,利用第二光罩对所述液晶层进行二次紫外光照射,使得二次紫外光照射区域的所述胆甾相液晶的螺距大于所述一次紫外光照射区域的所述胆甾相液晶。
  10. 根据权利要求9所述的反射式滤光片的制备方法,其中,所述初始反射波段光为蓝光,所述一次紫外光照射区域的所述胆甾相液晶反射绿光,所述二次紫外光照射区域的所述胆甾相液晶反射红光。
  11. 根据权利要求8所述的反射式滤光片的制备方法,其中,所述液晶组合物包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
  12. 一种反射式显示装置,包括显示面板和背离所述显示面板出光面一侧设置的反射式滤光片,其中,所述反射式滤光片包括:
    相对设置的第一基板和第二基板,所述第一基板朝向所述第二基板的一侧设置有第一电极,所述第二基板朝向所述第一基板的一侧设置有第二电极;以及
    夹设于所述第一基板和所述第二基板之间的液晶层,所述液晶层填充有包括胆甾相液晶的液晶组合物;其中,
    所述反射式滤光片包括反射不同颜色光的至少两个反射区。
  13. 根据权利要求12所述的反射式滤光片,其中,所述反射式滤光片包括分别反射三种不同颜色光的第一反射区、第二反射区、以及第三反射区。
  14. 根据权利要求12所述的反射式滤光片,其中,所述第一反射区的胆甾相液晶的螺距、所述第二反射区的胆甾相液晶的螺距、以及所述第三反射区的胆甾相液晶的螺距依次增大。
  15. 根据权利要求13所述的反射式滤光片,其中,所述第一反射区反射蓝光,所述第二反射区反射绿光,以及所述第三反射区反射红光。
  16. 根据权利要求12所述的反射式滤光片,其特征在于其中,所述液晶组合物包括刚性高分子网络态结构。
  17. 根据权利要求12所述的反射式滤光片,其中,所述液晶组合物包括向列相液晶、手性化合物、可聚合单体、以及热引发剂。
  18. 根据权利要求12所述的反射式滤光片,其中,所述第一电极和所述第二电极均整面设置。
PCT/CN2020/101237 2020-06-05 2020-07-10 反射式滤光片及其制备方法、反射式显示装置 WO2021243805A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/969,642 US20210382350A1 (en) 2020-06-05 2020-07-10 Reflective filter, manufacturing method thereof, and reflective display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010504161.XA CN111679354A (zh) 2020-06-05 2020-06-05 反射式滤光片及其制备方法、反射式显示装置
CN202010504161.X 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021243805A1 true WO2021243805A1 (zh) 2021-12-09

Family

ID=72435105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101237 WO2021243805A1 (zh) 2020-06-05 2020-07-10 反射式滤光片及其制备方法、反射式显示装置

Country Status (2)

