WO2021242015A1 - Substrate processing system and method for inspecting substrate processing system - Google Patents

Substrate processing system and method for inspecting substrate processing system Download PDF

Info

Publication number
WO2021242015A1
WO2021242015A1 PCT/KR2021/006567 KR2021006567W WO2021242015A1 WO 2021242015 A1 WO2021242015 A1 WO 2021242015A1 KR 2021006567 W KR2021006567 W KR 2021006567W WO 2021242015 A1 WO2021242015 A1 WO 2021242015A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
substrate
transfer
process chamber
support
Prior art date
Application number
PCT/KR2021/006567
Other languages
French (fr)
Korean (ko)
Inventor
정진안
김종철
변영섭
정구현
황철주
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Publication of WO2021242015A1 publication Critical patent/WO2021242015A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to a substrate processing system and an inspection method of the substrate processing system, and more particularly, to a substrate processing system capable of confirming the state of the substrate processing system prior to a substrate processing process and a substrate processing system inspection method.
  • a semiconductor manufacturing apparatus transfers a substrate loaded into a transfer chamber to a process chamber that performs different substrate processing processes, and the process chamber performs processes such as depositing or etching a thin film on the substrate.
  • a transfer device including a robot arm for supporting the substrate is provided in the transfer chamber, and the transfer device transfers the substrate into the process chamber.
  • the position of the substrate on the susceptor may be determined by at least one of an operation of the transfer apparatus and a state in which the process chamber is coupled to the transfer chamber. That is, the substrate may or may not be seated in the correct position on the susceptor by at least one of an operation of the transfer apparatus and a state in which the process chamber is coupled to the transfer chamber.
  • a problem may occur in a substrate processing process in the process chamber, and a defective semiconductor device may be produced.
  • Patent Document 1 Korean Patent Application Laid-Open No. 10-2008-0004118
  • the present invention provides a substrate processing system capable of inspecting whether an operation of a transfer apparatus for transferring a substrate is abnormal and a method of inspecting the substrate processing system.
  • the present invention provides a substrate processing system capable of inspecting the state of a process chamber for processing a substrate, and a load lock chamber that provides a substrate to a transfer chamber, and a method for inspecting the substrate processing system.
  • a substrate processing system includes a transfer chamber having an internal space; a transfer device having a support installed in the transfer chamber to support and move the substrate; A first detection unit installed in at least one of the transfer chamber and the transfer device is provided, and it is determined whether the support unit has moved to a preset first position using the data obtained from the first detection unit, and a first inspection device for determining an operating state.
  • the first detection unit monitors the position of the support, and the first inspection device compares the position of the support monitored by the first detection unit with the first position to determine the operation state of the transfer device. includes a judging unit.
  • the first detection unit is installed in at least one of the support unit and the transfer chamber to detect a separation distance between the support unit and the inner wall of the transfer chamber, and the first inspection device includes a distance detected by the first detection unit and a preset distance. Comparing the distance, it includes a first determination unit for determining the operating state of the transfer device.
  • a load lock chamber connectable to the transfer chamber; and a second inspection device configured to monitor the support moved into the load lock chamber to determine a state in which the load lock chamber is installed in the transfer chamber.
  • the second inspection device may include: a second detection unit configured to monitor a position of the support unit moved into the load lock chamber; and a second determination unit configured to determine a connection state between the load lock chamber and the transfer chamber by comparing the position of the support unit monitored by the second detection unit with a preset second position.
  • a process chamber connectable to the transfer chamber; a mount installed in the process chamber; and a third inspection device configured to monitor at least one of the support part and the mounting table moved into the process chamber to determine at least one of a state in which the process chamber is connected to the transfer chamber and an installation state of the mounting table.
  • the third inspection apparatus may include: a third detection unit configured to monitor a position of the support part moved into the process chamber and a position of the seating base; and comparing the position of the support part monitored by the third detector with a preset third position to determine a state in which the process chamber is connected to the transfer chamber, or to use the data monitored by the third detector to determine the position of the seat and a third determination unit for determining the installation state of the seating table by determining whether the seat is horizontal.
  • a method of inspecting a substrate processing system includes the steps of: moving the support part of a transfer apparatus according to a driving command value for moving the support part to a preset first position in a transfer chamber; detecting a position of the support part by a first detection part; and determining the operating state of the transfer device by comparing the preset value to which the first position is reflected and the value detected by the first detection unit.
  • the transfer device for transferring the substrate before performing the substrate processing process, it is possible to check whether the operation of the transfer device for transferring the substrate is abnormal. In addition, it is possible to automatically check whether there is an abnormality in a state in which the process chamber for processing the substrate is connected to the transfer chamber, a state in which a seat is installed in the process chamber, and a state in which the load lock chamber is connected to the transfer chamber. Accordingly, when it is confirmed that there is an abnormality in these devices, inspection, repair or adjustment of the device in which the abnormality is confirmed may be performed.
  • FIG. 1 and 2 are top views of a substrate processing system according to an embodiment of the present invention.
  • 3 and 4 are views exemplarily illustrating a state in which a substrate is seated on a mounting base.
  • FIG. 5 is a top view illustrating a state in which the support part is moved forward according to an embodiment of the present invention in order to inspect the operation of the transport device.
  • FIG. 6 is a front view illustrating a standby state before the support part is moved forward according to an embodiment of the present invention.
  • FIG. 7 and 8 are front views illustrating a state in which a support part according to an embodiment of the present invention is moved forward from the transfer chamber toward the process chamber in order to inspect the operation of the transfer apparatus.
  • FIG. 9 is a conceptual diagram exemplarily illustrating positions of a reference region and a mark on an image image acquired through a first detection unit according to an embodiment of the present invention.
  • 10 to 12 are front views illustrating a state in which the support part is moved forward in the transfer chamber in order to inspect the operation of the transfer apparatus using the first inspection apparatus according to a modified example of the embodiment.
  • FIG. 13 is a conceptual diagram illustrating a horizontal position in which a process chamber is coupled to a transfer chamber.
  • FIG. 14 is a conceptual diagram for explaining a case in which the support is installed horizontally (solid line) and inclined (dotted line) when the support is installed in the process chamber.
  • 15 is a diagram conceptually illustrating a state in which light is irradiated into the process chamber by using the third detector to determine the connection state of the process chamber using the third inspection apparatus according to an embodiment of the present invention.
  • FIG. 16 is a top view illustrating a state in which a substrate is seated on a mounting table to determine a connection state of a process chamber using the third inspection apparatus according to an embodiment of the present invention.
  • 17 is a flowchart illustrating a process of inspecting a substrate processing system according to an embodiment of the present invention before a substrate processing process.
  • FIG. 1 and 2 are top views of a substrate processing system according to an embodiment of the present invention.
  • 3 and 4 are views exemplarily illustrating a state in which a substrate is seated on a mounting base.
  • FIG. 3 shows a state in which the center of the width direction of the substrate and the center in the width direction of the mounting base coincide with each other
  • FIG. 4 shows a state in which they do not coincide.
  • a substrate processing system includes a transfer chamber 1000 having an internal space in which a substrate 10 can be accommodated, and is fastened to the transfer chamber 1000 , and moves into the A support part for transferring the substrate 10 into the process chamber 6000 performing a predetermined process on the transferred substrate 10 , the transfer chamber 1000 , or transferring the substrate 10 to the outside of the transfer chamber 1000 .
  • It includes a transport device 2000 having a 2100 , and an inspection device (hereinafter, referred to as a first inspection device 3000 ) that inspects the operating state of the transport device 2000 .
  • the substrate processing system includes a load lock chamber 4000 and a load lock chamber that are connectable to the transfer chamber 1000 and temporarily accommodate or store the substrate 10 to be transferred to the transfer chamber 1000 .
  • An inspection device (hereinafter, referred to as a second inspection device 5000 ) that inspects a state connected to the transfer chamber 1000 , a state in which the process chamber 6000 is connected to the transfer chamber 1000 , and a seat installed inside the process chamber 6000 .
  • an inspection device hereinafter, referred to as a third inspection device 7000 ) that inspects at least one of the installation states of the 6110 .
  • the substrate processing system includes a transfer driver 2000a that provides a transfer driving force to the transfer apparatus 2000 , a controller 2000b that controls the operation of the transfer driver 2000a , a process chamber 6000 and a transfer chamber 1000 . It may include a gate valve 8000 installed between and between the load lock chamber 4000 and the transfer chamber 1000 .
  • the substrate 10 to be processed in the substrate processing system according to the embodiment may be a circular wafer.
  • the substrate 10 is not limited to the above-described wafer, and various means such as glass, polymer film, plastic, etc. may be applied.
  • the shape of the substrate 10 is not limited to a circular shape, and various polygonal shapes other than a circular shape may be applied.
  • the transfer chamber 1000 has a cylindrical shape having an internal space, and may be disposed to connect the process chamber 6000 and the load lock chamber 4000 .
  • the transfer chamber 1000 may be provided in various shapes having an internal space in which the transfer apparatus 2000 can be installed and the transfer apparatus 2000 can be operated.
  • the load lock chamber 4000 has an internal space, and can be connected to the transfer chamber 1000 , that is, fastened and separated.
  • the substrate 10 is temporarily seated or loaded in the load lock chamber 4000 , and an elevating cassette 4100 may be installed.
  • a viewport 4200 through which the inside of the load lock chamber 4000 can be visually confirmed may be provided at an upper portion of the load lock chamber 4000 .
  • a plurality of process chambers 6000 may be provided, and the plurality of process chambers 6000 are connected to the transfer chamber 1000 , ie, coupled to and separated from each other.
  • the plurality of process chambers 6000 and the load lock chamber 4000 are coupled to the transfer chamber 1000 , for example, as shown in FIGS. 1 and 2 , the plurality of process chambers 6000 and the load lock chamber 4000 .
  • the shape in which the plurality of process chambers 6000 and the load lock chamber 4000 are coupled to the transfer chamber 1000 is not limited to the aforementioned radial shape and may be variously changed.
  • the plurality of process chambers 6000 may be provided to perform different substrate processing processes therein.
  • the substrate receiving unit 6100 having a mounting unit 6110 on which the substrate 10 is mounted, and the mounting unit 6110 are disposed to face the substrate, and source gas for substrate processing is sprayed.
  • a gas injection unit (not shown) may be installed.
  • the raw material injected from the gas injection unit may be a raw material for depositing a thin film on the substrate 10 or a raw material for etching the substrate 10 or the thin film.
  • the process chamber 6000 may be provided with a viewport 6200 through which the inside of the process chamber 6000 can be visually confirmed, and the viewport 6200 is preferably provided at a position facing the mounting table 6110 .
  • the substrate receiving unit 6100 and the gas injection unit are disposed to face each other inside the process chamber 6000 .
  • the substrate receiving unit 6100 is located in the lower part of the process chamber 6000 , and the substrate receiving unit 6100 is disposed.
  • the substrate receiving unit 6100 has a mounting base 6110 on which the substrate 10 is mounted and one end protruding upward of the mounting base 6110, or the mounting base ( It includes a lift pin 6120 capable of elevating so as to be located on the inside of the 6110.
  • the mount 6110 is a means on which the substrate 10 for processing is seated or supported.
  • the mounting base 6110 may have a plate shape having a larger area than that of the substrate 10 .
  • a groove hereinafter, a seating groove
  • a pocket for stably supporting the substrate 10 may be provided in the seating table 6110 . That is, the seating table 6110 is provided with a groove in the shape of a depression in the opposite side to the gas injection part from the surface (hereinafter, referred to as one surface 62) facing the gas injection part, and this groove is a seating in which the substrate is accommodated or seated. it is home
  • the seating position of the substrate 10 on the seating groove or the seating surface 62b is an operation of the transfer device 2000 for transferring the substrate 10 to the process chamber 6000 . It may vary depending on a state, a state in which the process chamber 6000 is connected to the transfer chamber 1000 , and a state in which the mounting base 6110 is installed in the process chamber 6000 . More specifically, it may vary depending on whether the operation of the transfer device 2000 is abnormal, a position where the process chamber 6000 is coupled to the transfer chamber 1000 , and whether the seat 6110 is horizontal.
  • the width direction center 12 of the substrate 10 is positioned at the width direction center CH of the seating surface 62b as shown in FIG. 3 (a).
  • the separation distance (or gap) between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 in the circumferential direction of the substrate 10 may be uniform as in (b) of 3 .
  • the width direction center 12 of the substrate 10 is seated so as to deviate from the width direction center (CH ) of the seating surface 62b as shown in FIG. 4 (a), FIG. 4 (b) and Similarly, the separation distance (or gap) between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 in the circumferential direction of the substrate 10 may be non-uniform.
  • the different positions of the substrate 10 on the mounting table 6110 include whether the operation of the transfer device 2000 is abnormal, the position at which the process chamber 6000 is coupled to the transfer chamber 1000 and the seating position. It varies depending on whether the stand 6110 is horizontal or not, and a description of the substrate seating position will be described later.
  • the transfer device 2000 is a device that supports the substrate 10 and moves it to a desired position.
  • the transfer apparatus 2000 transfers the substrate 10 inside the load lock chamber 4000 to the transfer chamber 1000 , and transfers the substrate 10 transferred to the transfer chamber 1000 into the process chamber 6000 . transport
  • the transfer device 2000 is installed to connect the support 2100 on which the substrate 10 is supported and the support 2100 and the transfer driver 2000a, and horizontally move and rotate according to the operation of the transfer driver 2000a. and an arm 2200 that is movable.
  • the arm 2200 is connected between the support part 2100 and the transfer driving part 2000a. That is, the arm 2200 has one end connected to the transport driving unit 2000a and the other end connected to the support unit 2100 .
  • the arm 2200 is horizontally moved and rotated according to the operation of the transport driver 2000a.
  • the arm 2200 may be raised and lowered according to the operation of the transfer driving unit 2000a.
  • a horizontal movement operation in which the support 2100 connected to the arm 2200 moves closer to the process chamber 6000 or the load lock chamber 4000 , or moves toward the process chamber 6000 or the load lock chamber 4000 . is defined as a forward movement.
  • the support 2100 connected to the arm 2200 moves away from the process chamber 6000 or the load lock chamber 4000 , or horizontally moves in the opposite direction to the process chamber 6000 or the load lock chamber 4000 .
  • a movement motion is defined as a backward movement.
  • the transfer driving unit 2000a is a means for driving or operating the arm 2200 so that the support unit 2100 moves forward and backward and rotationally.
  • the transport driving unit 2000a may include a horizontal driving unit for moving the transport device 2000 forward and backward and a rotation driving unit for rotating the transport device 2000 .
  • the transport driving unit may include an elevating driving unit for adjusting the height of the transport device 2000 .
  • the controller 2000b may operate the transport driving unit 2000a according to a driving command value so that the transport device 2000 is horizontally moved, rotated, or moved up and down. That is, the control unit 2000b sets or stores a driving command value for horizontally moving, rotationally moving, or elevating and lowering the transfer device 2000 so that the support unit 2100 is positioned at a desired position.
  • the driving command value may be a value set in advance in the installation stage of the transfer device 2000, and may be a value in which design dimensions, design tolerance, and the like are reflected. And the transfer device can be operated by these drive command values.
  • the position of the substrate 10 may be a position based on the mounting base 6110 or the mounting surface 62b.
  • the position of the substrate 10 is a position of the substrate 10 at which defects do not occur during processing of the substrate 10 or can be manufactured with a desired quality, and is a position determined or set during manufacturing of the substrate processing system. can be
  • the original position of the substrate 10 is, for example, the width direction center 12 of the substrate 10 as shown in FIGS. 3 (a) and (b) is the width direction center of the seating surface 62b ( CH ) It may be a position that coincides with or overlaps with. That is, the original position of the substrate 10 is not biased to either side on the seating surface 62b of the substrate 10 as shown in FIGS. 4 (a) and (b), and in FIGS. ), the distance between the side surface 11 of the substrate 10 and the inner surface 62c of the mounting base 6110 in the circumferential direction of the substrate 10 may be uniformly disposed.
  • the position of the substrate 10 is not limited to the example in which the width direction center of the substrate 10 coincides with the width direction center CH of the seating surface 62b, as described above, and defects occur during substrate processing. It may not occur or may be altered to various locations intended to produce the desired quality.
  • the position of the substrate 10 on the seat 6110 or the seat surface 62b is determined whether the operation of the transfer device 2000 for transferring the substrate 10 is abnormal, and the process chamber 6000 is connected to the transfer chamber 1000 . It may vary depending on the fastened position and whether the seat is horizontal.
  • Whether the operation of the transfer device 2000 is abnormal may mean a state in which the support unit 2100 is actually moved according to the operation of the transfer driver 2000a.
  • the state in which the support part 2100 is actually moved may be whether the support part 2100 in which the horizontal movement has been completed is located at a preset target position (hereinafter, referred to as a first position).
  • a first position a preset target position
  • the operation of the transfer apparatus 2000 is normal, otherwise it is determined as abnormal.
  • the transfer driving unit 2000a is operated by a preset driving command value (hereinafter, referred to as the first driving command value) according to the first position or the desired horizontal movement distance (hereinafter, the first movement distance), Accordingly, the arm 2200 is operated to horizontally move the support part 2100 .
  • the first movement distance may be determined according to the first location.
  • the operation of the transfer device 2000 may be determined to be normal or abnormal depending on whether the support unit 2100 is moved to the first movement distance. This is because if the actual movement distance of the support part 2100 is the first movement distance, the support part 2100 has reached the first position, otherwise it is not located in the first position.
  • the first moving distance may be set as a range. That is, the first movement distance may be a range value greater than or equal to the lower limit and less than or equal to the upper limit.
  • the operation of the transfer device 2000 may be considered normal.
  • the operation of the transfer device 2000 may be regarded as abnormal.
  • the fact that the actual movement distance of the support unit 2100 is not included in the first movement distance may be less than the lowest limit of the first movement distance or exceeding the upper limit of the first movement distance.
  • the substrate 10 loaded into the transfer chamber 1000 is transferred into the process chamber 6000 through the transfer device 2000 and seated on the mount 6110, the operation of the transfer device 2000 is normal and , when the connection state of the process chamber 6000 is normal, the substrate 10 may be seated in the proper position of the mounting base 6110 . That is, for example, as shown in FIG. 3 , the center 12 in the width direction of the substrate 10 may be seated to coincide with the center C H in the width direction of the seating surface 62b. However, when the operation of the transfer device 2000 is abnormal, the substrate 10 may not be seated in the proper position of the mounting base 6110 . That is, for example, as shown in FIG. 4 , the center 12 in the width direction of the substrate 10 does not coincide with the center in the width direction of the mounting base 6110 (CH ), and may be seated so as to deviate.
  • CH center in the width direction of the mounting base 6110
  • the normal or abnormal operation of the transfer device 2000 is an assembly state between the support part 2100 and the arm 2200 and an assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200. It may be by at least one. That is, according to at least one of the assembly state between the support part 2100 and the arm 2200 and the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200, by the operation of the transfer driving unit 2000a
  • the actual horizontal movement distance of the support unit 2100 that is, the forward or backward movement distance varies.
  • the transfer driving unit 2000a By the operation, the support 2100 may be horizontally moved by the first movement distance, moved less than the first movement distance, or moved to exceed the first movement distance.
  • the assembly state between the support part 2100 and the arm 2200 and the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200 are referred to as 'assembly state of the transfer device'. It will be described collectively.
  • the position of the substrate 10 on the seating table 6110 or the seating surface 62b may vary depending on the assembly state of the transfer device 2000 as well as the connection state of the process chamber 6000 .
  • the process chamber 6000 is fastened or coupled to the transfer chamber 1000 .
  • the position of the substrate 10 on the mounting base 6110 may vary according to a position where the process chamber 6000 is coupled to the transfer chamber 1000 . That is, even if the operation of the transfer device 2000 is normal, the substrate 10 may not be positioned on the mounting base 6110 according to the connection state of the process chamber 6000 . This is because the position of the seating base 6110 with respect to the transfer chamber 1000 or the transfer device 2000 is changed according to the coupling state of the process chamber 6000 .
  • the first inspection apparatus 3000 that monitors the operation state of the transfer apparatus 2000 before the actual substrate processing process, that is, can check or inspect whether there is an abnormal operation in advance, is provided.
  • 5 is a top view illustrating a state in which the support part is moved forward according to an embodiment of the present invention in order to inspect the operation of the transport device.
  • 6 is a front view illustrating a standby state before the support part is moved forward according to an embodiment of the present invention.
  • 7 and 8 are front views illustrating a state in which a support part according to an embodiment of the present invention is moved forward from the transfer chamber toward the process chamber in order to inspect the operation of the transfer apparatus.
  • 9 is a conceptual diagram exemplarily illustrating positions of a reference region and a mark on an image image acquired through a first detection unit according to an embodiment of the present invention.
  • Figure 7 is a physical movement of the support distance (D R) of the first movement distance (D ET) to satisfy the figure
  • the actual moving distance of Fig. 8 is the support shown a case in which (D R) of the first movement distance ( D ET ) is not satisfied.
  • the first inspection device 3000 includes an alarm unit (hereinafter, the first alarm unit 3300) that generates an alarm when the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. can do.
  • the mark M may be formed, for example, on the back surface of the support 2100 as shown in FIG. 6 .
  • the formation position of the mark M is not limited to the rear surface of the support part 2100 , and may be formed at any position of the support part 2100 if it can be detected by the first detection part 3100 .
  • the mark M according to the embodiment has a shape such as a cross (see FIG. 9 ), but is not limited thereto and may be deformed into various shapes such as a circle and a polygon.
  • the first detection unit 3100 may be a means for imaging the mark M provided on the support unit 2100 . That is, the first detection unit 3100 may be a means including an imaging unit capable of acquiring an image or a video image, and the imaging unit may be a line scanner, a vision camera, or the like.
  • the first detection unit 3100 may be installed in the transfer chamber 1000 to be located below the support unit 2100 .
  • the first detection unit 3100 is installed in the transfer chamber 1000 so that the support unit 2100 is located at a position on the path on which the support unit 2100 is moved forward to the position of the process chamber 6000 . That is, the first detector 3100 is installed in the transfer chamber 1000 to be positioned between the process chamber 6000 and the transfer driver 2000a.
  • the first detection unit 3100 may be provided in plurality, and may be located between each process chamber 6000 and the transfer driver 2000a.
  • the first detection unit 3100 is installed inside the transfer chamber 1000 , but the present invention is not limited thereto. may be installed in
  • An installation position of the first detection unit 3100 is determined based on a state in which the support unit 2100 does not move forward in the process chamber 6000 direction (hereinafter, referred to as a standby state) as shown in FIGS. 1 and 6 . More specifically, the installation of the first detector 3100 so that even the center of the mark (M) provided on the support portion 2100 in the stand-by state as shown in 6 (C M) a predetermined distance from the processing chamber (6000) direction from. Accordingly, when the support part 2100 in the standby state moves forward in the direction of the process chamber 6000 by the predetermined distance, the mark M is located on the upper side of the first detection part 3100 , that is, to face the first detection part 3100 . can be located.
  • the transport device 2000 in order to inspect the operation of the transport device 2000 , the transport device 2000 , that is, the support part 2100 is moved forward in the direction of the first detection part 3100 .
  • the first position may be the position of the first detection unit 3100 , and the target horizontal movement distance to which the support unit 2100 is moved, that is, the first movement distance D ET , is to the support unit 2100 in the standby state. It may be a separation distance between the provided mark M and the first detection unit 3100 . More specifically, the first movement distance D ET may be a separation distance between the center C M of the mark M provided on the support unit 2100 in the standby state and the center of the first detection unit 3100 .
  • the support unit 2100 moves forward in the process chamber 6000 direction by the operation of the arm 2200 .
  • the mark M may be positioned above the first detection part 3100 , that is, to face the first detection part 3100 .
  • the mark M may be located in the first position.
  • the support part 2100 is moved to be less than or more than the first movement distance D ET , the mark M may not face the first detection part 3100 .
  • the mark (M) is the center in the width direction of the center (C M) is the first detection unit 3100 of the first detection unit skater faced with 3100, according to which the support portion 2100, the actual distance traveled, the mark (M) may or may not match or overlap with . In this case, the mark M is not located at the first position.
  • the position of the mark M changes, so the mark M F on the image image F captured by the first detection unit 3100 . location changes.
  • the mark (M F) on the video image (F) as shown in (a) of Fig. 9 the center (C MF) is a picture image (F) the center (C F) with or match or overlap of the, in FIG. 9 ( b) may not be the case.
  • the mark M F may not exist on the video image F .
  • the first determination unit 3200 determines whether the operation of the transfer device 2000 is normal or abnormal using the data obtained by the first detection unit 3100 . For example, the first determination unit 3200 determines the operation of the transfer device 2000 as normal or abnormal according to the position of the mark M F on the image image F obtained from the first detection unit 3100 . To this end, the first determination unit 3200 sets the reference area A S on the image image F transmitted from the first detection unit 3100 .
  • the reference area A S may be a predetermined area including the center C F on the image F. That is, the reference area (S A) can be set to have a predetermined area, so that this center coincides with the center (C F) of the picture image (F).
  • the reference area (A S) are, when positioned so as to coincide with the center (C F) of the mark (M F) the center (C MF) the reference area (A S) of I of a predetermined area as described above, , the mark M F does not deviate out of the reference area A S , and has an area that can be located inside.
  • the reference area ( AS ) is set or provided in a circular shape, but is not limited thereto, and any shape can be changed as long as the area in which the marks ( MF ) can all be accommodated in the reference area (AS). .
  • a first determining unit 3200 is the operation of analyzing the picture image (F), the mark (M F), the reference area (A S) deviated out depending on whether or not, the transfer device (2000), that is, the support portion 2100 judged to be normal or abnormal. That is, when the first determination unit 3200 without departing out mark (M F), the reference area (A S) as shown in (a) of Figure 9, the mark (M F), the entire analysis to be located in a reference region , it is determined that the operation of the transfer device 2000 is normal. But, on the contrary, it determines the behavior of the mark (M F), when the whole or part of the analysis to be out of the reference area (S A), the transfer device (2000) as shown in (b) of Fig. 9 as abnormal.
  • the first determination unit 3200 coordinates analysis of the center position of the mark M F on the image image F, and the center C MF of the mark M F as shown in FIG. 9 (a). ) When the position coincides with or overlaps the center C F of the reference area A S , it is determined that the operation of the transfer device 2000 is normal. However, also the center of the mark (M F) on the video image (F) as shown in 9 (b) (C MF) the center of the location where the reference area (A S) (C F) position and a spaced not match or overlap If it is, it is determined that the operation of the transfer device 2000 is abnormal.
  • the mark (M F) on the video image (F) are without departing out of the reference area (A S), the mark (M F) or the entire position in the reference area (A S), mark (M F), the center (C MF) is positioned that the center (C F) of the reference area (a S) and the matching or overlapping, support member 2100 is in the standby state (see FIG. 6) as shown in Figure 7 the This is because it has actually moved forward as much as 1 movement distance (D ET ). That is, this is because the actual forward movement distance D R of the support 2100 satisfies the first movement distance D ET . In other words, this is because the support 2100 provided with the mark M has been moved to the first position.
  • the actual forward moving distance D R does not reach the first moving distance D ET as shown in FIG. 8 , or the first moving distance D ET ) is the center (C MF) position of the case greater than (not shown), the mark (M F as shown in (b) of FIG. 9) in whole or in part out of the reference area (a S) or mark (M F) the center of the reference area (a S) (C F) position and does not match or overlap.
  • the center (C MF ) position of the mark M F is the reference area (the center of a S) (C F) position and does not match or overlap. Accordingly, the center (C MF) if the location is based on the area center (C F) position and does not match or overlap of (A S), the actual moving distance (D R) of the support portion 2100 of the mark (M F) the It may be explained that the support 2100 or the mark M does not reach the first position because the 1 movement distance D ET is not satisfied.
  • the first determination unit 3200 compares and analyzes the position between the reference area A S and the mark M F on the image image F, and sets the operation state of the transfer device 2000 as normal or abnormal. judge
  • the first alarm unit 3300 generates an alarm when the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal.
  • the operator repairs or repairs the transfer device 200 . That is, the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2110 or the assembly state between the support part 2100 and the arm 2110 is checked, and repair or repair is performed.
  • a plurality of first detection units 3100 of the first inspection apparatus 3000 may be provided. That is, the plurality of process chambers 6000 and the load lock chamber 4000 may be installed to face each other.
  • the first inspection apparatus 3000 provides a mark M on the support part 2100 , and images the support part 2100 with the first detection part 3100 including an image pickup part, and the transfer apparatus 2000 ) was judged to be normal or abnormal.
  • the first inspection apparatus 3000 is not limited to the above-described example, and may determine the operation of the transfer apparatus 2000 as normal or abnormal by various means and methods.
  • FIGS. 10 to 12 are front views illustrating a state in which the support part is moved forward in the transfer chamber in order to inspect the operation of the transfer apparatus using the first inspection apparatus according to a modified example of the embodiment.
  • Figure 10 shows a standby state before the support is moved forward.
  • FIG. 11 is a view showing a case where the separation distance between the front end of the forward-moved support part and the inner wall of the transfer chamber satisfies a preset distance
  • FIG. 12 is a view showing a case that does not.
  • the first inspection apparatus 3000 includes a first detection unit 3400 including an optical sensor mounted in the transfer chamber 1000 to emit light and receive the reflected light; The distance detected or measured by the distance detection unit 3500 and the distance detection unit 3500 for measuring or detecting the separation distance between the support 2100 and the inner wall of the transfer chamber 1000 using the signal or data transmitted from the detection unit 3400 and a first determination unit 3200 that compares the distance D M with a preset separation distance (hereinafter, a preset distance D S ) to determine whether the operation of the transfer device 2000 is normal or abnormal.
  • a preset distance D S a preset separation distance
  • it may include a first alarm unit 3300 that generates an alarm when it is determined that the first determination unit 3200 is abnormal.
  • the first detection unit 3400 may be a means including a light sensor having a light emitting unit that generates and emits light and a receiving unit that receives the reflected light.
  • the first detection unit 3400 may be mounted on the inner wall of the transfer chamber 2000 .
  • the distance detection unit 3500 may be, for example, a means for detecting or measuring the separation distance between the support unit 2100 and the inner wall of the transfer chamber 1000 using a time when the light emitted from the first detection unit 3400 is reflected and received again. have.
  • the first determination unit 3200 compares the separation distance (hereinafter, the detection distance (DM )) between the support unit 2100 and the inner wall of the transfer chamber 1000 detected by the distance detection unit 3500 and a preset distance ( DS ) Thus, it is determined that the operation of the transfer device 2000 is normal or abnormal.
  • the preset distance D S is determined according to the target position to which the support unit 2100 is to be moved, that is, the first position. More specifically, a preset distance Ds may be determined according to a first position that is a target position with respect to the tip of the support 2100 . And, the preset distance D S may be a range value. That is, the preset distance D S may be a range value equal to or greater than the lower limit and less than or equal to the upper limit.
  • the preset distance D S set in the first determination unit 3200 is the support 2100 and the transfer chamber 1000 when the support 2100 is moved to the first movement distance D ET for inspection. It is set as the actual separation distance between the inner walls. That is, it may be set as an actual separation distance between the front end of the first detection unit 3400 and the support unit 2100 .
  • the first determination unit 3200 determines that the operation of the transfer device 2000 is normal. In this case, it may be determined that the support part 2100 is moved to the first position. Conversely, when the detection distance D M is not included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. In this case, it may be determined that the support 2100 has not moved to the first position.
  • the detected distance (D M) the group is not included in the predetermined distance (D S), the detected distance (D M) the group or the lowermost less than limits of the predetermined distance (D S), may be to best exceed the limit values .
  • the transfer driving unit 2000a operates according to the first driving command value.
  • the first driving command value is a value set according to the first position or the first movement distance D ET for inspection.
  • the support unit 2100 moves forward in the process chamber 6000 direction.
  • the distance detector 3500 receives the optical signal or data from the first detector 3400 , and detects the distance D M between the support 2100 and the inner wall of the transfer chamber 1000 .
  • the detected separation distance D M is transmitted to the first determination unit 3200 .
  • the first determination unit 3200 compares the detection distance D M with a preset distance D S , and determines that the operation of the transfer device 2000 is normal or abnormal. In this case, when the detection distance D M is included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is normal. This is because the support part 2100 is actually moved forward by the first preset distance D ET as shown in FIG. 11 in the standby state of FIG. 10 , and the front end of the support part 2100 has reached the first position. Conversely, when the detection distance D M is not included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. This is because the support 2100 is moved less than or exceeding the first movement distance D ET as shown in FIG. 12 in the standby state of FIG. 10 (not shown), so that the front end of the support part 2100 is located in the first position because it doesn't
  • the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal
  • the first alarm unit 3300 generates an alarm.
  • the operator checks the assembly state of the transfer device 2000 and performs repair or repair work.
  • the first detection unit 3400 is installed on the inner wall of the transfer chamber 2000 .
  • the present invention is not limited thereto, and the first detection unit 3400 may be installed at the front end of the support unit 2100 .
  • the support part 2100 is moved forward in the direction of the process chamber 6000 to examine the operation of the transfer device 2000 .
  • the present invention is not limited thereto, and the operation of the transfer device 2000 may be examined by moving forward in the direction of the load lock chamber 4000 .
  • the load lock chamber 4000 is connected to the transport device 2000 by using the second inspection device 5000 and then inspects the third inspection device 7000 . ) to check the state in which the process chamber 6000 is connected to the transfer device.
  • the second inspection device 5000 determines the connection state of the load lock chamber 4000 .
  • the second inspection device 5000 is mounted on an upper portion of the load lock chamber 4000 , and a detection unit capable of detecting the position of the support unit 2100 transferred into the load lock chamber 4000 .
  • a detection unit capable of detecting the position of the support unit 2100 transferred into the load lock chamber 4000 .
  • a second detection unit 5100 and a second determination unit 5200 that determines the connection state of the load lock chamber 4000 as normal or abnormal using data provided from the second detection unit 5100 .
  • the second test apparatus 5000 may include a second alarm unit 5300 that generates an alarm when the second determination unit 5200 determines that the connection state of the load lock chamber 4000 is abnormal.
  • the second detection unit 5100 may be installed to be located outside the upper side of the viewport 4200 provided at the upper portion of the load lock chamber 4000 .
  • the second detection unit 5100 may be horizontally moved in an X-axis direction that is an arrangement direction of the transfer chamber 1000 and the load lock chamber 4000 and a Y-axis direction intersecting the X-axis direction, respectively.
  • a reference position (hereinafter, referred to as a second position) for determining whether the connection state of the load lock chamber 4000 is normal is set in the second determination unit 5200 .
  • the control unit 2000b sets or stores a driving command value (hereinafter, referred to as a second driving command value) according to the second position, which is the target position of the support unit 2100 in the load lock chamber 4000 .
  • the transfer driving unit 2000a operates according to the second driving command value, and accordingly, the support unit 2100 moves forward into the load lock chamber 4000 .
  • the support unit 2100 In the second position (X s Y S , Z S ), when the operation of the transfer device 2000 is normal and the load lock chamber 4000 is connected to the transfer chamber 1000 in a fixed position, the support unit 2100 is When moved into the load lock chamber 4000 , it may be the X, Y, and Z coordinate values of the tip of the support part 2100 in the load lock chamber 4000 .
  • the method of inspecting or monitoring the connection state of the load lock chamber 4000 in the second inspection device 5000 is the same as the method of inspecting the connection state of the process chamber 6000 in the third inspection device 7000, which will be described later. do.
  • FIG. 13 is a conceptual diagram illustrating a horizontal position in which a process chamber is coupled to a transfer chamber.
  • 14 is a conceptual diagram for explaining a case in which the support is installed horizontally (solid line) and inclined (dotted line) when the support is installed in the process chamber.
  • the position of the substrate 10 on the mounting table 6110 may vary depending on the position at which the process chamber 6000 is coupled to the transfer chamber 1000 . That is, when the process chamber 6000 is fastened to the transfer chamber 1000 , it may be fastened to the original position (solid line in FIG. 13 ) or deviated from the original position (dashed line in FIG. 13 ).
  • the seat 6110 needs to be disposed in the process chamber 6000 to be horizontal (solid line in FIG. 14 ) with the bottom surface of the process chamber 6000 .
  • the mounting base 6110 is not arranged horizontally and is inclined (a dotted line in FIG. 14 ), a defect may occur in the substrate processing process.
  • a connection state inspection apparatus (hereinafter, referred to as a third inspection apparatus) capable of inspecting the connection state of the process chamber 6000 and the installation state of the mounting base 6110 is provided before the actual substrate processing process. .
  • the third inspection apparatus 7000 may inspect whether the connection state of the process chamber 6000 is normal, and may inspect whether the mounting base 6110 is installed horizontally.
  • the third inspection device 7000 is mounted on the upper portion of the process chamber 6000 , and the support 2100 and the seating table transferred into the process chamber 6000 .
  • the third inspection device 7000 includes a third alarm unit 7300 that generates an alarm when the third determination unit 7200 determines that the installation state of the process chamber 6000 or the seat 6110 is abnormal. may include
  • the third detector 7100 is installed above the process chamber 6000 , for example, it may be installed above the viewport 6200 . In addition, it is preferable to be installed at a position facing the mounting base 6110 of the third detection unit 7100 .
  • the third detection unit 7100 may be a means including a light sensor having a light emitting unit that generates and emits light and a receiving unit that receives the reflected light.
  • the third detection unit 7100 moves horizontally in the X-axis direction, which is the forward/backward movement direction of the support unit 2100, in the arranging direction between the process chamber 6000 and the transfer chamber 1000, and the Y-axis direction intersecting the light ( L) may be provided to emit and receive light.
  • the movement of the third detection unit 7100 in each of the X-axis direction and the Y-axis direction may be performed in a preset section in the X-axis direction and the Y-axis direction.
  • a reference position (hereinafter, a third position) for determining whether the connection position of the process chamber 6000 is normal may be set in the third determination unit 7200 .
  • the third determination unit 7200 may determine whether the mounting table 6110 is horizontal.
  • the third position is a coordinate in the X-axis direction, which is the direction in which the process chamber 6000 and the transfer chamber 1000 are arranged or the support part 2100 moves forward toward the process chamber 6000, which intersects the X-axis direction. It may have coordinates in the Y-axis direction and coordinate values (X, Y, Z) in the Z-axis direction, which is the vertical direction (or height direction).
  • the support unit 2100 In the third position (X S , Y S , Z S ), in a state in which the operation of the transfer device 2000 is normal and the process chamber 6000 is connected to the transfer chamber 1000 in a fixed position, the support unit 2100 is When moved into the process chamber 6000, it may be the X, Y, Z coordinate values of the tip of the support part 2100 in the process chamber 6000.
  • 15 is a diagram conceptually illustrating a state in which light is irradiated into the process chamber by using the third detector to determine the connection state of the process chamber using the third inspection apparatus according to an embodiment of the present invention.
  • the method of determining the connection state of the process chamber 6000 to be described below is a method of determining the connection state of the process chamber 6000 by detecting the position of the support part 2100 moved into the process chamber 6000 . This will be described in detail below.
  • the control unit 2000b sets or stores a driving command value (hereinafter, referred to as a third driving command value) according to a third position that is a target position of the support unit 2100 in the process chamber 6000 .
  • the transfer driving unit 2000a operates according to the third driving command value, and accordingly, the support unit 2100 moves forward into the process chamber 6000 .
  • the position of the support part 2100 is detected through the third detection part 7100 .
  • light is emitted and received while the third detector 7100 is moved in the X-axis and Y-axis directions.
  • this time difference can be converted or converted into a height value that is a Z-axis value. . Accordingly, it is possible to know a change in the height value in the X-axis direction, and through this, it is possible to know the position of the tip of the support part 2100 .
  • the position of the tip of the support unit 2100 detected by the third detection unit 7100 may be in the form of coordinates such as 'X M , Y M , Z M '.
  • the third determination unit 7200 compares the position (X M , Y M , Z M ) of the tip of the support unit 2100 detected by the third detection unit 7100 and the third position (X S , Y S , Z S ) do. At this time, when the detected position (X M , Y M , Z M ) is the third position (X S , Y S , Z S ) (see (a) of FIG. 15 ), the connection position of the process chamber 6000 is judged to be normal However, when at least one of the detected positions (X M , Y M , Z M ) is different from the third position (X S , Y S , Z S ), it is determined that the connection position of the process chamber 6000 is abnormal. .
  • connection position of the process chamber 6000 is abnormal.
  • the position in the Y-axis direction (Y M ) is different from the third position (Y s ) in the Y-axis direction. In this case, it is determined that the connection position of the process chamber 6000 is abnormal.
  • the process chamber ( 6000) is determined to be abnormal.
  • the third determination unit 7200 determines that the connection position of the process chamber 6000 is abnormal
  • the third alarm unit 7300 generates an alarm, and the operator adjusts the connection position of the process chamber 6000 There is a need.
  • the third detection unit 7100 in the X-axis direction for example, from the outside of the mounting table 6110 through the upper surface 62a of the mounting table 6110, the seating surface 62b of the mounting table 6110 ) to a predetermined position. Accordingly, it can be seen a change in the height value of the mounting table 6110 in the X-axis direction. That is, since the light reflected from the relatively high surface is received by the third detection unit 7100 for a short time, the shorter the time, the higher the surface height is derived, so that the height change of the surface of the seating table 6110 can be known. . More specifically, the height change of the upper surface 62a of the seating table 6110 and the height change of the seating surface 62b can be seen.
  • the mounting table 6110 is disposed horizontally with the bottom surface of the process chamber 6000, the time that light is received in the X-axis direction is constant on the upper surface 62a of the mounting table 6110, and the seating surface In (62b), the time the light is received in the X-axis direction will be constant. From this, in the upper surface 62a of the seating table 6110, the height in the X-axis direction is constant, and in the seating surface 62b, it can be detected that the height in the X-axis direction is constant, thereby, the seating It may be determined that the stand 6110 is horizontally disposed.
  • the mounting table 6110 is not arranged horizontally with the bottom surface of the process chamber 6000, the time at which light is received in the X-axis direction is different on the upper surface 62a of the mounting table 6110, and the seating surface In (62b), the time at which the light is received in the X-axis direction will be different. From this, it can be detected that the height in the X-axis direction changes on the upper surface 62a of the seat 6110, and the height in the X-axis direction changes on the seat surface 62b. It can be determined that 6110 is not horizontally arranged.
  • the third determination unit 7200 determines whether the mounting table 6110 is horizontal by using the optical data obtained from the third detection unit 7100 . That is, when there is no height change in each of the upper surface 62a and the seating surface 62b of the seating table 6110 in the height change in the X-axis direction, it is determined that the height is horizontal in the X-axis direction. However, in the height change in the X-axis direction, when a height change is detected on the upper surface 62a and the seating surface 62b of the seating table 6110, it is determined that the height is not horizontal in the X-axis direction.
  • the third detection unit 7100 moves in the X-axis direction to determine the horizontal state of the seating unit 4210 .
  • the present invention is not limited thereto, and the third detection unit 7100 may move in the Y-axis direction to determine the horizontal state of the seating unit 4210 .
  • the third determination unit 7200 may determine whether the mounting base 6110 is horizontal. And, when the third determination unit 7200 determines that the horizontal state of the seat 6110 is abnormal, the third alarm unit 7300 generates an alarm, and the operator adjusts the installation state of the seat 6110. There is a need.
  • connection state of the process chamber 6000 by detecting the position of the support part 2100 moved to the inside of the process chamber 6000 has been described.
  • the present invention is not limited thereto, and the connection state of the process chamber 6000 may be determined in another method.
  • FIG. 16 is a top view illustrating a state in which a substrate is seated on a mounting table to determine a connection state of a process chamber using the third inspection apparatus according to an embodiment of the present invention.
  • the substrate 10 is seated on the mounting base 6110 and the connection state of the process chamber 6000 depends on whether the substrate 10 is positioned on the mounting base 6110 in a fixed position. It is a method of determining whether a normal or abnormal This will be described in detail below.
  • a driving command value (hereinafter, a fourth driving command value) according to a target position (hereinafter, referred to as a fourth position) of the support unit 2100 is set or stored in the control unit 2000b in the process chamber 6000 .
  • the fourth position is, when the substrate 10 of the support unit 2100 moved into the process chamber 6000 is seated on the mounting table 6110, the substrate 10 is at the original position of the mounting table 6110. This may be a position of the support part 2100 on which it is seated. More specifically, it may be a position of the tip of the support 6100 .
  • the transfer driving unit 2000a is operated according to the fourth driving command value, and accordingly, the support unit 2100 moves into the process chamber 6000 .
  • the support part 2100 is moved to the process chamber 6000 , the substrate 10 supported on the support part 2100 is seated on the mount 6100 .
  • the substrate 10 is seated at the correct position on the mounting table 6100 .
  • light is emitted through the third detector 7100 and the reflected light is received.
  • the third detector 7100 is moved horizontally, for example, in the X-axis direction.
  • the seating table 6110 has a step (height difference) between its upper surface 62a and the seating surface 62b, and when the substrate 10 is seated on the seating surface 62b, the upper surface of the seating table 6110 There is a step between the seating surface 62a and the seating surface 62b, and the seating surface 62b and the surface of the substrate 10 . Accordingly, the separation distance between the inner surface 62c of the mounting table 6110 and the side surface of the substrate 10 , that is, the gap G M may be detected through a change in the height value in the X-axis direction.
  • the gap G M detected by the third detector 7100 may vary depending on a state in which the process chamber 6000 is coupled to the transfer chamber 1000 .
  • the gap G M in the circumferential direction of the mounting base 6110 is constant.
  • the gap G M detected by the third detector 7100 may be included in the preset reference gap G s .
  • the gap G M detected by the third detector 7100 may not be included in the preset reference gap G s .
  • the third determination unit 7200 compares the detected gap G M with a preset reference gap G S .
  • the reference gap G S may be a range value. That is, it may be a value in the range of the lowest limit to the highest limit.
  • a third determination unit (7200) if the detected gap (G M) that contains the reference gap (G S), and determines the connection status of the process chamber 6000 by the normal, on the contrary outside of the standard gap (G S), In this case, it is determined that the connection state of the process chamber 6000 is abnormal.
  • the measured gap (G M) is outside the reference gap (G S) are not, the measured gap (G M) or the lowest less than an inch of the reference gap (G M), may be to best exceed the limit values.
  • the third determination unit 7200 determines that the connection state of the process chamber 6000 is normal, as described above, between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 . It means that the gap is uniform in the circumferential direction of the substrate 10 . However, when the third determination unit 7200 determines that the connection state of the process chamber 6000 is abnormal, the gap between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 is It means that it is not uniform in the circumferential direction of the substrate.
  • the third detection unit 7100 is moved in the X-axis direction to detect the gap in the X-axis direction.
  • the gap in the Y-axis direction may be detected by moving the third detector 7100 in the Y-axis direction.
  • the gap between the side surface 11 of the substrate 10 and the inner surface 62c of the mounting base 6110 is measured, and the substrate 10 is positioned on the mounting table 6110 through the measured gap.
  • the connection state of the process chamber 6000 was determined by determining whether it was seated.
  • connection state of the process chamber 6000 can be determined using this.
  • the transport device 2000 includes one support part 2100 .
  • the present invention is not limited thereto, and a plurality of support parts 2100 arranged in a width direction of the transfer chamber 1000 may be installed, and a plurality of support parts 2100 may be installed in a vertical direction.
  • all of the plurality of support units 2100 may be configured to be individually operable.
  • 17 is a flowchart illustrating a process of inspecting a substrate processing system according to an embodiment of the present invention before a substrate processing process.
  • FIGS. 1 and 2 a process of inspecting the substrate processing system will be described with reference to FIGS. 1 and 2 , FIGS. 5 to 9 , and FIGS. 13 to 15 and 17 .
  • the content overlapping with the previously described content will be omitted or briefly described.
  • the support part 2100 is moved forward in the direction in which the first detection part 3100 is located.
  • the image image F is acquired through the first detection unit 3100 .
  • the first determination unit 3200 compares the position between the mark M F and the reference area A S on the image image F captured by the first detection unit 3100 (see FIG. 9 ), and the transfer device ( 2000) is judged to be normal or abnormal.
  • the first alarm unit 3300 sounds an alarm (S120). Then, the operator recognizes that there is a problem in the transport device 2000 and repairs the transport device 2000 . For example, the assembly state of the transport device 2000 is checked and adjusted.
  • connection state of the load lock chamber 4000 is normal ( S210 ).
  • the support part 2100 is moved forward to the load lock chamber 4000 , and the tip position of the support part 2100 is detected using the second detection part 5100 of the second inspection apparatus 5000 .
  • the second determination unit 5200 is the detected support portion 2100, the tip position (X M , Y M , Z M ) and the second position (X S , Y S , Z S ), it is determined that the connection state of the load lock chamber 4000 is normal or abnormal.
  • the second alarm unit 5300 sounds an alarm (S220). Then, the operator recognizes that there is a problem in the load lock chamber 4000 and adjusts the connection position of the load lock chamber 4000 .
  • connection state of the process chamber 6000 is normal ( S310 ). To this end, as shown in FIGS. 13 and 15 , the support part 2100 is moved forward to the process chamber 6000 , and the tip position of the support part 2100 is detected using the third detection part 7100 of the third inspection apparatus 7000 . do.
  • the third determination unit 7200 is the detected support unit 2100 tip position (X M , Y M , Z M ) and the third position (X S , Y S , Z S ), it is determined that the connection state of the process chamber 6000 is normal or abnormal.
  • the third alarm unit 7300 sounds an alarm (S320). Then, the operator recognizes that there is a problem in the process chamber 6000 and adjusts the connection position of the process chamber 6000 .
  • connection state of the load lock chamber 4000 is normal (S210)
  • connection state of the process chamber 6000 is checked (S310), but the order is not limited thereto and may be changed. have.
  • connection state of the load lock chamber 4000 and the process chamber 6000 is normal, it is checked whether the installation state of the mounting base 6110 installed inside the process chamber 6000 is normal (S410). That is, it is determined whether the mounting base 6110 is horizontal.
  • the third detection unit 7100 is used to irradiate light to the mounting table 6110, and the reflected light is received. Light is irradiated and received while moving.
  • the third detection unit 7100 detects the height of the surface of the seating table 6110 in the X-axis direction by using the obtained optical data. Then, the third determination unit 7200 determines whether the mounting table 6110 is horizontal by checking the height change of the surface of the mounting table 6110 in the X-axis direction detected by the third detection unit 7100 .
  • the third determination unit 7200 determines that the horizontal state of the seat 6110 is abnormal (No)
  • the third alarm unit 7300 sounds an alarm (S420). Then, the operator recognizes that there is a problem with the mounting base 6110, and adjusts the inclination of the mounting base 6110.
  • the process chamber 6000 for processing the substrate 10 is connected to the transfer chamber 1000 , the seat 6110 is installed inside the process chamber 6000 , and the load lock chamber 4000 is the transfer chamber ( 1000), you can automatically check whether there is an abnormality in the connected state. Accordingly, when it is confirmed that there is an abnormality in these devices, inspection, repair or adjustment of the device in which the abnormality is confirmed may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A substrate processing system according to an embodiment of the present invention comprises: a transfer chamber having an inner space; a transfer device having a support unit provided in the transfer chamber so that the substrate can be supported and moved; and a first inspection device which has a first detection unit provided in the transfer chamber and/or the transfer device, and which uses data acquired by the first detection unit to determine whether the support unit has moved to a preset first position, and thus determines the operating state of the transfer device. Therefore, the problem in which a substrate is loaded on a loading stand in a wrong or abnormal state during substrate processing can be reduced so that the substrate can be loaded at the right position of the loading stand during actual processing. Thus, a defect caused by the loading position of a substrate can be reduced and substrate processing quality can be improved.

