WO2021241719A1 - 改良されたグランザイムb改変体 - Google Patents

改良されたグランザイムb改変体 Download PDF

Info

Publication number
WO2021241719A1
WO2021241719A1 PCT/JP2021/020334 JP2021020334W WO2021241719A1 WO 2021241719 A1 WO2021241719 A1 WO 2021241719A1 JP 2021020334 W JP2021020334 W JP 2021020334W WO 2021241719 A1 WO2021241719 A1 WO 2021241719A1
Authority
WO
WIPO (PCT)
Prior art keywords
granzyme
place
variant
pharmaceutical composition
receptor
Prior art date
Application number
PCT/JP2021/020334
Other languages
English (en)
French (fr)
Inventor
靖則 小森
智之 井川
敦 成田
慎也 石井
Original Assignee
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外製薬株式会社 filed Critical 中外製薬株式会社
Priority to EP21813986.3A priority Critical patent/EP4159237A1/en
Priority to JP2022526656A priority patent/JPWO2021241719A1/ja
Priority to CN202180044766.8A priority patent/CN115768897A/zh
Priority to US17/926,673 priority patent/US20230203108A1/en
Publication of WO2021241719A1 publication Critical patent/WO2021241719A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4637Other peptides or polypeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464454Enzymes
    • A61K39/464458Proteinases
    • A61K39/46446Serine proteases, e.g. kallikrein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6467Granzymes, e.g. granzyme A (3.4.21.78); granzyme B (3.4.21.79)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21079Granzyme B (3.4.21.79)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)

Definitions

  • the present invention is a Granzyme B variant with enhanced resistance to protease activity and / or inhibitor; a polynucleotide encoding the Granzyme B variant; cells expressing the Granzyme B variant; the Granzyme B variant.
  • the present invention relates to a pharmaceutical composition containing expressing cells; as well as a pharmaceutical composition containing the Granzyme B variant.
  • Granzyme is a protease consisting of a group of families. Granzyme is expressed in T cells and NK cells, which are cytotoxic lymphocytes, and when these cells recognize the target antigen, they are secreted to the target cells (cells expressing the target antigen) together with perforin and the like, resulting in cytotoxicity. Exhibits activity. After translocating into the cell of the target cell, granzyme cleaves various substrates such as BID and caspase, and finally activates the signal transduction system involved in apoptosis in the target cell, thereby inducing cell death of the target cell. (Non-Patent Document 1).
  • Granzyme A and Granzyme B have been suggested to contribute significantly to cytotoxic activity.
  • Granzyme A functions as a dimer
  • Granzyme B functions as a monomer.
  • Non-Patent Document 2 various variants in which scFv that binds to a tumor-related antigen is fused with Granzyme B have been reported.
  • Granzyme B As an antitumor agent.
  • the causes include the limitation of the protease activity of natural granzyme B and the suppression of the activity of granzyme B by the expression of an inhibitor against granzyme B in the target cells.
  • Non-Patent Document 3 shows that PI-9, which is an activity inhibitor of Granzyme B, is highly expressed in tumors.
  • Non-Patent Document 4 shows that heparin, which is known to enhance production in tumors, inhibits granzyme B activity. That is, it is considered that sufficient cytotoxic activity is not exhibited even if Granzyme B is applied to a tumor in which these inhibitory factors are highly expressed, and therefore the antitumor activity is also limited.
  • Granzyme B variants resistant to these inhibitors As granzyme variants resistant to these inhibitors, PI-9 resistant (Patent Document 1, Non-Patent Document 5) and Heparin resistant (Non-Patent Document 6) Granzyme B variants have been reported in previous studies. There is also a report of a Granzyme B variant (Patent Document 2) in which a comprehensive modification to rat Granzyme B was performed to cleave VEGF or VEGF receptor.
  • a cytotoxic substance such as granzyme
  • target cells for example, tumor cells
  • CAR chimeric antigen receptor
  • the Granzyme B variant reported in Patent Document 1 has a slight enhancement in protease activity as compared with human wild-type Granzyme B, and may not have sufficient cytotoxic activity.
