WO2018066904A1 - Substrate-processing device and substrate-processing method using same - Google Patents
Substrate-processing device and substrate-processing method using same Download PDFInfo
- Publication number
- WO2018066904A1 WO2018066904A1 PCT/KR2017/010877 KR2017010877W WO2018066904A1 WO 2018066904 A1 WO2018066904 A1 WO 2018066904A1 KR 2017010877 W KR2017010877 W KR 2017010877W WO 2018066904 A1 WO2018066904 A1 WO 2018066904A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- mask
- distance
- distance measuring
- measuring unit
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 43
- 238000003672 processing method Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims abstract description 312
- 238000000034 method Methods 0.000 claims abstract description 131
- 230000000903 blocking effect Effects 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 11
- 238000010168 coupling process Methods 0.000 description 21
- 238000003825 pressing Methods 0.000 description 20
- 230000008878 coupling Effects 0.000 description 17
- 238000005859 coupling reaction Methods 0.000 description 17
- 238000000151 deposition Methods 0.000 description 17
- 230000008021 deposition Effects 0.000 description 17
- 238000001704 evaporation Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000008020 evaporation Effects 0.000 description 9
- 238000005137 deposition process Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 240000006829 Ficus sundaica Species 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68742—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H01L21/203—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67259—Position monitoring, e.g. misposition detection or presence detection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
- H01L21/682—Mask-wafer alignment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/166—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the present invention relates to a substrate processing apparatus for performing substrate processing and a substrate processing method using the same.
- a substrate processing apparatus is a device for performing a deposition process, an etching process, etc. to manufacture a semiconductor manufacturing wafer, a LCD manufacturing substrate, an OLED manufacturing substrate, and the like.
- a substrate processing apparatus there is a vapor deposition apparatus, and the vapor deposition apparatus refers to an apparatus for forming a thin film such as CVD, PVD, and evaporation deposition on the surface of a substrate.
- the evaporator for evaporating the evaporation material to form a thin film includes a evaporation chamber into which the evaporation substrate is loaded, and a source installed inside the evaporation chamber to heat and evaporate the evaporation material to evaporate the evaporation material with respect to the substrate. Substrate treatment is performed to evaporate to form a thin film on the substrate surface.
- the source used in the OLED evaporator is a component that is installed inside the deposition chamber to heat and evaporate the deposition material to evaporate the deposition material with respect to the substrate, according to the evaporation method of Korea Patent Publication No. 10-20009-0015324, Korea Publication Various structures such as Patent No. 10-2004-0110718 are possible.
- the OLED evaporator, the anode, the cathode, the organic film and the like having a predetermined pattern is formed by coupling the mask 350 to the substrate (S).
- the substrate S and the mask 350 should be aligned, and in the related art, after the substrate S and the mask 350 are aligned outside the process chamber 10, the process chamber ( 10) It is transferred to the inside and the deposition process is performed.
- the substrate S and the mask 350 are closely adhered to each other in the deposition chamber 10 to prevent the defect of the deposition process, but the adhesion between the substrate S and the mask 350 is detected. Even though the substrate S and the mask 350 are not in close contact with each other because the structure is not presented, there is a problem that good substrate processing such as deposition to the bottom of the substrate is difficult when substrate processing is performed.
- an object of the present invention is to provide a substrate processing apparatus capable of good substrate processing by accurately measuring the distance between the substrate and the mask.
- the substrate processing apparatus is a gap between the process chamber 10, the substrate (S) and the mask 350 provided in the process chamber 10 to provide a process environment isolated from the outside At least one distance measuring unit for measuring the non-contact method and a close driving unit for closely contacting the substrate (S) and the mask 350 by a relative movement between the substrate (S) and the mask (350) do.
- the distance measuring unit is installed in the process chamber 10 to measure a relative distance with respect to the mask 350, and the distance measuring unit 510 is installed in the process chamber 10 to the substrate S. It may include a second distance measuring unit 520 for measuring the relative distance to the.
- the substrate S may be fixed by suction by the electrostatic chuck 340, and may be installed between the mask 350 and the distance measuring unit.
- the first distance measuring unit 510 irradiates a laser beam to a bottom surface of the mask sheet 351 of the mask 350 or a bottom surface of the mask frame 352 to which the mask sheet 351 is fixed. We can measure relative distance to).
- the electrostatic chuck 340 may have a through hole 342 penetrating the electrostatic chuck 340 so that the laser beam reaches the mask 350 at a position corresponding to the first distance measuring unit 510. have.
- the second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam on the bottom surface of the substrate S exposed through the through hole 342.
- the second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam on the electrostatic chuck 340.
- the through hole 342 of the electrostatic chuck 340 may be formed with a protruding portion 344 protruding into the through hole 342 along an inner circumference to form a stepped portion 345.
- the second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam to the stepped portion 345 formed by the protrusion 344.
- the through hole 342 of the electrostatic chuck 340 may be provided with a blocking member 346 for blocking a part of the through hole 342.
- the second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam to the blocking member 346.
- the blocking member 346 may be made of glass or quartz.
- the through hole 342 may be formed in plural along the edge of the electrostatic chuck 340.
- the substrate processing apparatus may further include a controller for controlling the close driving unit based on the distance between the substrate S and the mask 350 measured by the distance measuring unit.
- the substrate S and the mask 350 may be vertically transferred to the process chamber 10 and clamped in a vertical state.
- the substrate treating apparatus may include a mask clamping part 100 installed in the process chamber 10 and clamping the mask 350, and a substrate S installed in the process chamber 10 so that the substrate S may have the electrostatic chuck 340.
- the substrate clamping unit 200 may further include a substrate clamping unit 200 that clamps the substrate carrier 320 that is fixed by suction.
- the close driving part may be installed on at least one of the mask clamping part 110 and the substrate clamping part 200 such that the substrate S and the mask 350 are brought into close contact by relative movement.
- the substrate treating apparatus relatively moves the substrate carrier 320 with respect to the mask 350 clamped by the mask clamping unit 100 so that the substrate S and the mask clamping are clamped by the substrate clamping unit 200. It may further include an alignment part 400 for aligning the mask 350 clamped by the part 100.
- the substrate processing method according to the present invention is a substrate and mask adhesion method of the substrate processing apparatus having the configuration as described above, by the distance measuring unit between the substrate (S) and the mask 350
- the substrate S and the mask 350 may be brought into close contact with each other by relative movement while measuring a distance of.
- the substrate S is fixed by the electrostatic chuck 340 and installed between the mask 350 and the distance measuring unit, and a first distance measuring process of measuring a relative distance with respect to the mask 350. And a distance between the substrate S and the mask 350 by a second distance measuring process of measuring a relative distance with respect to the substrate S.
- the substrate processing method may perform substrate processing only when it is determined that the distance between the substrate S and the mask 350 measured by the distance measuring unit is equal to or smaller than a preset reference distance.
- the present invention includes a distance measuring unit for measuring the distance between the substrate (S) and the mask (M) in a non-contact manner when the substrate (S) and the mask (M) is in close contact with the substrate (S) of the mask (M) It is possible to greatly improve the yield of substrate processing by greatly improving the control and reliability of the alignment and close contact operation.
- the adhesion state of the substrate S and the mask M at the upper side and the lower side may vary.
- the distance between the substrate S and the mask M according to each position can be accurately measured by placing the distance measuring unit at a position where accurate measurement of the adhesion state such as a position corresponding to the vertex of the rectangular substrate is required.
- the adhesion state of the substrate S and the mask M was detected by a camera, but the detection of the adhesion state was not smooth.
- the present invention provides a non-contact method using a laser beam between the substrate S and the mask M. By measuring the interval of, the accurate and reliable measurement of the adhesion state between the substrate S and the mask M is possible.
- the present invention provides an alignment structure for fixing and aligning the substrate S and the mask M while the substrate S and the mask M are perpendicular to each other, thereby providing the substrate S and the mask M.
- Good substrate treatment is possible in a state where the substrate S and the mask M are perpendicular to each other by good adhesion and alignment between the layers.
- FIG. 1 is a cross-sectional view showing an example of a conventional OLED deposition machine
- 2A to 2C are partial cross-sectional views illustrating an aligner structure of a substrate processing apparatus according to an embodiment of the present invention, and partial cross-sectional views illustrating an alignment process and a close contact process between a substrate and a mask;
- 3A is a plan view showing a through hole of an electrostatic chuck according to the first embodiment in the aligner structure of FIG. 2C;
- 3B is a partial sectional view showing a distance measuring unit according to the first embodiment
- FIG. 4 is a partial cross-sectional view showing a distance measuring unit according to a second embodiment in the aligner structure of FIG. 2C;
- FIG. 5 is a partial cross-sectional view showing a distance measuring unit according to a third embodiment in the aligner structure of FIG. 2C;
- 6A and 6B show some cross-sectional views showing mask clamping and showing an operation process
- FIGS. 7A and 7B show some cross-sectional views showing substrate clamping and showing an operation process
- FIGS. 8 is a side view showing an alignment part in the aligner structure of FIGS. 2A to 2C;
- FIG. 9 is a plan view illustrating an alignment process of a substrate and a substrate carrier.
- FIG. 2A to 2C are partial cross-sectional views illustrating an aligner structure of a substrate processing apparatus according to an embodiment of the present invention, and partial cross-sectional views illustrating an alignment process and a close contact process between a substrate and a mask
- FIG. 3A is a cross-sectional view of FIG. 2C
- 3 is a plan view showing a through hole of the electrostatic chuck according to the first embodiment in the aligner structure
- FIG. 3b is a partial cross-sectional view showing the distance measuring unit according to the first embodiment
- FIG. 4 is a second embodiment in the aligner structure of FIG. 2c.
- FIG. 5 is a partial cross-sectional view showing a distance measuring unit according to the present invention
- FIG. 5 is a partial cross-sectional view showing a distance measuring unit according to a third embodiment of the aligner structure of FIG. 2C
- FIGS. 6A and 6B are partial cross-sectional views showing an operation process of mask clamping.
- 7A and 7B show some cross-sectional views showing substrate clamping and operation
- FIG. 8 shows an alignment portion in the aligner structure of FIGS. 2A to 2C.
- FIG, 9 is a plan view showing the alignment process of the substrate and the substrate carrier.
- the substrate S and the mask 350 are transferred to the process chamber 10, respectively, and the substrate S and the mask 350 are transferred to and adhered to the substrate.
- Any device that requires the use of the mask 350 and the alignment of the substrate S and the mask 350 during substrate processing such as an evaporator and an evaporator that performs an atomic layer deposition process, may be applied.
- the substrate treating apparatus is one or more measuring non-contact distance between the process chamber 10, the substrate S installed in the process chamber 10 and the mask 350 to provide a process environment isolated from the outside
- the distance measuring unit includes a close driving unit for closely contacting the substrate S and the mask 350 by relative movement while measuring the distance between the substrate S and the mask 350 by the distance measuring unit.
- the substrate treating apparatus having such a configuration transfers the substrate S and the mask 350 separately in the process chamber 10, and fixes the transferred substrate S and the mask 350 inside the process chamber 10.
- the alignment may be performed by relative movement of the fixed substrate S and the mask 350, and the substrate processing may be performed after the aligned substrate S and the mask 350 are brought into close contact with each other.
- the substrate S and the mask 350 may be vertically transferred to the ground in the process chamber 10 and fixed in a vertical state.
- the substrate S and the mask 350 may be transported in parallel to the ground in the process chamber 10 and fixed in a horizontal state.
- the substrate S is preferably transferred in a fixed state by the substrate carrier 320.
- the substrate carrier 320 is a component that is moved while fixing the substrate S and may have various structures according to the fixing structure of the substrate S. FIG.
- the substrate carrier 320 is the frame portion 360 coupled to the electrostatic chuck 340, the electrostatic chuck 340 for adsorbing and fixing the substrate by the electrostatic force, the upper surface of the electrostatic chuck 340 is exposed to the upper side.
- a DC power supply unit (not shown) installed in the frame unit 360 to control supply of DC power and supply of DC power to the electrostatic chuck 340.
- the electrostatic chuck 340 is a component that the substrate carrier 320 sucks and fixes by electromagnetic force when transferring the substrate S.
- the electrostatic chuck 340 receives power from a DC power supply installed in the substrate carrier 320 or from an external DC power source.
- the DC power supply unit is installed in the frame unit 360 to supply DC power to the electrostatic chuck 340 and control the supply of DC power.
- Various configurations are possible according to a power supply method and an installation structure.
- the DC power supply unit is installed to move in a state where the substrate carrier 320 is adsorbed and fixed in the substrate processing system including the process chamber 10, thereby supplying power to the electrostatic chuck 340 for a sufficient time to perform the process. It should be able to supply and control wirelessly rather than wired.
- the DC power supply unit may include a charging battery (not shown) for supplying power to the electrostatic chuck 340 and a wireless communication unit for wireless communication and control with an external control device.
- the rechargeable battery is a component in which DC power is charged to supply DC power to the electrostatic chuck 340.
- the wireless communication unit is a component for controlling DC power supply to the electrostatic chuck 340 and other control of the substrate carrier 100 by wireless communication with an external controller.
- the DC power supply unit is installed to be detachable from the substrate carrier 320.
- the rechargeable battery is operated under atmospheric pressure, the operating environment of which is very low pressure, that is, higher than the process pressure, and for this purpose, the surrounding environment of the rechargeable battery needs to be isolated from the outside.
- the DC power supply unit preferably includes a housing structure that provides a sealed inner space in which the rechargeable battery is installed to isolate the rechargeable battery from the external process environment.
- the frame part 360 may be variously configured as a component that is coupled to the electrostatic chuck 340 at the edge of the electrostatic chuck 340 to expose the top surface of the electrostatic chuck 340.
- the transfer method of the substrate carrier 320 may be any method as long as it can move the substrate carrier 320 into and out of the process chamber 10, such as a roller and magnetic levitation.
- the process chamber 10 is provided with a component for transferring the substrate carrier 320 according to the transfer method of the substrate carrier 320.
- the substrate carrier 320 may be guided to the movement path into and out of the process chamber 10 through the substrate guide member 610 installed in the process chamber 10.
- the mask 350 may also be transferred into the process chamber 10 by various methods.
- any method of transferring the mask 350 may be performed as long as the mask 350 may move the mask 350 to and from the process chamber 10.
- the process chamber 10 is provided with components for the transfer of the mask 350 in accordance with the transfer method of the mask 350.
- the mask 350 is a component that adheres to the substrate S to perform a substrate treatment process such as patterned deposition.
- the mask 350 may include a mask sheet 351 having patterned openings 354 and a mask frame 352 to which the mask sheet 351 is fixed.
- the mask 350 may be combined with a mask carrier 370 that transfers the mask sheet 351 and the mask frame 352 in a fixed state.
- the mask carrier 370 is a component that is moved while fixing the mask sheet 351 and the mask frame 352 and may have various structures according to the fixing structure of the mask 350.
- the mask carrier 370 may be guided to the movement path into and out of the process chamber 10 through the mask guide member 620 installed in the process chamber 10.
- a corresponding component may be installed according to the substrate processing process, such as a gas injection structure such as a source gas and a reaction gas.
- Process chamber 10 may be any configuration as a component that provides a processing environment for performing the evaporation deposition process.
- the process chamber 10 may be formed of a container in which a predetermined internal space is formed and a gate through which the substrate S may pass is formed.
- the container may be provided with an exhaust means for maintaining a predetermined pressure to the inner space.
- One or more sources 30 may be installed in the process chamber 10 and may have any configuration as a component for heating and evaporating the deposition material to evaporate the deposition material with respect to the substrate S.
- the source 30 is a component for evaporating a deposition material including at least one of an organic material, an inorganic material, and a metal material.
- the source 30 may be configured with a crucible containing a deposition material and a heater for heating the crucible.
- the process chamber 10 includes an aligner structure for performing a process of fixing, aligning, and adhering the substrate S and the mask 350.
- the alignment process of the substrate S and the mask 350 by the aligner structure may be performed by moving the mask 350 in a state where the substrate S is fixed or by fixing the mask 350. It may be aligned by a variety of moving methods, such as to move or to move both the substrate (S) and the mask (350).