Description

기판 처리 시스템 및 기판 처리 시스템의 검사 방법Substrate processing system and inspection method of substrate processing system
본 발명은 기판 처리 시스템 및 기판 처리 시스템의 검사 방법에 관한 것으로, 보다 상세하게는 기판 처리 공정 전에 기판 처리 시스템의 상태를 확인할 수 있는 기판 처리 시스템 및 기판 처리 시스템의 검사 방법에 관한 것이다.The present invention relates to a substrate processing system and an inspection method of the substrate processing system, and more particularly, to a substrate processing system capable of confirming the state of the substrate processing system prior to a substrate processing process and a substrate processing system inspection method.
반도체 제조 장치는 이송 챔버로 반입된 기판을 각기 다른 기판 처리 공정을 수행하는 공정 챔버로 이송시키고, 공정 챔버에서는 기판 상에 박막을 증착하거나 식각하는 등의 공정을 수행한다. 이때, 이송 챔버에는 기판을 지지하는 로봇 암을 포함하는 반송 장치가 마련되며, 반송 장치는 기판을 공정 챔버 내로 이송시킨다.A semiconductor manufacturing apparatus transfers a substrate loaded into a transfer chamber to a process chamber that performs different substrate processing processes, and the process chamber performs processes such as depositing or etching a thin film on the substrate. In this case, a transfer device including a robot arm for supporting the substrate is provided in the transfer chamber, and the transfer device transfers the substrate into the process chamber.
공정 챔버 내에서 기판을 처리하는데 있어서, 공정 챔버 내에 위치된 서셉터 상의 정위치에 기판이 배치되어야 할 필요가 있다. 서셉터 상에서의 기판의 위치는 반송 장치의 동작 및 공정 챔버가 이송 챔버에 체결된 상태 중 적어도 하나에 의해 결정될 수 있다. 즉, 반송 장치의 동작 및 공정 챔버가 이송 챔버에 체결된 상태 중 적어도 하나에 의해 기판이 서셉터 상의 정위치에 안착되거나, 그렇지 않을 수 있다. 그리고, 기판이 서셉터 상의 정위치에 안착되지 않는 경우, 공정 챔버에서의 기판 처리 공정에 문제가 발생되어 불량의 반도체 장치가 생산될 수 있다.In processing a substrate in a process chamber, it is necessary to place the substrate in place on a susceptor positioned within the process chamber. The position of the substrate on the susceptor may be determined by at least one of an operation of the transfer apparatus and a state in which the process chamber is coupled to the transfer chamber. That is, the substrate may or may not be seated in the correct position on the susceptor by at least one of an operation of the transfer apparatus and a state in which the process chamber is coupled to the transfer chamber. In addition, when the substrate is not seated in a proper position on the susceptor, a problem may occur in a substrate processing process in the process chamber, and a defective semiconductor device may be produced.
따라서, 실제 기판 처리 공정을 수행하기 전에, 반송 장치의 동작 및 공정 챔버의 연결 상태를 미리 확인할 필요가 있다. 그리고, 반송 장치의 동작 및 공정 챔버의 연결 상태가 비정상 또는 불량으로 확인된 경우, 이를 보수 또는 조정할 필요가 있다.Therefore, before performing the actual substrate processing process, it is necessary to check the operation of the transfer apparatus and the connection state of the process chamber in advance. And, when the operation of the transport device and the connection state of the process chamber are found to be abnormal or defective, it is necessary to repair or adjust them.
(선행기술문헌)(Prior art literature)
(특허문헌 1) 한국공개특허 10-2008-0004118 (Patent Document 1) Korean Patent Application Laid-Open No. 10-2008-0004118
본 발명은 기판을 이송시키는 이송 장치의 동작에 대한 이상 여부를 검사할 수 있는 기판 처리 시스템 및 기판 처리 시스템의 검사 방법을 제공한다.The present invention provides a substrate processing system capable of inspecting whether an operation of a transfer apparatus for transferring a substrate is abnormal and a method of inspecting the substrate processing system.
본 발명은 기판을 처리하는 공정 챔버 및 이송 챔버로 기판을 제공하는 로드락 챔버의 상태를 검사할 수 있는 기판 처리 시스템 및 기판 처리 시스템의 검사 방법을 제공한다.The present invention provides a substrate processing system capable of inspecting the state of a process chamber for processing a substrate, and a load lock chamber that provides a substrate to a transfer chamber, and a method for inspecting the substrate processing system.
본 발명의 실시예에 따른 기판 처리 시스템은 내부 공간을 가지는 이송 챔버; 기판의 지지 및 이동이 가능하도록 상기 이송 챔버에 설치된 지지부를 구비하는 이송 장치; 상기 이송 챔버 및 상기 이송 장치 중 적어도 하나에 설치된 제 1 검출부를 구비하고, 상기 제 1 검출부에서 획득된 데이터를 이용하여 상기 지지부가 기 설정된 제 1 위치로 이동하였는지 여부를 판단하여, 상기 이송 장치의 동작 상태를 판단하는 제 1 검사 장치;를 포함한다.A substrate processing system according to an embodiment of the present invention includes a transfer chamber having an internal space; a transfer device having a support installed in the transfer chamber to support and move the substrate; A first detection unit installed in at least one of the transfer chamber and the transfer device is provided, and it is determined whether the support unit has moved to a preset first position using the data obtained from the first detection unit, and a first inspection device for determining an operating state.
상기 제 1 검출부는 상기 지지부의 위치를 모니터링하고, 상기 제 1 검사 장치는 상기 제 1 검출부에서 모니터링된 상기 지지부의 위치와 상기 제 1 위치를 비교하여, 상기 이송 장치의 동작 상태를 판단하는 제 1 판단부를 포함한다.The first detection unit monitors the position of the support, and the first inspection device compares the position of the support monitored by the first detection unit with the first position to determine the operation state of the transfer device. includes a judging unit.
상기 제 1 검출부는 상기 지지부와 상기 이송 챔버 내벽 사이의 이격 거리를 검출하도록 상기 지지부 및 이송 챔버 중 적어도 어느 하나에 설치되고, 상기 제 1 검사 장치는, 상기 제 1 검출부에서 검출된 거리와 기 설정된 거리를 비교하여, 상기 이송 장치의 동작 상태를 판단하는 제 1 판단부를 포함한다.The first detection unit is installed in at least one of the support unit and the transfer chamber to detect a separation distance between the support unit and the inner wall of the transfer chamber, and the first inspection device includes a distance detected by the first detection unit and a preset distance. Comparing the distance, it includes a first determination unit for determining the operating state of the transfer device.
상기 이송 챔버에 연결 가능한 로드락 챔버; 및 상기 로드락 챔버 내로 이동된 지지부를 모니터링하여, 상기 로드락 챔버가 상기 이송 챔버에 설치된 상태를 판단하는 제 2 검사 장치;를 포함한다.a load lock chamber connectable to the transfer chamber; and a second inspection device configured to monitor the support moved into the load lock chamber to determine a state in which the load lock chamber is installed in the transfer chamber.
상기 제 2 검사 장치는, 상기 로드락 챔버 내로 이동된 상기 지지부의 위치를 모니터링하는 제 2 검출부; 및 상기 제 2 검출부에서 모니터링된 상기 지지부의 위치를 기 설정된 제 2 위치와 비교하여, 상기 로드락 챔버와 상기 이송 챔버의 연결 상태를 판단하는 제 2 판단부;를 포함한다.The second inspection device may include: a second detection unit configured to monitor a position of the support unit moved into the load lock chamber; and a second determination unit configured to determine a connection state between the load lock chamber and the transfer chamber by comparing the position of the support unit monitored by the second detection unit with a preset second position.
상기 이송 챔버에 연결 가능한 공정 챔버; 상기 공정 챔버 내에 설치되는 안착대; 및 상기 공정 챔버 내로 이동된 지지부 및 상기 안착대 중 적어도 하나를 모니터링하여, 상기 공정 챔버가 상기 이송 챔버에 연결된 상태 및 상기 안착대의 설치 상태 중 적어도 하나를 판단하는 제 3 검사 장치;를 포함한다.a process chamber connectable to the transfer chamber; a mount installed in the process chamber; and a third inspection device configured to monitor at least one of the support part and the mounting table moved into the process chamber to determine at least one of a state in which the process chamber is connected to the transfer chamber and an installation state of the mounting table.
상기 제 3 검사 장치는, 상기 공정 챔버 내로 이동된 상기 지지부의 위치 및 상기 안착대의 위치를 모니터링하는 제 3 검출부; 및 기 제 3 검출부에서 모니터링된 상기 지지부의 위치를 기 설정된 제 3 위치와 비교하여, 상기 공정 챔버가 상기 이송 챔버에 연결된 상태를 판단하거나, 상기 제 3 검출부에서 모니터링된 데이터를 이용하여 상기 안착대의 수평 여부를 판단함으로써, 상기 안착대의 설치 상태를 판단하는 제 3 판단부;를 포함한다.The third inspection apparatus may include: a third detection unit configured to monitor a position of the support part moved into the process chamber and a position of the seating base; and comparing the position of the support part monitored by the third detector with a preset third position to determine a state in which the process chamber is connected to the transfer chamber, or to use the data monitored by the third detector to determine the position of the seat and a third determination unit for determining the installation state of the seating table by determining whether the seat is horizontal.
본 발명의 실시예에 따른 기판 처리 시스템의 검사 방법은, 이송 장치의 지지부를 이송 챔버 내의 기 설정된 제 1 위치로 이동시키기 위한 구동 명령값에 의하여, 상기 지지부를 이동시키는 과정; 제 1 검출부에서 상기 지지부의 위치를 검출하는 과정; 및 상기 제 1 위치가 반영된 기 설정값과 상기 제 1 검출부에서 검출된 값을 비교하여, 상기 이송 장치의 동작 상태를 판단하는 과정;을 포함한다.A method of inspecting a substrate processing system according to an embodiment of the present invention includes the steps of: moving the support part of a transfer apparatus according to a driving command value for moving the support part to a preset first position in a transfer chamber; detecting a position of the support part by a first detection part; and determining the operating state of the transfer device by comparing the preset value to which the first position is reflected and the value detected by the first detection unit.
상기 지지부를 상기 이송 챔버에 연결된 로드락 챔버 내의 기 설정된 제 2 위치로 이동시키기 위한 구동 명령값에 의하여, 상기 지지부를 이동시키는 과정; 제 2 검출부에서 상기 로드락 챔버 내부로 이동된 지지부의 위치를 검출하는 과정;상기 제 2 위치가 반영된 기 설정값과 상기 제 2 검출부에서 검출된 값을 비교하여, 상기 로드락 챔버의 연결 상태를 판단하는 과정;을 포함한다.moving the support part according to a driving command value for moving the support part to a preset second position in a load lock chamber connected to the transfer chamber; A process of detecting the position of the support part moved into the load lock chamber by a second detector; comparing the preset value reflecting the second position with the value detected by the second detector to determine the connection state of the load lock chamber the process of judging;
상기 지지부를 상기 이송 챔버에 연결된 공정 챔버 내의 기 설정된 제 3 위치로 이동시키기 위한 구동 명령값에 의하여, 상기 지지부를 이동시키는 과정; 제 3 검출부에서 상기 공정 챔버 내부로 이동된 지지부의 위치를 검출하는 과정; 상기 제 3 위치가 반영된 기 설정값과 상기 제 3 검출부에서 검출된 값을 비교하여, 상기 공정 챔버의 연결 상태를 판단하는 과정;을 포함한다.moving the support part in response to a driving command value for moving the support part to a preset third position in a process chamber connected to the transfer chamber; detecting a position of the support part moved into the process chamber by a third detector; and determining the connection state of the process chamber by comparing the preset value to which the third position is reflected with the value detected by the third detector.
상기 지지부 상에 기판을 지지시키는 과정; 상기 지지부를 상기 이송 챔버에 연결된 공정 챔버 내의 기 설정된 제 4 위치로 이동시키는 과정; 상기 지지부에 지지된 기판을 상기 공정 챔버 내부에 설치된 안착대 상에 안착시키는 과정; 제 3 검출부에서 상기 안착대 상에서의 기판의 위치를 검출하는 과정; 기 설정된 위치와 상기 제 3 검출부에서 검출된 기판의 위치를 비교하여, 상기 공정 챔버의 연결 상태를 판단하는 과정; 을 포함한다.supporting a substrate on the support; moving the support part to a preset fourth position in a process chamber connected to the transfer chamber; placing the substrate supported on the support unit on a mounting table installed inside the process chamber; detecting the position of the substrate on the mounting table by a third detection unit; determining a connection state of the process chamber by comparing a preset position with the position of the substrate detected by the third detector; includes
본 발명의 실시예들에 의하면 기판 처리 공정을 실시하기 전에, 기판을 이송시키는 이송 장치의 동작에 대한 이상 여부를 확인할 수 있다. 또한, 기판을 처리하는 공정 챔버가 이송 챔버에 연결된 상태, 공정 챔버 내부에 안착대가 설치된 상태, 로드락 챔버가 이송 챔버에 연결된 상태에 대한 이상 여부를 자동으로 확인할 수 있다. 이에, 이들에 이상이 있는 것으로 확인되면, 이상이 확인된 장치에 대한 점검, 보수 또는 조정 작업을 실시할 수 있다.According to the embodiments of the present invention, before performing the substrate processing process, it is possible to check whether the operation of the transfer device for transferring the substrate is abnormal. In addition, it is possible to automatically check whether there is an abnormality in a state in which the process chamber for processing the substrate is connected to the transfer chamber, a state in which a seat is installed in the process chamber, and a state in which the load lock chamber is connected to the transfer chamber. Accordingly, when it is confirmed that there is an abnormality in these devices, inspection, repair or adjustment of the device in which the abnormality is confirmed may be performed.
따라서, 이상이 있는 또는 비정상인 상태로 기판을 안착대 상에 안착시키는 문제를 줄일 수 있고, 이로 인해 실제 공정 시에 안착대의 정위치에 기판을 안착시킬 수 있다. 이에, 기판의 안착 위치에 따른 불량 발생을 줄일 수 있고, 기판 처리 품질을 향상시킬 수 있다.Therefore, it is possible to reduce the problem of seating the substrate on the mounting table in an abnormal or abnormal state, thereby allowing the substrate to be seated at the correct position of the mounting table during the actual process. Accordingly, it is possible to reduce the occurrence of defects according to the seating position of the substrate, and improve the substrate processing quality.
도 1 및 도 2는 본 발명의 실시예에 따른 기판 처리 시스템의 상면도이다.1 and 2 are top views of a substrate processing system according to an embodiment of the present invention.
도 3 및 도 4는 기판이 안착대 상에 안착된 상태를 예시적으로 도시한 도면이다.3 and 4 are views exemplarily illustrating a state in which a substrate is seated on a mounting base.
도 5는 이송 장치의 동작을 검사하기 위해, 본 발명의 실시예에 따른 지지부가 전진 이동된 상태를 도시한 상면도이다. 5 is a top view illustrating a state in which the support part is moved forward according to an embodiment of the present invention in order to inspect the operation of the transport device.
도 6은 본 발명의 실시예에 따른 지지부가 전진 이동되기 전의 대기 상태를 도시한 정면도이다. 6 is a front view illustrating a standby state before the support part is moved forward according to an embodiment of the present invention.
도 7 및 도 8은 이송 장치의 동작을 검사하기 위해, 본 발명의 실시예에 따른 지지부가 이송 챔버 내에서 공정 챔버 쪽으로 전진 이동된 상태를 도시한 정면도이다.7 and 8 are front views illustrating a state in which a support part according to an embodiment of the present invention is moved forward from the transfer chamber toward the process chamber in order to inspect the operation of the transfer apparatus.
도 9는 본 발명의 실시예에 따른 제 1 검출부를 통해 획득된 화상 이미지 상에서의 기준 영역 및 마크의 위치를 예시적으로 설명하는 개념도이다.9 is a conceptual diagram exemplarily illustrating positions of a reference region and a mark on an image image acquired through a first detection unit according to an embodiment of the present invention.
도 10 내지 도 12는 실시예의 변형예에 따른 제 1 검사 장치를 이용하여 이송 장치의 동작을 검사하기 위해, 지지부가 이송 챔버 내에서 전진 이동된 상태를 도시한 정면도이다.10 to 12 are front views illustrating a state in which the support part is moved forward in the transfer chamber in order to inspect the operation of the transfer apparatus using the first inspection apparatus according to a modified example of the embodiment.
도 13은 공정 챔버가 이송 챔버에 체결되는 수평 방향 위치를 설명하기 위한 개념도이다. 13 is a conceptual diagram illustrating a horizontal position in which a process chamber is coupled to a transfer chamber.
도 14는 공정 챔버 내에 지지부가 설치될 때, 지지부가 수평하게 설치되는 경우(실선)와, 기울어지게 설치되는 경우(점선)를 설명하기 위한 개념도이다.14 is a conceptual diagram for explaining a case in which the support is installed horizontally (solid line) and inclined (dotted line) when the support is installed in the process chamber.
도 15는 본 발명의 실시예에 따른 제 3 검사 장치를 이용하여, 공정 챔버의 연결 상태를 판단하기 위해, 제 3 검출부를 이용하여 공정 챔버 내로 광이 조사된 상태를 개념적으로 나타낸 도면이다. 15 is a diagram conceptually illustrating a state in which light is irradiated into the process chamber by using the third detector to determine the connection state of the process chamber using the third inspection apparatus according to an embodiment of the present invention.
도 16은 본 발명의 실시예에 따른 제 3 검사 장치를 이용하여, 공정 챔버의 연결 상태를 판단하기 위해, 안착대 상에 기판을 안착시킨 상태를 도시한 상면도이다.16 is a top view illustrating a state in which a substrate is seated on a mounting table to determine a connection state of a process chamber using the third inspection apparatus according to an embodiment of the present invention.
도 17은 기판 처리 공정 전에 본 발명의 실시예에 기판 처리 시스템을 검사하는 과정을 나타낸 순서도이다.17 is a flowchart illustrating a process of inspecting a substrate processing system according to an embodiment of the present invention before a substrate processing process.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한유 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those of ordinary skill in the art will be completely It is provided to inform you. The drawings may be exaggerated to explain the embodiments of the present invention, and like reference numerals in the drawings refer to like elements.
도 1 및 도 2는 본 발명의 실시예에 따른 기판 처리 시스템의 상면도이다. 도 3 및 도 4는 기판이 안착대 상에 안착된 상태를 예시적으로 도시한 도면이다. 여기서, 도 3은 기판의 폭 방향 중심과 안착대의 폭 방향 중심이 일치하는 상태, 도 4는 일치하지 않는 상태를 도시하고 있다.1 and 2 are top views of a substrate processing system according to an embodiment of the present invention. 3 and 4 are views exemplarily illustrating a state in which a substrate is seated on a mounting base. Here, FIG. 3 shows a state in which the center of the width direction of the substrate and the center in the width direction of the mounting base coincide with each other, and FIG. 4 shows a state in which they do not coincide.
도 1 내지 도 4를 참조하면, 본 발명의 실시예에 따른 기판 처리 시스템은 기판(10)이 수용될 수 있는 내부 공간을 가지는 이송 챔버(1000), 이송 챔버(1000)에 체결되며, 내부로 전달된 기판(10)에 대해 소정의 공정을 실시하는 공정 챔버(6000), 이송 챔버(1000) 내로 기판(10)을 이송시키거나, 이송 챔버(1000) 외부로 기판(10)을 이송시키는 지지부(2100)를 구비하는 이송 장치(2000), 이송 장치(2000)의 동작 상태를 검사하는 검사 장치(이하, 제 1 검사 장치(3000))를 포함한다.1 to 4 , a substrate processing system according to an embodiment of the present invention includes a transfer chamber 1000 having an internal space in which a substrate 10 can be accommodated, and is fastened to the transfer chamber 1000 , and moves into the A support part for transferring the substrate 10 into the process chamber 6000 performing a predetermined process on the transferred substrate 10 , the transfer chamber 1000 , or transferring the substrate 10 to the outside of the transfer chamber 1000 . It includes a transport device 2000 having a 2100 , and an inspection device (hereinafter, referred to as a first inspection device 3000 ) that inspects the operating state of the transport device 2000 .
또한, 기판 처리 시스템은, 이송 챔버(1000)에 연결 가능하며, 이송 챔버(1000)로 전달하기 위한 기판(10)을 일시 수용 또는 저장하는 로드락 챔버(4000), 로드락 챔버(4000)가 이송 챔버(1000)에 연결된 상태를 검사하는 검사 장치(이하, 제 2 검사 장치(5000)), 공정 챔버(6000)가 이송 챔버(1000)에 연결된 상태 및 공정 챔버(6000) 내부에 설치된 안착대(6110)의 설치 상태 중 적어도 하나를 검사하는 검사 장치(이하, 제 3 검사 장치(7000))를 포함한다.In addition, the substrate processing system includes a load lock chamber 4000 and a load lock chamber that are connectable to the transfer chamber 1000 and temporarily accommodate or store the substrate 10 to be transferred to the transfer chamber 1000 . An inspection device (hereinafter, referred to as a second inspection device 5000 ) that inspects a state connected to the transfer chamber 1000 , a state in which the process chamber 6000 is connected to the transfer chamber 1000 , and a seat installed inside the process chamber 6000 . and an inspection device (hereinafter, referred to as a third inspection device 7000 ) that inspects at least one of the installation states of the 6110 .
그리고, 기판 처리 시스템은, 이송 장치(2000)에 이송 구동력을 제공하는 이송 구동부(2000a), 이송 구동부(2000a)의 동작을 제어하는 제어부(2000b), 공정 챔버(6000)와 이송 챔버(1000) 사이 및 로드락 챔버(4000)와 이송 챔버(1000) 사이에 설치된 게이트 밸브(8000)를 포함할 수 있다.In addition, the substrate processing system includes a transfer driver 2000a that provides a transfer driving force to the transfer apparatus 2000 , a controller 2000b that controls the operation of the transfer driver 2000a , a process chamber 6000 and a transfer chamber 1000 . It may include a gate valve 8000 installed between and between the load lock chamber 4000 and the transfer chamber 1000 .
실시예에 따른 기판 처리 시스템에서 처리하고자 하는 기판(10)은 원형의 웨이퍼(wafer)일 수 있다. 물론 기판(10)은 상술한 웨이퍼에 한정되지 않고 다양한 수단 예컨대 유리(glass), 고분자 필름, 플라스틱 등이 적용될 수 있다. 또한, 기판(10)의 형상 또한 원형에 한정되지 않고, 원형 외의 다양한 다각형 형상의 기판이 적용될 수 있다.The substrate 10 to be processed in the substrate processing system according to the embodiment may be a circular wafer. Of course, the substrate 10 is not limited to the above-described wafer, and various means such as glass, polymer film, plastic, etc. may be applied. Also, the shape of the substrate 10 is not limited to a circular shape, and various polygonal shapes other than a circular shape may be applied.
이송 챔버(1000)는 내부 공간을 가지는 통 형상으로서, 공정 챔버(6000)와 로드락 챔버(4000) 사이를 연결하도록 배치될 수 있다. 이송 챔버(1000)는 이송 장치(2000)의 설치 및 상기 이송 장치(2000)가 동작될 수 있는 내부 공간을 가지는 다양한 형상으로 마련될 수 있다.The transfer chamber 1000 has a cylindrical shape having an internal space, and may be disposed to connect the process chamber 6000 and the load lock chamber 4000 . The transfer chamber 1000 may be provided in various shapes having an internal space in which the transfer apparatus 2000 can be installed and the transfer apparatus 2000 can be operated.
로드락 챔버(4000)는 내부 공간을 가지며, 이송 챔버(1000)에 연결 즉, 체결 및 분리 가능하다. 그리고, 로드락 챔버(4000)의 내부에는 기판(10)이 일시 안착 또는 적재되며, 승하강 가능한 카세트(4100)가 설치될 수 있다. 그리고, 로드락 챔버(4000)의 상부에는 로드락 챔버(4000)의 내부를 시각적으로 확인할 수 있는 뷰포트(4200)가 마련될 수 있다.The load lock chamber 4000 has an internal space, and can be connected to the transfer chamber 1000 , that is, fastened and separated. In addition, the substrate 10 is temporarily seated or loaded in the load lock chamber 4000 , and an elevating cassette 4100 may be installed. In addition, a viewport 4200 through which the inside of the load lock chamber 4000 can be visually confirmed may be provided at an upper portion of the load lock chamber 4000 .
공정 챔버(6000)는 복수개로 마련될 수 있고, 이송 챔버(1000)에 복수개의 공정 챔버(6000)가 연결 즉, 체결 및 분리 가능하도록 마련된다. 이송 챔버(1000)에 복수의 공정 챔버(6000) 및 로드락 챔버(4000)가 체결되는데 있어서, 예컨대, 도 1 및 도 2에 도시된 바와 같이 복수의 공정 챔버(6000) 및 로드락 챔버(4000)가 이송 챔버(1000)를 중심으로 방사형으로 배치되도록 체결될 수 있다. 물론 이송 챔버(1000)에 복수의 공정 챔버(6000) 및 로드락 챔버(4000)가 체결된 형태는 상술한 방사형에 한정되지 않고, 다양하게 변경될 수 있다.A plurality of process chambers 6000 may be provided, and the plurality of process chambers 6000 are connected to the transfer chamber 1000 , ie, coupled to and separated from each other. When the plurality of process chambers 6000 and the load lock chamber 4000 are coupled to the transfer chamber 1000 , for example, as shown in FIGS. 1 and 2 , the plurality of process chambers 6000 and the load lock chamber 4000 . ) may be fastened to be radially disposed around the transfer chamber 1000 . Of course, the shape in which the plurality of process chambers 6000 and the load lock chamber 4000 are coupled to the transfer chamber 1000 is not limited to the aforementioned radial shape and may be variously changed.
복수의 공정 챔버(6000)는 그 내부에서 서로 다른 기판 처리 공정을 수행하도록 마련될 수 있다.The plurality of process chambers 6000 may be provided to perform different substrate processing processes therein.
공정 챔버(6000)의 내부에는 상부에 기판(10)이 안착되는 안착대(6110)를 구비하는 기판 안착부(6100) 및 안착대(6110)와 대향하도록 배치되어 기판 처리를 위한 원료 가스를 분사하는 가스 분사부(미도시)가 설치될 수 있다.Inside the process chamber 6000, the substrate receiving unit 6100 having a mounting unit 6110 on which the substrate 10 is mounted, and the mounting unit 6110 are disposed to face the substrate, and source gas for substrate processing is sprayed. A gas injection unit (not shown) may be installed.
가스 분사부에서 분사되는 원료는 기판(10) 상에 박막을 증착하기 위한 원료이거나, 기판(10) 또는 박막을 식각하기 위한 원료일 수 있다.The raw material injected from the gas injection unit may be a raw material for depositing a thin film on the substrate 10 or a raw material for etching the substrate 10 or the thin film.
공정 챔버(6000)에는 상기 공정 챔버(6000) 내부를 시각적으로 확인할 수 있는 뷰포트(6200)가 마련될 수 있으며, 상기 뷰포트(6200)는 안착대(6110)와 마주보는 위치에 마련되는 것이 바람직하다. 또한, 공정 챔버(6000) 내부에는 상호 마주보도록 기판 안착부(6100) 및 가스 분사부가 배치되는데, 예컨대, 공정 챔버(6000) 내 하부에 기판 안착부(6100)가 위치되고, 기판 안착부(6100)의 상측에 가스 분사부가 위치되도록 배치될 수 있다.The process chamber 6000 may be provided with a viewport 6200 through which the inside of the process chamber 6000 can be visually confirmed, and the viewport 6200 is preferably provided at a position facing the mounting table 6110 . . In addition, the substrate receiving unit 6100 and the gas injection unit are disposed to face each other inside the process chamber 6000 . For example, the substrate receiving unit 6100 is located in the lower part of the process chamber 6000 , and the substrate receiving unit 6100 is disposed. ) may be disposed so that the gas injection unit is located on the upper side.