  • Patent Document 2 makes comprehensive modifications to rat granzyme B, there is no disclosure of data on inhibitor resistance, and it is unclear whether these variants exhibit sufficient cytotoxic activity in the presence of inhibitors. Is.
  • previous studies have proposed a method of using purified granzyme B or a variant thereof by direct intravenous injection, but in such a method, cells incorporating the administered granzyme B have been proposed. May cause cell death and cause serious side effects. Therefore, as a treatment method using Granzyme B, it is also required to study a method other than direct injection.
  • the present invention has found a plurality of modifications that increase the protease activity by comprehensive modification, and combined them to increase the activity of Granzyme B.
  • the activity of Granzyme B protease is enhanced by the unreported gene modification in the prior literature.
  • the variant exhibits high protease activity even in the presence of the inhibitor.
  • a Granzyme B variant in which the protease activity and / or inhibitory factor resistance is enhanced by gene modification is provided, and the pharmaceutical composition containing the variant and the variant are used as pharmaceutical uses of the Granzyme B variant.
  • a pharmaceutical composition containing cells expressing the above and a pharmaceutical composition composed of the variant and a receptor and / or antibody pharmaceutical in combination.
  • a pharmaceutical composition comprising the isolated nucleic acid according to [6], the vector according to [7], or the cells according to [8] or [9].
  • a pharmaceutical composition comprising a granzyme B variant-expressing cell or a granzyme B variant for use in combination with administration of a receptor-expressing cell. The receptor activates cells expressing the receptor by binding to the ligand, Granzyme B variant is a pharmaceutical composition in which protease activity is enhanced as compared with human wild-type granzyme B and resistance to an inhibitor against human wild-type granzyme B.
  • the receptor is a T cell receptor having a neoantigen as a ligand.
  • the Granzyme B variant is that described in [1], [2] or [5].
  • a pharmaceutical composition comprising a cell expressing a Granzyme B variant or a Granzyme B variant for use in combination with administration of an antigen-binding molecule and administration of a cell expressing a chimeric receptor.
  • the antigen-binding molecule has the ability to bind to the target antigen and Chimera receptors include extracellular binding domains, transmembrane domains and intracellular signaling domains that can bind to cells expressing the target antigen via binding of the extracellular binding domain to antigen-binding molecules.
  • Granzyme B variant is a pharmaceutical composition in which protease activity is enhanced as compared with human wild-type granzyme B and resistance to an inhibitor against human wild-type granzyme B.
  • the antigen-binding molecule contains a linker that is cleaved by a protease.
  • the pharmaceutical composition according to [18], wherein the extracellular binding domain can bind to an antigen-binding molecule after cleavage of the linker.
  • the pharmaceutical composition according to [18] or [19], wherein the Granzyme B variant is that according to [1], [2] or [5].
  • K44L, R48K, K155P, K172L, S175I and K200R 2) K44L, R48E, K155P, K172L, S175I and K200R 3) K44F, R48K, K155P, K172L, S175I and K200R 4) K44F, R48E, K155P, K172L, S175I and K200R 5) K44L, L46I, K155P, K172L, S175I and K200R 6) K44L, L46E, K155P, K172L, S175I and K200R 7) K44L, L46F, K155P, K172L, S175I and K200R 8) K44L, L46Q, K155P, K172L, S175I and K200R 9) K44F, L46I, K155P, K172L, S175I and K200R 10) K44F, L46E, K155P, K172L, S175I and
  • [A6] The Granzyme B variant according to any one of [A1] to [A5], wherein the protease activity is enhanced as compared with that of human wild-type Granzyme B.
  • [A7] The Granzyme B variant according to any one of [A1] to [A6], which has resistance to an inhibitor against human wild-type Granzyme B.
  • [A8] The Granzyme B variant according to [A7], wherein the inhibitor is PI-9 or heparin.
  • [A10] A vector containing the isolated nucleic acid according to [A9].
  • [A12] A cell expressing the Granzyme B variant according to any one of [A1] to [A8].
  • [A13] A pharmaceutical composition comprising the isolated nucleic acid according to [A9], the vector according to [A10] or the cells according to [A11] or [A12].