- the aligner structure includes a mask clamping unit 100 installed in the process chamber 10 to clamp the mask 350, and a substrate carrier 320 to which the substrate S is fixed by suction by the electrostatic chuck 340.
- the alignment part 400 for aligning the 350 and the substrate S and the mask 350 aligned by the alignment part 400 may be included in close contact with each other.
- the mask clamping unit 100 is installed in the process chamber 10 to clamp the mask 350 and may have various structures according to the clamping method of the mask 350.
- the mask clamping unit 100 may be configured to clamp the mask 350 by magnetic coupling, screw coupling, fitting, or the like.
- the coupling method of the mask 350 and the mask clamping part 100 is characterized in that the coupling is moved in a direction perpendicular to the surface of the mask 350 transferred to the process chamber 10.
- the mask clamping part 100 is fitted with the fitting part 110 and the fitting part 110 protruding from the bottom surface of the mask 350, and the fitting part 110 is fitted with the protruding part 310. It may include a coupling holding unit 120 to maintain the coupling state of the protrusion 310 and the fitting portion 110 in the state.
- the protruding portion 310 protruding from the bottom of the mask 350 is a component for fitting with the fitting portion 110, and various structures are possible according to the coupling method.
- it may be formed as a groove instead of the protrusion 310 so that the fitting portion 110 is inserted from the bottom of the mask 350.
- the fitting unit 110 may include a recess 111 into which the protrusion 310 is inserted as a component that is fitted into the protrusion 310 protruding from the bottom of the mask 350.
- the fitting portion 110 is fitted with the protrusion 310 by being moved in a direction perpendicular to the surface of the mask 350 transferred to the process chamber 10 as shown in FIGS. 6A and 6B.
- Coupling holding unit 120 is a component that maintains the coupling state of the protrusion 310 and the fitting unit 110 in the fitted state is possible in various embodiments.
- the fitting portion 110 is formed when the insertion portion 111 is inserted into the protrusion 310, the coupling holding portion 120 is formed on the outer circumferential surface of the protrusion 310, two or more formed It may include a ball member 121 is inserted into the groove 311, the pressing member 122 for pressing the ball member 121 to the groove 311.
- the pressing member 122 is installed to be movable in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 110 may press the ball member 121 to the groove portion 311 by the movement.
- the pressing member 122 is formed with an inclined surface 123 in contact with the ball member 121 is moved along the longitudinal direction (X-axis direction) of the protrusion 310 to move the ball member 121 to the groove portion ( 311).
- the pressing member 122 is moved in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 110 by a hydraulic device or the like.
- the pressing member 122 needs to be fixed in the housing forming the fitting part 110 to maintain the pressing state in the state in which the ball member 121 is pressed by the groove part 311.
- the pressing member 122 may be fixed by the fixing member 125 installed in the housing forming the fitting portion 110.
- the fixing member 125 is installed in the housing constituting the fitting portion 110 and is a component for fixing the pressing member 122.
- the inside is formed of an empty ring-shaped tube and is expanded by hydraulic or pneumatic pressure therein. 122 may be fixed by the fixing member 125 installed in the housing by pressing directly or indirectly.
- the position of the protrusion 310 may be precisely determined.
- the alignment of the mask 350 and the substrate S by the alignment unit 400 can be performed quickly and accurately.
- the substrate clamping unit 200 is installed in the process chamber 10 to clamp the substrate carrier 320 in which the substrate S is fixed by the electrostatic chuck 340. Therefore, it can have various structures.
- the substrate clamping unit 200 may be configured to clamp the substrate carrier 320 by magnetic coupling, screw coupling, or fitting coupling.
- the coupling method of the substrate carrier 320 and the substrate clamping unit 200 is characterized in that coupled to move in a direction perpendicular to the surface of the substrate carrier 320 transferred to the process chamber 10.
- the substrate clamping part 200 is fitted with the fitting part 210 that is fitted with the protrusion 321 protruding from the bottom of the substrate carrier 320, and the fitting part 210 is fitted with the protrusion 321. It may include a coupling retaining portion 220 to maintain the combined state of the protrusion 321 and the fitting portion 210 in the coupled state.
- the protrusion 321 protruding from the bottom surface of the substrate carrier 320 is a component for fitting with the fitting portion 210, and various structures are possible according to the coupling method.
- it may be formed as a groove instead of the protrusion 321 so that the fitting portion 210 is inserted from the bottom surface of the substrate carrier 320.
- the fitting portion 210 may include a recess 211 into which the protrusion 321 is inserted as a component fitted into the protrusion 321 protruding from the bottom surface of the substrate carrier 320.
- the fitting portion 210 is fitted to the protrusion 321 by being moved in a direction perpendicular to the surface of the substrate carrier 320 transferred to the process chamber 10 as shown in FIGS. 6A and 6B.
- Coupling holding unit 220 is a component that maintains the coupling state of the protrusion 321 and the fitting portion 210 in the fitted state is possible in various embodiments.
- the fitting portion 210 is formed when the insertion portion 211 is inserted into the protrusion 321, the coupling holding portion 220 is formed on the outer circumferential surface of the protrusion 321 at least two or more It may include a ball member 221 inserted into the groove 322, the pressing member 222 for pressing the ball member 221 to the groove 322.
- the pressing member 222 is installed to be movable in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 210 may press the ball member 221 to the groove 322 by the movement.
- the pressing member 222 is formed with an inclined surface 223 in contact with the ball member 221 is moved along the longitudinal direction (X-axis direction) of the protrusion 321 to move the ball member 221 groove ( 322).
- the pressing member 222 is moved in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 210 by a hydraulic device or the like.
- the pressing member 222 needs to be fixed in the housing forming the fitting portion 210 to maintain the pressing state in the state in which the ball member 221 is pressed by the groove 322.
- the pressing member 222 may be fixed by the fixing member 225 installed in the housing forming the fitting portion 210.
- Fixing member 225 is installed in the housing constituting the fitting portion 210 is a component for fixing the pressing member 222 is formed as an empty ring-shaped tube inside and inflated by the hydraulic or pneumatic inside the pressing member ( 222 may be directly or indirectly pressed and fixed by the fixing member 225 installed in the housing.
- the engagement holding unit 220 maintains the engagement state of the protrusion 321 and the fitting portion 210 by the ball member 221 and the groove 322, the position of the protrusion 321 can be accurately determined.
- the alignment of the mask 350 and the substrate S by the alignment unit 400 can be performed quickly and accurately.
- the alignment unit 400 moves the substrate carrier 320 relative to the mask 350 so that the substrate S is clamped by the substrate clamping unit 200 and the mask 350 is clamped by the mask clamping unit 110.
- Various embodiments are possible according to the alignment method as a component to align the.
- the alignment unit 400 may include an agent that linearly moves any one of the mask 350 and the substrate S in a direction parallel to the substrate S.
- the linear movement unit 410, the second linear movement unit 420, and the third linear movement unit 440 may be included.
- the first linear mover 410, the second linear mover 420, and the third linear mover 440 may form any one of the mask 350 and the substrate S in a state perpendicular to each other. It is a component for linear movement in a parallel direction with respect to, and various embodiments are possible according to the linear driving method, such as screw jack method, belt method, piezo method.
- first linear moving part 410, the second linear moving part 420, and the third linear moving part 440 correspond to the shape of the rectangular substrate S to linearly move in a direction parallel to each of the sides of the rectangle. I can drive it.
- an alignment error may occur due to the occurrence of backlash during linear driving of a mechanical method such as a screw jack. .
- the first linear moving part 410, the second linear moving part 420, and the third linear moving part 430 are perpendicular to each other as shown in FIG. 5. It can be configured to form a vertical direction and inclined.
- first linear moving part 410, the second linear moving part 420, and the third linear moving part 430 form an inclination with the vertical direction
- first linear moving part 410 and the second linear moving part The load in the vertical direction acts on both the 420 and the third linear moving part 430 to prevent the alignment error due to the occurrence of backlash.
- the substrate S is transported alone or fixed to the substrate carrier 320 for process execution, and is generally transported fixedly to the substrate carrier 320.
- the substrate S fixed on the substrate carrier 320 may delay the alignment process with the subsequent mask 350 or may cause a defect in the performance of the substrate processing process. .
- the substrate carrier 320 is in a state in which the bonding state and the alignment state with the substrate S become very important in performing the process, such as flipping, that is, flipping or standing upright, depending on the process after the substrate S is fixed.
- FIG. 9 is a plan view illustrating an alignment process of the substrate S and the substrate carrier 320.
- the mark M2 is used to align the substrate S and the substrate carrier 320.
- the alignment of the substrate S and the substrate carrier 320 is almost the same as or similar to that of the alignment between the mask 350 and the substrate S, and thus a detailed description thereof will be omitted.
- the close driving unit is a component that closely contacts the substrate S and the mask 350 aligned by the alignment unit 400, and is installed on at least one of the substrate clamping unit 200 and the mask clamping unit 110. It may include a linear driving unit to closely contact the mask 350 and the substrate (S).
- the distance between the substrate S and the mask 350 is determined to determine the close contact state between the substrate S and the mask 350. It includes a distance measuring unit for measuring in a non-contact manner.
- the distance measuring unit may be variously configured as a component for measuring the distance between the substrate S and the mask 350 in a non-contact manner.
- the distance measuring unit is configured to measure the distance between the substrate S and the mask 350 in a non-contact manner
- various non-contact distance sensors may be used.
- the distance measuring unit may be a laser displacement sensor or a confocal sensor that measures a distance to a measurement target using a laser beam.
- the distance measuring unit is installed in the process chamber 10 to measure the relative distance with respect to the mask 350
- the distance measuring unit 510 is installed in the process chamber 10 and relative to the substrate (S). It may include a second distance measuring unit 520 for measuring the distance.
- the distance measuring unit is based on the relative distance (L1) between the first distance measuring unit 510 and the mask 350 and the relative distance (L2) between the second distance measuring unit 520 and the substrate (S). An interval between S and the mask 350 may be measured.
- the first distance measuring unit 510 and the second distance measuring unit 520 may be installed on the substrate S side such that the substrate S is positioned between the distance measuring unit and the mask 350.
- first distance measuring unit 510 and the second distance measuring unit 520 is preferably installed on the same virtual measurement reference line (R) perpendicular to the relative distance (L1, L2) direction for precise distance measurement.
- the first distance measuring unit 510 irradiates a laser beam to the bottom of the mask sheet 351 of the mask 350 or the bottom of the mask frame 352 to which the mask sheet 351 is fixed.
- the relative distance L1 with respect to 350 may be measured.
- the electrostatic chuck 340 measures the distance so that the laser beam reaches the mask 350.
- a through hole 342 penetrating the electrostatic chuck 340 may be formed at a position corresponding to the portion.
- the second distance measuring unit 520 may measure the relative distance L2 with respect to the substrate S by irradiating a laser beam on the bottom surface of the substrate S exposed through the through hole 342.
- the distance D between the substrate S and the mask 350 is measured by the relative distance L1 and the second distance measurement from the first distance measuring unit 510 to the mask 350 as shown in Equation 1 below.
- the relative distance L2 from the unit 520 to the substrate S may be measured.
- a plurality of through holes 342 formed through the electrostatic chuck 340 may be provided along a circumference of the edge of the electrostatic chuck 340.
- Ball 342 is preferably formed at a position corresponding to the vertex of the rectangular substrate (S) that requires accurate detection of the adhesion state.
- a plurality of distance measuring units 510 and 520 may be installed correspondingly thereto.
- the first distance measuring unit 510 irradiates a laser beam to the bottom of the mask sheet 351 of the mask 350 or the bottom of the mask frame 352 to which the mask sheet 351 is fixed.
- the relative distance L1 with respect to 350 may be measured.
- the electrostatic chuck 340 measures the distance so that the laser beam reaches the mask 350.
- At least a through hole 342 penetrating the electrostatic chuck 340 may be formed at a position corresponding to the portion.
- the through hole 342 of the electrostatic chuck 340 may be formed with a protruding portion 344 protruding into the through hole 342 along the inner circumference to form the stepped portion 345.
- the second distance measuring unit 520 may measure the relative distance to the substrate S by irradiating a laser beam to the stepped portion 345 formed by the protruding portion 344.
- the distance D between the substrate S and the mask 350 is measured by the relative distance L1 and the second distance measurement from the first distance measuring unit 510 to the mask 350 as shown in Equation 2 below.
- the relative distance L2 from the unit 520 to the substrate S may be measured.
- the first distance measuring unit 510 irradiates a laser beam to a bottom surface of the mask sheet 351 of the mask 350 or a bottom surface of the mask frame 352 to which the mask sheet 351 is fixed.
- the relative distance L1 with respect to 350 may be measured.
- the electrostatic chuck 340 measures the distance so that the laser beam reaches the mask 350.
- a through hole 342 penetrating the electrostatic chuck 340 may be formed at a position corresponding to the portion.
- a blocking member 346 for blocking a part of the through hole 342 may be installed in the through hole 342 of the electrostatic chuck 340.
- the second distance measuring unit 520 may measure the relative distance to the substrate S by irradiating the blocking member 346 with the laser beam.
- the distance D between the substrate S and the mask 350 is measured by the relative distance L1 and the second distance measurement from the first distance measuring unit 510 to the mask 350 as shown in Equation 3 below.
- the relative distance L2 from the unit 520 to the substrate S may be measured.
- the blocking member 346 is a member that is the object of the distance measurement is irradiated by the laser beam transmitted from the second distance measuring unit 520, but various materials are possible, preferably made of glass or quartz.
- the blocking member 346 may be installed in the through hole 342 through various shapes and various ways as long as it can block a part of the through hole 342.
- the blocking member 346 may be a ring-shaped member installed at an inner circumference or end of the through hole 342.
- the blocking member 346 is preferably installed at the side end where the substrate S of the through hole 342 is adsorbed for accurate distance measurement, but is not limited thereto.
- the distance measuring unit measures a distance between the substrate S and the mask 350 in order to detect a close contact between the substrate S and the mask 350, and the distance information is controlled by the electrostatic chuck 320 and the close driving unit. It can be utilized to control the back.
- the substrate processing apparatus may include a controller for controlling the close driving unit based on the distance between the substrate S and the mask 350 measured by the distance measuring unit.
- the distance information sensed by the distance measuring units 510 and 520 needs to be transmitted to a control device (not shown) of the substrate processing apparatus.
- the distance measuring unit 510, 520 transmits the distance information measured by the distance measuring unit 510, 520 wirelessly to the wired communication unit or a wireless operator for transmitting to the control device installed outside the process chamber 10 It may be installed in the process chamber 10 with a communication unit (not shown) to perform.
- the communication unit may be variously configured as a component for transmitting the distance information measured by the distance measuring units 510 and 520 to a control device installed outside the process chamber 10 by wire or wirelessly.
- the substrate S and the mask 350 by relative movement while measuring the distance between the substrate S and the mask 350 by the distance measuring unit ) Can stick to each other.
- the first distance measuring process and the substrate (which measure the relative distance to the mask 350)
- the distance between the substrate S and the mask 350 may be measured by the second distance measuring process of measuring the relative distance with respect to S).
- the first distance measuring process and the second distance measuring process are performed by the first distance measuring unit 510 and the second distance measuring unit 520 described above, and thus a detailed description thereof will be omitted.
- the substrate processing method may perform substrate processing only when it is determined that the distance between the substrate S and the mask 350 measured by the distance measuring unit is equal to or smaller than a preset reference distance.
- a deposition process by evaporation of the deposition material an deposition process for performing an atomic layer deposition process, and the like may be performed.
- the substrate and mask adhesion process may be performed again.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
The present invention provides a substrate-processing device comprising: a process chamber (10) for providing a process environment isolated from the outside; at least one distance measurement part for measuring a distance between a substrate (S) and a mask (350), installed in the process chamber (10), in a contactless manner; and a close-contact driving part for making the substrate (S) and the mask (350) be in close contact with each other through a relative movement between the substrate (S) and the mask (350) while the distance measurement part measures a distance between the substrate (S) and the mask (350). Therefore, the present invention can significantly improve a control and reliability with respect to alignment and close-contact operation of the substrate (S) and the mask (M), thereby greatly improving the yield of substrate processing.