기판 안착부(6100)는 도 3 및 도 4에 도시된 바와 같이, 상부에 기판(10)이 안착되는 안착대(6110) 및 일단이 안착대(6110)의 상측으로 돌출되거나, 상기 안착대(6110)의 내측에 위치하도록 승하강 가능한 리프트 핀(6120)을 포함한다. As shown in FIGS. 3 and 4, the substrate receiving unit 6100 has a mounting base 6110 on which the substrate 10 is mounted and one end protruding upward of the mounting base 6110, or the mounting base ( It includes a lift pin 6120 capable of elevating so as to be located on the inside of the 6110.
안착대(6110)는 처리를 위한 기판(10)이 안착 또는 지지되는 수단이다. 이러한 안착대(6110)는 기판(10)에 비해 큰 면적을 가지는 판 형상일 수 있다. 또한, 안착대(6110)에는 기판(10)을 안정적으로 지지하기 위한 홈(이하, 안착홈) 또는 포켓이 마련될 수 있다. 즉, 안착대(6110)에는 가스 분사부와 마주보는 면(이하, 일면(62))으로부터 상기 가스 분사부와 반대 측으로 함몰된 형상의 홈이 마련되는데, 이 홈이 기판이 수용 또는 안착되는 안착홈이다.The mount 6110 is a means on which the substrate 10 for processing is seated or supported. The mounting base 6110 may have a plate shape having a larger area than that of the substrate 10 . In addition, a groove (hereinafter, a seating groove) or a pocket for stably supporting the substrate 10 may be provided in the seating table 6110 . That is, the seating table 6110 is provided with a groove in the shape of a depression in the opposite side to the gas injection part from the surface (hereinafter, referred to as one surface 62) facing the gas injection part, and this groove is a seating in which the substrate is accommodated or seated. it is home
기판(10)이 안착홈 내에 안착되는데 있어서, 안착홈 또는 안착면(62b) 상에서의 기판(10)의 안착 위치는 기판(10)을 공정 챔버(6000)로 이송시키는 이송 장치(2000)의 동작 상태, 공정 챔버(6000)가 이송 챔버(1000)에 연결된 상태, 공정 챔버(6000) 내부에 안착대(6110)가 설치된 상태에 따라 달라질 수 있다. 보다 구체적으로, 이송 장치(2000)의 동작 이상 여부, 공정 챔버(6000)가 이송 챔버(1000)에 체결된 위치 및 안착대(6110)의 수평 여부에 따라 달라질 수 있다. When the substrate 10 is seated in the seating groove, the seating position of the substrate 10 on the seating groove or the seating surface 62b is an operation of the transfer device 2000 for transferring the substrate 10 to the process chamber 6000 . It may vary depending on a state, a state in which the process chamber 6000 is connected to the transfer chamber 1000 , and a state in which the mounting base 6110 is installed in the process chamber 6000 . More specifically, it may vary depending on whether the operation of the transfer device 2000 is abnormal, a position where the process chamber 6000 is coupled to the transfer chamber 1000 , and whether the seat 6110 is horizontal.
예컨대, 기판(10)이 안착홈 내에 안착되는데 있어서, 도 3의 (a)와 같이 기판(10)의 폭 방향 중심(12)이 안착면(62b)의 폭 방향 중심(CH)에 위치하도록 안착될 수 있다. 이러한 경우 3의 (b)와 같이 기판(10)의 둘레 방향으로 기판(10)의 측면(11)과 안착대(6110)의 내측면(62c) 간의 이격 거리(또는 갭)가 균일할 수 있다. 다른 예로, 도 4의 (a)와 같이 기판(10)의 폭 방향 중심(12)이 안착면(62b)의 폭 방향 중심(CH)에서 벗어나도록 안착되는 경우, 도 4의 (b)와 같이 기판(10)의 둘레 방향으로 기판(10)의 측면(11)과 안착대(6110)의 내측면(62c) 간의 이격 거리(또는 갭)이 불균일할 수 있다.For example, when the substrate 10 is seated in the seating groove, the width direction center 12 of the substrate 10 is positioned at the width direction center CH of the seating surface 62b as shown in FIG. 3 (a). can be seated In this case, the separation distance (or gap) between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 in the circumferential direction of the substrate 10 may be uniform as in (b) of 3 . As another example, when the width direction center 12 of the substrate 10 is seated so as to deviate from the width direction center (CH ) of the seating surface 62b as shown in FIG. 4 (a), FIG. 4 (b) and Similarly, the separation distance (or gap) between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 in the circumferential direction of the substrate 10 may be non-uniform.
이렇게, 안착대(6110) 상에서의 기판(10) 위치가 다른 것은, 상술한 바와 같이, 이송 장치(2000)의 동작 이상 여부, 공정 챔버(6000)가 이송 챔버(1000)에 체결된 위치 및 안착대(6110)의 수평 여부에 따라 달라지는데, 기판 안착 위치에 대한 설명은 이후에 다시 하기로 한다.As described above, the different positions of the substrate 10 on the mounting table 6110 include whether the operation of the transfer device 2000 is abnormal, the position at which the process chamber 6000 is coupled to the transfer chamber 1000 and the seating position. It varies depending on whether the stand 6110 is horizontal or not, and a description of the substrate seating position will be described later.
이송 장치(2000)는 기판(10)을 지지하여 이를 목적하는 위치로 이동시키는 장치이다. 예컨대, 이송 장치(2000)는 로드락 챔버(4000) 내부의 기판(10)을 이송 챔버(1000)로 이송시키고, 이송 챔버(1000)로 이송된 기판(10)을 공정 챔버(6000) 내부로 이송시킨다.The transfer device 2000 is a device that supports the substrate 10 and moves it to a desired position. For example, the transfer apparatus 2000 transfers the substrate 10 inside the load lock chamber 4000 to the transfer chamber 1000 , and transfers the substrate 10 transferred to the transfer chamber 1000 into the process chamber 6000 . transport
이러한 이송 장치(2000)는 기판(10)이 지지되는 지지부(2100) 및 지지부(2100)와 이송 구동부(2000a) 사이를 연결하도록 설치되어, 이송 구동부(2000a)의 동작에 따라 수평 이동 동작 및 회전 이동 동작되는 암(2200)을 포함한다.The transfer device 2000 is installed to connect the support 2100 on which the substrate 10 is supported and the support 2100 and the transfer driver 2000a, and horizontally move and rotate according to the operation of the transfer driver 2000a. and an arm 2200 that is movable.
암(2200)은 지지부(2100)와 이송 구동부(2000a) 사이에 연결된다. 즉, 암(2200)은 그 일단이 이송 구동부(2000a)에 연결되고 타단이 지지부(2100)에 연결된다. 이러한 암(2200)은 이송 구동부(2000a)의 동작에 따라 수평 이동, 회전 이동된다. 또한, 암(2200)은 이송 구동부(2000a)의 동작에 따라 승하강 동작될 수 있다.The arm 2200 is connected between the support part 2100 and the transfer driving part 2000a. That is, the arm 2200 has one end connected to the transport driving unit 2000a and the other end connected to the support unit 2100 . The arm 2200 is horizontally moved and rotated according to the operation of the transport driver 2000a. In addition, the arm 2200 may be raised and lowered according to the operation of the transfer driving unit 2000a.
이하에서는, 암(2200)에 연결된 지지부(2100)가 공정 챔버(6000) 또는 로드락 챔버(4000)와 가까워지게 이동하거나, 공정 챔버(6000) 또는 로드락 챔버(4000) 쪽으로 이동하는 수평 이동 동작을 전진 이동이라 정의한다. 또한, 반대로 암(2200)에 연결된 지지부(2100)가 공정 챔버(6000) 또는 로드락 챔버(4000)와 멀어지도록 이동하거나, 공정 챔버(6000) 또는 로드락 챔버(4000)와 반대 쪽으로 이동하는 수평 이동 동작을 후진 이동이라 정의한다.Hereinafter, a horizontal movement operation in which the support 2100 connected to the arm 2200 moves closer to the process chamber 6000 or the load lock chamber 4000 , or moves toward the process chamber 6000 or the load lock chamber 4000 . is defined as a forward movement. In addition, on the contrary, the support 2100 connected to the arm 2200 moves away from the process chamber 6000 or the load lock chamber 4000 , or horizontally moves in the opposite direction to the process chamber 6000 or the load lock chamber 4000 . A movement motion is defined as a backward movement.
이송 구동부(2000a)는 지지부(2100)가 전후진, 회전 이동되도록 암(2200)을 구동 또는 동작시키는 수단이다. 이러한 이송 구동부(2000a)는 이송 장치(2000)를 전후진 이동시키는 수평 구동부 및 이송 장치(2000)를 회전시키는 회전 구동부를 포함할 수 있다. 또한, 이송 구동부는 이송 장치(2000)의 높이를 조절하기 위한 승하강 구동부를 포함할 수 있다.The transfer driving unit 2000a is a means for driving or operating the arm 2200 so that the support unit 2100 moves forward and backward and rotationally. The transport driving unit 2000a may include a horizontal driving unit for moving the transport device 2000 forward and backward and a rotation driving unit for rotating the transport device 2000 . In addition, the transport driving unit may include an elevating driving unit for adjusting the height of the transport device 2000 .
제어부(2000b)는 이송 장치(2000)가 수평 이동, 회전 이동 또는 승하강되도록 구동 명령값에 의해 이송 구동부(2000a)를 동작시킬 수 있다. 즉, 제어부(2000b)에는 지지부(2100)가 목적하는 위치에 위치되도록 이송 장치(2000)를 수평 이동, 회전 이동 또는 승하강시키기 위한 구동 명령값이 설정 또는 저장되어 있다. 구동 명령값은 이송 장치(2000)의 설치 단계에서 미리 설정된 값일 수 있으며, 설계치수, 설계허용오차 등이 반영된 값일 수 있다. 그리고 이러한 구동 명령값에 의해서 이송 장치가 동작 할 수 있다.The controller 2000b may operate the transport driving unit 2000a according to a driving command value so that the transport device 2000 is horizontally moved, rotated, or moved up and down. That is, the control unit 2000b sets or stores a driving command value for horizontally moving, rotationally moving, or elevating and lowering the transfer device 2000 so that the support unit 2100 is positioned at a desired position. The driving command value may be a value set in advance in the installation stage of the transfer device 2000, and may be a value in which design dimensions, design tolerance, and the like are reflected. And the transfer device can be operated by these drive command values.
한편, 이송 장치(2000)를 통해 공정 챔버(6000) 내로 이송된 기판(10)을 안착대(6110) 상에 안착시키는데 있어서, 기판(10)의 위치가 정위치가 되도록 할 필요가 있다. 여기서, 기판(10)의 위치는 안착대(6110) 또는 안착면(62b)을 기준으로 한 위치일 수 있다. 또한, 기판(10)의 정위치는, 기판(10) 처리시 불량이 발생되지 않거나, 목적하는 품질로 제조될 수 있는 기판(10)의 위치로서, 기판 처리 시스템 제조시에 결정 또는 설정되는 위치일 수 있다.Meanwhile, when the substrate 10 transferred into the process chamber 6000 through the transfer device 2000 is seated on the mounting table 6110 , it is necessary to ensure that the position of the substrate 10 becomes the correct position. Here, the position of the substrate 10 may be a position based on the mounting base 6110 or the mounting surface 62b. In addition, the position of the substrate 10 is a position of the substrate 10 at which defects do not occur during processing of the substrate 10 or can be manufactured with a desired quality, and is a position determined or set during manufacturing of the substrate processing system. can be
기판(10)의 정위치는, 예를 들어, 도 3의 (a) 및 (b)와 같이 기판(10)의 폭 방향 중심(12)이 안착면(62b)의 폭 방향 중심(CH)과 일치 또는 중첩되는 위치일 수 있다. 즉, 기판(10)의 정위치는, 도 4의 (a) 및 (b)와 같이 기판(10)이 안착면(62b) 상에서 어느 한쪽으로 치우치지 않고, 도 3의 (a) 및 (b)와 같이 기판(10)의 둘레 방향으로 기판(10)의 측면(11)과 안착대(6110)의 내측면(62c) 간의 거리가 균일하도록 배치된 위치일 수 있다.The original position of the substrate 10 is, for example, the width direction center 12 of the substrate 10 as shown in FIGS. 3 (a) and (b) is the width direction center of the seating surface 62b ( CH ) It may be a position that coincides with or overlaps with. That is, the original position of the substrate 10 is not biased to either side on the seating surface 62b of the substrate 10 as shown in FIGS. 4 (a) and (b), and in FIGS. ), the distance between the side surface 11 of the substrate 10 and the inner surface 62c of the mounting base 6110 in the circumferential direction of the substrate 10 may be uniformly disposed.
물론, 기판(10)의 정위치는 상술한 바와 같이 기판(10)의 폭 방향 중심이 안착면(62b)의 폭 방향 중심(CH)과 일치하는 예에 한정되지 않고, 기판 처리시 불량이 발생되지 않거나, 목적하는 품질로 제조하기 위해 의도된 다양한 위치로 변경될 수 있다.Of course, the position of the substrate 10 is not limited to the example in which the width direction center of the substrate 10 coincides with the width direction center CH of the seating surface 62b, as described above, and defects occur during substrate processing. It may not occur or may be altered to various locations intended to produce the desired quality.
이러한 안착대(6110) 또는 안착면(62b) 상에서의 기판(10)의 위치는 기판(10)을 이송시키는 이송 장치(2000)의 동작 이상 여부, 공정 챔버(6000)가 이송 챔버(1000)에 체결된 위치 및 안착대의 수평 여부에 따라 달라질 수 있다.The position of the substrate 10 on the seat 6110 or the seat surface 62b is determined whether the operation of the transfer device 2000 for transferring the substrate 10 is abnormal, and the process chamber 6000 is connected to the transfer chamber 1000 . It may vary depending on the fastened position and whether the seat is horizontal.
이송 장치(2000)의 동작 이상 여부란, 이송 구동부(2000a)의 동작에 따른 지지부(2100)가 실제 이동된 상태를 의미할 수 있다. 여기서, 지지부(2100)가 실제 이동된 상태란, 수평 이동이 종료된 지지부(2100)가 기 설정된 목표 위치(이하, 제 1 위치)에 위치하고 있는지 여부일 수 있다. 그리고, 이송 장치(2000)의 동작 이상 여부를 판단하는데 있어서, 수평 이동이 종료된 지지부(2100)가 제 1 위치에 위치하고 있으면, 이송 장치(2000)의 동작을 정상, 그렇지 않다면 비정상으로 판단한다.Whether the operation of the transfer device 2000 is abnormal may mean a state in which the support unit 2100 is actually moved according to the operation of the transfer driver 2000a. Here, the state in which the support part 2100 is actually moved may be whether the support part 2100 in which the horizontal movement has been completed is located at a preset target position (hereinafter, referred to as a first position). And, in determining whether the operation of the transfer device 2000 is abnormal, if the support part 2100, where the horizontal movement is finished, is located in the first position, the operation of the transfer apparatus 2000 is normal, otherwise it is determined as abnormal.
지지부(2100)가 제 1 위치에 위치하고 있는지를 판단하는데 있어서, 지지부(2100)가 실제 수평 이동된 거리(이하, 실제 이동 거리)를 이용하여 판단할 수 있다. 보다 구체적으로 설명하면, 제 1 위치 또는 목적하는 수평 이동 거리(이하, 제 1 이동 거리)에 따라 기 설정된 구동 명령값(이하, 제 1 구동 명령값)에 의해 이송 구동부(2000a)가 동작되면, 이에 따라 암(2200)이 동작되어 지지부(2100)가 수평 이동한다. 여기서, 제 1 이동 거리는 제 1 위치 따라 결정될 수 있다. 그리고, 지지부(2100)가 제 1 이동 거리로 이동되었는지 여부에 따라 이송 장치(2000)의 동작을 정상 또는 비정상으로 결정할 수 있다. 이는, 지지부(2100)의 실제 이동 거리가 제 1 이동 거리라면, 지지부(2100)가 제 1 위치에 도달한 것이고, 그렇지 않다면 제 1 위치에 위치하고 있지 않은 것이기 때문이다.In determining whether the support part 2100 is located at the first position, it may be determined using a distance actually horizontally moved (hereinafter, referred to as an actual movement distance) of the support part 2100 . More specifically, when the transfer driving unit 2000a is operated by a preset driving command value (hereinafter, referred to as the first driving command value) according to the first position or the desired horizontal movement distance (hereinafter, the first movement distance), Accordingly, the arm 2200 is operated to horizontally move the support part 2100 . Here, the first movement distance may be determined according to the first location. In addition, the operation of the transfer device 2000 may be determined to be normal or abnormal depending on whether the support unit 2100 is moved to the first movement distance. This is because if the actual movement distance of the support part 2100 is the first movement distance, the support part 2100 has reached the first position, otherwise it is not located in the first position.
제 1 이동 거리는 범위로 설정될 수 있다. 즉, 제 1 이동 거리는 최하한 이상, 최상한치 이하의 범위값일 수 있다. 이를 반영하여 다시 설명하면, 지지부(2100)가 실제 수평 이동한 거리 즉, 실제 이동 거리가 제 1 이동 거리에 포함되는 경우, 이송 장치(2000)의 동작이 정상인 것으로 볼 수 있다. 그러나, 지지부(2100)의 실제 이동 거리가 제 1 이동 거리에 포함되지 않는 경우, 이송 장치(2000)의 동작이 비정상인 것으로 볼 수 있다. 여기서, 지지부(2100)의 실제 이동 거리가 제 1 이동 거리에 포함되지 않는 다는 것은, 제 1 이동 거리의 최하한치 미만이거나, 최상한치를 초과하는 것일 수 있다.The first moving distance may be set as a range. That is, the first movement distance may be a range value greater than or equal to the lower limit and less than or equal to the upper limit. Reflecting this and explaining again, when the actual horizontal movement distance of the support unit 2100 , that is, the actual movement distance is included in the first movement distance, the operation of the transfer device 2000 may be considered normal. However, when the actual movement distance of the support unit 2100 is not included in the first movement distance, the operation of the transfer device 2000 may be regarded as abnormal. Here, the fact that the actual movement distance of the support unit 2100 is not included in the first movement distance may be less than the lowest limit of the first movement distance or exceeding the upper limit of the first movement distance.
그리고, 이송 챔버(1000)로 장입된 기판(10)을 이송 장치(2000)를 통해 공정 챔버(6000) 내로 이송시켜 안착대(6110)에 안착시키는데 있어서, 이송 장치(2000)의 동작이 정상이고, 공정 챔버(6000)의 연결 상태가 정상인 경우, 기판(10)이 안착대(6110)의 정위치에 안착될 수 있다. 즉, 예컨대 도 3과 같이 기판(10)의 폭 방향 중심(12)이 안착면(62b)의 폭 방향 중심(CH)과 일치하도록 안착될 수 있다. 그러나, 이송 장치(2000)의 동작이 비정상인 경우, 기판(10)이 안착대(6110)의 정위치에 안착되지 못한다. 즉, 예컨대 도 4와 같이 기판(10)의 폭 방향 중심(12)이 안착대(6110)의 폭 방향 중심과(CH) 일치하지 않고, 벗어나도록 안착될 수 있다.And, when the substrate 10 loaded into the transfer chamber 1000 is transferred into the process chamber 6000 through the transfer device 2000 and seated on the mount 6110, the operation of the transfer device 2000 is normal and , when the connection state of the process chamber 6000 is normal, the substrate 10 may be seated in the proper position of the mounting base 6110 . That is, for example, as shown in FIG. 3 , the center 12 in the width direction of the substrate 10 may be seated to coincide with the center C H in the width direction of the seating surface 62b. However, when the operation of the transfer device 2000 is abnormal, the substrate 10 may not be seated in the proper position of the mounting base 6110 . That is, for example, as shown in FIG. 4 , the center 12 in the width direction of the substrate 10 does not coincide with the center in the width direction of the mounting base 6110 (CH ), and may be seated so as to deviate.
이렇게 이송 장치(2000)의 동작이 정상 또는 비정상이 되는 것은, 지지부(2100)와 암(2200) 간의 조립 상태 및 암(2200)을 구성하는 복수의 링크 부재들(2210a, 2210b) 간의 조립 상태 중 적어도 하나에 의한 것일 수 있다. 즉, 지지부(2100)와 암(2200) 간의 조립 상태 및 암(2200)을 구성하는 복수의 링크 부재들(2210a, 2210b) 간의 조립 상태 중 적어도 하나에 따라, 이송 구동부(2000a)의 동작에 의해 지지부(2100)가 실제 수평 이동한 거리 즉, 전진 또는 후진 이동 거리가 달라진다. 다른 말로 설명하면, 지지부(2100)와 암(2200) 간의 조립 상태 및 암(2200)을 구성하는 복수의 링크 부재들(2210a, 2210b) 간의 조립 상태 중 적어도 하나에 따라, 이송 구동부(2000a)의 동작에 의해 지지부(2100)가 제 1 이동 거리로 수평 이동되거나, 제 1 이동 거리 미만으로 이동되거나, 제 1 이동 거리를 초과하도록 이동될 수 있다.The normal or abnormal operation of the transfer device 2000 is an assembly state between the support part 2100 and the arm 2200 and an assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200. It may be by at least one. That is, according to at least one of the assembly state between the support part 2100 and the arm 2200 and the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200, by the operation of the transfer driving unit 2000a The actual horizontal movement distance of the support unit 2100, that is, the forward or backward movement distance varies. In other words, according to at least one of the assembly state between the support part 2100 and the arm 2200 and the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200, the transfer driving unit 2000a By the operation, the support 2100 may be horizontally moved by the first movement distance, moved less than the first movement distance, or moved to exceed the first movement distance.
이하에서는 설명의 편의를 위하여, 지지부(2100)와 암(2200) 간의 조립 상태 및 암(2200)을 구성하는 복수의 링크 부재들(2210a, 2210b) 간의 조립 상태를 '이송 장치의 조립 상태'로 통칭하여 설명한다.Hereinafter, for convenience of explanation, the assembly state between the support part 2100 and the arm 2200 and the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2200 are referred to as 'assembly state of the transfer device'. It will be described collectively.
안착대(6110) 또는 안착면(62b) 상에서의 기판(10)의 위치는 이송 장치(2000)의 조립 상태뿐만 아니라, 공정 챔버(6000)의 연결 상태에 따라 달라질 수 있다. 즉. 기판 처리 시스템의 제조 또는 세팅(setting) 시에, 공정 챔버(6000)를 이송 챔버(1000)에 체결 또는 결합시킨다. 이때, 공정 챔버(6000)가 이송 챔버(1000)에 체결된 위치에 따라, 안착대(6110) 상에서의 기판(10)의 위치가 달라질 수 있다. 즉, 이송 장치(2000)의 동작이 정상이더라도, 공정 챔버(6000)의 연결 상태에 따라, 기판(10)이 안착대(6110) 상에 정위치에 위치되지 못할 수 있다. 이는, 공정 챔버(6000)의 결합 상태에 따라, 이송 챔버(1000) 또는 이송 장치(2000)를 기준으로 한 안착대(6110)의 위치가 달라지기 때문이다.The position of the substrate 10 on the seating table 6110 or the seating surface 62b may vary depending on the assembly state of the transfer device 2000 as well as the connection state of the process chamber 6000 . In other words. During fabrication or setting of the substrate processing system, the process chamber 6000 is fastened or coupled to the transfer chamber 1000 . In this case, the position of the substrate 10 on the mounting base 6110 may vary according to a position where the process chamber 6000 is coupled to the transfer chamber 1000 . That is, even if the operation of the transfer device 2000 is normal, the substrate 10 may not be positioned on the mounting base 6110 according to the connection state of the process chamber 6000 . This is because the position of the seating base 6110 with respect to the transfer chamber 1000 or the transfer device 2000 is changed according to the coupling state of the process chamber 6000 .
이에, 본 발명의 실시예에서는 실제 기판 처리 공정 전에 이송 장치(2000)의동작 상태를 모니터링 하는 즉, 동작에 대한 이상 여부를 미리 확인 또는 검사할 수 있는 제 1 검사 장치(3000)를 마련한다.Accordingly, in the embodiment of the present invention, the first inspection apparatus 3000 that monitors the operation state of the transfer apparatus 2000 before the actual substrate processing process, that is, can check or inspect whether there is an abnormal operation in advance, is provided.
이하, 도 1, 도 2, 도 5 내지 도 9를 참조하여, 제 1 검사 장치에 대해 설명한다.Hereinafter, the first inspection apparatus will be described with reference to FIGS. 1, 2, and 5 to 9 .
이때, 이송 장치(2000)를 전진 이동시켜 이송 장치(2000)의 동작 이상 여부를 검사하는데 있어서, 어느 하나의 공정 챔버(6000) 방향으로 전진 이동시키는 것을 예를 들어 설명한다.In this case, when the transfer apparatus 2000 is moved forward to check whether the operation of the transfer apparatus 2000 is abnormal, moving the transfer apparatus 2000 forward in the direction of one of the process chambers 6000 will be described as an example.
도 5는 이송 장치의 동작을 검사하기 위해, 본 발명의 실시예에 따른 지지부가 전진 이동된 상태를 도시한 상면도이다. 도 6은 본 발명의 실시예에 따른 지지부가 전진 이동되기 전의 대기 상태를 도시한 정면도이다. 도 7 및 도 8은 이송 장치의 동작을 검사하기 위해, 본 발명의 실시예에 따른 지지부가 이송 챔버 내에서 공정 챔버 쪽으로 전진 이동된 상태를 도시한 정면도이다. 도 9는 본 발명의 실시예에 따른 제 1 검출부를 통해 획득된 화상 이미지 상에서의 기준 영역 및 마크의 위치를 예시적으로 설명하는 개념도이다.5 is a top view illustrating a state in which the support part is moved forward according to an embodiment of the present invention in order to inspect the operation of the transport device. 6 is a front view illustrating a standby state before the support part is moved forward according to an embodiment of the present invention. 7 and 8 are front views illustrating a state in which a support part according to an embodiment of the present invention is moved forward from the transfer chamber toward the process chamber in order to inspect the operation of the transfer apparatus. 9 is a conceptual diagram exemplarily illustrating positions of a reference region and a mark on an image image acquired through a first detection unit according to an embodiment of the present invention.
여기서, 도 7은 지지부의 실제 이동 거리(DR)가 제 1 이동 거리(DET)를 만족하는 경우를 나타낸 도면이고, 도 8은 지지부의 실제 이동 거리(DR)가 제 1 이동 거리(DET)를 만족하지 않는 경우를 나타낸 도면이다.Here, Figure 7 is a physical movement of the support distance (D R) of the first movement distance (D ET) to satisfy the figure, and the actual moving distance of Fig. 8 is the support shown a case in which (D R) of the first movement distance ( D ET ) is not satisfied.
도 1, 도 2, 도 5 내지 도 8을 참조하면, 제 1 검사 장치(3000)는 지지부(2100)에 형성된 마크(mark)(M), 지지부(2100)가 공정 챔버(6000)의 위치로 수평 이동되는 경로 상의 일 위치에 설치된 제 1 검출부(3100) 및 제 1 검출부(3100)로부터 획득된 데이터를 이용하여 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단하는 판단부(이하, 제 1 판단부(3200))를 포함한다. 또한, 제 1 검사 장치(3000)는 제 1 판단부(3200)에서 이송 장치(2000)의 동작이 비정상으로 판단된 경우 알람을 발생시키는 알람부(이하, 제 1 알람부(3300))를 포함할 수 있다.1, 2, and 5 to 8 , in the first inspection apparatus 3000 , a mark M formed on the support 2100 and the support 2100 move to the position of the process chamber 6000 . A determination unit (hereinafter, referred to as first and a determination unit 3200). In addition, the first inspection device 3000 includes an alarm unit (hereinafter, the first alarm unit 3300) that generates an alarm when the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. can do.