Country Link
CN (1) CN111679354A (zh)
WO (1) WO2021243805A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589578A (zh) * 2021-07-23 2021-11-02 Tcl华星光电技术有限公司 液晶显示装置及其制备方法
CN113759612A (zh) * 2021-08-19 2021-12-07 华南师范大学 一种基于胆甾相液晶的反射式滤光片及其制备方法和应用
CN114241933B (zh) * 2021-12-14 2023-02-07 Tcl华星光电技术有限公司 显示面板及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344637A (ja) * 2002-05-27 2003-12-03 Dainippon Printing Co Ltd コレステリック液晶カラーフィルターの製造方法及びその方法で製造されたコレステリック液晶カラーフィルター
TWI235255B (en) * 2001-06-01 2005-07-01 Dainippon Printing Co Ltd Wavelength-selecting optical element and optical display provided with the same
CN102981323A (zh) * 2012-12-03 2013-03-20 京东方科技集团股份有限公司 显示面板、其制造方法以及显示装置
CN103309073A (zh) * 2013-06-19 2013-09-18 京东方科技集团股份有限公司 胆甾型液晶薄膜制作方法、胆甾型液晶薄膜和滤光片
CN104199225A (zh) * 2014-08-21 2014-12-10 京东方科技集团股份有限公司 一种显示面板及其制作方法、以及显示装置
CN104199215A (zh) * 2014-08-21 2014-12-10 深圳市华星光电技术有限公司 一种偏振光调制装置及其制作方法
CN106085463A (zh) * 2016-06-06 2016-11-09 京东方科技集团股份有限公司 一种组合物、彩膜基板、显示面板、显示装置及彩膜基板的制备方法
CN106200094A (zh) * 2016-07-08 2016-12-07 京东方科技集团股份有限公司 一种反射式显示装置及其制作方法
CN110133904A (zh) * 2019-05-29 2019-08-16 深圳市光合显示科技有限公司 多稳态液晶显示器件、制备方法及驱动方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235255B (en) * 2001-06-01 2005-07-01 Dainippon Printing Co Ltd Wavelength-selecting optical element and optical display provided with the same
JP2003344637A (ja) * 2002-05-27 2003-12-03 Dainippon Printing Co Ltd コレステリック液晶カラーフィルターの製造方法及びその方法で製造されたコレステリック液晶カラーフィルター
CN102981323A (zh) * 2012-12-03 2013-03-20 京东方科技集团股份有限公司 显示面板、其制造方法以及显示装置
CN103309073A (zh) * 2013-06-19 2013-09-18 京东方科技集团股份有限公司 胆甾型液晶薄膜制作方法、胆甾型液晶薄膜和滤光片
CN104199225A (zh) * 2014-08-21 2014-12-10 京东方科技集团股份有限公司 一种显示面板及其制作方法、以及显示装置
CN104199215A (zh) * 2014-08-21 2014-12-10 深圳市华星光电技术有限公司 一种偏振光调制装置及其制作方法
CN106085463A (zh) * 2016-06-06 2016-11-09 京东方科技集团股份有限公司 一种组合物、彩膜基板、显示面板、显示装置及彩膜基板的制备方法
CN106200094A (zh) * 2016-07-08 2016-12-07 京东方科技集团股份有限公司 一种反射式显示装置及其制作方法
CN110133904A (zh) * 2019-05-29 2019-08-16 深圳市光合显示科技有限公司 多稳态液晶显示器件、制备方法及驱动方法

Also Published As

Publication number Publication date
CN111679354A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2021243805A1 (zh) 反射式滤光片及其制备方法、反射式显示装置
KR100310153B1 (ko) 적층방법을 이용한 광대역 특성을 갖는 편광막의 제조방법
JP2004205801A (ja) 液晶表示装置及びその製造方法、位相差層の製造方法
US20210382350A1 (en) Reflective filter, manufacturing method thereof, and reflective display device
JPH01206318A (ja) 液晶表示装置
WO2014205985A1 (zh) 导光板及其制作方法、背光源及透明显示装置
CN102830541B (zh) 一种液晶显示面板及液晶显示器
CN113391492B (zh) 一种近红外光屏蔽薄膜材料、制备方法及应用
CN113589416B (zh) 滤光片及其制备方法、显示面板
WO1996020425A1 (fr) Afficheur a cristaux liquides et procede de production
KR19990016174A (ko) 액정표시소자용 편광막의 제조방법
JP3267861B2 (ja) 反射型液晶表示素子及びその製造方法
KR100284163B1 (ko) 콜레스테릭 액정을 이용한 반사형 컬러필터와 이를 이용한 액정표시장치 제조방법
JP2002341126A (ja) 選択反射膜及び液晶カラーフィルター
KR100715906B1 (ko) Clc 컬러필터의 제조방법
CN114241933B (zh) 显示面板及其制造方法
JP3524245B2 (ja) 液晶表示素子
JPH11142823A (ja) 液晶シャッターおよびカラー画像表示装置
JPH11258638A (ja) ゲストホスト型液晶表示装置
JP2000275422A (ja) 液晶表示装置用基板およびこれを用いた液晶表示装置
KR100213182B1 (ko) 마이크로 칼라 렌즈를 채용한 액정표시소자
JP2002241756A (ja) 液晶組成物、カラーフィルターおよびその製造方法、ならびに液晶表示装置
KR100282332B1 (ko) 콜레스테릭액정칼라필터및그제조방법
JP2002267830A (ja) カラーフィルター、その製造方法および液晶表示装置
KR19980029979A (ko) 반사형 액정 표시 소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939287

Country of ref document: EP

Kind code of ref document: A1