Description
본 발명은 기판처리를 수행하는 기판처리장치 및 이를 이용한 기판처리방법에 관한 것이다.The present invention relates to a substrate processing apparatus for performing substrate processing and a substrate processing method using the same.
기판처리장치는 반도체 제조용 웨이퍼, LCD 제조용 기판, OLED 제조용 기판 등을 제조하기 위하여 증착공정, 식각공정 등을 수행하는 장치로서 기판처리의 종류, 조건 등에 따라서 다양하게 구성된다.A substrate processing apparatus is a device for performing a deposition process, an etching process, etc. to manufacture a semiconductor manufacturing wafer, a LCD manufacturing substrate, an OLED manufacturing substrate, and the like.
기판처리장치의 일 예로서, 증착기가 있으며, 증착기란, 기판의 표면에 CVD, PVD, 증발증착 등 박막을 형성하는 장치를 말한다.As an example of a substrate processing apparatus, there is a vapor deposition apparatus, and the vapor deposition apparatus refers to an apparatus for forming a thin film such as CVD, PVD, and evaporation deposition on the surface of a substrate.
그리고 OLED 제조용 기판의 경우 증착물질의 증착에 있어 유기물, 무기물, 금속 등을 증발시켜 기판 표면에 박막을 형성하는 공정이 많이 사용되고 있다.In the case of an OLED manufacturing substrate, a process of forming a thin film on the surface of a substrate by evaporating an organic material, an inorganic material, a metal, etc. is widely used in the deposition of a deposition material.
증착물질을 증발시켜 박막을 형성하는 증착기는 증착용 기판이 로딩되는 증착챔버와, 증착챔버 내부에 설치되어 기판에 대하여 증착물질을 증발하도록 증착물질을 가열하여 증발시키는 소스를 포함하여, 증착물질이 증발되어 기판표면에 박막을 형성하는 기판처리를 수행한다.The evaporator for evaporating the evaporation material to form a thin film includes a evaporation chamber into which the evaporation substrate is loaded, and a source installed inside the evaporation chamber to heat and evaporate the evaporation material to evaporate the evaporation material with respect to the substrate. Substrate treatment is performed to evaporate to form a thin film on the substrate surface.
또한 OLED 증착기에 사용되는 소스는 증착챔버 내부에 설치되어 기판에 대하여 증착물질을 증발하도록 증착물질을 가열하여 증발시키는 구성요소로서 그 증발방식에 따라서 한국공개특허 제10-20009-0015324호, 한국공개특허 제10-2004-0110718호 등 다양한 구조가 가능하다.In addition, the source used in the OLED evaporator is a component that is installed inside the deposition chamber to heat and evaporate the deposition material to evaporate the deposition material with respect to the substrate, according to the evaporation method of Korea Patent Publication No. 10-20009-0015324, Korea Publication Various structures such as Patent No. 10-2004-0110718 are possible.
한편 OLED 증착기는 도 1에 볼 수 있듯이 소정의 패턴을 가지는 양극, 음극, 유기막 등은 기판(S)에 마스크(350)를 결합시켜 형성된다.On the other hand, as shown in Figure 1, the OLED evaporator, the anode, the cathode, the organic film and the like having a predetermined pattern is formed by coupling the mask 350 to the substrate (S).
여기서 증착공정의 수행 전에는 기판(S) 및 마스크(350)의 정렬을 수행하여야 하며, 종래에는 공정챔버(10)의 외부에서 기판(S) 및 마스크(350)의 정렬을 수행한 후 공정챔버(10) 내부로 이송되어 증착공정이 수행된다.Here, before performing the deposition process, the substrate S and the mask 350 should be aligned, and in the related art, after the substrate S and the mask 350 are aligned outside the process chamber 10, the process chamber ( 10) It is transferred to the inside and the deposition process is performed.
그러나 종래와 같이 공정챔버(10)의 외부에서 정렬을 마친 기판(S) 및 마스크(350)가 공정챔버(10) 내부로 이송되는 과정에서 진동 등에 의하여 기판(S) 및 마스크(350)의 정렬이 흐트러져 증착불량이 발생되는 문제점이 있다.However, the alignment of the substrate S and the mask 350 by vibrating or the like during the process of transferring the substrate S and the mask 350 that have been aligned outside the process chamber 10 into the process chamber 10 as in the related art. This disturbance is a problem that the deposition failure occurs.
구체적으로 기판(S)을 수직으로 세운 상태에서 기판의 이송 및 증착공정을 수행하는 경우 기판(S) 및 마스크(350) 사이의 미세한 상대이동이 발생되는바 증착공정의 불량으로 작용하여 증착공정이 원활하지 않은 문제점이 있다.Specifically, in the case of performing the transfer and deposition process of the substrate in a state in which the substrate S is placed vertically, minute relative movement between the substrate S and the mask 350 is generated. There is a problem that is not smooth.
또한 증착챔버(10) 내에서 기판(S) 및 마스크(350)가 밀착되어 증착공정이 수행되어야 증착공정의 불량을 방지할 수 있으나 기판(S) 및 마스크(350) 사이의 밀착여부를 감지하는 구조가 제시되지 않아 기판(S) 및 마스크(350)가 상호 밀착되지 않았음에도 불구하고 기판처리가 수행되는 경우 기판 저면까지 증착되는 등 양호한 기판처리가 어려운 문제점이 있다.In addition, the substrate S and the mask 350 are closely adhered to each other in the deposition chamber 10 to prevent the defect of the deposition process, but the adhesion between the substrate S and the mask 350 is detected. Even though the substrate S and the mask 350 are not in close contact with each other because the structure is not presented, there is a problem that good substrate processing such as deposition to the bottom of the substrate is difficult when substrate processing is performed.
본 발명은 이러한 문제점을 해결하기 위하여, 기판 및 마스크 사이의 간격을 정확하게 측정함으로써 양호한 기판처리가 가능한 기판처리장치를 제공하는 것을 목적으로 한다.In order to solve this problem, an object of the present invention is to provide a substrate processing apparatus capable of good substrate processing by accurately measuring the distance between the substrate and the mask.
상기 과제를 해결하기 위하여, 본 발명에 따른 기판처리장치는 외부와 격리된 공정환경을 제공하는 공정챔버(10), 상기 공정챔버(10)에 설치된 기판(S) 및 마스크(350) 사이의 간격을 비접촉방식으로 측정하는 하나 이상의 거리측정부와, 상기 기판(S) 및 마스크(350) 사이의 상대이동에 의하여 기판(S) 및 마스크(350)를 서로 밀착시키는 밀착구동부를 포함함을 특징으로 한다.In order to solve the above problems, the substrate processing apparatus according to the present invention is a gap between the process chamber 10, the substrate (S) and the mask 350 provided in the process chamber 10 to provide a process environment isolated from the outside At least one distance measuring unit for measuring the non-contact method and a close driving unit for closely contacting the substrate (S) and the mask 350 by a relative movement between the substrate (S) and the mask (350) do.
상기 거리측정부는 상기 공정챔버(10)에 설치되어 상기 마스크(350)에 대한 상대거리를 측정하는 제1거리측정부(510)와, 상기 공정챔버(10)에 설치되어 상기 기판(S)에 대한 상대거리를 측정하는 제2거리측정부(520)를 포함할 수 있다.The distance measuring unit is installed in the process chamber 10 to measure a relative distance with respect to the mask 350, and the distance measuring unit 510 is installed in the process chamber 10 to the substrate S. It may include a second distance measuring unit 520 for measuring the relative distance to the.
상기 기판(S)은 정전척(340)에 의하여 흡착고정되며, 상기 마스크(350)와 상기 거리측정부 사이에 설치될 수 있다.The substrate S may be fixed by suction by the electrostatic chuck 340, and may be installed between the mask 350 and the distance measuring unit.
상기 제1거리측정부(510)는 상기 마스크(350)의 마스크시트(351)의 저면 또는 상기 마스크시트(351)가 고정되는 마스크프레임(352)의 저면에 레이저빔을 조사하여 상기 마스크(350)에 대한 상대거리를 측정할 수 있다.The first distance measuring unit 510 irradiates a laser beam to a bottom surface of the mask sheet 351 of the mask 350 or a bottom surface of the mask frame 352 to which the mask sheet 351 is fixed. We can measure relative distance to).
상기 정전척(340)은 상기 제1거리측정부(510)에 대응되는 위치에서 레이저빔이 상기 마스크(350)에 도달하도록 상기 정전척(340)을 관통하는 관통공(342)이 형성될 수 있다.The electrostatic chuck 340 may have a through hole 342 penetrating the electrostatic chuck 340 so that the laser beam reaches the mask 350 at a position corresponding to the first distance measuring unit 510. have.
상기 제2거리측정부(520)는 상기 관통공(342)을 통해 노출되는 상기 기판(S)의 저면에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정할 수 있다.The second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam on the bottom surface of the substrate S exposed through the through hole 342.
상기 제2거리측정부(520)는 상기 정전척(340)에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정할 수 있다.The second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam on the electrostatic chuck 340.
상기 정전척(340)의 관통공(342)에는 내주연을 따라 상기 관통공(342)의 내측으로 돌출되어 단차부(345)를 형성하는 돌출부분(344)이 형성될 수 있다.The through hole 342 of the electrostatic chuck 340 may be formed with a protruding portion 344 protruding into the through hole 342 along an inner circumference to form a stepped portion 345.
상기 제2거리측정부(520)는 상기 돌출부분(344)에 의하여 형성된 단차부(345)에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정할 수 있다.The second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam to the stepped portion 345 formed by the protrusion 344.
상기 정전척(340)의 관통공(342)에는 상기 관통공(342)의 일부를 차단하는 차단부재(346)가 설치될 수 있다.The through hole 342 of the electrostatic chuck 340 may be provided with a blocking member 346 for blocking a part of the through hole 342.
상기 제2거리측정부(520)는 상기 차단부재(346)에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정할 수 있다.The second distance measuring unit 520 may measure a relative distance to the substrate S by irradiating a laser beam to the blocking member 346.
상기 차단부재(346)는 글라스 또는 쿼츠로 이루어질 수 있다.The blocking member 346 may be made of glass or quartz.
상기 관통공(342)은 상기 정전척(340)의 가장자리를 따라 복수개로 형성될 수 있다.The through hole 342 may be formed in plural along the edge of the electrostatic chuck 340.
상기 기판처리장치는 상기 거리측정부에 의하여 측정된 기판(S) 및 마스크(350) 사이의 간격을 기초로 상기 밀착구동부를 제어하는 제어부를 추가로 포함할 수 있다.The substrate processing apparatus may further include a controller for controlling the close driving unit based on the distance between the substrate S and the mask 350 measured by the distance measuring unit.
상기 기판(S) 및 마스크(350)는 각각 상기 공정챔버(10)에 수직으로 이송되며, 수직상태로 클램핑될 수 있다.The substrate S and the mask 350 may be vertically transferred to the process chamber 10 and clamped in a vertical state.
상기 기판처리장치는 상기 공정챔버(10)에 설치되어 상기 마스크(350)를 클램핑하는 마스크클램핑부(100)와, 상기 공정챔버(10)에 설치되어 상기 기판(S)이 상기 정전척(340)에 의하여 흡착고정된 기판캐리어(320)를 클램핑하는 기판클램핑부(200)를 추가로 포함할 수 있다.The substrate treating apparatus may include a mask clamping part 100 installed in the process chamber 10 and clamping the mask 350, and a substrate S installed in the process chamber 10 so that the substrate S may have the electrostatic chuck 340. The substrate clamping unit 200 may further include a substrate clamping unit 200 that clamps the substrate carrier 320 that is fixed by suction.
이때, 상기 밀착구동부는 상기 기판(S) 및 상기 마스크(350)가 상대이동에 의하여 밀착되도록 상기 마스크클램핑부(110) 및 상기 기판클램핑부(200) 중 적어도 어느 하나에 설치될 수 있다.In this case, the close driving part may be installed on at least one of the mask clamping part 110 and the substrate clamping part 200 such that the substrate S and the mask 350 are brought into close contact by relative movement.
상기 기판처리장치는 상기 마스크클램핑부(100)에 의하여 클램핑된 마스크(350)에 대하여 기판캐리어(320)를 상대이동시켜 상기 기판클램핑부(200)에 의하여 클램핑된 기판(S) 및 상기 마스크클램핑부(100)에 의하여 클램핑된 마스크(350)를 얼라인하는 얼라인부(400)를 더 포함할 수 있다.The substrate treating apparatus relatively moves the substrate carrier 320 with respect to the mask 350 clamped by the mask clamping unit 100 so that the substrate S and the mask clamping are clamped by the substrate clamping unit 200. It may further include an alignment part 400 for aligning the mask 350 clamped by the part 100.
본 발명의 다른 측면에 따르면, 본 발명에 따른 기판처리방법은 상기와 같은 구성을 가지는 기판처리장치의 기판 및 마스크 밀착방법으로서, 상기 거리측정부에 의하여 상기 기판(S) 및 마스크(350) 사이의 거리를 측정하면서 상대이동에 의하여 기판(S) 및 마스크(350)를 서로 밀착시킬 수 있다.According to another aspect of the present invention, the substrate processing method according to the present invention is a substrate and mask adhesion method of the substrate processing apparatus having the configuration as described above, by the distance measuring unit between the substrate (S) and the mask 350 The substrate S and the mask 350 may be brought into close contact with each other by relative movement while measuring a distance of.
그리고, 상기 기판(S)은 정전척(340)에 의하여 흡착고정되어 상기 마스크(350)와 상기 거리측정부 사이에 설치되며, 상기 마스크(350)에 대한 상대거리를 측정하는 제1거리측정과정 및 상기 기판(S)에 대한 상대거리를 측정하는 제2거리측정과정에 의하여 상기 기판(S) 및 마스크(350) 사이의 거리를 측정할 수 있다.In addition, the substrate S is fixed by the electrostatic chuck 340 and installed between the mask 350 and the distance measuring unit, and a first distance measuring process of measuring a relative distance with respect to the mask 350. And a distance between the substrate S and the mask 350 by a second distance measuring process of measuring a relative distance with respect to the substrate S.
상기 기판처리방법은 상기 거리측정부에 의하여 측정된 상기 기판(S) 및 마스크(350) 사이의 거리가 미리 설정된 기준거리보다 같거나 작은 것으로 판단된 경우에만 기판처리를 수행할 수 있다.The substrate processing method may perform substrate processing only when it is determined that the distance between the substrate S and the mask 350 measured by the distance measuring unit is equal to or smaller than a preset reference distance.
본 발명은 기판(S) 및 마스크(M)가 밀착될 때 기판(S) 및 마스크(M) 사이의 간격을 비접촉방식으로 측정하기 위한 거리측정부를 포함함으로써 기판(S) 및 마스크(M)의 얼라인 및 밀착작동에 대한 제어 및 신뢰성을 크게 향상시켜 기판처리의 수율을 크게 향상시킬 수 있다.The present invention includes a distance measuring unit for measuring the distance between the substrate (S) and the mask (M) in a non-contact manner when the substrate (S) and the mask (M) is in close contact with the substrate (S) of the mask (M) It is possible to greatly improve the yield of substrate processing by greatly improving the control and reliability of the alignment and close contact operation.
특히 기판(S) 및 마스크(M)가 수직인 상태에서 기판(S) 및 마스크(M)가 밀착될 때 상측 및 하측에서의 기판(S) 및 마스크(M)의 밀착상태가 달라질 수 있는바 직사각형 기판의 꼭지점에 대응되는 위치 등 밀착상태의 정확한 측정이 필요한 위치에 거리측정부를 위치시킴으로써 각 위치에 따른 기판(S) 및 마스크(M) 사이의 간격을 정확하게 측정할 수 있다.In particular, when the substrate S and the mask M are in close contact with each other when the substrate S and the mask M are perpendicular to each other, the adhesion state of the substrate S and the mask M at the upper side and the lower side may vary. The distance between the substrate S and the mask M according to each position can be accurately measured by placing the distance measuring unit at a position where accurate measurement of the adhesion state such as a position corresponding to the vertex of the rectangular substrate is required.