마크(M)는 도 6에 도시된 바와 같이 예컨대 지지부(2100)의 배면에 형성될 수 있다. 물론 마크(M)의 형성 위치는 지지부(2100)의 배면에 한정되지 않고, 제 1 검출부(3100)에 의해 검출될 수 있다면 지지부(2100)의 어떠한 위치에 형성되어도 무방하다. 또한, 실시예에 따른 마크(M)는 십자(十)와 같은 형상이나(도 9 참조), 이에 한정되지 않고 원형, 다각형 등 다양한 형상으로 변형될 수 있다.The mark M may be formed, for example, on the back surface of the support 2100 as shown in FIG. 6 . Of course, the formation position of the mark M is not limited to the rear surface of the support part 2100 , and may be formed at any position of the support part 2100 if it can be detected by the first detection part 3100 . In addition, the mark M according to the embodiment has a shape such as a cross (see FIG. 9 ), but is not limited thereto and may be deformed into various shapes such as a circle and a polygon.
제 1 검출부(3100)는 지지부(2100)에 마련된 마크(M)를 촬상하기 위한 수단일 수 있다. 즉, 제 1 검출부(3100)는 화상 또는 영상 이미지를 획득할 수 있는 촬상부를 포함하는 수단일 수 있고, 상기 촬상부는 라인스캐너, 비전카메라 등일 수 있다.The first detection unit 3100 may be a means for imaging the mark M provided on the support unit 2100 . That is, the first detection unit 3100 may be a means including an imaging unit capable of acquiring an image or a video image, and the imaging unit may be a line scanner, a vision camera, or the like.
제 1 검출부(3100)는 지지부(2100)의 하측에 위치하도록 이송 챔버(1000) 내에 설치될 수 있다. 그리고, 제 1 검출부(3100)는 지지부(2100)가 공정 챔버(6000)의 위치로 전진 이동되는 경로 상의 일 위치에 위치하도록 이송 챔버(1000)에 설치된다. 즉, 제 1 검출부(3100)는 공정 챔버(6000)와 이송 구동부(2000a) 사이에 위치하도록 이송 챔버(1000)에 설치된다. 이러한 제 1 검출부(3100)는 복수개로 마련될 수 있고, 각 공정 챔버(6000)와 이송 구동부(2000a) 사이에 위치될 수 있다.The first detection unit 3100 may be installed in the transfer chamber 1000 to be located below the support unit 2100 . In addition, the first detection unit 3100 is installed in the transfer chamber 1000 so that the support unit 2100 is located at a position on the path on which the support unit 2100 is moved forward to the position of the process chamber 6000 . That is, the first detector 3100 is installed in the transfer chamber 1000 to be positioned between the process chamber 6000 and the transfer driver 2000a. The first detection unit 3100 may be provided in plurality, and may be located between each process chamber 6000 and the transfer driver 2000a.
상기에서는 제 1 검출부(3100)가 이송 챔버(1000)의 내부에 설치되는 것으로 설명하였으나, 이에 한정되지 않고, 지지부(2100)에 형성된 마크(M)의 촬상이 가능하도록 이송 챔버(1000)의 외부에 설치될 수도 있다.In the above description, it has been described that the first detection unit 3100 is installed inside the transfer chamber 1000 , but the present invention is not limited thereto. may be installed in
제 1 검출부(3100)의 설치 위치는, 도 1 및 도 6과 같이, 지지부(2100)가 공정 챔버(6000) 방향으로 전진 이동하지 않은 상태(이하, 대기 상태)를 기준으로 결정된다. 보다 구체적으로, 도 6과 같이 대기 상태에서 지지부(2100)에 마련되어 있는 마크(M)의 중심(CM)으로부터 공정 챔버(6000) 방향으로 소정 거리 이격되도록 제 1 검출부(3100)를 설치한다. 이에, 대기 상태의 지지부(2100)가 상기 소정 거리만큼 공정 챔버(6000) 방향으로 전진 이동하면, 마크(M)가 제 1 검출부(3100)의 상측에 즉, 제 1 검출부(3100)와 마주보도록 위치될 수 있다.An installation position of the first detection unit 3100 is determined based on a state in which the support unit 2100 does not move forward in the process chamber 6000 direction (hereinafter, referred to as a standby state) as shown in FIGS. 1 and 6 . More specifically, the installation of the first detector 3100 so that even the center of the mark (M) provided on the support portion 2100 in the stand-by state as shown in 6 (C M) a predetermined distance from the processing chamber (6000) direction from. Accordingly, when the support part 2100 in the standby state moves forward in the direction of the process chamber 6000 by the predetermined distance, the mark M is located on the upper side of the first detection part 3100 , that is, to face the first detection part 3100 . can be located.
실시예에서는 이송 장치(2000)의 동작을 검사하기 위하여, 이송 장치(2000) 즉, 지지부(2100)를 제 1 검출부(3100) 방향으로 전진 이동시킨다. 따라서, 제 1 위치는 제 1 검출부(3100)의 위치일 수 있고, 지지부(2100)를 이동시킬 목표 수평 이동 거리 즉, 제 1 이동 거리(DET)는, 대기 상태에서의 지지부(2100)에 마련되어 있는 마크(M)와 제 1 검출부(3100) 간의 이격 거리일 수 있다. 보다 구체적으로, 제 1 이동 거리(DET)는 대기 상태에서의 지지부(2100)에 마련되어 있는 마크(M)의 중심(CM)과 제 1 검출부(3100)의 중심 간의 이격 거리일 수 있다.In the embodiment, in order to inspect the operation of the transport device 2000 , the transport device 2000 , that is, the support part 2100 is moved forward in the direction of the first detection part 3100 . Accordingly, the first position may be the position of the first detection unit 3100 , and the target horizontal movement distance to which the support unit 2100 is moved, that is, the first movement distance D ET , is to the support unit 2100 in the standby state. It may be a separation distance between the provided mark M and the first detection unit 3100 . More specifically, the first movement distance D ET may be a separation distance between the center C M of the mark M provided on the support unit 2100 in the standby state and the center of the first detection unit 3100 .
이송 구동부(2000a)가 제 1 구동 명령값에 의해 동작되면, 암(2200)의 동작에 의해 지지부(2100)가 공정 챔버(6000) 방향으로 전진 이동한다. 이때, 지지부(2100)가 제 1 이동 거리(DET) 만큼 이동되면, 마크(M)가 제 1 검출부(3100)의 상측에 즉, 제 1 검출부(3100)와 마주보도록 위치될 수 있다. 그리고, 마크(M)가 제 1 위치에 위치될 수 있다. 다른 예로, 지지부(2100)가 제 1 이동 거리(DET) 미만 또는 초과하도록 이동되면, 마크(M)가 제 1 검출부(3100)와 마주보지 않을 수 있다. 또한, 마크(M)가 제 1 검출부(3100)와 마주보더라도, 지지부(2100)가 실제 이동된 거리에 따라, 마크(M)의 중심(CM)이 제 1 검출부(3100)의 폭 방향 중심과 일치 또는 중첩되거나, 그렇지 않을 수도 있다. 이러한 경우, 마크(M)가 제 1 위치에 위치되지 않는다. When the transfer driving unit 2000a is operated according to the first driving command value, the support unit 2100 moves forward in the process chamber 6000 direction by the operation of the arm 2200 . At this time, when the support part 2100 is moved by the first movement distance D ET , the mark M may be positioned above the first detection part 3100 , that is, to face the first detection part 3100 . And, the mark M may be located in the first position. As another example, when the support part 2100 is moved to be less than or more than the first movement distance D ET , the mark M may not face the first detection part 3100 . Further, the mark (M) is the center in the width direction of the center (C M) is the first detection unit 3100 of the first detection unit skater faced with 3100, according to which the support portion 2100, the actual distance traveled, the mark (M) may or may not match or overlap with . In this case, the mark M is not located at the first position.
이와 같이 지지부(2100)의 실제 전진 이동 거리(DR)에 따라, 마크(M)의 위치가 달라지므로, 제 1 검출부(3100)에서 촬상된 화상 이미지(F) 상에서의 마크(MF)의 위치가 달라진다. 예컨대, 도 9의 (a)와 같이 화상 이미지(F) 상에서 마크(MF)의 중심(CMF)이 상기 화상 이미지(F)의 중심(CF)과 일치 또는 중첩되거나, 도 9의 (b)와 같이 그렇지 않을 수 있다. 또한, 화상 이미지(F) 상에 마크(MF)가 존재하지 않을 수도 있다.As described above, according to the actual forward movement distance D R of the support 2100 , the position of the mark M changes, so the mark M F on the image image F captured by the first detection unit 3100 . location changes. For example, the mark (M F) on the video image (F) as shown in (a) of Fig. 9 the center (C MF) is a picture image (F) the center (C F) with or match or overlap of the, in FIG. 9 ( b) may not be the case. Also, the mark M F may not exist on the video image F .
제 1 판단부(3200)는 제 1 검출부(3100)에서 획득된 데이터를 이용하여 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단한다. 예컨대, 제 1 판단부(3200)는 제 1 검출부(3100)로부터 획득된 화상 이미지(F) 상에서의 마크(MF)의 위치에 따라 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단한다. 이를 위해, 제 1 판단부(3200)는 제 1 검출부(3100)로부터 전달된 화상 이미지(F) 상에 기준 영역(AS)을 설정한다. 여기서, 기준 영역(AS)은, 화상 이미지(F) 상에서의 중심(CF)을 포함하는 소정 영역일 수 있다. 즉, 기준 영역(AS)은 소정의 면적을 가지고, 그 중심이 화상 이미지(F)의 중심(CF)과 일치되게 설정된 것일 수 있다. 또한, 기준 영역(AS)은 상술한 바와 같이 소정의 면적을 가지는데, 마크(MF)의 중심(CMF)이 기준 영역(AS)의 중심(CF)과 일치하도록 위치되었을 때, 마크(MF)가 기준 영역(AS) 밖으로 벗어나지 않고, 내측에 위치될 수 있는 면적을 가진다.The first determination unit 3200 determines whether the operation of the transfer device 2000 is normal or abnormal using the data obtained by the first detection unit 3100 . For example, the first determination unit 3200 determines the operation of the transfer device 2000 as normal or abnormal according to the position of the mark M F on the image image F obtained from the first detection unit 3100 . To this end, the first determination unit 3200 sets the reference area A S on the image image F transmitted from the first detection unit 3100 . Here, the reference area A S may be a predetermined area including the center C F on the image F. That is, the reference area (S A) can be set to have a predetermined area, so that this center coincides with the center (C F) of the picture image (F). Further, the reference area (A S) are, when positioned so as to coincide with the center (C F) of the mark (M F) the center (C MF) the reference area (A S) of I of a predetermined area as described above, , the mark M F does not deviate out of the reference area A S , and has an area that can be located inside.
실시예에서는 기준 영역(AS)을 원형으로 설정 또는 마련하였으나, 이에 한정되지 않고, 기준 영역(AS) 내에 마크(MF)가 모두 수용될 수 있는 면적이라면 어떠한 형상으로도 변경될 수 있다.In the embodiment, the reference area ( AS ) is set or provided in a circular shape, but is not limited thereto, and any shape can be changed as long as the area in which the marks ( MF ) can all be accommodated in the reference area (AS). .
제 1 판단부(3200)는 화상 이미지(F)를 분석하여, 마크(MF)가 기준 영역(AS) 밖으로 벗어났는지 여부에 따라, 이송 장치(2000) 즉, 지지부(2100)의 동작을 정상 또는 비정상으로 판단한다. 즉, 제 1 판단부(3200)는 도 9의 (a)와 같이 마크(MF)가 기준 영역(AS) 밖으로 벗어나지 않고, 마크(MF) 전체가 기준 영역 내에 위치된 것으로 분석된 경우, 이송 장치(2000)의 동작을 정상으로 판단한다. 하지만, 반대로, 도 9의 (b)와 같이 마크(MF) 전체 또는 일부가 기준 영역(AS)을 벗어난 것으로 분석된 경우, 이송 장치(2000)의 동작을 비정상으로 판단한다.A first determining unit 3200 is the operation of analyzing the picture image (F), the mark (M F), the reference area (A S) deviated out depending on whether or not, the transfer device (2000), that is, the support portion 2100 judged to be normal or abnormal. That is, when the first determination unit 3200 without departing out mark (M F), the reference area (A S) as shown in (a) of Figure 9, the mark (M F), the entire analysis to be located in a reference region , it is determined that the operation of the transfer device 2000 is normal. But, on the contrary, it determines the behavior of the mark (M F), when the whole or part of the analysis to be out of the reference area (S A), the transfer device (2000) as shown in (b) of Fig. 9 as abnormal.
보다 바람직하게, 제 1 판단부(3200)는 화상 이미지(F) 상에서의 마크(MF)의 중심 위치를 좌표 분석하여, 도 9의 (a)와 같이 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF)과 일치 또는 중첩되는 경우, 이송 장치(2000)의 동작을 정상으로 판단한다. 하지만, 도 9의 (b)와 같이 화상 이미지(F) 상에서의 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF) 위치와 일치 또는 중첩되지 않고 이격되어 있는 경우, 이송 장치(2000)의 동작을 비정상으로 판단한다.More preferably, the first determination unit 3200 coordinates analysis of the center position of the mark M F on the image image F, and the center C MF of the mark M F as shown in FIG. 9 (a). ) When the position coincides with or overlaps the center C F of the reference area A S , it is determined that the operation of the transfer device 2000 is normal. However, also the center of the mark (M F) on the video image (F) as shown in 9 (b) (C MF) the center of the location where the reference area (A S) (C F) position and a spaced not match or overlap If it is, it is determined that the operation of the transfer device 2000 is abnormal.
여기서, 도 9의 (a)와 같이, 화상 이미지(F) 상에서 마크(MF)가 기준 영역(AS) 밖으로 벗어나지 않고, 마크(MF) 전체가 기준 영역(AS) 내에 위치되거나, 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF)과 일치 또는 중첩되는 것은, 지지부(2100)가 대기 상태에서(도 6 참조) 도 7과 같이 제 1 이동 거리(DET) 만큼 실제 전진 이동하였기 때문이다. 즉, 지지부(2100)의 실제 전진 이동 거리(DR)가 제 1 이동 거리(DET)를 만족하기 때문이다. 다른 말로 설명하면, 마크(M)가 마련된 지지부(2100)가 제 1 위치까지 이동되었기 때문이다. 따라서, 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF)과 일치 또는 중첩되는 경우, 지지부(2100)가 제 1 이동 거리(DET)로 실제 이동되어, 상기 지지부(2100) 또는 마크(M)가 제 1 위치에 도달한 것으로 설명될 수 있다.Here, as shown in (a) of Figure 9, the mark (M F) on the video image (F) are without departing out of the reference area (A S), the mark (M F) or the entire position in the reference area (A S), mark (M F), the center (C MF) is positioned that the center (C F) of the reference area (a S) and the matching or overlapping, support member 2100 is in the standby state (see FIG. 6) as shown in Figure 7 the This is because it has actually moved forward as much as 1 movement distance (D ET ). That is, this is because the actual forward movement distance D R of the support 2100 satisfies the first movement distance D ET . In other words, this is because the support 2100 provided with the mark M has been moved to the first position. Therefore, when the center (C MF) position of the mark (M F), the reference area (A S), the center (C F) and a matching or overlapping of, the support 2100, the actual movement of a first travel distance (D ET) Thus, it can be explained that the support 2100 or the mark M has reached the first position.
하지만, 지지부(2100)가 대기 상태에서(도 6 참조) 실제 전진 이동된 거리(DR)가 도 8과 같이 제 1 이동 거리(DET)에 못 미치거나, 상기 제 1 이동 거리(DET)를 초과하는 경우(미도시), 도 9의 (b)와 같이 마크(MF) 전체 또는 일부가 기준 영역(AS)을 벗어나거나, 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF) 위치와 일치 또는 중첩되지 않는다. 다른 말로 설명하면, 마크(M)가 마련된 지지부(2100)가 제 1 위치에 못 미치거나, 상기 제 1 위치를 넘어서도록 이동되면, 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF) 위치와 일치 또는 중첩되지 않는다. 따라서, 마크(MF)의 중심(CMF) 위치가 기준 영역(AS)의 중심(CF) 위치와 일치 또는 중첩되지 않는 경우, 지지부(2100)의 실제 이동 거리(DR)가 제 1 이동 거리(DET)를 만족하지 않아, 상기 지지부(2100) 또는 마크(M)가 제 1 위치에 도달하지 않은 것 설명될 수 있다.However, when the support 2100 is in a standby state (see FIG. 6 ), the actual forward moving distance D R does not reach the first moving distance D ET as shown in FIG. 8 , or the first moving distance D ET ) is the center (C MF) position of the case greater than (not shown), the mark (M F as shown in (b) of FIG. 9) in whole or in part out of the reference area (a S) or mark (M F) the center of the reference area (a S) (C F) position and does not match or overlap. In other words, when the support 2100 provided with the mark M does not reach the first position or is moved to exceed the first position, the center (C MF ) position of the mark M F is the reference area ( the center of a S) (C F) position and does not match or overlap. Accordingly, the center (C MF) if the location is based on the area center (C F) position and does not match or overlap of (A S), the actual moving distance (D R) of the support portion 2100 of the mark (M F) the It may be explained that the support 2100 or the mark M does not reach the first position because the 1 movement distance D ET is not satisfied.
이와 같이, 제 1 판단부(3200)는 화상 이미지(F) 상에서의 기준 영역(AS)과 마크(MF) 간의 위치를 비교 분석하여, 이송 장치(2000)의 동작 상태를 정상 또는 비정상으로 판단한다.In this way, the first determination unit 3200 compares and analyzes the position between the reference area A S and the mark M F on the image image F, and sets the operation state of the transfer device 2000 as normal or abnormal. judge
제 1 알람부(3300)는 제 1 판단부(3200)에서 이송 장치(2000)의 동작을 비정상으로 판단하는 경우, 알람을 발생시킨다. 제 1 알람부(3300)에서 알람이 발생되면, 작업자는 이송 장치(200)를 보수 또는 수리한다. 즉, 암(2110)을 구성하는 복수의 링크 부재(2210a, 2210b) 간의 조립 상태 또는 지지부(2100)와 암(2110) 간의 조립 상태를 점검하고, 보수 또는 수리하는 작업을 실시한다.The first alarm unit 3300 generates an alarm when the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. When an alarm is generated in the first alarm unit 3300 , the operator repairs or repairs the transfer device 200 . That is, the assembly state between the plurality of link members 2210a and 2210b constituting the arm 2110 or the assembly state between the support part 2100 and the arm 2110 is checked, and repair or repair is performed.
제 1 검사 장치(3000)의 제 1 검출부(3100)는 도 5에 도시된 바와 같이 복수개로 마련될 수 있다. 즉, 복수의 공정 챔버(6000) 및 로드락 챔버(4000)와 마주보도록 설치될 수 있다.As shown in FIG. 5 , a plurality of first detection units 3100 of the first inspection apparatus 3000 may be provided. That is, the plurality of process chambers 6000 and the load lock chamber 4000 may be installed to face each other.
상술한 실시예에 따른 제 1 검사 장치(3000)는 지지부(2100)에 마크(M)를 마련하고, 촬상부를 포함하는 제 1 검출부(3100)로 지지부(2100)를 촬상하여, 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단하였다. 하지만, 제 1 검사 장치(3000)는 상술한 예에 한정되지 않고, 다양한 수단 및 방법으로 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단할 수 있다.The first inspection apparatus 3000 according to the above-described embodiment provides a mark M on the support part 2100 , and images the support part 2100 with the first detection part 3100 including an image pickup part, and the transfer apparatus 2000 ) was judged to be normal or abnormal. However, the first inspection apparatus 3000 is not limited to the above-described example, and may determine the operation of the transfer apparatus 2000 as normal or abnormal by various means and methods.
이하, 도 10 내지 도 12를 참조하여, 실시예의 변형예에 따른 제 1 검사 장치에 대해 설명한다.Hereinafter, a first inspection apparatus according to a modified example of the embodiment will be described with reference to FIGS. 10 to 12 .
도 10 내지 도 12는 실시예의 변형예에 따른 제 1 검사 장치를 이용하여 이송 장치의 동작을 검사하기 위해, 지지부가 이송 챔버 내에서 전진 이동된 상태를 도시한 정면도이다. 여기서 도 10은 지지부가 전진 이동되기 전인 대기 상태를 도시한 것이다. 그리고, 도 11은 전진 이동된 지지부의 선단과 이송 챔버 내벽 간의 이격 거리가 기 설정된 거리를 만족하는 경우를 도시한 도면이고, 도 12는 그렇지 않은 경우를 도시한 도면이다. 10 to 12 are front views illustrating a state in which the support part is moved forward in the transfer chamber in order to inspect the operation of the transfer apparatus using the first inspection apparatus according to a modified example of the embodiment. Here, Figure 10 shows a standby state before the support is moved forward. And, FIG. 11 is a view showing a case where the separation distance between the front end of the forward-moved support part and the inner wall of the transfer chamber satisfies a preset distance, and FIG. 12 is a view showing a case that does not.
도 10 내지 도 12를 참조하면, 제 1 검사 장치(3000)는 이송 챔버(1000)에 장착되어 광을 방사하고, 반사된 광을 수신하는 광 센서를 포함하는 제 1 검출부(3400), 제 1 검출부(3400)로부터 전달된 신호 또는 데이터를 이용하여 지지부(2100)와 이송 챔버(1000)의 내벽 간의 이격 거리를 측정 또는 검출하는 거리 검출부(3500) 및 거리 검출부(3500)에서 검출 또는 측정된 이격 거리(DM)와 기 설정된 이격 거리(이하, 기 설정된 거리(DS))를 비교하여, 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단하는 제 1 판단부(3200)를 포함한다. 또한, 제 1 판단부(3200)에서의 비정상으로 판단되는 경우 알람을 발생시키는 제 1 알람부(3300)를 포함할 수 있다.10 to 12 , the first inspection apparatus 3000 includes a first detection unit 3400 including an optical sensor mounted in the transfer chamber 1000 to emit light and receive the reflected light; The distance detected or measured by the distance detection unit 3500 and the distance detection unit 3500 for measuring or detecting the separation distance between the support 2100 and the inner wall of the transfer chamber 1000 using the signal or data transmitted from the detection unit 3400 and a first determination unit 3200 that compares the distance D M with a preset separation distance (hereinafter, a preset distance D S ) to determine whether the operation of the transfer device 2000 is normal or abnormal. In addition, it may include a first alarm unit 3300 that generates an alarm when it is determined that the first determination unit 3200 is abnormal.
제 1 검출부(3400)는 광을 발생시켜 방사하는 발광부 및 반사된 광을 수신하는 수신부가 구비된 광 센서를 포함하는 수단일 수 있다. 이러한 제 1 검출부(3400)는 이송 챔버(2000)의 내벽에 장착될 수 있다.The first detection unit 3400 may be a means including a light sensor having a light emitting unit that generates and emits light and a receiving unit that receives the reflected light. The first detection unit 3400 may be mounted on the inner wall of the transfer chamber 2000 .
거리 검출부(3500)는 예컨대, 제 1 검출부(3400)로부터 방사된 광이 반사되어 다시 수신되는 시간을 이용하여 지지부(2100)와 이송 챔버(1000) 내벽 간의 이격 거리를 검출 또는 측정하는 수단일 수 있다.The distance detection unit 3500 may be, for example, a means for detecting or measuring the separation distance between the support unit 2100 and the inner wall of the transfer chamber 1000 using a time when the light emitted from the first detection unit 3400 is reflected and received again. have.
제 1 판단부(3200)는 거리 검출부(3500)에서 검출된 지지부(2100)와 이송 챔버(1000) 내벽 간의 이격 거리(이하, 검출 거리(DM))와 기 설정된 거리(DS)를 비교하여, 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단한다. The first determination unit 3200 compares the separation distance (hereinafter, the detection distance (DM )) between the support unit 2100 and the inner wall of the transfer chamber 1000 detected by the distance detection unit 3500 and a preset distance ( DS ) Thus, it is determined that the operation of the transfer device 2000 is normal or abnormal.
여기서, 기 설정된 거리(DS)는 지지부(2100)를 이동시키고자 하는 목표 위치 즉, 제 1 위치에 따라 결정된다. 보다 구체적으로 지지부(2100) 선단을 기준으로 한 목표 위치인 제 1 위치에 따라 기 설정된 거리(Ds)가 결정될 수 있다. 그리고, 기 설정된 거리(DS)는 범위값일 수 있다. 즉, 기 설정된 거리(DS)는 최하한치 이상, 최상한치 이하의 범위값일 수 있다.Here, the preset distance D S is determined according to the target position to which the support unit 2100 is to be moved, that is, the first position. More specifically, a preset distance Ds may be determined according to a first position that is a target position with respect to the tip of the support 2100 . And, the preset distance D S may be a range value. That is, the preset distance D S may be a range value equal to or greater than the lower limit and less than or equal to the upper limit.
제 1 판단부(3200)에 설정되는 기 설정된 거리(DS)는, 검사를 위해 지지부(2100)가 제 1 이동 거리(DET)로 이동되었을 때, 지지부(2100)와 이송 챔버(1000) 내벽 간의 실제 이격 거리로 설정된다. 즉, 제 1 검출부(3400)와 지지부(2100) 선단 간의 실제 이격 거리로 설정될 수 있다. The preset distance D S set in the first determination unit 3200 is the support 2100 and the transfer chamber 1000 when the support 2100 is moved to the first movement distance D ET for inspection. It is set as the actual separation distance between the inner walls. That is, it may be set as an actual separation distance between the front end of the first detection unit 3400 and the support unit 2100 .
제 1 판단부(3200)는 검출 거리(DM)가 기 설정된 거리(DS)에 포함되는 경우, 이송 장치(2000)의 동작을 정상으로 판단한다. 이는, 지지부(2100)가 제 1 위치로 이동된 것으로 판단될 수 있다. 반대로, 제 1 판단부(3200)는 검출 거리(DM)가 기 설정된 거리(DS)에 포함되지 않는 경우, 이송 장치(2000)의 동작을 비정상으로 판단한다. 이는, 지지부(2100)가 제 1 위치로 이동되지 못한 것으로 판단될 수 있다. When the detection distance D M is included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is normal. In this case, it may be determined that the support part 2100 is moved to the first position. Conversely, when the detection distance D M is not included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. In this case, it may be determined that the support 2100 has not moved to the first position.
여기서, 검출 거리(DM)가 기 설정된 거리(DS)에 포함되지 않는다는 것은, 검출 거리(DM)가 기 설정된 거리(DS)의 최하한치 미만이거나, 최상한치를 초과하는 것일 수 있다.Here, the detected distance (D M) the group is not included in the predetermined distance (D S), the detected distance (D M) the group or the lowermost less than limits of the predetermined distance (D S), may be to best exceed the limit values .
이하, 변형예에 다른 제 1 검사 장치(3000)를 이용하여 이송 장치(2000)의 동작을 판단하는 방법을 설명한다.Hereinafter, a method of determining the operation of the transport device 2000 using the first inspection device 3000 according to a modified example will be described.
먼저, 제 1 구동 명령값에 의해 이송 구동부(2000a)가 동작한다. 여기서 제 1 구동 명령값은 검사를 위한 제 1 위치 또는 제 1 이동 거리(DET)에 따라 설정되는 값이다. 이송 구동부(2000a)가 제 1 구동 명령값에 의해 동작하면, 지지부(2100)가 공정 챔버(6000) 방향으로 전진 이동한다.First, the transfer driving unit 2000a operates according to the first driving command value. Here, the first driving command value is a value set according to the first position or the first movement distance D ET for inspection. When the transfer driving unit 2000a operates according to the first driving command value, the support unit 2100 moves forward in the process chamber 6000 direction.
지지부(2100)의 전진 이동이 종료되면, 제 1 검출부(3400)를 통해 광을 방사한다. 그리고, 거리 검출부(3500)는 제 1 검출부(3400)로부터 광 신호 또는 데이터를 전달 받아, 지지부(2100)와 이송 챔버(1000) 내벽 간의 거리(DM)를 검출한다. 검출된 이격 거리(DM)는 제 1 판단부(3200)로 전달된다.When the forward movement of the support unit 2100 is finished, light is emitted through the first detection unit 3400 . Then, the distance detector 3500 receives the optical signal or data from the first detector 3400 , and detects the distance D M between the support 2100 and the inner wall of the transfer chamber 1000 . The detected separation distance D M is transmitted to the first determination unit 3200 .