  • [A14] A pharmaceutical composition containing the Granzyme B variant according to any one of [A1] to [A8].
  • [A16] The pharmaceutical composition according to [A15], which comprises cells expressing the receptor.
  • [A17] The pharmaceutical composition according to [A16], wherein the receptor and the granzyme B variant are expressed in the same T cell.
  • [A18] The pharmaceutical composition according to [18] or [19], wherein the Granzyme B variant is one according to any one of [A1] to [A5].
  • [A19] The pharmaceutical composition according to [A18], which comprises cells expressing a chimeric receptor.
  • [A20] The pharmaceutical composition according to [A19], wherein the chimeric receptor and the granzyme B variant are expressed in the same T cell.
  • [A21] The pharmaceutical composition according to any one of [A15] to [A20], wherein the receptor is a chimeric antigen receptor.
  • the in vitro protease activity of the Granzyme B variant is 1.5 times or more that of human wild-type Granzyme B [3] or the Granzyme B variant according to [A6], or [12] or [18].
  • In vitro protease activity in the presence of inhibitor is 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, or 1.5 times or more that of human wild-type granzyme B [4] or [A7].
  • [B4] In vitro protease activity in the presence of inhibitor is 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more or 2 times or more that of human wild-type granzyme B [B3].
  • [B7] A vector containing the isolated nucleic acid according to [B6].
  • [B8] Cells transformed or transduced with the isolated nucleic acid described in [B6] or the vector described in [B7].
  • [B9] A cell expressing the Granzyme B variant according to any one of [B1] to [B5].
  • [B10] A pharmaceutical composition comprising the isolated nucleic acid according to [B6], the vector according to [B7] or the cells according to [B8] or [B9].
  • [B11] A pharmaceutical composition containing the Granzyme B variant according to any one of [B1] to [B5].
  • the receptor is a chimeric receptor that includes an extracellular binding domain, a transmembrane domain, and an intracellular signal transduction domain and binds to a ligand via the extracellular binding domain [B1] to [B5].
  • the pharmaceutical composition according to. [B13] The pharmaceutical composition according to any one of [B1] to [B5], which is a T cell receptor having a neoantigen as a ligand.
  • Granzyme B variants are those described in any of [1], [2], or [A1]-[A5] [B1]-[B5], [B12] or [B13].
  • [B15] The pharmaceutical composition according to any one of [B1] to [B5] or [B12] to [B14], which comprises cells expressing the receptor.
  • [B16] The pharmaceutical composition according to [B15], wherein the receptor and the granzyme B variant are expressed in the same T cell.
  • the antigen-binding molecule contains a linker that is cleaved by a protease.
  • the pharmaceutical composition according to [B1] to [B5], wherein the extracellular binding domain can bind to an antigen-binding molecule after cleavage of the linker.
  • Granzyme B variants are those described in any of [1], [2], or [A1]-[A5], in any of [B1]-[B5], or [B17].
  • [B19] The pharmaceutical composition according to any one of [B1] to [B5], [B17], or [B18], which comprises cells expressing a chimeric receptor.
  • [B20] The pharmaceutical composition according to [B19], wherein the chimeric receptor and the granzyme B variant are expressed in the same T cell.
  • [B21] The pharmaceutical composition according to any one of [B12], [B14] to [B20], wherein the chimeric receptor is a chimeric antigen receptor.
  • [C1] The pharmaceutical composition according to any one of [10] to [23] for use in the treatment or prevention of cancer.
  • [C2] The pharmaceutical composition according to any one of [10] to [23] for use in the treatment or prevention of inflammatory diseases.
  • [C3] Granzyme B according to any one of [1] to [5], [A1] to [A8], or [B1] to [B5] for use in the treatment or prevention of cancer or inflammatory disease. Variants or cells according to [8] or [9].
  • [C4] The Granzyme B variant according to any one of [1] to [5], [A1] to [A8], or [B1] to [B5], or the cell according to [8] or [9].
  • a method of treating or preventing cancer or an inflammatory disease including administration.
  • the antigen-binding molecule has the ability to bind to the target antigen, and the chimeric receptor expresses the target antigen via binding of the extracellular binding domain to the antigen-binding molecule.