또한 종래에는 기판(S) 및 마스크(M)의 밀착상태를 카메라에 의하여 감지하여 밀착상태의 감지가 원활하지 않았으나, 본 발명은 레이저빔을 이용한 비접촉방식으로 기판(S)과 마스크(M) 사이의 간격을 측정함으로써 기판(S)과 마스크(M)의 밀착상태에 대한 정확하고 신뢰성 있는 측정이 가능하다.In addition, in the prior art, the adhesion state of the substrate S and the mask M was detected by a camera, but the detection of the adhesion state was not smooth. However, the present invention provides a non-contact method using a laser beam between the substrate S and the mask M. By measuring the interval of, the accurate and reliable measurement of the adhesion state between the substrate S and the mask M is possible.
더 나아가 본 발명은 기판(S) 및 마스크(M)가 수직인 상태에서 기판(S) 및 마스크(M)의 고정 및 얼라인을 위한 얼라인 구조를 함께 제공함으로써 기판(S) 및 마스크(M) 사이의 양호한 밀착 및 얼라인에 의하여 기판(S) 및 마스크(M)가 수직을 이룬 상태에서 양호한 기판처리가 가능하다.Furthermore, the present invention provides an alignment structure for fixing and aligning the substrate S and the mask M while the substrate S and the mask M are perpendicular to each other, thereby providing the substrate S and the mask M. Good substrate treatment is possible in a state where the substrate S and the mask M are perpendicular to each other by good adhesion and alignment between the layers.
도 1은 종래의 OLED 증착기의 일예를 보여주는 단면도,1 is a cross-sectional view showing an example of a conventional OLED deposition machine,
도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 기판처리장치 중 얼라이너 구조를 보여주는 일부 단면도들로서, 기판과 마스크 사이의 얼라인과정 및 밀착과정을 보여주는 일부 단면도들,2A to 2C are partial cross-sectional views illustrating an aligner structure of a substrate processing apparatus according to an embodiment of the present invention, and partial cross-sectional views illustrating an alignment process and a close contact process between a substrate and a mask;
도 3a는 도 2c의 얼라이너 구조에서의 제1실시예에 따른 정전척의 관통공을 보여주는 평면도,3A is a plan view showing a through hole of an electrostatic chuck according to the first embodiment in the aligner structure of FIG. 2C;
도 3b는 제1실시예에 따른 거리측정부를 보여주는 일부 단면도,3B is a partial sectional view showing a distance measuring unit according to the first embodiment;
도 4는 도 2c의 얼라이너 구조에서의 제2실시예에 따른 거리측정부를 보여주는 일부 단면도,4 is a partial cross-sectional view showing a distance measuring unit according to a second embodiment in the aligner structure of FIG. 2C;
도 5는 도 2c의 얼라이너 구조에서의 제3실시예에 따른 거리측정부를 보여주는 일부 단면도,5 is a partial cross-sectional view showing a distance measuring unit according to a third embodiment in the aligner structure of FIG. 2C;
도 6a 및 도 6b는 마스크클램핑을 보여주며 작동과정을 보여주는 일부 단면도들,6A and 6B show some cross-sectional views showing mask clamping and showing an operation process;
도 7a 및 도 7b는 기판클램핑을 보여주며 작동과정을 보여주는 일부 단면도들,7A and 7B show some cross-sectional views showing substrate clamping and showing an operation process;
도 8은 도 2a 내지 도 2c의 얼라이너 구조에서 얼라인부를 보여주는 측면도,8 is a side view showing an alignment part in the aligner structure of FIGS. 2A to 2C;
도 9는 기판 및 기판캐리어의 얼라인 과정을 보여주는 평면도이다.9 is a plan view illustrating an alignment process of a substrate and a substrate carrier.
이하, 첨부 도면을 참조하여 본 발명의 실시예에 대하여 설명한다. 도 2a 내지 도 2c는 본 발명의 일 실시예에 따른 기판처리장치 중 얼라이너 구조를 보여주는 일부 단면도들로서, 기판과 마스크 사이의 얼라인과정 및 밀착과정을 보여주는 일부 단면도들, 도 3a는 도 2c의 얼라이너 구조에서의 제1실시예에 따른 정전척의 관통공을 보여주는 평면도, 도 3b는 제1실시예에 따른 거리측정부를 보여주는 일부 단면도, 도 4는 도 2c의 얼라이너 구조에서의 제2실시예에 따른 거리측정부를 보여주는 일부 단면도, 도 5는 도 2c의 얼라이너 구조에서의 제3실시예에 따른 거리측정부를 보여주는 일부 단면도, 도 6a 및 도 6b는 마스크클램핑을 보여주며 작동과정을 보여주는 일부 단면도들, 도 7a 및 도 7b는 기판클램핑을 보여주며 작동과정을 보여주는 일부 단면도들, 도 8는 도 2a 내지 도 2c의 얼라이너 구조에서 얼라인부를 보여주는 측면도, 도 9은 기판 및 기판캐리어의 얼라인 과정을 보여주는 평면도이다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described with reference to an accompanying drawing. 2A to 2C are partial cross-sectional views illustrating an aligner structure of a substrate processing apparatus according to an embodiment of the present invention, and partial cross-sectional views illustrating an alignment process and a close contact process between a substrate and a mask, and FIG. 3A is a cross-sectional view of FIG. 2C. 3 is a plan view showing a through hole of the electrostatic chuck according to the first embodiment in the aligner structure, FIG. 3b is a partial cross-sectional view showing the distance measuring unit according to the first embodiment, and FIG. 4 is a second embodiment in the aligner structure of FIG. 2c. 5 is a partial cross-sectional view showing a distance measuring unit according to the present invention, FIG. 5 is a partial cross-sectional view showing a distance measuring unit according to a third embodiment of the aligner structure of FIG. 2C, and FIGS. 6A and 6B are partial cross-sectional views showing an operation process of mask clamping. 7A and 7B show some cross-sectional views showing substrate clamping and operation, and FIG. 8 shows an alignment portion in the aligner structure of FIGS. 2A to 2C. FIG, 9 is a plan view showing the alignment process of the substrate and the substrate carrier.
본 발명에 따른 기판처리장치는 기판(S) 및 마스크(350)가 각각 공정챔버(10)에 이송되어 기판(S) 및 마스크(350)의 이송 및 밀착 후 기판처리를 수행하는 장치로서 증착물질의 증발에 의한 증착기, 원자층 증착 공정을 수행하는 증착기 등 기판처리시 마스크(350)의 사용 및 기판(S) 및 마스크(350)의 얼라인이 필요한 장치이면 모두 적용이 가능하다.In the substrate treating apparatus according to the present invention, the substrate S and the mask 350 are transferred to the process chamber 10, respectively, and the substrate S and the mask 350 are transferred to and adhered to the substrate. Any device that requires the use of the mask 350 and the alignment of the substrate S and the mask 350 during substrate processing, such as an evaporator and an evaporator that performs an atomic layer deposition process, may be applied.
본 발명에 따른 기판처리장치는 외부와 격리된 공정환경을 제공하는 공정챔버(10), 공정챔버(10)에 설치된 기판(S) 및 마스크(350) 사이의 간격을 비접촉방식으로 측정하는 하나 이상의 거리측정부와,거리측정부에 의하여 기판(S) 및 마스크(350) 사이의 거리를 측정하면서 상대이동에 의하여 기판(S) 및 마스크(350)를 서로 밀착시키는 밀착구동부를 포함한다.The substrate treating apparatus according to the present invention is one or more measuring non-contact distance between the process chamber 10, the substrate S installed in the process chamber 10 and the mask 350 to provide a process environment isolated from the outside The distance measuring unit includes a close driving unit for closely contacting the substrate S and the mask 350 by relative movement while measuring the distance between the substrate S and the mask 350 by the distance measuring unit.
이와 같은 구성을 가지는 기판처리장치는 기판(S) 및 마스크(350)를 공정챔버(10) 내에 개별적으로 이송하고, 이송된 기판(S) 및 마스크(350)을 공정챔버(10) 내부에 고정하고, 고정된 기판(S) 및 마스크(350)의 상대이동에 의하여 얼라인을 수행하고, 얼라인된 기판(S) 및 마스크(350)을 서로 밀착시킨 후에 기판처리공정을 수행할 수 있다.The substrate treating apparatus having such a configuration transfers the substrate S and the mask 350 separately in the process chamber 10, and fixes the transferred substrate S and the mask 350 inside the process chamber 10. The alignment may be performed by relative movement of the fixed substrate S and the mask 350, and the substrate processing may be performed after the aligned substrate S and the mask 350 are brought into close contact with each other.
기판(S) 및 마스크(350)는 공정챔버(10) 내에 지면에 대해 수직으로 이송되어 수직상태로 고정될 수 있다.The substrate S and the mask 350 may be vertically transferred to the ground in the process chamber 10 and fixed in a vertical state.
반대로, 기판(S) 및 마스크(350)는 공정챔버(10) 내에 지면에 대해 평행하게 이송되어 수평상태로 고정될 수 있음은 물론이다.On the contrary, the substrate S and the mask 350 may be transported in parallel to the ground in the process chamber 10 and fixed in a horizontal state.
기판(S)의 이송에 있어서, 기판(S)은 기판캐리어(320)에 의하여 고정된 상태로 이송됨이 바람직하다.In the transfer of the substrate S, the substrate S is preferably transferred in a fixed state by the substrate carrier 320.
기판캐리어(320)는 기판(S)을 고정한 상태로 이동되는 구성요소로 기판(S)의 고정구조에 따라서 다양한 구조를 가질 수 있다.The substrate carrier 320 is a component that is moved while fixing the substrate S and may have various structures according to the fixing structure of the substrate S. FIG.
일 실시예에 따르면, 기판캐리어(320)는 정전기력에 의하여 기판을 흡착고정하는 정전척(340), 정전척(340)의 상면이 상측으로 노출되도록 정전척(340)이 결합된 프레임부(360), 프레임부(360)에 설치되어 정전척(340)에 DC전원의 공급 및 DC전원의 공급제어를 수행하는 DC전원공급부(미도시)를 구비할 수 있다.According to one embodiment, the substrate carrier 320 is the frame portion 360 coupled to the electrostatic chuck 340, the electrostatic chuck 340 for adsorbing and fixing the substrate by the electrostatic force, the upper surface of the electrostatic chuck 340 is exposed to the upper side. ), A DC power supply unit (not shown) installed in the frame unit 360 to control supply of DC power and supply of DC power to the electrostatic chuck 340.
정전척(340)은 기판캐리어(320)가 기판(S)을 이송할 때 전자기력에 의하여 흡착고정하는 구성요소로서 기판캐리어(320)에 설치된 DC전원공급부로부터 또는 외부 DC전원으로부터 전원을 공급받아 전자기력을 발생시키는 구성요소이다.The electrostatic chuck 340 is a component that the substrate carrier 320 sucks and fixes by electromagnetic force when transferring the substrate S. The electrostatic chuck 340 receives power from a DC power supply installed in the substrate carrier 320 or from an external DC power source. The component that generates the.
DC전원공급부는 프레임부(360)에 설치되어 정전척(340)에 DC전원의 공급 및 DC전원의 공급제어를 수행하는 구성요소로서 전원공급방식 및 설치구조에 따라서 다양한 구성이 가능하다.The DC power supply unit is installed in the frame unit 360 to supply DC power to the electrostatic chuck 340 and control the supply of DC power. Various configurations are possible according to a power supply method and an installation structure.
DC전원공급부는 기판캐리어(320)가 공정챔버(10)를 포함하는 기판처리시스템 내에서 기판(S)을 흡착 고정한 상태에서 이동되도록 설치됨에 따라서 공정 수행에 충분한 시간 동안 정전척(340)에 전원을 공급하여야 하며, 유선보다는 무선제어가 가능하여야 한다.The DC power supply unit is installed to move in a state where the substrate carrier 320 is adsorbed and fixed in the substrate processing system including the process chamber 10, thereby supplying power to the electrostatic chuck 340 for a sufficient time to perform the process. It should be able to supply and control wirelessly rather than wired.
이에 DC전원공급부는 정전척(340)에 전원을 공급하는 충전배터리(도시하지 않음)와, 외부 제어장치와의 무선통신 및 제어를 위한 무선통신부를 포함할 수 있다.The DC power supply unit may include a charging battery (not shown) for supplying power to the electrostatic chuck 340 and a wireless communication unit for wireless communication and control with an external control device.
충전배터리는 정전척(340)에 대한 DC전원을 공급할 수 있도록 DC전력이 충전되는 구성요소이다.The rechargeable battery is a component in which DC power is charged to supply DC power to the electrostatic chuck 340.
무선통신부는 외부 제어장치와의 무선통신에 의하여 정전척(340)에 대한 DC전원 공급 제어, 기판캐리어(100)의 기타 제어 등을 위한 구성요소이다.The wireless communication unit is a component for controlling DC power supply to the electrostatic chuck 340 and other control of the substrate carrier 100 by wireless communication with an external controller.
한편 DC전원공급부는 적어도 일부가 기판캐리어(320)에 탈착 가능하도록 설치된다.Meanwhile, at least a part of the DC power supply unit is installed to be detachable from the substrate carrier 320.
또한 충전배터리는 그 작동환경이 매우 낮은 압력, 즉 공정압에 비하여 높은 압력인 대기압 하에서 작동되며 이를 위하여 충전배터리의 주변환경이 외부와 격리될 필요가 있다.In addition, the rechargeable battery is operated under atmospheric pressure, the operating environment of which is very low pressure, that is, higher than the process pressure, and for this purpose, the surrounding environment of the rechargeable battery needs to be isolated from the outside.
따라서 DC전원공급부는 충전배터리를 외부 공정환경과 격리하기 위하여 충전배터리가 설치되는 밀폐된 내부공간을 제공하는 하우징구조를 포함함이 바람직하다.Accordingly, the DC power supply unit preferably includes a housing structure that provides a sealed inner space in which the rechargeable battery is installed to isolate the rechargeable battery from the external process environment.
프레임부(360)는 정전척(340)의 가장자리에서 정전척(340)과 결합되어 정전척(340)의 상면을 노출시키는 구성요소로서 다양하게 구성될 수 있다.The frame part 360 may be variously configured as a component that is coupled to the electrostatic chuck 340 at the edge of the electrostatic chuck 340 to expose the top surface of the electrostatic chuck 340.
기판캐리어(320)의 이송방식은 롤러, 자기부상 등 기판캐리어(320)를 공정챔버(10) 내외로 이동시킬 수 있는 방식이면 어떠한 방식도 가능하다.The transfer method of the substrate carrier 320 may be any method as long as it can move the substrate carrier 320 into and out of the process chamber 10, such as a roller and magnetic levitation.
이를 위하여 공정챔버(10)는 기판캐리어(320)의 이송방식에 따라서 기판캐리어(320)의 이송을 위한 구성요소가 설치된다.To this end, the process chamber 10 is provided with a component for transferring the substrate carrier 320 according to the transfer method of the substrate carrier 320.
한편 기판캐리어(320)는 공정챔버(10)에 설치된 기판가이드부재(610)를 통해 공정챔버(10) 내외로의 이동경로가 가이드될 수 있다.On the other hand, the substrate carrier 320 may be guided to the movement path into and out of the process chamber 10 through the substrate guide member 610 installed in the process chamber 10.
마스크(350) 또한 다양한 방식에 의하여 공정챔버(10) 내부로 이송될 수 있다.The mask 350 may also be transferred into the process chamber 10 by various methods.
일 실시예에 따르면, 마스크(350)의 이송방식은 롤러, 자기부상 등 마스크(350)를 공정챔버(10) 내외로 이동시킬 수 있는 방식이면 어떠한 방식도 가능하다.According to an exemplary embodiment, any method of transferring the mask 350 may be performed as long as the mask 350 may move the mask 350 to and from the process chamber 10.
이를 위하여 공정챔버(10)는 마스크(350)의 이송방식에 따라서 마스크(350)의 이송을 위한 구성요소가 설치된다.To this end, the process chamber 10 is provided with components for the transfer of the mask 350 in accordance with the transfer method of the mask 350.