제 1 판단부(3200)는 검출 거리(DM)와 기 설정된 거리(DS)를 비교하여, 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단한다. 이때, 검출 거리(DM)가 기 설정된 거리(DS)에 포함되는 경우 제 1 판단부(3200)는 이송 장치(2000)의 동작을 정상으로 판단한다. 이는 지지부(2100)가 도 10의 대기 상태에서 도 11과 같이 제 1 기 설정된 거리(DET) 만큼 실제 전진 이동되어, 지지부(2100)의 선단이 제 1 위치에 도달했기 때문이다. 반대로, 검출 거리(DM)가 기 설정된 거리(DS)에 포함되지 않는 경우 제 1 판단부(3200)는 이송 장치(2000)의 동작을 비정상으로 판단한다. 이는 지지부(2100)가 도 10의 대기 상태에서 도 12와 같이 제 1 이동 거리(DET) 미만으로 이동되거나, 초과하도록 이동(미도시)되어, 지지부(2100)의 선단이 제 1 위치에 위치하지 않기 때문이다.The first determination unit 3200 compares the detection distance D M with a preset distance D S , and determines that the operation of the transfer device 2000 is normal or abnormal. In this case, when the detection distance D M is included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is normal. This is because the support part 2100 is actually moved forward by the first preset distance D ET as shown in FIG. 11 in the standby state of FIG. 10 , and the front end of the support part 2100 has reached the first position. Conversely, when the detection distance D M is not included in the preset distance D S , the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal. This is because the support 2100 is moved less than or exceeding the first movement distance D ET as shown in FIG. 12 in the standby state of FIG. 10 (not shown), so that the front end of the support part 2100 is located in the first position because it doesn't
그리고, 제 1 판단부(3200)에서 이송 장치(2000)의 동작이 비정상으로 판단되면 제 1 알람부(3300)는 알람을 발생시킨다. 알람이 발생되면, 작업자는 이송 장치(2000)의 조립 상태를 점검하고, 보수 또는 수리하는 작업을 실시한다.Then, when the first determination unit 3200 determines that the operation of the transfer device 2000 is abnormal, the first alarm unit 3300 generates an alarm. When an alarm is generated, the operator checks the assembly state of the transfer device 2000 and performs repair or repair work.
상술한 변형예에서는 제 1 검출부(3400)가 이송 챔버(2000)의 내벽에 설치되는 것을 설명하였다. 하지만, 이에 한정되지 않고, 제 1 검출부(3400)는 지지부(2100)의 선단에 설치될 수도 있다.In the above-described modified example, it has been described that the first detection unit 3400 is installed on the inner wall of the transfer chamber 2000 . However, the present invention is not limited thereto, and the first detection unit 3400 may be installed at the front end of the support unit 2100 .
상술한 실시예 및 변형예에서는 지지부(2100)를 공정 챔버(6000) 방향으로 전진 이동시켜 이송 장치(2000)의 동작을 검사하는 것을 설명하였다. 하지만, 이에 한정되지 않고 로드락 챔버(4000) 방향으로 전진 이동시켜 이송 장치(2000)의 동작을 검사할 수도 있다.In the above-described embodiments and modified examples, it has been described that the support part 2100 is moved forward in the direction of the process chamber 6000 to examine the operation of the transfer device 2000 . However, the present invention is not limited thereto, and the operation of the transfer device 2000 may be examined by moving forward in the direction of the load lock chamber 4000 .
이송 장치(2000)의 동작 상태가 정상인 것으로 판단되면, 이후 제 2 검사 장치(5000)를 이용하여 로드락 챔버(4000)가 이송 장치(2000)에 연결된 상태를 검사하고, 제 3 검사 장치(7000)를 이용하여 공정 챔버(6000)가 이송 장치에 연결된 상태를 검사한다.When it is determined that the operating state of the transport device 2000 is normal, the load lock chamber 4000 is connected to the transport device 2000 by using the second inspection device 5000 and then inspects the third inspection device 7000 . ) to check the state in which the process chamber 6000 is connected to the transfer device.
먼저, 제 2 검사 장치(5000)에 대해 설명한다.First, the second inspection device 5000 will be described.
제 2 검사 장치(5000)는 로드락 챔버(4000)의 연결 상태를 판단한다. The second inspection device 5000 determines the connection state of the load lock chamber 4000 .
도 1 및 도 2를 참조하면 제 2 검사 장치(5000)는 로드락 챔버(4000)의 상부에 장착되며, 로드락 챔버(4000) 내부로 이송된 지지부(2100)의 위치를 검출할 수 있는 검출부(이하, 제 2 검출부(5100)), 제 2 검출부(5100)로부터 제공된 데이터를 이용하여 로드락 챔버(4000)의 연결 상태를 정상 또는 비정상으로 판단하는 제 2 판단부(5200)를 포함한다. 또한, 제 2 검사 장치(5000)는 제 2 판단부(5200)에서 로드락 챔버(4000)의 연결 상태가 비정상으로 판단되는 경우 알람을 발생시키는 제 2 알람부(5300)를 포함할 수 있다. 1 and 2 , the second inspection device 5000 is mounted on an upper portion of the load lock chamber 4000 , and a detection unit capable of detecting the position of the support unit 2100 transferred into the load lock chamber 4000 . (hereinafter, a second detection unit 5100 ) and a second determination unit 5200 that determines the connection state of the load lock chamber 4000 as normal or abnormal using data provided from the second detection unit 5100 . Also, the second test apparatus 5000 may include a second alarm unit 5300 that generates an alarm when the second determination unit 5200 determines that the connection state of the load lock chamber 4000 is abnormal.
제 2 검출부(5100)는 로드락 챔버(4000)의 상부에 마련된 뷰포트(4200)의 상측 외측에 위치하도록 설치될 수 있다. 그리고, 제 2 검출부(5100)는 이송 챔버(1000)와 로드락 챔버(4000)의 나열 방향인 X축 방향 및 상기 X축 방향과 교차하는 Y축 방향 각각으로 수평 이동될 수 있다.The second detection unit 5100 may be installed to be located outside the upper side of the viewport 4200 provided at the upper portion of the load lock chamber 4000 . In addition, the second detection unit 5100 may be horizontally moved in an X-axis direction that is an arrangement direction of the transfer chamber 1000 and the load lock chamber 4000 and a Y-axis direction intersecting the X-axis direction, respectively.
제 2 판단부(5200)에는 로드락 챔버(4000)의 연결 상태의 정상 여부를 판단할 수 있는 기준 위치(이하, 제 2 위치)가 설정된다. 그리고, 제어부(2000b)에는 로드락 챔버(4000) 내부에서 지지부(2100)의 목표 위치인 제 2 위치에 의한 구동 명령값(이하, 제 2 구동 명령값)이 설정 또는 저장된다. 그리고, 이송 구동부(2000a)는 제 2 구동 명령값에 의해 동작하며, 이에 따라 지지부(2100)가 로드락 챔버(4000) 내부로 전진 이동한다.A reference position (hereinafter, referred to as a second position) for determining whether the connection state of the load lock chamber 4000 is normal is set in the second determination unit 5200 . In addition, the control unit 2000b sets or stores a driving command value (hereinafter, referred to as a second driving command value) according to the second position, which is the target position of the support unit 2100 in the load lock chamber 4000 . Further, the transfer driving unit 2000a operates according to the second driving command value, and accordingly, the support unit 2100 moves forward into the load lock chamber 4000 .
제 2 위치(Xs YS, ZS)는, 이송 장치(2000)의 동작이 정상이고, 로드락 챔버(4000)가 이송 챔버(1000)에 정위치에 연결된 상태에서, 지지부(2100)가 로드락 챔버(4000) 내로 이동되었을 때, 상기 로드락 챔버(4000)에서의 지지부(2100) 선단의 X, Y, Z 좌표값일 수 있다.In the second position (X s Y S , Z S ), when the operation of the transfer device 2000 is normal and the load lock chamber 4000 is connected to the transfer chamber 1000 in a fixed position, the support unit 2100 is When moved into the load lock chamber 4000 , it may be the X, Y, and Z coordinate values of the tip of the support part 2100 in the load lock chamber 4000 .
제 2 검사 장치(5000)에서 로드락 챔버(4000)의 연결 상태를 검사 또는 모니터링하는 방법은, 이후 설명될 제 3 검사 장치(7000)에서 공정 챔버(6000)의 연결 상태를 검사하는 방법과 동일하다.The method of inspecting or monitoring the connection state of the load lock chamber 4000 in the second inspection device 5000 is the same as the method of inspecting the connection state of the process chamber 6000 in the third inspection device 7000, which will be described later. do.
이에, 여기에서는 제 2 검사 장치(70000)를 이용하여 로드락 챔버(4000)의 연결 상태를 검사하는 방법에 대한 설명은 생략한다. Accordingly, a description of a method of inspecting the connection state of the load lock chamber 4000 using the second inspection device 70000 will be omitted herein.
이하, 도 13 및 도 14를 참조하여, 실시예에 따른 제 3 검사 장치 및 이를 이용하여 공정 챔버 및 안착대의 설치 상태를 검사하는 방법에 대해 설명한다.Hereinafter, with reference to FIGS. 13 and 14 , the third inspection apparatus according to the embodiment and a method of inspecting the installation state of the process chamber and the mounting table using the third inspection apparatus will be described.
도 13은 공정 챔버가 이송 챔버에 체결되는 수평 방향 위치를 설명하기 위한 개념도이다. 도 14는 공정 챔버 내에 지지부가 설치될 때, 지지부가 수평하게 설치되는 경우(실선)와, 기울어지게 설치되는 경우(점선)를 설명하기 위한 개념도이다. 13 is a conceptual diagram illustrating a horizontal position in which a process chamber is coupled to a transfer chamber. 14 is a conceptual diagram for explaining a case in which the support is installed horizontally (solid line) and inclined (dotted line) when the support is installed in the process chamber.
상술한 바와 같이, 안착대(6110) 상에서의 기판(10)의 위치는 공정 챔버(6000)가 이송 챔버(1000)에 체결된 위치에 따라 달라질 수 있다. 즉, 이송 챔버(1000)에 공정 챔버(6000)가 체결될 때, 정위치에 체결(도 13의 실선)되거나, 정위치를 벗어나게 체결(도 13의 점선)될 수 있다.As described above, the position of the substrate 10 on the mounting table 6110 may vary depending on the position at which the process chamber 6000 is coupled to the transfer chamber 1000 . That is, when the process chamber 6000 is fastened to the transfer chamber 1000 , it may be fastened to the original position (solid line in FIG. 13 ) or deviated from the original position (dashed line in FIG. 13 ).
또한, 이송 장치(2000)의 동작이 정상이고, 공정 챔버(6000)가 이송 챔버(1000)의 정위치에 체결되는 경우(도 13의 실선), 도 3의 (a) 및 (b)와 같이 기판(10)이 안착면(62b)의 정위치에 안착될 수 있다. 그러나, 이송 장치(2000)의 동작이 정상이더라도, 공정 챔버(6000)가 이송 챔버(1000)의 정위치에 체결되지 않는 경우(도 13의 점선), 도 4의 (a) 및 (b)와 같이 기판(10)이 안착면(62b)의 정위치에 안착될 수 없다.In addition, when the operation of the transfer device 2000 is normal and the process chamber 6000 is fastened to the original position of the transfer chamber 1000 (solid line in FIG. 13 ), as shown in FIGS. 3 (a) and (b) The substrate 10 may be seated in a fixed position on the seating surface 62b. However, even if the operation of the transfer device 2000 is normal, when the process chamber 6000 is not fastened to the correct position of the transfer chamber 1000 (dashed line in FIG. 13 ), FIGS. 4 (a) and (b) and Similarly, the substrate 10 cannot be seated in the correct position of the seating surface 62b.
그리고, 안착대(6110)는 공정 챔버(6000) 내에서 공정 챔버(6000)의 바닥면과 수평(도 14의 실선)하게 배치되어야 할 필요가 있다. 안착대(6110)가 수평하게 배치되지 않고, 기울어진 경우(도 14의 점선), 기판 처리 공정에 불량이 발생될 수 있다.In addition, the seat 6110 needs to be disposed in the process chamber 6000 to be horizontal (solid line in FIG. 14 ) with the bottom surface of the process chamber 6000 . When the mounting base 6110 is not arranged horizontally and is inclined (a dotted line in FIG. 14 ), a defect may occur in the substrate processing process.
이에, 본 발명의 실시예에서는 실제 기판 처리 공정 전에 공정 챔버(6000)의 연결 상태 및 안착대(6110)의 설치 상태를 검사할 수 있는 연결 상태 검사 장치(이하, 제 3 검사 장치)를 마련한다.Accordingly, in the embodiment of the present invention, a connection state inspection apparatus (hereinafter, referred to as a third inspection apparatus) capable of inspecting the connection state of the process chamber 6000 and the installation state of the mounting base 6110 is provided before the actual substrate processing process. .
실시예에 따른 제 3 검사 장치(7000)는, 공정 챔버(6000)의 연결 상태가 정상인지 여부를 검사할 수 있고, 안착대(6110)가 수평으로 설치되었는지 여부를 검사할 수 있다.The third inspection apparatus 7000 according to the embodiment may inspect whether the connection state of the process chamber 6000 is normal, and may inspect whether the mounting base 6110 is installed horizontally.
도 1, 도 2, 도 13 및 도 14를 참조하면, 제 3 검사 장치(7000)는 공정 챔버(6000)의 상부에 장착되며, 공정 챔버(6000) 내부로 이송된 지지부(2100) 및 안착대(6110)의 위치 검출이 가능한 검출부(이하, 제 3 검출부(7100)), 제 3 검출부(7100)에서 획득된 데이터를 이용하여 공정 챔버(6000)의 연결 상태 및 안착대(6110)의 설치 상태를 정상 또는 비정상으로 판단하는 제 3 판단부(7200)를 포함한다. 또한, 제 3 검사 장치(7000)는 제 3 판단부(7200)에서 공정 챔버(6000) 또는 안착대(6110)의 설치 상태가 비정상으로 판단되는 경우 알람을 발생시키는 제 3 알람부(7300)를 포함할 수 있다.1, 2, 13 and 14 , the third inspection device 7000 is mounted on the upper portion of the process chamber 6000 , and the support 2100 and the seating table transferred into the process chamber 6000 . The connection state of the process chamber 6000 and the installation state of the mounting base 6110 using the data obtained from the detection unit capable of detecting the position of the 6110 (hereinafter, the third detection unit 7100) and the third detection unit 7100 and a third determination unit 7200 that determines that is normal or abnormal. In addition, the third inspection device 7000 includes a third alarm unit 7300 that generates an alarm when the third determination unit 7200 determines that the installation state of the process chamber 6000 or the seat 6110 is abnormal. may include
제 3 검출부(7100)는 공정 챔버(6000)의 상부에 설치되는데, 예컨대 뷰포트(6200)의 상측에 설치될 수 있다. 또한, 제 3 검출부(7100)의 안착대(6110)와 마주보는 위치에 설치되는 것이 바람직하다.The third detector 7100 is installed above the process chamber 6000 , for example, it may be installed above the viewport 6200 . In addition, it is preferable to be installed at a position facing the mounting base 6110 of the third detection unit 7100 .
제 3 검출부(7100)는 광을 발생시켜 방사하는 발광부 및 반사된 광을 수신하는 수신부가 구비된 광센서를 포함하는 수단일 수 있다. 그리고, 제 3 검출부(7100)는 공정 챔버(6000)와 이송 챔버(1000) 간의 나열 방향 또는 지지부(2100)의 전후진 이동 방향인 X축 방향 및 이와 교차하는 Y축 방향으로 수평 이동하면서 광(L)을 방사 및 수광하도록 마련될 수 있다. 이때, 제 3 검출부(7100)의 X축 방향 및 Y축 방향 각각으로의 이동은, X축 방향 및 Y축 방향으로 기 설정된 구간에서 이루어질 수 있다.The third detection unit 7100 may be a means including a light sensor having a light emitting unit that generates and emits light and a receiving unit that receives the reflected light. In addition, the third detection unit 7100 moves horizontally in the X-axis direction, which is the forward/backward movement direction of the support unit 2100, in the arranging direction between the process chamber 6000 and the transfer chamber 1000, and the Y-axis direction intersecting the light ( L) may be provided to emit and receive light. In this case, the movement of the third detection unit 7100 in each of the X-axis direction and the Y-axis direction may be performed in a preset section in the X-axis direction and the Y-axis direction.
제 3 판단부(7200)에는 공정 챔버(6000)의 연결 위치 정상 여부를 판단할 수 있는 기준 위치(이하, 제 3 위치)가 설정될 수 있다. 또한 제 3 판단부(7200)는 안착대(6110)의 수평 여부를 판단할 수 있다.A reference position (hereinafter, a third position) for determining whether the connection position of the process chamber 6000 is normal may be set in the third determination unit 7200 . In addition, the third determination unit 7200 may determine whether the mounting table 6110 is horizontal.
여기서, 제 3 위치는 공정 챔버(6000)와 이송 챔버(1000)의 나열 방향 또는 지지부(2100)가 공정 챔버(6000)로 전진 이동하는 방향인 X축 방향의 좌표, 상기 X축 방향과 교차하는 Y축 방향의 좌표 및 상하 방향(또는 높이 방향)인 Z축 방향의 좌표 값(X, Y, Z)을 가질 수 있다.Here, the third position is a coordinate in the X-axis direction, which is the direction in which the process chamber 6000 and the transfer chamber 1000 are arranged or the support part 2100 moves forward toward the process chamber 6000, which intersects the X-axis direction. It may have coordinates in the Y-axis direction and coordinate values (X, Y, Z) in the Z-axis direction, which is the vertical direction (or height direction).
이하에서는 공정 챔버(6000)의 연결 상태를 판단하기 위한 기준이 되는 제 3 위치의 좌표를 XS, YS, ZS으로 명시하여 설명한다.Hereinafter, coordinates of the third position, which are a reference for determining the connection state of the process chamber 6000, will be described by specifying X S , Y S , and Z S .
제 3 위치(XS, YS, ZS)는, 이송 장치(2000)의 동작이 정상이고, 공정 챔버(6000)가 이송 챔버(1000)에 정위치에 연결된 상태에서, 지지부(2100)가 공정 챔버(6000) 내로 이동되었을 때, 공정 챔버(6000)에서의 지지부(2100) 선단의 X, Y, Z 좌표값일 수 있다.In the third position (X S , Y S , Z S ), in a state in which the operation of the transfer device 2000 is normal and the process chamber 6000 is connected to the transfer chamber 1000 in a fixed position, the support unit 2100 is When moved into the process chamber 6000, it may be the X, Y, Z coordinate values of the tip of the support part 2100 in the process chamber 6000.
도 15는 본 발명의 실시예에 따른 제 3 검사 장치를 이용하여, 공정 챔버의 연결 상태를 판단하기 위해, 제 3 검출부를 이용하여 공정 챔버 내로 광이 조사된 상태를 개념적으로 나타낸 도면이다.15 is a diagram conceptually illustrating a state in which light is irradiated into the process chamber by using the third detector to determine the connection state of the process chamber using the third inspection apparatus according to an embodiment of the present invention.
이하, 먼저 도 15를 참조하여, 본 발명의 제 3 검사 장치를 이용하여 공정 챔버의 연결 상태를 판단하는 방법을 설명한다.Hereinafter, a method of determining the connection state of the process chamber using the third inspection apparatus of the present invention will be described with reference to FIG. 15 .
이하에서 설명되는 공정 챔버(6000)의 연결 상태 판단 방법은, 공정 챔버(6000) 내부로 이동된 지지부(2100)의 위치를 검출하여 공정 챔버(6000)의 연결 상태를 판단하는 방법이다. 이에 대해 아래에서 구체적으로 설명한다.The method of determining the connection state of the process chamber 6000 to be described below is a method of determining the connection state of the process chamber 6000 by detecting the position of the support part 2100 moved into the process chamber 6000 . This will be described in detail below.
먼저, 기판(10)이 지지된 지지부(2100)를 공정 챔버(6000) 내부로 이동시킨다. 이를 위해, 제어부(2000b)에는 공정 챔버(6000) 내부에서 지지부(2100)의 목표 위치인 제 3 위치에 의한 구동 명령값(이하, 제 3 구동 명령값)이 설정 또는 저장된다. 그리고, 이송 구동부(2000a)는 제 3 구동 명령값에 의해 동작하며, 이에 따라 지지부(2100)가 공정 챔버(6000) 내부로 전진 이동한다.First, the support 2100 on which the substrate 10 is supported is moved into the process chamber 6000 . To this end, the control unit 2000b sets or stores a driving command value (hereinafter, referred to as a third driving command value) according to a third position that is a target position of the support unit 2100 in the process chamber 6000 . Then, the transfer driving unit 2000a operates according to the third driving command value, and accordingly, the support unit 2100 moves forward into the process chamber 6000 .
지지부(2100)의 전진 이동이 종료되면, 제 3 검출부(7100)를 통해 지지부(2100)의 위치를 검출한다. 이를 위해, 제 3 검출부(7100)를 X축 및 Y축 방향으로 이동시키면서 광을 방사 및 수광한다. 이때, 광이 지지부(2100)에 도달하여 상기 지지부(2100)로부터 반사되는 경우, 그렇지 않은 경우에 비해 반사되어 되돌아 오는 시간이 빠르므로, 이 시간차를 Z축 값인 높이값으로 환산 또는 변환할 수 있다. 이에, X축 방향으로의 높이 값 변화를 알 수 있고, 이를 통해, 지지부(2100)의 선단 위치를 알 수 있다. 또한, Y축 방향으로의 높이 값 변화(Z축)를 알 수 있다. 이에, 제 3 검출부(7100)에서 검출되는 지지부(2100) 선단의 위치는 'XM, YM, ZM'와 같이 좌표 형태일 수 있다.When the forward movement of the support part 2100 is finished, the position of the support part 2100 is detected through the third detection part 7100 . To this end, light is emitted and received while the third detector 7100 is moved in the X-axis and Y-axis directions. At this time, when the light reaches the support 2100 and is reflected from the support 2100, it is reflected and returned faster than in other cases, so this time difference can be converted or converted into a height value that is a Z-axis value. . Accordingly, it is possible to know a change in the height value in the X-axis direction, and through this, it is possible to know the position of the tip of the support part 2100 . In addition, the change in the height value in the Y-axis direction (Z-axis) can be seen. Accordingly, the position of the tip of the support unit 2100 detected by the third detection unit 7100 may be in the form of coordinates such as 'X M , Y M , Z M '.
제 3 판단부(7200)는 제 3 검출부(7100)에서 검출된 지지부(2100) 선단의 위치(XM, YM, ZM)와 제 3 위치(XS, YS, ZS)를 비교한다. 이때, 검출된 위치(XM, YM, ZM)가 제 3 위치(XS, YS, ZS)인 경우(도 15의 (a) 참조), 공정 챔버(6000)의 연결 위치를 정상으로 판단한다. 하지만, 검출된 위치(XM, YM, ZM)중, 적어도 하나가 제 3 위치(XS, YS, ZS)와 다른 경우, 공정 챔버(6000)의 연결 위치를 비정상으로 판단한다. The third determination unit 7200 compares the position (X M , Y M , Z M ) of the tip of the support unit 2100 detected by the third detection unit 7100 and the third position (X S , Y S , Z S ) do. At this time, when the detected position (X M , Y M , Z M ) is the third position (X S , Y S , Z S ) (see (a) of FIG. 15 ), the connection position of the process chamber 6000 is judged to be normal However, when at least one of the detected positions (X M , Y M , Z M ) is different from the third position (X S , Y S , Z S ), it is determined that the connection position of the process chamber 6000 is abnormal. .
예컨대, 도 15의 (b)와 같이, 검출된 위치(XM, YM, ZM) 중, X축 방향의 위치(XM)가 X축 방향의 제 3 위치(Xs)와 다른 경우, 공정 챔버(6000)의 연결 위치를 비정상으로 판단한다. 다른 예로, 도 15의 (c)와 같이, 검출된 위치(XM, YM, ZM)중, Y축 방향의 위치(YM)가 Y축 방향의 제 3 위치(Ys)와 다른 경우, 공정 챔버(6000)의 연결 위치를 비정상으로 판단한다. 또한, 도시되지는 않았지만, 검출된 위치(XM, YM, ZM)중, Z축 방향의 위치(ZM)가 Z축 방향의 제 3 위치(Zs)와 다른 경우, 공정 챔버(6000)의 연결 위치를 비정상으로 판단한다.For example, as shown in (b) of FIG. 15 , among the detected positions (X M , Y M , Z M ), when the position (X M ) in the X-axis direction is different from the third position (X s ) in the X-axis direction , it is determined that the connection position of the process chamber 6000 is abnormal. As another example, as shown in (c) of FIG. 15 , among the detected positions (X M , Y M , Z M ), the position in the Y-axis direction (Y M ) is different from the third position (Y s ) in the Y-axis direction. In this case, it is determined that the connection position of the process chamber 6000 is abnormal. In addition, although not shown, among the detected positions (X M , Y M , Z M ), when the position (Z M ) in the Z-axis direction is different from the third position (Z s ) in the Z-axis direction, the process chamber ( 6000) is determined to be abnormal.
그리고, 제 3 판단부(7200)에서 공정 챔버(6000)의 연결 위치를 비정상으로 판단하는 경우, 제 3 알람부(7300)는 알람을 발생시키며, 작업자는 공정 챔버(6000)의 연결 위치를 조정할 필요가 있다.And, when the third determination unit 7200 determines that the connection position of the process chamber 6000 is abnormal, the third alarm unit 7300 generates an alarm, and the operator adjusts the connection position of the process chamber 6000 There is a need.
다음으로 도 14를 이용하여, 본 발명의 제 3 검사 장치를 이용하여 안착대의 설치 상태를 판단하는 방법을 설명한다.Next, a method for determining the installation state of the seating table using the third inspection device of the present invention will be described with reference to FIG. 14 .
먼저, 제 3 검출부(7100)를 통해 광을 방사하고, 반사되는 광을 수광한다. 이때, 제 3 검출부(7100)를 X축 및 Y축 방향 중 적어도 하나의 방향 이동시키면서 광을 방사 및 수광한다.First, light is emitted through the third detector 7100 and the reflected light is received. In this case, light is emitted and received while the third detector 7100 is moved in at least one of the X-axis and Y-axis directions.
이때, 제 3 검출부(7100)를 예컨대, X축 방향으로 이동시키는데 있어서, 안착대(6110)의 외측에서부터 안착대(6110)의 상면(62a)을 거쳐, 안착대(6110)의 안착면(62b)의 소정 위치까지 이동시킨다. 이에, 안착대(6110)의 X축 방향으로의 높이 값 변화를 알 수 있다. 즉, 상대적으로 높은 표면으로부터 반사되는 광이 제 3 검출부(7100)로 수광되는 시간이 짧으므로, 시간이 짧을수록 표면 높이가 높은 것으로 도출함으로써, 안착대(6110) 표면의 높이 변화를 알 수 있다. 보다 구체적으로, 안착대(6110) 상면(62a)의 높이 변화 및 안착면(62b)의 높이 변화를 알 수 있다.At this time, in moving the third detection unit 7100 in the X-axis direction, for example, from the outside of the mounting table 6110 through the upper surface 62a of the mounting table 6110, the seating surface 62b of the mounting table 6110 ) to a predetermined position. Accordingly, it can be seen a change in the height value of the mounting table 6110 in the X-axis direction. That is, since the light reflected from the relatively high surface is received by the third detection unit 7100 for a short time, the shorter the time, the higher the surface height is derived, so that the height change of the surface of the seating table 6110 can be known. . More specifically, the height change of the upper surface 62a of the seating table 6110 and the height change of the seating surface 62b can be seen.