  • the method according to [C6] which is capable of binding to a cell.
  • the antigen-binding molecule comprises a linker cleaved by a protease and the extracellular binding domain can bind to the antigen-binding molecule after linker cleavage.
  • the receptor is a T cell receptor using neoantigen as a ligand.
  • [C10] The method according to any one of [C5] to [C9], wherein the administration is administration of T cells expressing a receptor and a Granzyme B variant.
  • [C11] Use of the Granzyme B variant according to any one of [1] to [5] or the cell according to [8] or [9] in the manufacture of a therapeutic or prophylactic agent for cancer or inflammatory disease. ..
  • [D1] A method for producing an isolated nucleic acid encoding the Granzyme B variant according to any one of [1] to [5], [A1] to [A8], or [B1] to [B5].
  • [D2] The method for producing a vector containing an isolated nucleic acid according to [6], [A9], or [B6].
  • [D3] For cells transformed or transduced with the isolated nucleic acid described in [6], [A9], or [B6] or the vector described in [7], [A10], or [B7]. Production method. [D4] The method for producing a cell expressing the Granzyme B variant according to any one of [1] to [5], [A1] to [A8], or [B1] to [B5].
  • the Granzyme B variants of the present disclosure have higher protease activity and / or resistance to inhibitors compared to wild-type Granzyme B.
  • the presently disclosed granzyme B variant having such an advantageous effect or a pharmaceutical composition containing a cell expressing the same is more than wild-type granzyme B and the prior art granzyme B variant in inducing cell death of target cells. Is also advantageous.
  • cell death can be specifically induced in a target cell.
  • the amino acid sequence (SEQ ID NO: 2) of amino acid numbers 21-247 (21st to 247th amino acids from the N-terminal side) in the amino acid sequence of human wild-type granzyme B (NCBI Reference Sequence. NP_004122.2: SEQ ID NO: 1) is shown. .. In the sequence, the amino acid at the position where the modification was performed in Example 2 is underlined. The measurement result of the protease activity of the Granzyme B variant in Example 4-1 is shown. The vertical axis shows the relative value of the protease activity of each Granzyme B variant when the protease activity of wild-type Granzyme B is 1. The horizontal axis shows the amino acid substitution of the variant used for the measurement.
  • the measurement result of the protease activity of the Granzyme B variant in Example 4-2 is shown.
  • the vertical axis shows the protease activity of wild-type granzyme B in (1) absence of inhibitor (Buffer), (2) presence of heparin (Heparin), or (3) presence of PI-9 (PI-9).
  • the relative value of the protease activity of each Granzyme B variant is shown when it is set to 1.
  • the horizontal axis shows the amino acid substitution of the variant used for the measurement.
  • Granzyme B is used from any vertebrate source, including mammals such as primates (eg, humans) and rodents (eg, mice and rats), unless otherwise indicated. Any wild-type Granzyme B.
  • the term includes both "full length” unprocessed Granzyme B as well as any form of Granzyme B resulting from intracellular processing.
  • the term also includes naturally occurring variants of Granzyme B, such as splice variants and allelic variants.
  • An exemplary human wild-type Granzyme B amino acid sequence is set forth in SEQ ID NO: 1 (NCBI Reference Sequence. NP_004122.2), but is not necessarily limited to, and includes some variants of the amino acid sequence. Such variants include human wild-type granzyme B represented by an amino acid sequence having 90% or more, 95% or more, 97% or more, or 99% or more homology to SEQ ID NO: 1.
  • mutants and modifications are used interchangeably, “addition” of an amino acid residue to an amino acid sequence, “deletion” of an amino acid residue from an amino acid sequence, into an amino acid sequence. Includes “insertion” of amino acid residues and / or “substitution” of amino acid residues in the amino acid sequence. Any combination of additions, deletions, insertions, and substitutions can be introduced to obtain variants (mutants) with the desired characteristics (eg, resistance to protease activity or inhibitory factors).
  • the Granzyme B variants of the present disclosure comprise the substitution of one or more amino acid residues.