마스크(350)는 기판(S)에 밀착되어 패턴화된 증착 등의 기판처리공정을 수행하도록 하는 구성요소이다.The mask 350 is a component that adheres to the substrate S to perform a substrate treatment process such as patterned deposition.
일 실시예에 따르면 마스크(350)는 패턴화된 개구(354)들이 형성된 마스크시트(351) 및 마스크시트(351)가 고정되는 마스크프레임(352)으로 구성될 수 있다.According to an exemplary embodiment, the mask 350 may include a mask sheet 351 having patterned openings 354 and a mask frame 352 to which the mask sheet 351 is fixed.
그리고 마스크(350)는 마스크시트(351) 및 마스크프레임(352)를 고정한 상태로 이송하는 마스크캐리어(370)와 결합될 수 있다..The mask 350 may be combined with a mask carrier 370 that transfers the mask sheet 351 and the mask frame 352 in a fixed state.
마스크캐리어(370)는 마스크시트(351) 및 마스크프레임(352)를 고정한 상태로 이동되는 구성요소로 마스크(350)의 고정구조에 따라서 다양한 구조를 가질 수 있다.The mask carrier 370 is a component that is moved while fixing the mask sheet 351 and the mask frame 352 and may have various structures according to the fixing structure of the mask 350.
한편 마스크캐리어(370)는 공정챔버(10)에 설치된 마스크가이드부재(620)를 통해 공정챔버(10) 내외로의 이동경로가 가이드될 수 있다.On the other hand, the mask carrier 370 may be guided to the movement path into and out of the process chamber 10 through the mask guide member 620 installed in the process chamber 10.
공정챔버(10)는 소스(30) 이외에 기판처리공정이 원자층 증착 공정인 경우 소스가스, 반응가스 등의 가스분사구조가 설치되는 등 기판처리공정에 따라서 해당 구성요소가 설치될 수 있다.In the process chamber 10, in addition to the source 30, when the substrate processing process is an atomic layer deposition process, a corresponding component may be installed according to the substrate processing process, such as a gas injection structure such as a source gas and a reaction gas.
공정챔버(10)는 증발증착 공정 수행을 위한 처리환경을 제공하는 구성요소로서 어떠한 구성도 가능하다. Process chamber 10 may be any configuration as a component that provides a processing environment for performing the evaporation deposition process.
공정챔버(10)는 소정의 내부공간을 형성하며 기판(S)이 통과할 수 있는 게이트가 형성되는 용기로 이루어질 수 있다.The process chamber 10 may be formed of a container in which a predetermined internal space is formed and a gate through which the substrate S may pass is formed.
그리고 용기에는 내부공간에 대한 소정의 압력을 유지하기 위한 배기수단을 구비할 수 있다.And the container may be provided with an exhaust means for maintaining a predetermined pressure to the inner space.
소스(30)는 공정챔버(10) 내부에 하나 이상 설치되어 기판(S)에 대하여 증착물질을 증발하도록 증착물질을 가열하여 증발시키는 구성요소로서 어떠한 구성도 가능하다.One or more sources 30 may be installed in the process chamber 10 and may have any configuration as a component for heating and evaporating the deposition material to evaporate the deposition material with respect to the substrate S.
소스(30)는 유기물, 무기물 및 금속물질 중 적어도 어느 하나를 포함하는 증착물질을 증발시키는 구성요소로서 증착물질이 담기는 도가니 및 도가니를 가열하는 히터로 구성되는 등 다양한 실시예가 가능하다.The source 30 is a component for evaporating a deposition material including at least one of an organic material, an inorganic material, and a metal material. The source 30 may be configured with a crucible containing a deposition material and a heater for heating the crucible.
이러한 기판처리의 수행을 위하여 공정챔버(10)는 기판(S) 및 마스크(350)의 고정, 정렬 및 밀착과정을 수행하기 위한 얼라이너 구조를 구비한다.In order to perform the substrate treatment, the process chamber 10 includes an aligner structure for performing a process of fixing, aligning, and adhering the substrate S and the mask 350.
이때 얼라이너 구조에 의한 기판(S) 및 마스크(350)의 얼라인 과정은, 기판(S)을 고정한 상태에서 마스크(350)을 이동시키거나, 마스크(350)를 고정한 상태에서 기판(S)을 이동시키거나, 기판(S) 및 마스크(350)를 모두 이동시키는 등 다양한 이동방법에 의하여 얼라인할 수 있다.At this time, the alignment process of the substrate S and the mask 350 by the aligner structure may be performed by moving the mask 350 in a state where the substrate S is fixed or by fixing the mask 350. It may be aligned by a variety of moving methods, such as to move or to move both the substrate (S) and the mask (350).
이하 기판(S) 및 마스크(350)의 고정, 정렬 및 밀착과정을 수행하기 위한 얼라이너 구조를 일 실시예를 들어 설명한다.Hereinafter, an aligner structure for performing a process of fixing, aligning, and adhering the substrate S and the mask 350 will be described with reference to an embodiment.
얼라이너 구조는 공정챔버(10)에 설치되어 마스크(350)를 클램핑하는 마스크클램핑부(100)와, 기판(S)이 정전척(340)에 의하여 흡착고정된 기판캐리어(320)를 클램핑하는 기판크램핑부(200)와, 마스크(350)에 대하여 기판캐리어(320)를 상대이동시켜 기판클램핑부(200)에 의하여 클램핑된 기판(S) 및 마스크클램핑부(110)에 의하여 클램핑된 마스크(350)를 얼라인하는 얼라인부(400)와, 얼라인부(400)에 의하여 얼라인된 기판(S) 및 마스크(350)를 서로 밀착시키는 앞서 설명한 밀착구동부를 포함할 수 있다.The aligner structure includes a mask clamping unit 100 installed in the process chamber 10 to clamp the mask 350, and a substrate carrier 320 to which the substrate S is fixed by suction by the electrostatic chuck 340. The substrate clamped by the substrate clamping unit 200 and the mask carrier by the substrate clamping by the substrate clamping unit 200 by moving the substrate carrier 320 relative to the mask 350 and the mask clamping unit 110 ( The alignment part 400 for aligning the 350 and the substrate S and the mask 350 aligned by the alignment part 400 may be included in close contact with each other.
마스크클램핑부(100)는 공정챔버(10)에 설치되어 마스크(350)를 클램핑하는 것을 특징으로 하며 마스크(350)의 클램핑 방식에 따라서 다양한 구조를 가질 수 있다.The mask clamping unit 100 is installed in the process chamber 10 to clamp the mask 350 and may have various structures according to the clamping method of the mask 350.
실시예에 따르면 마스크클램핑부(100)는 자력 결합, 스크류 결합, 끼움결합 등에 의하여 마스크(350)를 클램핑하도록 구성될 수 있다.According to the embodiment, the mask clamping unit 100 may be configured to clamp the mask 350 by magnetic coupling, screw coupling, fitting, or the like.
특히 마스크(350) 및 마스크클램핑부(100)의 결합방식은 공정챔버(10)에 이송된 마스크(350)의 표면과 수직을 이루는 방향으로 이동되어 결합되는 것을 특징으로 한다.In particular, the coupling method of the mask 350 and the mask clamping part 100 is characterized in that the coupling is moved in a direction perpendicular to the surface of the mask 350 transferred to the process chamber 10.
보다 구체적인 실시예에 따르면 마스크클램핑부(100)는 마스크(350)의 저면에서 돌출된 돌출부(310)와 끼움결합되는 끼움부(110)와, 끼움부(110)가 돌출부(310)와 끼움결합된 상태에서 돌출부(310) 및 끼움부(110)의 결합상태를 유지하는 결합유지부(120)를 포함할 수 있다.According to a more specific embodiment, the mask clamping part 100 is fitted with the fitting part 110 and the fitting part 110 protruding from the bottom surface of the mask 350, and the fitting part 110 is fitted with the protruding part 310. It may include a coupling holding unit 120 to maintain the coupling state of the protrusion 310 and the fitting portion 110 in the state.
마스크(350)의 저면에서 돌출된 돌출부(310)는 끼움부(110)와의 끼움결합을 위한 구성요소로서 그 결합방식에 따라서 다양한 구조가 가능하다.The protruding portion 310 protruding from the bottom of the mask 350 is a component for fitting with the fitting portion 110, and various structures are possible according to the coupling method.
또한 마스크(350)의 저면에서 끼움부(110)가 삽입되도록 돌출부(310) 대신에 요홈으로 형성될 수도 있다.In addition, it may be formed as a groove instead of the protrusion 310 so that the fitting portion 110 is inserted from the bottom of the mask 350.
끼움부(110)는 마스크(350)의 저면에서 돌출된 돌출부(310)와 끼움결합되는 구성요소로 돌출부(310)가 삽입되는 요홈(111)을 구비할 수 있다.The fitting unit 110 may include a recess 111 into which the protrusion 310 is inserted as a component that is fitted into the protrusion 310 protruding from the bottom of the mask 350.
여기서 끼움부(110)는 도 6a 및 도 6b에서 볼 수 있듯이 공정챔버(10)에 이송된 마스크(350)의 표면과 수직을 이루는 방향으로 이동됨으로써 돌출부(310)와 끼움결합된다.Here, the fitting portion 110 is fitted with the protrusion 310 by being moved in a direction perpendicular to the surface of the mask 350 transferred to the process chamber 10 as shown in FIGS. 6A and 6B.
결합유지부(120)는 끼움결합된 상태에서 돌출부(310) 및 끼움부(110)의 결합상태를 유지하는 구성요소로 다양한 실시예가 가능하다.Coupling holding unit 120 is a component that maintains the coupling state of the protrusion 310 and the fitting unit 110 in the fitted state is possible in various embodiments.
일 실시예에 따르면, 끼움부(110)는 돌출부(310)가 삽입되는 삽입부(111)가 형성될 때, 결합유지부(120)는 돌출부(310)의 외주면에 외주면을 따라서 형성된 2개 이상의 홈부(311)에 삽입되는 볼부재(121)와, 볼부재(121)를 홈부(311)로 가압하는 가압부재(122)를 포함할 수 있다.According to one embodiment, the fitting portion 110 is formed when the insertion portion 111 is inserted into the protrusion 310, the coupling holding portion 120 is formed on the outer circumferential surface of the protrusion 310, two or more formed It may include a ball member 121 is inserted into the groove 311, the pressing member 122 for pressing the ball member 121 to the groove 311.
가압부재(122)는 끼움부(110)를 이루는 하우징 내에서 길이방향(X축방향)으로 이동가능하게 설치되고 이동에 의하여 볼부재(121)를 홈부(311)로 가압할 수 있다.The pressing member 122 is installed to be movable in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 110 may press the ball member 121 to the groove portion 311 by the movement.
일 실시예에 따르면, 가압부재(122)는 볼부재(121)와 접하는 경사면(123)이 형성되어 돌출부(310)의 길이방향(X축방향)을 따라서 이동되어 볼부재(121)를 홈부(311)로 가압할 수 있다.According to one embodiment, the pressing member 122 is formed with an inclined surface 123 in contact with the ball member 121 is moved along the longitudinal direction (X-axis direction) of the protrusion 310 to move the ball member 121 to the groove portion ( 311).
그리고 가압부재(122)는 도시되지 않았지만 유압장치 등에 의하여 끼움부(110)를 이루는 하우징 내에서 길이방향(X축방향)으로 이동된다.And although not shown, the pressing member 122 is moved in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 110 by a hydraulic device or the like.
그리고 가압부재(122)가 볼부재(121)를 홈부(311)로 가압한 상태에서 그 가압상태를 유지하기 위하여 끼움부(110)를 이루는 하우징에서 고정될 필요가 있다.In addition, the pressing member 122 needs to be fixed in the housing forming the fitting part 110 to maintain the pressing state in the state in which the ball member 121 is pressed by the groove part 311.
이를 위하여 가압부재(122)는 끼움부(110)를 이루는 하우징에 설치된 고정부재(125)에 의하여 고정될 수 있다.To this end, the pressing member 122 may be fixed by the fixing member 125 installed in the housing forming the fitting portion 110.
고정부재(125)는 끼움부(110)를 이루는 하우징에 설치되어 가압부재(122)를 고정하는 구성요소로서 내부가 빈 링형상의 튜브로 형성되고 내부에 유압 또는 공압에 의하여 팽창됨으로써 가압부재(122)를 직접 또는 간접으로 가압하여 하우징에 설치된 고정부재(125)에 의하여 고정할 수 있다.The fixing member 125 is installed in the housing constituting the fitting portion 110 and is a component for fixing the pressing member 122. The inside is formed of an empty ring-shaped tube and is expanded by hydraulic or pneumatic pressure therein. 122 may be fixed by the fixing member 125 installed in the housing by pressing directly or indirectly.
이와 같은 구성에 의하여, 결합유지부(120)가 볼부재(121) 및 홈부(311)에 의하여 돌출부(310) 및 끼움부(110)의 결합상태를 유지하게 되면 돌출부(310)의 위치를 정확하게 교정함으로써 얼라인부(400)에 의한 마스크(350) 및 기판(S)의 얼라인이 신속하고 정확하게 수행할 수 있게 된다.By such a configuration, when the coupling holding part 120 maintains the engagement state of the protrusion 310 and the fitting part 110 by the ball member 121 and the groove part 311, the position of the protrusion 310 may be precisely determined. By correcting, the alignment of the mask 350 and the substrate S by the alignment unit 400 can be performed quickly and accurately.
기판크램핑부(200)는 공정챔버(10)에 설치되어 기판(S)이 정전척(340)에 의하여 흡착고정된 기판캐리어(320)를 클램핑하는 것을 특징으로 하며 기판(S)의 클램핑 방식에 따라서 다양한 구조를 가질 수 있다.The substrate clamping unit 200 is installed in the process chamber 10 to clamp the substrate carrier 320 in which the substrate S is fixed by the electrostatic chuck 340. Therefore, it can have various structures.
실시예에 따르면 기판크램핑부(200)는 자력 결합, 스크류 결합, 끼움결합 등에 의하여 기판캐리어(320)을 클램핑하도록 구성될 수 있다.According to the exemplary embodiment, the substrate clamping unit 200 may be configured to clamp the substrate carrier 320 by magnetic coupling, screw coupling, or fitting coupling.
특히 기판캐리어(320) 및 기판크램핑부(200)의 결합방식은 공정챔버(10)에 이송된 기판캐리어(320)의 표면과 수직을 이루는 방향으로 이동되어 결합되는 것을 특징으로 한다.In particular, the coupling method of the substrate carrier 320 and the substrate clamping unit 200 is characterized in that coupled to move in a direction perpendicular to the surface of the substrate carrier 320 transferred to the process chamber 10.
보다 구체적인 실시예에 따르면 기판크램핑부(200)는 기판캐리어(320)의 저면에서 돌출된 돌출부(321)와 끼움결합되는 끼움부(210)와, 끼움부(210)가 돌출부(321)와 끼움결합된 상태에서 돌출부(321) 및 끼움부(210)의 결합상태를 유지하는 결합유지부(220)를 포함할 수 있다.According to a more specific embodiment, the substrate clamping part 200 is fitted with the fitting part 210 that is fitted with the protrusion 321 protruding from the bottom of the substrate carrier 320, and the fitting part 210 is fitted with the protrusion 321. It may include a coupling retaining portion 220 to maintain the combined state of the protrusion 321 and the fitting portion 210 in the coupled state.
기판캐리어(320)의 저면에서 돌출된 돌출부(321)는 끼움부(210)와의 끼움결합을 위한 구성요소로서 그 결합방식에 따라서 다양한 구조가 가능하다.The protrusion 321 protruding from the bottom surface of the substrate carrier 320 is a component for fitting with the fitting portion 210, and various structures are possible according to the coupling method.
또한 기판캐리어(320)의 저면에서 끼움부(210)가 삽입되도록 돌출부(321) 대신에 요홈으로 형성될 수도 있다.In addition, it may be formed as a groove instead of the protrusion 321 so that the fitting portion 210 is inserted from the bottom surface of the substrate carrier 320.
끼움부(210)는 기판캐리어(320)의 저면에서 돌출된 돌출부(321)와 끼움결합되는 구성요소로 돌출부(321)가 삽입되는 요홈(211)을 구비할 수 있다.The fitting portion 210 may include a recess 211 into which the protrusion 321 is inserted as a component fitted into the protrusion 321 protruding from the bottom surface of the substrate carrier 320.