이때, 안착대(6110)가 공정 챔버(6000)의 바닥면과 수평하게 배치된 경우, 안착대(6110) 상면(62a)에 있어서, X축 방향으로 광이 수광된 시간이 일정하고, 안착면(62b)에 있어서, X축 방향으로 광이 수광된 시간이 일정할 것이다. 이로부터, 안착대(6110) 상면(62a)에 있어서, X축 방향으로의 높이가 일정하고, 안착면(62b)에 있어서, X축 방향으로의 높이가 일정한 것으로 검출할 수 있고, 이에, 안착대(6110)가 수평하게 배치된 것으로 판단할 수 있다.At this time, when the mounting table 6110 is disposed horizontally with the bottom surface of the process chamber 6000, the time that light is received in the X-axis direction is constant on the upper surface 62a of the mounting table 6110, and the seating surface In (62b), the time the light is received in the X-axis direction will be constant. From this, in the upper surface 62a of the seating table 6110, the height in the X-axis direction is constant, and in the seating surface 62b, it can be detected that the height in the X-axis direction is constant, thereby, the seating It may be determined that the stand 6110 is horizontally disposed.
하지만, 안착대(6110)가 공정 챔버(6000)의 바닥면과 수평하게 배치지 않은 경우, 안착대(6110) 상면(62a)에 있어서, X축 방향으로 광이 수광된 시간이 다르고, 안착면(62b)에 있어서, X축 방향으로 광이 수광된 시간이 다를 것이다. 이로부터, 안착대(6110) 상면(62a)에 있어서, X축 방향으로의 높이가 변하고, 안착면(62b)에 있어서, X축 방향으로의 높이가 변하는 것으로 검출할 수 있고, 이에, 안착대(6110)가 수평하게 배치되지 않은 것으로 판단할 수 있다.However, when the mounting table 6110 is not arranged horizontally with the bottom surface of the process chamber 6000, the time at which light is received in the X-axis direction is different on the upper surface 62a of the mounting table 6110, and the seating surface In (62b), the time at which the light is received in the X-axis direction will be different. From this, it can be detected that the height in the X-axis direction changes on the upper surface 62a of the seat 6110, and the height in the X-axis direction changes on the seat surface 62b. It can be determined that 6110 is not horizontally arranged.
제 3 판단부(7200)는 제 3 검출부(7100)로부터 획득된 광 데이터를 이용하여 안착대(6110)의 수평 여부를 판단한다. 즉, X축 방향으로의 높이 변화에 있어서, 안착대(6110)의 상면(62a) 및 안착면(62b) 각각에서 높이 변화가 없는 경우, X축 방향으로 수평인 것으로 판단한다. 하지만, X축 방향으로의 높이 변화에 있어서, 안착대(6110)의 상면(62a) 및 안착면(62b)에서 높이 변화가 감지된 경우, X축 방향으로 수평하지 않은 것으로 판단한다.The third determination unit 7200 determines whether the mounting table 6110 is horizontal by using the optical data obtained from the third detection unit 7100 . That is, when there is no height change in each of the upper surface 62a and the seating surface 62b of the seating table 6110 in the height change in the X-axis direction, it is determined that the height is horizontal in the X-axis direction. However, in the height change in the X-axis direction, when a height change is detected on the upper surface 62a and the seating surface 62b of the seating table 6110, it is determined that the height is not horizontal in the X-axis direction.
상기에서는 제 3 검출부(7100)가 X축 방향으로 이동하여, 안착부(4210)의 수평 상태를 판단하는 것을 설명하였다. 하지만 이에 한정되지 않고, 제 3 검출부(7100)가 Y축 방향으로 이동하여, 안착부(4210)의 수평 상태를 판단할 수 있다.In the above description, it has been described that the third detection unit 7100 moves in the X-axis direction to determine the horizontal state of the seating unit 4210 . However, the present invention is not limited thereto, and the third detection unit 7100 may move in the Y-axis direction to determine the horizontal state of the seating unit 4210 .
이러한 방법을 통해 제 3 판단부(7200)는 안착대(6110)가 수평인지 여부를 판단할 수 있다. 그리고, 제 3 판단부(7200)에서 안착대(6110)의 수평 상태를 비정상을 판단하는 경우, 제 3 알람부(7300)는 알람을 발생시키며, 작업자는 안착대(6110)의 설치 상태를 조정할 필요가 있다.Through this method, the third determination unit 7200 may determine whether the mounting base 6110 is horizontal. And, when the third determination unit 7200 determines that the horizontal state of the seat 6110 is abnormal, the third alarm unit 7300 generates an alarm, and the operator adjusts the installation state of the seat 6110. There is a need.
상기에서는 공정 챔버(6000)로 내부로 이동된 지지부(2100)의 위치를 검출하여 공정 챔버(6000)의 연결 상태를 판단하는 방법을 설명하였다. 하지만, 이에 한정되지 않고, 이와 다른 방법으로 공정 챔버(6000)의 연결 상태를 판단할 수 있다.In the above, a method of determining the connection state of the process chamber 6000 by detecting the position of the support part 2100 moved to the inside of the process chamber 6000 has been described. However, the present invention is not limited thereto, and the connection state of the process chamber 6000 may be determined in another method.
이하, 도 16을 참조하여, 공정 챔버(6000)의 연결 상태를 판단하는 또 다른 방법에 대해 설명한다. Hereinafter, another method of determining the connection state of the process chamber 6000 will be described with reference to FIG. 16 .
도 16은 본 발명의 실시예에 따른 제 3 검사 장치를 이용하여, 공정 챔버의 연결 상태를 판단하기 위해, 안착대 상에 기판을 안착시킨 상태를 도시한 상면도이다. 16 is a top view illustrating a state in which a substrate is seated on a mounting table to determine a connection state of a process chamber using the third inspection apparatus according to an embodiment of the present invention.
이하에서 설명되는 방법은, 안착대(6110) 상에 기판(10)을 안착시키고, 기판(10)이 안착대(6110) 상에 정위치에 위치하였는지 여부에 따라 공정 챔버(6000)의 연결 상태를 정상 또는 비정상으로 판단하는 방법이다. 이에 대해 아래에서 구체적으로 설명한다.In the method to be described below, the substrate 10 is seated on the mounting base 6110 and the connection state of the process chamber 6000 depends on whether the substrate 10 is positioned on the mounting base 6110 in a fixed position. It is a method of determining whether a normal or abnormal This will be described in detail below.
먼저, 기판(10)이 지지된 지지부(2100)를 공정 챔버(6000) 내부로 이동시킨다. 이를 위해, 제어부(2000b)에는 공정 챔버(6000) 내부에서 지지부(2100)의 목표 위치(이하, 제 4 위치)에 따른 구동 명령값(이하, 제 4 구동 명령값)이 설정 또는 저장되어 있다. 여기서, 제 4 위치는, 공정 챔버(6000) 내부로 이동된 지지부(2100)의 기판(10)을 안착대(6110) 상에 안착시켰을 때, 안착대(6110)의 정위치에 기판(10)이 안착되는 지지부(2100)의 위치일 수 있다. 보다 구체적으로, 지지부(6100) 선단의 위치일 수 있다.First, the support 2100 on which the substrate 10 is supported is moved into the process chamber 6000 . To this end, a driving command value (hereinafter, a fourth driving command value) according to a target position (hereinafter, referred to as a fourth position) of the support unit 2100 is set or stored in the control unit 2000b in the process chamber 6000 . Here, the fourth position is, when the substrate 10 of the support unit 2100 moved into the process chamber 6000 is seated on the mounting table 6110, the substrate 10 is at the original position of the mounting table 6110. This may be a position of the support part 2100 on which it is seated. More specifically, it may be a position of the tip of the support 6100 .
이송 구동부(2000a)는 제 4 구동 명령값에 의해 동작되며, 이에 따라 지지부(2100)가 공정 챔버(6000) 내부로 이동한다. 지지부(2100)가 공정 챔버(6000)로 이동되면, 상기 지지부(2100) 상에 지지된 기판(10)을 안착대(6100) 상에 안착시킨다.The transfer driving unit 2000a is operated according to the fourth driving command value, and accordingly, the support unit 2100 moves into the process chamber 6000 . When the support part 2100 is moved to the process chamber 6000 , the substrate 10 supported on the support part 2100 is seated on the mount 6100 .
그리고, 안착대(6100) 상의 정위치에 기판(10)이 안착되어 있는지 여부를 판단한다. 이를 위해 제 3 검출부(7100)를 통해 광을 방사하고, 반사되는 광을 수신한다. 이때, 제 3 검출부(7100)를 수평 이동 예컨대 X축 방향으로 이동시키면서 광을 방사 및 수광한다. 이때, 제 3 검출부(7100)를 X축 방향으로 이동시키는데 있어서, 안착대(6110)의 상면(62a)으로부터 안착면(62b)을 지나 기판(10)의 소정 위치까지 이동시키는 것이 바람직하다. 이에, X축 방향으로의 높이 값 변화를 알 수 있다. 이때, 안착대(6110)는 그 상면(62a)과 안착면(62b) 간의 단차(높이차)가 있고, 안착면(62b) 상에 기판(10)이 안착되면, 안착대(6110)의 상면(62a)과 안착면(62b), 안착면(62b)과 기판(10) 표면 간의 단차가 있다. 이에, X축 방향으로의 높이 값 변화를 통해, 안착대(6110)의 내측면(62c)과 기판(10) 측면 간의 이격 거리 즉, 갭(GM)을 검출할 수 있다.Then, it is determined whether or not the substrate 10 is seated at the correct position on the mounting table 6100 . To this end, light is emitted through the third detector 7100 and the reflected light is received. In this case, light is emitted and received while the third detector 7100 is moved horizontally, for example, in the X-axis direction. At this time, in moving the third detection unit 7100 in the X-axis direction, it is preferable to move from the upper surface 62a of the mounting table 6110 to a predetermined position of the substrate 10 through the mounting surface 62b. Accordingly, it can be seen that the height value change in the X-axis direction. At this time, the seating table 6110 has a step (height difference) between its upper surface 62a and the seating surface 62b, and when the substrate 10 is seated on the seating surface 62b, the upper surface of the seating table 6110 There is a step between the seating surface 62a and the seating surface 62b, and the seating surface 62b and the surface of the substrate 10 . Accordingly, the separation distance between the inner surface 62c of the mounting table 6110 and the side surface of the substrate 10 , that is, the gap G M may be detected through a change in the height value in the X-axis direction.
제 3 검출부(7100)를 통해 검출되는 갭(GM)은 공정 챔버(6000)가 이송 챔버(1000)에 체결된 상태에 따라 달라질 수 있다. 예컨대, 이송 챔버(1000)의 정위치에 공정 챔버(6000)가 체결되는 경우, 도 16의 (a) 같이, 안착대(6110)의 둘레 방향으로 갭(GM)이 일정하다. 이러한 경우, 제 3 검출부(7100)에 의해 검출된 갭(GM)이 기 설정된 기준 갭(Gs)에 포함될 수 있다. 하지만, 이송 챔버(1000)의 정위치에 공정 챔버(6000)가 체결되지 않는 경우, 도 16의 (b)와 같이, 안착대(6110)의 둘레 방향으로 갭(GM)이 불균일하다. 이러한 경우, 제 3 검출부(7100)에 의해 검출된 갭(GM)이 기 설정된 기준 갭(Gs)에 포함되지 않을 수 있다. The gap G M detected by the third detector 7100 may vary depending on a state in which the process chamber 6000 is coupled to the transfer chamber 1000 . For example, when the process chamber 6000 is fastened to the original position of the transfer chamber 1000 , as shown in (a) of FIG. 16 , the gap G M in the circumferential direction of the mounting base 6110 is constant. In this case, the gap G M detected by the third detector 7100 may be included in the preset reference gap G s . However, when the process chamber 6000 is not fastened to the original position of the transfer chamber 1000 , the gap G M is non-uniform in the circumferential direction of the seat 6110 as shown in FIG. 16 ( b ). In this case, the gap G M detected by the third detector 7100 may not be included in the preset reference gap G s .
제 3 판단부(7200)는 검출된 갭(GM)과 기 설정된 기준 갭(GS)을 비교한다. 여기서 기준 갭(GS)은 범위값일 수 있다. 즉, 최하한치 내지 최상한치의 범위값일 수 있다.The third determination unit 7200 compares the detected gap G M with a preset reference gap G S . Here, the reference gap G S may be a range value. That is, it may be a value in the range of the lowest limit to the highest limit.
제 3 판단부(7200)는 검출된 갭(GM)이 기준 갭(GS)에 포함되는 경우, 공정 챔버(6000)의 연결 상태를 정상으로 판단하고, 반대로 기준 갭(GS)을 벗어나는 경우 공정 챔버(6000)의 연결 상태를 비정상으로 판단한다. 여기서, 측정된 갭(GM)이 기준 갭(GS)을 벗어난다는 것은, 측정된 갭(GM)이 기준 갭(GM)의 최하한치 미만이거나, 최상한치를 초과하는 것일 수 있다.A third determination unit (7200) if the detected gap (G M) that contains the reference gap (G S), and determines the connection status of the process chamber 6000 by the normal, on the contrary outside of the standard gap (G S), In this case, it is determined that the connection state of the process chamber 6000 is abnormal. Here, the measured gap (G M) is outside the reference gap (G S) are not, the measured gap (G M) or the lowest less than an inch of the reference gap (G M), may be to best exceed the limit values.
제 3 판단부(7200)에서 공정 챔버(6000)의 연결 상태가 정상으로 판단된 것은, 상술한 바와 같이, 기판(10) 측면(11)과 안착대(6110)의 내측면(62c) 사이의 갭이 기판(10)의 둘레 방향으로 균일한 것을 의미한다. 그러나, 제 3 판단부(7200)에서 공정 챔버(6000)의 연결 상태가 비정상 상태로 판단된 것은, 기판(10) 측면(11)과 안착대(6110)의 내측면(62c) 사이의 갭이 기판의 둘레 방향으로 균일하지 않은 것을 의미한다.The third determination unit 7200 determines that the connection state of the process chamber 6000 is normal, as described above, between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 . It means that the gap is uniform in the circumferential direction of the substrate 10 . However, when the third determination unit 7200 determines that the connection state of the process chamber 6000 is abnormal, the gap between the side surface 11 of the substrate 10 and the inner surface 62c of the seat 6110 is It means that it is not uniform in the circumferential direction of the substrate.
상기에서는 제 3 검출부(7100)를 X축 방향으로 이동시켜, X축 방향의 갭을 검출하는 것을 설명하였다. 하지만, 제 3 검출부(7100)를 Y축 방향으로 이동시켜 Y축 방향의 갭을 검출할 수도 있다.In the above description, it has been described that the third detection unit 7100 is moved in the X-axis direction to detect the gap in the X-axis direction. However, the gap in the Y-axis direction may be detected by moving the third detector 7100 in the Y-axis direction.
또한, 상기에서는 기판(10)의 측면(11)과 안착대(6110) 내측면(62c) 간의 갭을 측정하고, 측정된 갭을 통해 기판(10)이 안착대(6110) 상에 정위치에 안착되었는지 여부를 판단함으로써 공정 챔버(6000)의 연결 상태를 판단하였다.In addition, in the above, the gap between the side surface 11 of the substrate 10 and the inner surface 62c of the mounting base 6110 is measured, and the substrate 10 is positioned on the mounting table 6110 through the measured gap. The connection state of the process chamber 6000 was determined by determining whether it was seated.
하지만 갭을 측정하는 방법 외에, 다른 방법으로 안착대(6110)의 정위치에 기판(10)이 안착되었는지 여부를 판단하고, 이를 이용하여 공정 챔버(6000)의 연결 상태를 판단할 수 있다.However, other than the method of measuring the gap, it is determined whether the substrate 10 is seated in the proper position of the mounting base 6110 by another method, and the connection state of the process chamber 6000 can be determined using this.
실시예에서는 이송 장치(2000)가 하나의 지지부(2100)를 포함하는 것을 설명하였다. 하지만 이에 한정되지 않고, 이송 챔버(1000)의 폭 방향으로 나열된 복수의 지지부(2100)가 설치될 수 있고, 상하 방향으로 복수의 지지부(2100)가 설치될 수 있다. 그리고 복수의 지지부(2100)는 모두 개별적으로 동작 가능하도록 구성될 수 있다.In the embodiment, it has been described that the transport device 2000 includes one support part 2100 . However, the present invention is not limited thereto, and a plurality of support parts 2100 arranged in a width direction of the transfer chamber 1000 may be installed, and a plurality of support parts 2100 may be installed in a vertical direction. In addition, all of the plurality of support units 2100 may be configured to be individually operable.
도 17은 기판 처리 공정 전에 본 발명의 실시예에 기판 처리 시스템을 검사하는 과정을 나타낸 순서도이다.17 is a flowchart illustrating a process of inspecting a substrate processing system according to an embodiment of the present invention before a substrate processing process.
이하, 도 1 및 도 2, 도 5 내지 도 9, 도 13 내지 도 15 및 도 17을 참조하여, 기판 처리 시스템을 검사하는 과정을 설명한다. 이때, 앞에서 설명한 내용과 중복되는 내용은 생략하거나, 간략히 설명한다.Hereinafter, a process of inspecting the substrate processing system will be described with reference to FIGS. 1 and 2 , FIGS. 5 to 9 , and FIGS. 13 to 15 and 17 . In this case, the content overlapping with the previously described content will be omitted or briefly described.
먼저, 이송 장치(2000)의 동작이 정상인지 여부를 판단한다(S110). 이를 위해, 도 5와 같이 지지부(2100)를 제 1 검출부(3100)가 위치된 방향으로 전진 이동시킨다. 지지부(2100)의 이동이 종료되면 제 1 검출부(3100)를 통해 화상 이미지(F)를 획득한다.First, it is determined whether the operation of the transfer device 2000 is normal (S110). To this end, as shown in FIG. 5 , the support part 2100 is moved forward in the direction in which the first detection part 3100 is located. When the movement of the support unit 2100 is finished, the image image F is acquired through the first detection unit 3100 .
제 1 판단부(3200)는 제 1 검출부(3100)로부터 촬상된 화상 이미지(F) 상에서의 마크(MF)와 기준 영역(AS) 간의 위치를 비교하여(도 9 참조), 이송 장치(2000)의 동작을 정상 또는 비정상으로 판단한다. The first determination unit 3200 compares the position between the mark M F and the reference area A S on the image image F captured by the first detection unit 3100 (see FIG. 9 ), and the transfer device ( 2000) is judged to be normal or abnormal.
이때, 이송 장치(2000)의 동작이 비정상으로 판단된 경우(아니오), 제 1 알람부(3300)가 알람을 울린다(S120). 그러면, 작업자는 이송 장치(2000)에 문제가 있는 것으로 인식하고, 이송 장치(2000)를 보수한다. 예컨대, 이송 장치(2000)의 조립 상태를 점검하고, 이를 조정한다.At this time, if it is determined that the operation of the transfer device 2000 is abnormal (No), the first alarm unit 3300 sounds an alarm (S120). Then, the operator recognizes that there is a problem in the transport device 2000 and repairs the transport device 2000 . For example, the assembly state of the transport device 2000 is checked and adjusted.
그리고, 이송 장치(2000)의 동작이 정상으로 판단된 경우(예), 다음 검사 과정을 실시한다. Then, when it is determined that the operation of the transfer device 2000 is normal (Yes), the following inspection process is performed.
예를 들어, 먼저 로드락 챔버(4000)의 연결 상태가 정상인지 여부를 판단한다(S210). 이를 위해, 예컨대 지지부(2100)를 로드락 챔버(4000)로 전진 이동시키고, 제 2 검사 장치(5000)의 제 2 검출부(5100)를 이용하여 지지부(2100)의 선단 위치를 검출한다.For example, it is first determined whether the connection state of the load lock chamber 4000 is normal ( S210 ). To this end, for example, the support part 2100 is moved forward to the load lock chamber 4000 , and the tip position of the support part 2100 is detected using the second detection part 5100 of the second inspection apparatus 5000 .
제 2 판단부(5200)는 검출된 지지부(2100) 선단 위치(XM, YM, ZM)와 제 2 위치(XS, YS, ZS)를 비교하여, 로드락 챔버(4000)의 연결 상태를 정상 또는 비정상으로 판단한다.The second determination unit 5200 is the detected support portion 2100, the tip position (X M , Y M , Z M ) and the second position (X S , Y S , Z S ), it is determined that the connection state of the load lock chamber 4000 is normal or abnormal.
이때, 로드락 챔버(4000)의 연결 상태가 비정상으로 판단된 경우(아니오), 제 2 알람부(5300)가 알람을 울린다(S220). 그러면, 작업자는 로드락 챔버(4000)에 문제가 있는 것으로 인식하고, 로드락 챔버(4000)의 연결 위치를 조정한다.At this time, if it is determined that the connection state of the load lock chamber 4000 is abnormal (No), the second alarm unit 5300 sounds an alarm (S220). Then, the operator recognizes that there is a problem in the load lock chamber 4000 and adjusts the connection position of the load lock chamber 4000 .
그리고, 로드락 챔버(4000)의 연결 상태가 정상으로 판단된 경우(예), 다음 검사 과정을 실시한다.Then, when it is determined that the connection state of the load lock chamber 4000 is normal (Yes), the following inspection process is performed.
예를 들어, 공정 챔버(6000)의 연결 상태가 정상인지 여부를 판단한다(S310). 이를 위해, 도 13 및 15와 같이 지지부(2100)를 공정 챔버(6000)로 전진 이동시키고, 제 3 검사 장치(7000)의 제 3 검출부(7100)를 이용하여 지지부(2100)의 선단 위치를 검출한다.For example, it is determined whether the connection state of the process chamber 6000 is normal ( S310 ). To this end, as shown in FIGS. 13 and 15 , the support part 2100 is moved forward to the process chamber 6000 , and the tip position of the support part 2100 is detected using the third detection part 7100 of the third inspection apparatus 7000 . do.
제 3 판단부(7200)는 검출된 지지부(2100) 선단 위치(XM, YM, ZM)와 제 3 위치(XS, YS, ZS)를 비교하여, 공정 챔버(6000)의 연결 상태를 정상 또는 비정상으로 판단한다.The third determination unit 7200 is the detected support unit 2100 tip position (X M , Y M , Z M ) and the third position (X S , Y S , Z S ), it is determined that the connection state of the process chamber 6000 is normal or abnormal.
이때, 공정 챔버(6000)의 연결 상태가 비정상으로 판단된 경우(아니오), 제 3 알람부(7300)가 알람을 울린다(S320). 그러면, 작업자는 공정 챔버(6000)에 문제가 있는 것으로 인식하고, 공정 챔버(6000)의 연결 위치를 조정한다.At this time, when it is determined that the connection state of the process chamber 6000 is abnormal (No), the third alarm unit 7300 sounds an alarm (S320). Then, the operator recognizes that there is a problem in the process chamber 6000 and adjusts the connection position of the process chamber 6000 .
공정 챔버(6000)의 연결 상태가 정상으로 판단된 경우(예), 다음 검사 과정을 실시한다.When it is determined that the connection state of the process chamber 6000 is normal (Yes), the following inspection process is performed.
상기에서는 로드락 챔버(4000)의 연결 상태 정상 여부(S210)를 확인한 후에, 공정 챔버(6000)의 연결 상태 정상 여부(S310)를 확인하는 것으로 설명하였으나, 이들의 순서는 이에 한정되지 않고 바뀔 수 있다.In the above description, after checking whether the connection state of the load lock chamber 4000 is normal (S210), the connection state of the process chamber 6000 is checked (S310), but the order is not limited thereto and may be changed. have.
로드락 챔버(4000) 및 공정 챔버(6000) 각각의 연결 상태가 정상인 것으로 확인되면, 공정 챔버(6000) 내부에 설치된 안착대(6110)의 설치 상태가 정상인지 여부를 확인한다(S410). 즉, 안착대(6110)가 수평인지 여부를 판단한다.When it is confirmed that the connection state of the load lock chamber 4000 and the process chamber 6000 is normal, it is checked whether the installation state of the mounting base 6110 installed inside the process chamber 6000 is normal (S410). That is, it is determined whether the mounting base 6110 is horizontal.
이를 위해, 제 3 검출부(7100)를 이용하여 안착대(6110)로 광을 조사하고, 반사된 광을 수광하는데, 제 3 검출부(7100)를 안착대(6110)의 연장 방향 예컨대 X축 방향으로 이동시키면서 광을 조사하고, 수광한다.To this end, the third detection unit 7100 is used to irradiate light to the mounting table 6110, and the reflected light is received. Light is irradiated and received while moving.
그리고, 제 3 검출부(7100)는 획득된 광 데이터를 이용하여, X축 방향으로의 안착대(6110) 표면의 높이를 검출한다. 그리고, 제 3 판단부(7200)는 제 3 검출부(7100)에서 검출된 X축 방향으로의 안착대(6110) 표면의 높이 변화를 확인하여, 안착대(6110)가 수평인지 여부를 판단한다.Then, the third detection unit 7100 detects the height of the surface of the seating table 6110 in the X-axis direction by using the obtained optical data. Then, the third determination unit 7200 determines whether the mounting table 6110 is horizontal by checking the height change of the surface of the mounting table 6110 in the X-axis direction detected by the third detection unit 7100 .
제 3 판단부(7200)에서 안착대(6110)의 수평 상태가 비정상으로 판단된 경우(아니오), 제 3 알람부(7300)가 알람을 울린다(S420). 그러면, 작업자는 안착대(6110)에 문제가 있는 것으로 인식하고, 안착대(6110)의 기울기를 조정한다.When the third determination unit 7200 determines that the horizontal state of the seat 6110 is abnormal (No), the third alarm unit 7300 sounds an alarm (S420). Then, the operator recognizes that there is a problem with the mounting base 6110, and adjusts the inclination of the mounting base 6110.
그리고, 안착대(6110)가 수평으로 배치된 것으로 판단된 경우(예), 기판 처리 시스템이 모두 정상인 것으로 판단한다. 이에, 기판 처리 공정을 실시한다.And, when it is determined that the mounting base 6110 is horizontally disposed (Yes), it is determined that all of the substrate processing systems are normal. Accordingly, a substrate processing step is performed.
이와 같이, 본 발명의 실시예들에 의하면 기판 처리 공정을 실시하기 전에, 기판(10)을 이송시키는 이송 장치(2000)의 동작에 대한 이상 여부를 확인할 수 있다. 또한, 기판(10)을 처리하는 공정 챔버(6000)가 이송 챔버(1000)에 연결된 상태, 공정 챔버(6000) 내부에 안착대(6110)가 설치된 상태, 로드락 챔버(4000)가 이송 챔버(1000)에 연결된 상태에 대한 이상 여부를 자동으로 확인할 수 있다. 이에, 이들에 이상이 있는 것으로 확인되면, 이상이 확인된 장치에 대한 점검, 보수 또는 조정 작업을 실시할 수 있다.As such, according to embodiments of the present invention, it is possible to check whether the operation of the transfer device 2000 for transferring the substrate 10 is abnormal before performing the substrate processing process. In addition, the process chamber 6000 for processing the substrate 10 is connected to the transfer chamber 1000 , the seat 6110 is installed inside the process chamber 6000 , and the load lock chamber 4000 is the transfer chamber ( 1000), you can automatically check whether there is an abnormality in the connected state. Accordingly, when it is confirmed that there is an abnormality in these devices, inspection, repair or adjustment of the device in which the abnormality is confirmed may be performed.
따라서, 이상이 있는 또는 비정상인 상태로 기판을 안착대(6110) 상에 안착시키는 문제를 줄일 수 있고, 이로 인해 실제 공정 시에 안착대(6110)의 정위치에 기판(10)을 안착시킬 수 있다. 이에, 기판(10)의 안착 위치에 따른 불량 발생을 줄일 수 있고, 기판 처리 품질을 향상시킬 수 있다.Therefore, it is possible to reduce the problem of seating the substrate on the mounting table 6110 in an abnormal or abnormal state, thereby allowing the substrate 10 to be seated at the correct position of the mounting table 6110 during the actual process. have. Accordingly, it is possible to reduce the occurrence of defects according to the seating position of the substrate 10 and improve the substrate processing quality.
기판 처리 공정 시에 이상이 있는 또는 비정상인 상태로 기판을 안착대 상에 안착시키는 문제를 줄일 수 있고, 이로 인해 실제 공정 시에 안착대의 정위치에 기판을 안착시킬 수 있다. 이에, 기판의 안착 위치에 따른 불량 발생을 줄일 수 있고, 기판 처리 품질을 향상시킬 수 있다.It is possible to reduce the problem of seating the substrate on the mounting table in an abnormal or abnormal state during the substrate processing process, thereby allowing the substrate to be seated at the correct position of the mounting table during the actual process. Accordingly, it is possible to reduce the occurrence of defects according to the seating position of the substrate, and improve the substrate processing quality.