  • each amino acid in Granzyme B When the position of each amino acid in Granzyme B is indicated herein, the corresponding amino acid number in the amino acid sequence of the human wild-type Granzyme B exemplified by SEQ ID NO: 1 (in the case of SEQ ID NO: 1, the N-terminal amino acid in the amino acid sequence). (Continuous number with position 1) is specified.
  • SEQ ID NO: 1 In the case of SEQ ID NO: 1, the N-terminal amino acid in the amino acid sequence. (Continuous number with position 1) is specified.
  • the Granzyme B variant of the present disclosure is indicated to "contain the amino acid residue of F (Phe) at position 44"
  • the 44th amino acid residue from the N-terminal side constituting the Granzyme B variant is It means that it is F (Phe).
  • the amino acid number at the modification position is on the left side and the right side, or on the left side or the right side, respectively, before the modification (that is, wild-type Granzyme B) and the modification at the position.
  • the subsequent amino acid residues are shown (eg, in single letter notation).
  • the amino acid residue at the position corresponding to the 44th amino acid residue K (Lys) from the N-terminal side in the amino acid sequence shown in SEQ ID NO: 1 is modified to F (Phe), this amino acid is described herein.
  • the modification is referred to as K44F.
  • the 44th amino acid residue from the N-terminal side of Granzyme B is modified to F (Phe), it is expressed as 44F.
  • the amino acid sequence of Granzyme B to be modified is different from the sequence shown in SEQ ID NO: 1, those skilled in the art will appreciate which of the Granzyme B to be modified is the modification position shown in the present specification. Whether it corresponds to the position can be appropriately determined (for example, by performing sequence alignment).
  • the Granzyme B variant comprises one or more amino acid residues selected from 1 to 20 below.
  • the Granzyme B variant of the present disclosure comprises a combination of any of the following amino acid residues 1-12.
  • protease activity refers to the activity by which Granzyme B cleaves its substrate, especially in the context of Granzyme B.
  • Methods for assessing the protease activity of Granzyme B are known to those of skill in the art, and various activity measurement kits and synthetic substrates are commercially available.
  • An example of such a synthetic substrate is one in which a synthetic peptide having a granzyme B recognition sequence (eg, Ile-Glu-Pro-Asp (IEPD)) is labeled with a detectable substance (eg, p-nitroanilide (pNA)). (Eg Ac-IEPD-pNA) is known.
  • Granzyme B cleaves the synthetic substrate to release free detectable substances, which can be quantified with a fluorometer or spectrophotometer.
  • the evaluation of the protease activity of the Granzyme B variant can be performed by the method described in Example 4 of the present disclosure.
  • the evaluation of protease activity in the presence of an inhibitor can be performed using the evaluation system described in Example 4 under the same concentration conditions of Granzyme B and the inhibitor as in the same example.
  • the protease activity of the Granzyme B variant of the present disclosure is preferably enhanced as compared with the protease activity of wild-type Granzyme B, for example, 1.1-fold or more, 1.2-fold or more, 1.3-fold higher than the protease activity of wild-type Granzyme B. As mentioned above, it is preferably 1.4 times or more, or 1.5 times or more higher, more preferably 2 times or more or 2.5 times or more, and particularly preferably 3 times or more.
  • the Granzyme B variants of the present disclosure are preferably resistant to such inhibitors.
  • “resistance to an inhibitor” refers to the ability to exert higher protease activity than wild-type granzyme B in the presence of the inhibitor.
  • the protease activity of the Granzyme B variants of the present disclosure in the presence of such inhibitors is 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, or 1.5-fold higher than that of wild-type Granzyme B. It is more preferable, it is more preferably 2 times or more, 2.5 times or more, 3 times or more, or 3.5 times or more, and particularly preferably 4 times or more, 4.5 times or more, 5 times or more, or 5.5 times or more.
  • isolated nucleic acid refers to a nucleic acid molecule isolated from its original environmental components.
  • An isolated nucleic acid contains a nucleic acid molecule contained within a cell that normally contains the nucleic acid molecule, but the nucleic acid molecule is on a chromosome that is extrachromosomal or different from its original position on the chromosome. It exists in the position.