여기서 끼움부(210)는 도 6a 및 도 6b에서 볼 수 있듯이 공정챔버(10)에 이송된 기판캐리어(320)의 표면과 수직을 이루는 방향으로 이동됨으로써 돌출부(321)와 끼움결합된다.Here, the fitting portion 210 is fitted to the protrusion 321 by being moved in a direction perpendicular to the surface of the substrate carrier 320 transferred to the process chamber 10 as shown in FIGS. 6A and 6B.
결합유지부(220)는 끼움결합된 상태에서 돌출부(321) 및 끼움부(210)의 결합상태를 유지하는 구성요소로 다양한 실시예가 가능하다.Coupling holding unit 220 is a component that maintains the coupling state of the protrusion 321 and the fitting portion 210 in the fitted state is possible in various embodiments.
일 실시예에 따르면, 끼움부(210)는 돌출부(321)가 삽입되는 삽입부(211)가 형성될 때, 결합유지부(220)는 돌출부(321)의 외주면에 외주면을 따라서 형성된 2개 이상의 홈부(322)에 삽입되는 볼부재(221)와, 볼부재(221)를 홈부(322)로 가압하는 가압부재(222)를 포함할 수 있다.According to one embodiment, the fitting portion 210 is formed when the insertion portion 211 is inserted into the protrusion 321, the coupling holding portion 220 is formed on the outer circumferential surface of the protrusion 321 at least two or more It may include a ball member 221 inserted into the groove 322, the pressing member 222 for pressing the ball member 221 to the groove 322.
가압부재(222)는 끼움부(210)를 이루는 하우징 내에서 길이방향(X축방향)으로 이동가능하게 설치되고 이동에 의하여 볼부재(221)를 홈부(322)로 가압할 수 있다.The pressing member 222 is installed to be movable in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 210 may press the ball member 221 to the groove 322 by the movement.
일 실시예에 따르면, 가압부재(222)는 볼부재(221)와 접하는 경사면(223)이 형성되어 돌출부(321)의 길이방향(X축방향)을 따라서 이동되어 볼부재(221)를 홈부(322)로 가압할 수 있다.According to one embodiment, the pressing member 222 is formed with an inclined surface 223 in contact with the ball member 221 is moved along the longitudinal direction (X-axis direction) of the protrusion 321 to move the ball member 221 groove ( 322).
그리고 가압부재(222)는 도시되지 않았지만 유압장치 등에 의하여 끼움부(210)를 이루는 하우징 내에서 길이방향(X축방향)으로 이동된다.And although not shown, the pressing member 222 is moved in the longitudinal direction (X-axis direction) in the housing constituting the fitting portion 210 by a hydraulic device or the like.
그리고 가압부재(222)가 볼부재(221)를 홈부(322)로 가압한 상태에서 그 가압상태를 유지하기 위하여 끼움부(210)를 이루는 하우징에서 고정될 필요가 있다.In addition, the pressing member 222 needs to be fixed in the housing forming the fitting portion 210 to maintain the pressing state in the state in which the ball member 221 is pressed by the groove 322.
이를 위하여 가압부재(222)는 끼움부(210)를 이루는 하우징에 설치된 고정부재(225)에 의하여 고정될 수 있다.To this end, the pressing member 222 may be fixed by the fixing member 225 installed in the housing forming the fitting portion 210.
고정부재(225)는 끼움부(210)를 이루는 하우징에 설치되어 가압부재(222)를 고정하는 구성요소로서 내부가 빈 링형상의 튜브로 형성되고 내부에 유압 또는 공압에 의하여 팽창됨으로써 가압부재(222)를 직접 또는 간접으로 가압하여 하우징에 설치된 고정부재(225)에 의하여 고정할 수 있다.Fixing member 225 is installed in the housing constituting the fitting portion 210 is a component for fixing the pressing member 222 is formed as an empty ring-shaped tube inside and inflated by the hydraulic or pneumatic inside the pressing member ( 222 may be directly or indirectly pressed and fixed by the fixing member 225 installed in the housing.
이와 같은 구성에 의하여, 결합유지부(220)가 볼부재(221) 및 홈부(322)에 의하여 돌출부(321) 및 끼움부(210)의 결합상태를 유지하게 되면 돌출부(321)의 위치를 정확하게 교정함으로써 얼라인부(400)에 의한 마스크(350) 및 기판(S)의 얼라인이 신속하고 정확하게 수행할 수 있게 된다.By such a configuration, when the engagement holding unit 220 maintains the engagement state of the protrusion 321 and the fitting portion 210 by the ball member 221 and the groove 322, the position of the protrusion 321 can be accurately determined. By correcting, the alignment of the mask 350 and the substrate S by the alignment unit 400 can be performed quickly and accurately.
얼라인부(400)는 마스크(350)에 대하여 기판캐리어(320)를 상대이동시켜 기판클램핑부(200)에 의하여 클램핑된 기판(S) 및 마스크클램핑부(110)에 의하여 클램핑된 마스크(350)를 얼라인하는 구성요소로서 얼라인방식에 따라서 다양한 실시예가 가능하다.The alignment unit 400 moves the substrate carrier 320 relative to the mask 350 so that the substrate S is clamped by the substrate clamping unit 200 and the mask 350 is clamped by the mask clamping unit 110. Various embodiments are possible according to the alignment method as a component to align the.
일 실시예에 따르면 얼라인부(400)는 도 8에 볼 수 있듯이 얼라인부(300)는 마스크(350) 및 기판(S) 중 어느 하나를 기판(S)에 대하여 평행한 방향으로 선형이동시키는 제1선형이동부(410), 제2선형이동부(420) 및 제3선형이동부(440)를 포함할 수 있다.According to an exemplary embodiment, as shown in FIG. 8, the alignment unit 400 may include an agent that linearly moves any one of the mask 350 and the substrate S in a direction parallel to the substrate S. Referring to FIG. The linear movement unit 410, the second linear movement unit 420, and the third linear movement unit 440 may be included.
제1선형이동부(410), 제2선형이동부(420) 및 제3선형이동부(440)는 서로 직각을 이룬 상태에서 마스크(350) 및 기판(S) 중 어느 하나를 기판(S)에 대하여 평행한 방향으로 선형이동시키는 구성요소이며, 스크류잭방식, 벨트방식, 피에조방식 등 선형구동방식에 따라서 다양한 실시예가 가능하다.The first linear mover 410, the second linear mover 420, and the third linear mover 440 may form any one of the mask 350 and the substrate S in a state perpendicular to each other. It is a component for linear movement in a parallel direction with respect to, and various embodiments are possible according to the linear driving method, such as screw jack method, belt method, piezo method.
여기서 제1선형이동부(410), 제2선형이동부(420) 및 제3선형이동부(440)는 직사각형 기판(S)의 형상에 부합하여 직사각형의 변들 각각에 평행한 방향으로 선형이동을 구동할 수 있다.Here, the first linear moving part 410, the second linear moving part 420, and the third linear moving part 440 correspond to the shape of the rectangular substrate S to linearly move in a direction parallel to each of the sides of the rectangle. I can drive it.
그런데 마스크(350) 및 기판(S)이 수직을 이룬 상태에서 고정 및 얼라인이 이루어짐을 고려하여 스크류잭과 같은 기계방식의 선형구동시 백래쉬(backlash)의 발생으로 얼라인 오차가 발생될 수 있다.However, in consideration of the fixation and alignment performed while the mask 350 and the substrate S are perpendicular to each other, an alignment error may occur due to the occurrence of backlash during linear driving of a mechanical method such as a screw jack. .
따라서 백래쉬에 의한 얼라인 오차를 방지하기 위하여 제1선형이동부(410), 제2선형이동부(420) 및 제3선형이동부(430)는 도 5에서 볼 수 있듯이 선형이동방향이 서로 직각을 이루고, 수직방향과 경사를 이루어 구성될 수 있다.Therefore, in order to prevent the alignment error caused by the backlash, the first linear moving part 410, the second linear moving part 420, and the third linear moving part 430 are perpendicular to each other as shown in FIG. 5. It can be configured to form a vertical direction and inclined.
이와 같이 제1선형이동부(410), 제2선형이동부(420) 및 제3선형이동부(430)가 수직방향과 경사를 이루는 경우 제1선형이동부(410), 제2선형이동부(420) 및 제3선형이동부(430) 모두에 대하여 수직방향의 하중이 작용하게 되어 백래쉬(backlash)의 발생으로 얼라인 오차를 방지할 수 있다.As such, when the first linear moving part 410, the second linear moving part 420, and the third linear moving part 430 form an inclination with the vertical direction, the first linear moving part 410 and the second linear moving part The load in the vertical direction acts on both the 420 and the third linear moving part 430 to prevent the alignment error due to the occurrence of backlash.
이상 살펴본 바와 같이, 기판(S) 및 마스크(350)가 정밀하게 얼라인되어 있지 않은 경우 기판(S) 상의 패턴형성의 오차가 발생하여 수율을 저하시키는 문제점이 있기 때문에 기판처리 공정의 수행에 앞서 기판(S) 및 마스크(350)를 서로 얼라인 하는 것이 매우 중요하다. As described above, when the substrate S and the mask 350 are not precisely aligned, an error in pattern formation on the substrate S may occur, which may lower the yield. It is very important to align the substrate S and the mask 350 with each other.
한편 기판(S)은 공정수행을 위하여 단독 또는 기판캐리어(320)에 고정되어 이송되는데, 기판캐리어(320)에 고정되어 이송됨이 일반적이다.Meanwhile, the substrate S is transported alone or fixed to the substrate carrier 320 for process execution, and is generally transported fixedly to the substrate carrier 320.
그런데 기판캐리어(320) 상에 고정된 기판(S)이 정밀하게 안착되어 있지 않은 경우 후속되는 마스크(350)와의 얼라인과정을 지연시키거나, 기판처리공정의 수행의 불량의 원인으로 작용할 수 있다.However, when the substrate S fixed on the substrate carrier 320 is not accurately seated, it may delay the alignment process with the subsequent mask 350 or may cause a defect in the performance of the substrate processing process. .
특히 기판캐리어(320)는 기판(S)이 고정된 후 공정에 따라서 플립, 즉 뒤집어지거나 수직으로 세워지는 등 기판(S)과의 결합상태 및 얼라인 상태가 공정수행에 있어서 매우 중요하게 된다.In particular, the substrate carrier 320 is in a state in which the bonding state and the alignment state with the substrate S become very important in performing the process, such as flipping, that is, flipping or standing upright, depending on the process after the substrate S is fixed.
따라서 기판캐리어(320)에 기판(S)이 안착될 때 기판캐리어(320) 및 기판(S) 사이의 얼라인을 수행하는 것이 바람직하다.Therefore, when the substrate S is seated on the substrate carrier 320, it is preferable to perform alignment between the substrate carrier 320 and the substrate S. FIG.
도 9는 기판(S) 및 기판캐리어(320)의 얼라인 과정을 보여주는 평면도이다.9 is a plan view illustrating an alignment process of the substrate S and the substrate carrier 320.
구체적으로, 기판(S)이 기판캐리어(320) 상에 안착되기 전에 수직방향으로 간격을 두고 위치된 상태에서 기판(S)에 표시된 제1마크(M1)와 기판캐리어(320)에 표시된 제2마크(M2)를 이용하여 기판(S) 및 기판캐리어(320)의 얼라인을 수행하게 된다.Specifically, the first mark M1 displayed on the substrate S and the second mark displayed on the substrate carrier 320 in a state where the substrate S is positioned at intervals in the vertical direction before being seated on the substrate carrier 320. The mark M2 is used to align the substrate S and the substrate carrier 320.
여기서 기판(S) 및 기판캐리어(320)의 얼라인은 앞에서 설명한 마스크(350) 및 기판(S) 사이의 얼라인과정과 거의 동일하거나 유사한바 자세한 설명은 생략한다.Here, the alignment of the substrate S and the substrate carrier 320 is almost the same as or similar to that of the alignment between the mask 350 and the substrate S, and thus a detailed description thereof will be omitted.
밀착구동부는 얼라인부(400)에 의하여 얼라인된 기판(S) 및 마스크(350)를 서로 밀착시키는 구성요소로, 기판클램핑부(200) 및 마스크클램핑부(110) 중 적어도 어느 하나에 설치되어 마스크(350) 및 기판(S)을 밀착시키는 선형구동부를 포함할 수 있다.The close driving unit is a component that closely contacts the substrate S and the mask 350 aligned by the alignment unit 400, and is installed on at least one of the substrate clamping unit 200 and the mask clamping unit 110. It may include a linear driving unit to closely contact the mask 350 and the substrate (S).
한편 기판(S) 및 마스크(350)가 완전히 밀착되지 않은 경우 기판(S) 및 마스크(350) 사이에 들뜸으로 인해 형성된 공간으로 증착물질 또는 공정부산물과 같은 파티클이 유입되어 기판(S)에 양호한 기판처리가 이루어지지 않는 문제점이 발생할 수 있다.On the other hand, when the substrate S and the mask 350 are not completely in contact with each other, particles such as deposition materials or process by-products are introduced into the space formed due to the lifting between the substrate S and the mask 350 and thus the substrate S is good. There may be a problem that the substrate treatment is not made.
특히 기판(S) 및 마스크(350)가 수직상태로 공정챔버(10)로 도입되어 기판처리가 수행되는 경우 마스크(350)의 자중에 의한 밀착효과가 없으므로 기판(S)과 마스크(350) 사이의 밀착이 완전히 이루어졌는지 여부를 확인하는 것이 중요하다.In particular, when the substrate S and the mask 350 are introduced into the process chamber 10 in a vertical state and the substrate processing is performed, there is no adhesion effect due to the weight of the mask 350. It is important to check whether the contact has been made completely.
이에 본 발명은 밀착구동부에 의하여 기판(S) 및 마스크(350)가 밀착될 때 기판(S) 및 마스크(350) 사이의 밀착상태를 판단하기 위하여 기판(S) 및 마스크(350) 사이의 간격을 비접촉방식으로 측정하는 거리측정부를 포함한다.Therefore, in the present invention, when the substrate S and the mask 350 are in close contact with each other by the close driving part, the distance between the substrate S and the mask 350 is determined to determine the close contact state between the substrate S and the mask 350. It includes a distance measuring unit for measuring in a non-contact manner.
거리측정부는 기판(S)과 마스크(350) 사이의 간격을 비접촉방식으로 측정하는 구성요소로서 다양하게 구성될 수 있다.The distance measuring unit may be variously configured as a component for measuring the distance between the substrate S and the mask 350 in a non-contact manner.
일 실시예에서 거리측정부는 비접촉방식으로 기판(S)과 마스크(350) 사이의 간격을 측정할 수 있는 구성이면 다양한 비접촉식 거리센서가 사용될 수 있다.In one embodiment, if the distance measuring unit is configured to measure the distance between the substrate S and the mask 350 in a non-contact manner, various non-contact distance sensors may be used.
예로서, 거리측정부는 레이저빔을 이용하여 측정대상까지의 거리를 측정하는 레이저 변위센서, 공초점센서(confocal sensor)일 수 있다.For example, the distance measuring unit may be a laser displacement sensor or a confocal sensor that measures a distance to a measurement target using a laser beam.
구체적으로, 거리측정부는 공정챔버(10)에 설치되어 마스크(350)에 대한 상대거리를 측정하는 제1거리측정부(510)와, 공정챔버(10)에 설치되어 기판(S)에 대한 상대거리를 측정하는 제2거리측정부(520)를 포함할 수 있다.Specifically, the distance measuring unit is installed in the process chamber 10 to measure the relative distance with respect to the mask 350, and the distance measuring unit 510 is installed in the process chamber 10 and relative to the substrate (S). It may include a second distance measuring unit 520 for measuring the distance.