Claims (11)

  1. 내부 공간을 가지는 이송 챔버;a transfer chamber having an interior space;
    기판의 지지 및 이동이 가능하도록 상기 이송 챔버에 설치된 지지부를 구비하는 이송 장치;a transfer device having a support installed in the transfer chamber to support and move the substrate;
    상기 이송 챔버 및 상기 이송 장치 중 적어도 하나에 설치된 제 1 검출부를 구비하고, 상기 제 1 검출부에서 획득된 데이터를 이용하여 상기 지지부가 기 설정된 제 1 위치로 이동하였는지 여부를 판단하여, 상기 이송 장치의 동작 상태를 판단하는 제 1 검사 장치;A first detection unit installed in at least one of the transfer chamber and the transfer device is provided, and it is determined whether the support unit has moved to a preset first position using the data obtained from the first detection unit, a first inspection device for determining an operating state;
    를 포함하는 기판 처리 시스템.A substrate processing system comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 검출부는 상기 지지부의 위치를 모니터링하고,The first detection unit monitors the position of the support,
    상기 제 1 검사 장치는 상기 제 1 검출부에서 모니터링된 상기 지지부의 위치와 상기 제 1 위치를 비교하여, 상기 이송 장치의 동작 상태를 판단하는 제 1 판단부를 포함하는 기판 처리 시스템.The first inspection apparatus may include a first determination unit configured to determine an operation state of the transfer apparatus by comparing the first position with the position of the support part monitored by the first detection unit.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 검출부는 상기 지지부와 상기 이송 챔버 내벽 사이의 이격 거리를 검출하도록 상기 지지부 및 이송 챔버 중 적어도 어느 하나에 설치되고,The first detection part is installed in at least one of the support part and the transfer chamber to detect the separation distance between the support part and the inner wall of the transfer chamber,
    상기 제 1 검사 장치는, 상기 제 1 검출부에서 검출된 거리와 기 설정된 거리를 비교하여, 상기 이송 장치의 동작 상태를 판단하는 제 1 판단부를 포함하는 기판 처리 시스템.The first inspection apparatus may include a first determination unit configured to determine an operation state of the transfer apparatus by comparing the distance detected by the first detection unit with a preset distance.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 이송 챔버에 연결 가능한 로드락 챔버; 및a load lock chamber connectable to the transfer chamber; and
    상기 로드락 챔버 내로 이동된 지지부를 모니터링하여, 상기 로드락 챔버가 상기 이송 챔버에 설치된 상태를 판단하는 제 2 검사 장치;a second inspection device for monitoring a support moved into the load lock chamber and determining a state in which the load lock chamber is installed in the transfer chamber;
    를 포함하는 기판 처리 시스템.A substrate processing system comprising a.
  5. 청구항 4에 있어서,5. The method according to claim 4,
    상기 제 2 검사 장치는,The second inspection device,
    상기 로드락 챔버 내로 이동된 상기 지지부의 위치를 모니터링하는 제 2 검출부; 및a second detection unit for monitoring a position of the support unit moved into the load lock chamber; and
    상기 제 2 검출부에서 모니터링된 상기 지지부의 위치를 기 설정된 제 2 위치와 비교하여, 상기 로드락 챔버와 상기 이송 챔버의 연결 상태를 판단하는 제 2 판단부;a second determination unit for determining a connection state between the load lock chamber and the transfer chamber by comparing the position of the support unit monitored by the second detection unit with a preset second position;
    를 포함하는 기판 처리 시스템.A substrate processing system comprising a.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 이송 챔버에 연결 가능한 공정 챔버;a process chamber connectable to the transfer chamber;
    상기 공정 챔버 내에 설치되는 안착대; 및a mount installed in the process chamber; and
    상기 공정 챔버 내로 이동된 지지부 및 상기 안착대 중 적어도 하나를 모니터링하여, 상기 공정 챔버가 상기 이송 챔버에 연결된 상태 및 상기 안착대의 설치 상태 중 적어도 하나를 판단하는 제 3 검사 장치;a third inspection device configured to monitor at least one of the support part and the mounting table moved into the process chamber to determine at least one of a state in which the process chamber is connected to the transfer chamber and an installation state of the mounting table;
    를 포함하는 기판 처리 시스템.A substrate processing system comprising a.
  7. 청구항 6에 있어서,7. The method of claim 6,
    상기 제 3 검사 장치는, The third inspection device,
    상기 공정 챔버 내로 이동된 상기 지지부의 위치 및 상기 안착대의 위치를 모니터링하는 제 3 검출부; 및a third detector for monitoring the position of the support part moved into the process chamber and the position of the seating base; and
    상기 제 3 검출부에서 모니터링된 상기 지지부의 위치를 기 설정된 제 3 위치와 비교하여, 상기 공정 챔버가 상기 이송 챔버에 연결된 상태를 판단하거나, 상기 제 3 검출부에서 모니터링된 데이터를 이용하여 상기 안착대의 수평 여부를 판단함으로써, 상기 안착대의 설치 상태를 판단하는 제 3 판단부;A state in which the process chamber is connected to the transfer chamber is determined by comparing the position of the support part monitored by the third detection unit with a preset third position, or the horizontal position of the seating table is determined using the data monitored by the third detection unit. By determining whether or not, a third determination unit for determining the installation state of the seat;
    를 포함하는 기판 처리 시스템.A substrate processing system comprising a.
  8. 이송 장치의 지지부를 이송 챔버 내의 기 설정된 제 1 위치로 이동시키기 위한 구동 명령값에 의하여, 상기 지지부를 이동시키는 과정;moving the support part according to a driving command value for moving the support part of the transport device to a preset first position in the transport chamber;
    제 1 검출부에서 상기 지지부의 위치를 검출하는 과정; 및detecting a position of the support part by a first detection part; and
    상기 제 1 위치가 반영된 기 설정값과 상기 제 1 검출부에서 검출된 값을 비교하여, 상기 이송 장치의 동작 상태를 판단하는 과정;determining an operating state of the transfer device by comparing a preset value to which the first position is reflected with a value detected by the first detection unit;
    을 포함하는 기판 처리 시스템의 검사 방법.Inspection method of a substrate processing system comprising a.
  9. 청구항 8에 있어서,9. The method of claim 8,
    상기 지지부를 상기 이송 챔버에 연결된 로드락 챔버 내의 기 설정된 제 2 위치로 이동시키기 위한 구동 명령값에 의하여, 상기 지지부를 이동시키는 과정;moving the support part according to a driving command value for moving the support part to a preset second position in a load lock chamber connected to the transfer chamber;
    제 2 검출부에서 상기 로드락 챔버 내부로 이동된 지지부의 위치를 검출하는 과정;detecting a position of the support part moved into the load lock chamber by a second detector;
    상기 제 2 위치가 반영된 기 설정값과 상기 제 2 검출부에서 검출된 값을 비교하여, 상기 로드락 챔버의 연결 상태를 판단하는 과정;determining a connection state of the load lock chamber by comparing a preset value to which the second position is reflected with a value detected by the second detection unit;
    을 포함하는 기판 처리 시스템의 검사 방법.Inspection method of a substrate processing system comprising a.
  10. 청구항 8에 있어서,9. The method of claim 8,
    상기 지지부를 상기 이송 챔버에 연결된 공정 챔버 내의 기 설정된 제 3 위치로 이동시키기 위한 구동 명령값에 의하여, 상기 지지부를 이동시키는 과정;moving the support part in response to a driving command value for moving the support part to a preset third position in a process chamber connected to the transfer chamber;
    제 3 검출부에서 상기 공정 챔버 내부로 이동된 지지부의 위치를 검출하는 과정;detecting a position of the support part moved into the process chamber by a third detector;
    상기 제 3 위치가 반영된 기 설정값과 상기 제 3 검출부에서 검출된 값을 비교하여, 상기 공정 챔버의 연결 상태를 판단하는 과정;determining a connection state of the process chamber by comparing a preset value to which the third position is reflected with a value detected by the third detector;
    을 포함하는 기판 처리 시스템의 검사 방법.Inspection method of a substrate processing system comprising a.
  11. 청구항 8에 있어서,9. The method of claim 8,
    상기 지지부 상에 기판을 지지시키는 과정;supporting a substrate on the support;
    상기 지지부를 상기 이송 챔버에 연결된 공정 챔버 내의 기 설정된 제 4 위치로 이동시키는 과정;moving the support part to a preset fourth position in a process chamber connected to the transfer chamber;
    상기 지지부에 지지된 기판을 상기 공정 챔버 내부에 설치된 안착대 상에 안착시키는 과정;placing the substrate supported on the support unit on a mounting table installed inside the process chamber;
    제 3 검출부에서 상기 안착대 상에서의 기판의 위치를 검출하는 과정;detecting the position of the substrate on the mounting table by a third detection unit;
    기 설정된 위치와 상기 제 3 검출부에서 검출된 기판의 위치를 비교하여, 상기 공정 챔버의 연결 상태를 판단하는 과정;determining a connection state of the process chamber by comparing a preset position with the position of the substrate detected by the third detector;
    을 포함하는 기판 처리 시스템의 검사 방법.Inspection method of a substrate processing system comprising a.
PCT/KR2021/006567 2020-05-29 2021-05-26 Substrate processing system and method for inspecting substrate processing system WO2021242015A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0065260 2020-05-29
KR1020200065260A KR20210147677A (en) 2020-05-29 2020-05-29 Processing system equipment and inspecting method the same