이때, 거리측정부는 제1거리측정부(510)와 마스크(350) 사이의 상대거리(L1) 및 제2거리측정부(520)와 기판(S) 사이의 상대거리(L2)를 기초로 기판(S)과 마스크(350) 사이의 간격을 측정할 수 있다.At this time, the distance measuring unit is based on the relative distance (L1) between the first distance measuring unit 510 and the mask 350 and the relative distance (L2) between the second distance measuring unit 520 and the substrate (S). An interval between S and the mask 350 may be measured.
제1거리측정부(510)와 제2거리측정부(520)는 거리측정부와 마스크(350) 사이에 기판(S)이 위치되도록 기판(S)측에 설치됨이 바람직하다.The first distance measuring unit 510 and the second distance measuring unit 520 may be installed on the substrate S side such that the substrate S is positioned between the distance measuring unit and the mask 350.
또한 제1거리측정부(510)와 제2거리측정부(520)는 정밀한 거리측정을 위하여 상대거리(L1, L2) 방향에 수직한 가상의 동일한 측정기준선(R)에 설치됨이 바람직하다.In addition, the first distance measuring unit 510 and the second distance measuring unit 520 is preferably installed on the same virtual measurement reference line (R) perpendicular to the relative distance (L1, L2) direction for precise distance measurement.
이하, 도 3a 및 도 3b를 참조하여 본 발명의 제1실시예에 따른 거리측정부를 자세히 설명한다.Hereinafter, the distance measuring unit according to the first embodiment of the present invention will be described in detail with reference to FIGS. 3A and 3B.
제1실시예에서 제1거리측정부(510)는 마스크(350)의 마스크시트(351)의 저면 또는 마스크시트(351)가 고정되는 마스크프레임(352)의 저면에 레이저빔을 조사하여 마스크(350)에 대한 상대거리(L1)를 측정할 수 있다.In the first embodiment, the first distance measuring unit 510 irradiates a laser beam to the bottom of the mask sheet 351 of the mask 350 or the bottom of the mask frame 352 to which the mask sheet 351 is fixed. The relative distance L1 with respect to 350 may be measured.
이때, 거리측정부는 기판(S)측에 설치되어 마스크(350)와 거리측정부 사이에 정전척(340)이 위치되므로, 정전척(340)은 마스크(350)에 레이저빔이 도달하도록 거리측정부에 대응되는 위치에서 정전척(340)을 관통하는 관통공(342)이 형성될 수 있다.In this case, since the distance measuring unit is installed on the substrate S side and the electrostatic chuck 340 is positioned between the mask 350 and the distance measuring unit, the electrostatic chuck 340 measures the distance so that the laser beam reaches the mask 350. A through hole 342 penetrating the electrostatic chuck 340 may be formed at a position corresponding to the portion.
이러한 경우, 제2거리측정부(520)는 관통공(342)을 통해 노출되는 기판(S)의 저면에 레이저빔을 조사하여 기판(S)에 대한 상대거리(L2)를 측정할 수 있다.In this case, the second distance measuring unit 520 may measure the relative distance L2 with respect to the substrate S by irradiating a laser beam on the bottom surface of the substrate S exposed through the through hole 342.
따라서, 기판(S)과 마스크(350) 사이의 거리(D)는 아래의 수학식1과 같이 제1거리측정부(510)로부터 마스크(350)까지의 상대거리(L1)과 제2거리측정부(520)로부터 기판(S)까지의 상대거리(L2)에 의하여 측정될 수 있다.Therefore, the distance D between the substrate S and the mask 350 is measured by the relative distance L1 and the second distance measurement from the first distance measuring unit 510 to the mask 350 as shown in Equation 1 below. The relative distance L2 from the unit 520 to the substrate S may be measured.
[수학식 1][Equation 1]
D = L1 - L2 - T (T는 기판(S)의 두께)D = L1-L2-T (T is the thickness of the substrate S)
한편, 정전척(340)을 관통하여 형성되는 관통공(342)은 도 3a에 도시된 바와 같이, 정전척(340)의 가장자리 둘레를 따라 복수개로 설치될 수 있다.Meanwhile, as illustrated in FIG. 3A, a plurality of through holes 342 formed through the electrostatic chuck 340 may be provided along a circumference of the edge of the electrostatic chuck 340.
이때 기판(S) 및 마스크(350)가 수직인 상태에서 기판(S) 및 마스크(350)가 밀착될 때 상측 및 하측에서의 기판(S) 및 마스크(350)의 밀착상태가 달라질 수 있으므로 관통공(342)은 밀착상태의 정확한 감지가 필요한 직사각형 기판(S)의 꼭지점에 대응되는 위치에 형성됨이 바람직하다.At this time, when the substrate S and the mask 350 are in close contact with each other in the state where the substrate S and the mask 350 are perpendicular to each other, the close contact between the substrate S and the mask 350 at the upper side and the lower side may be changed. Ball 342 is preferably formed at a position corresponding to the vertex of the rectangular substrate (S) that requires accurate detection of the adhesion state.
관통공(342)이 복수개 형성되는 경우, 그에 대응되어 복수개의 거리측정부(510, 520)가 설치될 수 있다.When a plurality of through holes 342 are formed, a plurality of distance measuring units 510 and 520 may be installed correspondingly thereto.
다음으로, 도 4를 참조하여 본 발명의 제2실시예에 따른 거리측정부를 제1실시예와의 차이점을 중심으로 자세히 설명한다.Next, the distance measuring unit according to the second embodiment of the present invention will be described in detail with reference to FIG. 4 based on differences from the first embodiment.
제2실시예에서 제1거리측정부(510)는 마스크(350)의 마스크시트(351)의 저면 또는 마스크시트(351)가 고정되는 마스크프레임(352)의 저면에 레이저빔을 조사하여 마스크(350)에 대한 상대거리(L1)를 측정할 수 있다.In the second embodiment, the first distance measuring unit 510 irradiates a laser beam to the bottom of the mask sheet 351 of the mask 350 or the bottom of the mask frame 352 to which the mask sheet 351 is fixed. The relative distance L1 with respect to 350 may be measured.
이때, 거리측정부는 기판(S)측에 설치되어 마스크(350)와 거리측정부 사이에 정전척(340)이 위치되므로, 정전척(340)은 마스크(350)에 레이저빔이 도달하도록 거리측정부에 대응되는 위치에서 정전척(340)을 관통하는 적어도 관통공(342)이 형성될 수 있다.In this case, since the distance measuring unit is installed on the substrate S side and the electrostatic chuck 340 is positioned between the mask 350 and the distance measuring unit, the electrostatic chuck 340 measures the distance so that the laser beam reaches the mask 350. At least a through hole 342 penetrating the electrostatic chuck 340 may be formed at a position corresponding to the portion.
이러한 경우, 정전척(340)의 관통공(342)에는 내주연을 따라 관통공(342)의 내측으로 돌출되어 단차부(345)를 형성하는 돌출부분(344)이 형성될 수 있다.In this case, the through hole 342 of the electrostatic chuck 340 may be formed with a protruding portion 344 protruding into the through hole 342 along the inner circumference to form the stepped portion 345.
이때, 제2거리측정부(520)는 돌출부분(344)에 의하여 형성된 단차부(345)에 레이저빔을 조사하여 기판(S)에 대한 상대거리를 측정할 수 있다.In this case, the second distance measuring unit 520 may measure the relative distance to the substrate S by irradiating a laser beam to the stepped portion 345 formed by the protruding portion 344.
따라서, 기판(S)과 마스크(350) 사이의 거리(D)는 아래의 수학식2과 같이 제1거리측정부(510)로부터 마스크(350)까지의 상대거리(L1)과 제2거리측정부(520)로부터 기판(S)까지의 상대거리(L2)에 의하여 측정될 수 있다.Therefore, the distance D between the substrate S and the mask 350 is measured by the relative distance L1 and the second distance measurement from the first distance measuring unit 510 to the mask 350 as shown in Equation 2 below. The relative distance L2 from the unit 520 to the substrate S may be measured.
[수학식 2][Equation 2]
D = L1 - L2 - T - t(T는 기판(S)의 두께, t는 돌출부분(344)의 두께)D = L1-L2-T-t (T is the thickness of the substrate S, t is the thickness of the protrusion 344)
다음으로, 도 5를 참조하여 본 발명의 제3실시예에 따른 거리측정부를 제1실시예와의 차이점을 중심으로 자세히 설명한다.Next, the distance measuring unit according to the third embodiment of the present invention will be described in detail with reference to FIG. 5 based on the differences from the first embodiment.
제3실시예에서 제1거리측정부(510)는 마스크(350)의 마스크시트(351)의 저면 또는 마스크시트(351)가 고정되는 마스크프레임(352)의 저면에 레이저빔을 조사하여 마스크(350)에 대한 상대거리(L1)를 측정할 수 있다.In the third embodiment, the first distance measuring unit 510 irradiates a laser beam to a bottom surface of the mask sheet 351 of the mask 350 or a bottom surface of the mask frame 352 to which the mask sheet 351 is fixed. The relative distance L1 with respect to 350 may be measured.
이때, 거리측정부는 기판(S)측에 설치되어 마스크(350)와 거리측정부 사이에 정전척(340)이 위치되므로, 정전척(340)은 마스크(350)에 레이저빔이 도달하도록 거리측정부에 대응되는 위치에서 정전척(340)을 관통하는 관통공(342)이 형성될 수 있다.In this case, since the distance measuring unit is installed on the substrate S side and the electrostatic chuck 340 is positioned between the mask 350 and the distance measuring unit, the electrostatic chuck 340 measures the distance so that the laser beam reaches the mask 350. A through hole 342 penetrating the electrostatic chuck 340 may be formed at a position corresponding to the portion.
이러한 경우, 정전척(340)의 관통공(342)에는 관통공(342)의 일부를 차단하는 차단부재(346)가 설치될 수 있다.In this case, a blocking member 346 for blocking a part of the through hole 342 may be installed in the through hole 342 of the electrostatic chuck 340.
이때, 제2거리측정부(520)는 차단부재(346)에 레이저빔을 조사하여 기판(S)에 대한 상대거리를 측정할 수 있다.In this case, the second distance measuring unit 520 may measure the relative distance to the substrate S by irradiating the blocking member 346 with the laser beam.
따라서, 기판(S)과 마스크(350) 사이의 거리(D)는 아래의 수학식3과 같이 제1거리측정부(510)로부터 마스크(350)까지의 상대거리(L1)과 제2거리측정부(520)로부터 기판(S)까지의 상대거리(L2)에 의하여 측정될 수 있다.Therefore, the distance D between the substrate S and the mask 350 is measured by the relative distance L1 and the second distance measurement from the first distance measuring unit 510 to the mask 350 as shown in Equation 3 below. The relative distance L2 from the unit 520 to the substrate S may be measured.
[수학식 3][Equation 3]
D = L1 - L2 - T - S (T는 기판(S)의 두께, S는 차단부재(346)의 두께)D = L1-L2-T-S (T is the thickness of the substrate S, S is the thickness of the blocking member 346)
여기서 차단부재(346)는 제2거리측정부(520)로부터 송출된 레이저빔이 조사되어 거리측정의 대상이 되는 부재로 다양한 재질이 가능하나, 글라스 또는 쿼츠로 이루어짐이 바람직하다.Here, the blocking member 346 is a member that is the object of the distance measurement is irradiated by the laser beam transmitted from the second distance measuring unit 520, but various materials are possible, preferably made of glass or quartz.
차단부재(346)는 관통공(342)의 일부를 차단할 수 있다면 다양한 형상 및 다양한 방식을 통해 관통공(342)에 설치될 수 있다.The blocking member 346 may be installed in the through hole 342 through various shapes and various ways as long as it can block a part of the through hole 342.
예로서, 차단부재(346)는 관통공(342)의 내주연 또는 끝단에 설치되는 링형상 부재일 수 있다.For example, the blocking member 346 may be a ring-shaped member installed at an inner circumference or end of the through hole 342.
차단부재(346)는 정확한 거리측정을 위하여 관통공(342)의 기판(S)이 흡착되는 측 끝단에 설치됨이 바람직하나 이에 한정되는 것은 아니다.The blocking member 346 is preferably installed at the side end where the substrate S of the through hole 342 is adsorbed for accurate distance measurement, but is not limited thereto.
한편 거리측정부는 기판(S)과 마스크(350)의 밀착상태를 감지하기 위하여 기판(S)과 마스크(350) 사이의 간격을 측정하며, 그 거리정보는 정전척(320)의 제어, 밀착구동부 등을 제어하는데 활용될 수 있다.Meanwhile, the distance measuring unit measures a distance between the substrate S and the mask 350 in order to detect a close contact between the substrate S and the mask 350, and the distance information is controlled by the electrostatic chuck 320 and the close driving unit. It can be utilized to control the back.
이에, 본 발명에 따른 기판처리장치는 거리측정부에 의하여 측정된 기판(S) 및 마스크(350) 사이의 간격을 기초로 밀착구동부를 제어하는 제어부를 포함할 수 있다.Thus, the substrate processing apparatus according to the present invention may include a controller for controlling the close driving unit based on the distance between the substrate S and the mask 350 measured by the distance measuring unit.
이를 위하여 각 거리측정부(510, 520)에 의하여 감지된 거리정보는 기판처리장치의 제어장치(도시하지 않음)에 전달될 필요가 있다.To this end, the distance information sensed by the distance measuring units 510 and 520 needs to be transmitted to a control device (not shown) of the substrate processing apparatus.
한편 거리측정부(510, 520)는 거리측정부(510, 520)에 의하여 측정된 거리정보를 공정챔버(10)의 외부에 설치된 제어장치에 무선으로 전송하기 위한 유선통신부 또는 무선에 의한 통신수을 수행하는 통신부(미도시)와 함께 공정챔버(10)에 설치될 수 있다.On the other hand, the distance measuring unit 510, 520 transmits the distance information measured by the distance measuring unit 510, 520 wirelessly to the wired communication unit or a wireless operator for transmitting to the control device installed outside the process chamber 10 It may be installed in the process chamber 10 with a communication unit (not shown) to perform.
통신부는 거리측정부(510, 520)에 의하여 측정된 거리정보를 공정챔버(10)의 외부에 설치된 제어장치에 유선 또는 무선으로 전송하기 위한 구성요소로서 다양한 구성이 가능하다.The communication unit may be variously configured as a component for transmitting the distance information measured by the distance measuring units 510 and 520 to a control device installed outside the process chamber 10 by wire or wirelessly.
한편, 상기와 같은 구성을 가지는 기판처리장치를 이용한 기판처리방법으로서, 거리측정부에 의하여 기판(S) 및 마스크(350) 사이의 거리를 측정하면서 상대이동에 의하여 기판(S) 및 마스크(350)를 서로 밀착시킬 수 있다.On the other hand, as a substrate processing method using the substrate processing apparatus having the above configuration, the substrate S and the mask 350 by relative movement while measuring the distance between the substrate S and the mask 350 by the distance measuring unit ) Can stick to each other.
그리고, 기판(S)은 정전척(340)에 의하여 흡착고정되어 마스크(350)와 거리측정부 사이에 설치될 때, 마스크(350)에 대한 상대거리를 측정하는 제1거리측정과정 및 기판(S)에 대한 상대거리를 측정하는 제2거리측정과정에 의하여 기판(S) 및 마스크(350) 사이의 거리를 측정할 수 있다.In addition, when the substrate S is fixed by suction by the electrostatic chuck 340 and installed between the mask 350 and the distance measuring unit, the first distance measuring process and the substrate (which measure the relative distance to the mask 350) The distance between the substrate S and the mask 350 may be measured by the second distance measuring process of measuring the relative distance with respect to S).
제1거리측정과정 및 제2거리측정과정은 앞 설명한 제1거리측정부(510)와 제2거리측정부(520)에 의하여 수행되는바 자세한 설명은 생략한다.The first distance measuring process and the second distance measuring process are performed by the first distance measuring unit 510 and the second distance measuring unit 520 described above, and thus a detailed description thereof will be omitted.
또한 기판처리방법은 상기 거리측정부에 의하여 측정된 상기 기판(S) 및 마스크(350) 사이의 거리가 미리 설정된 기준거리보다 같거나 작은 것으로 판단된 경우에만 기판처리를 수행할 수 있다.In addition, the substrate processing method may perform substrate processing only when it is determined that the distance between the substrate S and the mask 350 measured by the distance measuring unit is equal to or smaller than a preset reference distance.