Publications (1)

Publication Number Publication Date
WO2021242015A1 true WO2021242015A1 (en) 2021-12-02

Family

ID=78744767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006567 WO2021242015A1 (en) 2020-05-29 2021-05-26 Substrate processing system and method for inspecting substrate processing system

Country Status (3)

Country Link
KR (1) KR20210147677A (en)
TW (1) TW202205510A (en)
WO (1) WO2021242015A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102487639B1 (en) * 2022-05-03 2023-01-11 주식회사 이서 Method of generating reference state data for monitoring state of chamber, method of monitoring state of chamber and device of monitoring state of chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050002152A (en) * 2003-06-30 2005-01-07 동부아남반도체 주식회사 Calibration tool of wafer transfer system
KR20070029032A (en) * 2005-09-08 2007-03-13 주성엔지니어링(주) Movable transfer chamber and substrate processing apparatus comprising the same
KR20070117733A (en) * 2006-06-09 2007-12-13 삼성전자주식회사 Apparatus for manufacturing semiconductor device and level sensing method the same
JP4471704B2 (en) * 2003-06-13 2010-06-02 大日本スクリーン製造株式会社 Substrate detection apparatus, substrate detection method, substrate transfer apparatus and substrate transfer method, substrate processing apparatus and substrate processing method
KR20100073567A (en) * 2008-12-23 2010-07-01 주식회사 동부하이텍 Position sensing device for transfer robot of semiconductor manufacturing system and method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080004118A (en) 2006-07-04 2008-01-09 피에스케이 주식회사 Substrate transfer equipment and substrate processing system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471704B2 (en) * 2003-06-13 2010-06-02 大日本スクリーン製造株式会社 Substrate detection apparatus, substrate detection method, substrate transfer apparatus and substrate transfer method, substrate processing apparatus and substrate processing method
KR20050002152A (en) * 2003-06-30 2005-01-07 동부아남반도체 주식회사 Calibration tool of wafer transfer system
KR20070029032A (en) * 2005-09-08 2007-03-13 주성엔지니어링(주) Movable transfer chamber and substrate processing apparatus comprising the same
KR20070117733A (en) * 2006-06-09 2007-12-13 삼성전자주식회사 Apparatus for manufacturing semiconductor device and level sensing method the same
KR20100073567A (en) * 2008-12-23 2010-07-01 주식회사 동부하이텍 Position sensing device for transfer robot of semiconductor manufacturing system and method thereof

Also Published As

Publication number Publication date
TW202205510A (en) 2022-02-01
KR20210147677A (en) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2020004793A1 (en) Object testing apparatus and object testing method using same
WO2018110953A1 (en) Substrate processing apparatus and method using the same
WO2021242015A1 (en) Substrate processing system and method for inspecting substrate processing system
WO2018038334A1 (en) Tilting stage system
WO2017039171A1 (en) Laser processing device and laser processing method
WO2014109526A1 (en) Apparatus and method for continuous processing of semiconductor wafer
WO2009096675A2 (en) Carrier board transfer system for handler that supports testing of electronic devices and method for transferring carrier board in chamber of handler
WO2009119983A2 (en) Fpd substrate and semiconductor wafer inspection system using duplicate images
WO2012033301A4 (en) Wafer inspection device and wafer inspection system comprising same
WO2024043403A1 (en) Semiconductor wafer defect inspection device and defect inspection method
WO2020184859A1 (en) Transfer device and method for transferring semiconductor chip
WO2016018049A1 (en) Defect measuring device for wafers
WO2018026075A1 (en) Polishing measurement device and abrasion time controlling method thereof, and polishing control system including same
WO2018066904A1 (en) Substrate-processing device and substrate-processing method using same
WO2019172689A1 (en) Vision inspection module, device inspection system including same, and device inspection method using same
WO2023008637A1 (en) Round-battery inspection device
WO2022085821A1 (en) Apparatus for inspecting internal defects of tire by using terahertz transmission imaging technology
WO2023191448A1 (en) Wafer transfer device and method for judging abnormalities of wafer transfer device
WO2019009513A1 (en) Linear variable differential transformer
WO2020153742A1 (en) Transfer apparatus for testing device, testing device and object testing method using same
WO2021002572A1 (en) Probe block assembly for inspecting display panel, control method thereof, and display panel inspecting apparatus
WO2023096093A1 (en) Automatic wafer teaching apparatus for semiconductor manufacturing equipment
WO2019132599A1 (en) Method for inspecting insertion state of plurality of pins inserted into substrate, and substrate inspection device
WO2021145471A1 (en) Lens measuring apparatus
WO2018079938A1 (en) Tool position setting device and tool position setting method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813434

Country of ref document: EP

Kind code of ref document: A1