즉, 기판(S) 및 마스크(350) 사이의 거리측정 후 증착물질의 증발에 의한 증착공정, 원자층 증착 공정을 수행하는 증착공정 등이 수행될 수 있다.That is, after the distance between the substrate S and the mask 350 is measured, a deposition process by evaporation of the deposition material, an deposition process for performing an atomic layer deposition process, and the like may be performed.
거리측정부에 의하여 측정된 상기 기판(S) 및 마스크(350) 사이의 거리가 미리 설정된 기준거리보다 큰 경우, 기판 및 마스크 밀착과정이 다시 수행될 수 있다.When the distance between the substrate S and the mask 350 measured by the distance measuring unit is larger than a preset reference distance, the substrate and mask adhesion process may be performed again.
Claims (17)
- 외부와 격리된 공정환경을 제공하는 공정챔버(10),Process chamber 10 to provide a process environment isolated from the outside,상기 공정챔버(10)에 설치된 기판(S) 및 마스크(350) 사이의 간격을 비접촉방식으로 측정하는 하나 이상의 거리측정부와,At least one distance measuring unit measuring a distance between the substrate S and the mask 350 installed in the process chamber 10 in a non-contact manner;상기 거리측정부에 의하여 상기 기판(S) 및 마스크(350) 사이의 거리를 측정하면서 상대이동에 의하여 기판(S) 및 마스크(350)를 서로 밀착시키는 밀착구동부를 포함하는 기판처리장치.And a close driving part for closely contacting the substrate (S) and the mask (350) by relative movement while measuring the distance between the substrate (S) and the mask (350) by the distance measuring unit.
- 제1항에 있어서,The method of claim 1,상기 거리측정부는 상기 공정챔버(10)에 설치되어 상기 마스크(350)에 대한 상대거리를 측정하는 제1거리측정부(510)와, 상기 공정챔버(10)에 설치되어 상기 기판(S)에 대한 상대거리를 측정하는 제2거리측정부(520)를 포함하는 기판처리장치.The distance measuring unit is installed in the process chamber 10 to measure a relative distance with respect to the mask 350, and the distance measuring unit 510 is installed in the process chamber 10 to the substrate S. Substrate processing apparatus comprising a second distance measuring unit (520) for measuring the relative distance to the.
- 제2항에 있어서,The method of claim 2,상기 기판(S)은 정전척(340)에 의하여 흡착고정되며, 상기 마스크(350)와 상기 거리측정부 사이에 설치되는 기판처리장치.The substrate (S) is fixed to the suction by the electrostatic chuck (340), the substrate processing apparatus is installed between the mask 350 and the distance measuring unit.
- 제3항에 있어서,The method of claim 3,상기 제1거리측정부(510)는The first distance measuring unit 510 is상기 마스크(350)의 마스크시트(351)의 저면 또는 상기 마스크시트(351)가 고정되는 마스크프레임(352)의 저면에 레이저빔을 조사하여 상기 마스크(350)에 대한 상대거리를 측정하며,The relative distance to the mask 350 is measured by irradiating a laser beam to the bottom of the mask sheet 351 of the mask 350 or the bottom of the mask frame 352 to which the mask sheet 351 is fixed.상기 정전척(340)은 상기 제1거리측정부(510)에 대응되는 위치에서 레이저빔이 상기 마스크(350)에 도달하도록 상기 정전척(340)을 관통하는 관통공(342)이 형성되는 기판처리장치.The electrostatic chuck 340 is a substrate formed with a through hole 342 penetrating the electrostatic chuck 340 so that the laser beam reaches the mask 350 at a position corresponding to the first distance measuring unit 510. Processing unit.
- 제4항에 있어서,The method of claim 4, wherein상기 제2거리측정부(520)는The second distance measuring unit 520 is상기 관통공(342)을 통해 노출되는 상기 기판(S)의 저면에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정하는 기판처리장치.Substrate processing apparatus for measuring the relative distance to the substrate (S) by irradiating a laser beam on the bottom surface of the substrate (S) exposed through the through hole (342).
- 제4항에 있어서,The method of claim 4, wherein상기 제2거리측정부(520)는The second distance measuring unit 520 is상기 정전척(340)에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정하는 기판처리장치.Substrate processing apparatus for measuring the relative distance to the substrate (S) by irradiating a laser beam on the electrostatic chuck (340).
- 제6항에 있어서,The method of claim 6,상기 정전척(340)의 관통공(342)에는 내주연을 따라 상기 관통공(342)의 내측으로 돌출되어 단차부(345)를 형성하는 돌출부분(344)이 형성되며,The through hole 342 of the electrostatic chuck 340 is formed with a protruding portion 344 protruding inwardly of the through hole 342 along an inner circumference to form a stepped portion 345.상기 제2거리측정부(520)는The second distance measuring unit 520 is상기 돌출부분(344)에 의하여 형성된 단차부(345)에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정하는 기판처리장치.The substrate processing apparatus for measuring the relative distance to the substrate (S) by irradiating a laser beam to the stepped portion (345) formed by the projecting portion (344).
- 제6항에 있어서,The method of claim 6,상기 정전척(340)의 관통공(342)에는 상기 관통공(342)의 일부를 차단하는 차단부재(346)가 설치되며,The through hole 342 of the electrostatic chuck 340 is provided with a blocking member 346 for blocking a part of the through hole 342,상기 제2거리측정부(520)는The second distance measuring unit 520 is상기 차단부재(346)에 레이저빔을 조사하여 상기 기판(S)에 대한 상대거리를 측정하는 기판처리장치.Substrate processing apparatus for measuring the relative distance to the substrate (S) by irradiating the laser beam to the blocking member (346).
- 제8항에 있어서,The method of claim 8,상기 차단부재(346)는 글라스 또는 쿼츠로 이루어지는 기판처리장치.The blocking member 346 is a substrate processing apparatus made of glass or quartz.
- 제4항에 있어서,The method of claim 4, wherein상기 관통공(342)은 상기 정전척(340)의 가장자리를 따라 복수개로 형성되는 기판처리장치.The through hole (342) is a plurality of substrate processing apparatus is formed along the edge of the electrostatic chuck (340).
- 제1항 내지 제10항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 10,상기 거리측정부에 의하여 측정된 기판(S) 및 마스크(350) 사이의 간격을 기초로 상기 밀착구동부를 제어하는 제어부를 포함하는 기판처리장치.And a control unit for controlling the close driving unit based on the distance between the substrate S and the mask 350 measured by the distance measuring unit.
- 제1항 내지 제10항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 10,상기 기판(S) 및 마스크(350)는 각각 상기 공정챔버(10)에 수직으로 이송되며, 수직상태로 클램핑되는 기판처리장치.The substrate (S) and the mask (350) are respectively transferred vertically to the process chamber (10), the substrate processing apparatus is clamped in a vertical state.
- 제12항에 있어서,The method of claim 12,상기 공정챔버(10)에 설치되어 상기 마스크(350)를 클램핑하는 마스크클램핑부(100)와,A mask clamping part 100 installed in the process chamber 10 to clamp the mask 350;상기 공정챔버(10)에 설치되어 상기 기판(S)이 상기 정전척(340)에 의하여 흡착고정된 기판캐리어(320)를 클램핑하는 기판클램핑부(200)를 추가로 포함하며,It further includes a substrate clamping unit 200 is installed in the process chamber 10 to clamp the substrate carrier 320, the substrate (S) is fixed by the electrostatic chuck 340,상기 밀착구동부는 상기 기판(S) 및 상기 마스크(350)가 상대이동에 의하여 밀착되도록 상기 마스크클램핑부(110) 및 상기 기판클램핑부(200) 중 적어도 어느 하나에 설치되는 기판처리장치.The close driving unit is disposed on at least one of the mask clamping unit (110) and the substrate clamping unit (200) such that the substrate (S) and the mask 350 is in close contact by relative movement.
- 제1항 내지 제10항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 10,상기 마스크클램핑부(100)에 의하여 클램핑된 마스크(350)에 대하여 기판캐리어(320)를 상대이동시켜 상기 기판클램핑부(200)에 의하여 클램핑된 기판(S) 및 상기 마스크클램핑부(100)에 의하여 클램핑된 마스크(350)를 얼라인하는 얼라인부(400)를 더 포함하는 기판처리장치.The substrate carrier 320 is moved relative to the mask 350 clamped by the mask clamping unit 100 to the substrate S clamped by the substrate clamping unit 200 and the mask clamping unit 100. Substrate processing apparatus further comprises an alignment portion 400 for aligning the mask 350 clamped by.
- 제1항 내지 제10항 중 어느 하나의 항에 따른 기판처리장치를 이용한 기판처리방법으로서,A substrate processing method using the substrate processing apparatus according to any one of claims 1 to 10,상기 거리측정부에 의하여 상기 기판(S) 및 마스크(350) 사이의 거리를 측정하면서 상대이동에 의하여 기판(S) 및 마스크(350)를 서로 밀착시키는 기판처리방법.The substrate processing method of closely contacting the substrate (S) and the mask (350) by relative movement while measuring the distance between the substrate (S) and the mask (350) by the distance measuring unit.
- 제15항에 있어서,The method of claim 15,상기 기판(S)은 정전척(340)에 의하여 흡착고정되어 상기 마스크(350)와 상기 거리측정부 사이에 설치되며,The substrate S is fixed by the electrostatic chuck 340 is installed between the mask 350 and the distance measuring unit,상기 마스크(350)에 대한 상대거리를 측정하는 제1거리측정과정 및 상기 기판(S)에 대한 상대거리를 측정하는 제2거리측정과정에 의하여 상기 기판(S) 및 마스크(350) 사이의 거리를 측정하는 기판처리방법.Distance between the substrate S and the mask 350 by a first distance measuring process for measuring a relative distance to the mask 350 and a second distance measuring process for measuring a relative distance to the substrate S Substrate processing method for measuring.
- 제15항에 있어서,The method of claim 15,상기 거리측정부에 의하여 측정된 상기 기판(S) 및 마스크(350) 사이의 거리가 미리 설정된 기준거리보다 같거나 작은 것으로 판단된 경우에만 기판처리를 수행하는 기판처리방법A substrate processing method for performing substrate processing only when it is determined that the distance between the substrate S and the mask 350 measured by the distance measuring unit is equal to or smaller than a preset reference distance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780054769.3A CN109964330A (en) | 2016-10-06 | 2017-09-28 | Substrate board treatment and the substrate processing method using same for using the device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160129135A KR101736442B1 (en) | 2016-10-06 | 2016-10-06 | Substrate processing apparatus and method using the same |
KR10-2016-0129135 | 2016-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066904A1 true WO2018066904A1 (en) | 2018-04-12 |
Family
ID=59053430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/010877 WO2018066904A1 (en) | 2016-10-06 | 2017-09-28 | Substrate-processing device and substrate-processing method using same |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101736442B1 (en) |
CN (1) | CN109964330A (en) |
TW (1) | TW201820932A (en) |
WO (1) | WO2018066904A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111434796A (en) * | 2019-01-11 | 2020-07-21 | 佳能特机株式会社 | Film forming apparatus, film forming method, and apparatus and method for manufacturing electronic device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102004421B1 (en) * | 2017-06-13 | 2019-07-29 | 삼성디스플레이 주식회사 | Apparatus for processing substrate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001077109A (en) * | 1999-08-31 | 2001-03-23 | Tokyo Electron Ltd | Method and device for film-forming |
JP2001223169A (en) * | 2000-02-10 | 2001-08-17 | Hitachi Kokusai Electric Inc | Substrate processing apparatus and method |
KR20070060319A (en) * | 2005-12-08 | 2007-06-13 | 주성엔지니어링(주) | Apparatus for aligning substrate and mask |
KR20140017088A (en) * | 2012-07-30 | 2014-02-11 | 주식회사 원익아이피에스 | Shuttle and substrate having the same |
KR20140017094A (en) * | 2012-07-30 | 2014-02-11 | 주식회사 원익아이피에스 | Linear driving device and substrate processing apparatus having the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852988B2 (en) * | 2000-11-28 | 2005-02-08 | Sumitomo Heavy Industries, Ltd. | Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects |
JP2004069414A (en) * | 2002-08-05 | 2004-03-04 | Nec Corp | Method for measuring gap between mask and substrate of plasma display panel |
JP2013093278A (en) * | 2011-10-27 | 2013-05-16 | Hitachi High-Technologies Corp | Organic el device manufacturing apparatus |
-
2016
- 2016-10-06 KR KR1020160129135A patent/KR101736442B1/en active IP Right Grant
-
2017
- 2017-09-28 CN CN201780054769.3A patent/CN109964330A/en active Pending
- 2017-09-28 WO PCT/KR2017/010877 patent/WO2018066904A1/en active Application Filing
- 2017-10-05 TW TW106134338A patent/TW201820932A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001077109A (en) * | 1999-08-31 | 2001-03-23 | Tokyo Electron Ltd | Method and device for film-forming |
JP2001223169A (en) * | 2000-02-10 | 2001-08-17 | Hitachi Kokusai Electric Inc | Substrate processing apparatus and method |
KR20070060319A (en) * | 2005-12-08 | 2007-06-13 | 주성엔지니어링(주) | Apparatus for aligning substrate and mask |
KR20140017088A (en) * | 2012-07-30 | 2014-02-11 | 주식회사 원익아이피에스 | Shuttle and substrate having the same |
KR20140017094A (en) * | 2012-07-30 | 2014-02-11 | 주식회사 원익아이피에스 | Linear driving device and substrate processing apparatus having the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111434796A (en) * | 2019-01-11 | 2020-07-21 | 佳能特机株式会社 | Film forming apparatus, film forming method, and apparatus and method for manufacturing electronic device |
Also Published As
Publication number | Publication date |
---|---|
TW201820932A (en) | 2018-06-01 |
CN109964330A (en) | 2019-07-02 |
KR101736442B1 (en) | 2017-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018110953A1 (en) | Substrate processing apparatus and method using the same | |
WO2018135792A1 (en) | Transfer module, substrate processing system having transfer chamber, and substrate processing method using substrate transfer system | |
WO2016153291A1 (en) | Wafer storage container | |
WO2018038334A1 (en) | Tilting stage system | |
WO2016159705A1 (en) | Aligner structure and alignment method | |
WO2019017670A1 (en) | Apparatus and method for manufacturing led module | |
WO2014148857A1 (en) | Device and method for transferring substrate and substrate-transferring tray | |
WO2018066904A1 (en) | Substrate-processing device and substrate-processing method using same | |
WO2014109526A1 (en) | Apparatus and method for continuous processing of semiconductor wafer | |
WO2020242055A1 (en) | Hybrid stick mask and manufacturing method therefor, mask assembly including hybrid stick mask, and organic light emitting display device using same | |
WO2019093609A1 (en) | Chuck plate, chuck structure having chuck plate, and bonding device having chuck structure | |
WO2016056748A1 (en) | Substrate processing heater device and substrate solution processing device having same | |
WO2019004620A1 (en) | Bonding head and bonding device including same | |
WO2017119786A1 (en) | Transfer tool module and device handler having same | |
WO2019083261A1 (en) | Deposition device | |
WO2024090756A1 (en) | Gate valve, and method for fastening sealing plate | |
WO2020184859A1 (en) | Transfer device and method for transferring semiconductor chip | |
WO2015130140A1 (en) | Atomic layer deposition apparatus and atomic layer deposition system | |
WO2021242015A1 (en) | Substrate processing system and method for inspecting substrate processing system | |
WO2019009513A1 (en) | Linear variable differential transformer | |
WO2022119226A1 (en) | Pouch-type battery sealing device comprising position adjustment unit, and pouch-type battery sealing method using same | |
WO2021002572A1 (en) | Probe block assembly for inspecting display panel, control method thereof, and display panel inspecting apparatus | |
WO2018079938A1 (en) | Tool position setting device and tool position setting method using same | |
WO2020222464A1 (en) | Substrate deforming device for proximity exposure, and substrate deforming method for proximity exposure using same | |
WO2024167232A1 (en) | Deposition device for improving precision of substrate position measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17858698 Country of ref document: EP Kind code of ref document: A1 |