  • vector refers to a nucleic acid molecule to which it can multiply another nucleic acid to which it is linked.
  • the term includes a vector as a self-replicating nucleic acid structure and a vector incorporated into the genome of the host cell into which it has been introduced. Certain vectors can result in the expression of nucleic acids to which they are operably linked. Such vectors are also referred to herein as "expression vectors.”
  • host cell refers to cells into which foreign nucleic acids have been introduced, including progeny of such cells.
  • Host cells include “transformants” and “transformed cells” or “transduced cells” and “transduced cells”, which are primary transformed or transduced cells and their cells regardless of passage number. Includes descendants of origin.
  • the progeny do not have to be exactly the same in the content of the parent cell and nucleic acid and may contain mutations. Also included herein are mutant progeny with the same function or biological activity as those used when the original transformed or transduced cells were screened or selected.
  • the "cells expressing Granzyme B” may be cells expressing endogenous Granzyme B or cells expressing Granzyme B upon gene transfer, unless otherwise indicated. ..
  • cells expressing endogenous granzyme B for example, T cells and NK cells, which are cytotoxic lymphocytes, are known.
  • the cells to which the gene is introduced (transfected) to express Granzyme B are not limited to T cells and NK cells, and recombinant Granzyme B is expressed in various cells (for example, Granzyme from the culture supernatant). Recombinant Granzyme B can be obtained (by purifying B).
  • a gene expressing Granzyme B is introduced into cells derived from an individual (for example, a healthy donor or a patient suffering from a specific disease) (for example, peripheral blood mononuclear cells (PBMC)), and the gene is introduced.
  • the introduced cells can be administered to the same individual or another individual.
  • the transgenic cells expressing Granzyme B may be treated to differentiate them into specific cell types (eg, cytotoxic T cells) and then administered to the individual.
  • a method for introducing a gene encoding Granzyme B into a cell various gene transfer techniques well known to those skilled in the art can be used.
  • Cells expressing Granzyme B may be administered in combination with cells expressing the chimeric receptor.
  • cells expressing both Granzyme B and the chimeric receptor may be used, and such cells can be produced by gene transfer of Granzyme B and the chimeric receptor simultaneously or separately.
  • a Granzyme B variant in a cell that expresses endogenous Granzyme B such as T cells or NK cells
  • the endogenous wild-type Granzyme B in the cell may or may not be knocked out. good.
  • pharmaceutical preparation or “pharmaceutical composition” is a preparation in a form in which the biological activity of the active ingredient contained therein can exert an effect, and the preparation or composition thereof. Refers to a preparation that does not contain additional elements that are unacceptably toxic to the subject to which it is administered.
  • active ingredient can be configured as an antibody, a polypeptide or the like, or can be configured as a cell expressing an antibody, a polypeptide or the like (for example, a Granzyme B variant of the present disclosure).
  • the preparation containing such cells can be referred to as a "pharmaceutical formulation” or "pharmaceutical composition”.
  • “Pharmaceutically acceptable carrier” refers to an ingredient other than the active ingredient in a pharmaceutical preparation or pharmaceutical composition that is nontoxic to the subject.
  • Pharmaceutically acceptable carriers include, but are not limited to, buffers, excipients, stabilizers, or preservatives.
  • the "individual” or “target” is a mammal. Mammals are, but are not limited to, domestic animals (eg, cows, sheep, cats, dogs, horses), primates (eg, non-human primates such as humans and monkeys), rabbits, and , Includes rodents (eg, mice and rats). In certain embodiments, the individual or subject is a human.
  • the present disclosure provides granzyme B variants, cells expressing granzyme B variants, or pharmaceutical compositions containing them.
  • the pharmaceutical compositions of the present disclosure can be used in combination with cells expressing the receptor.
  • the receptor activates a cell expressing the receptor by binding to the ligand, for example, a chimeric receptor that binds to the ligand via an extracellular binding domain, and a neoantigen as a ligand.
  • T cell receptors Including, but not limited to, T cell receptors.
  • the pharmaceutical compositions of the present disclosure may include cells expressing the receptor and cells expressing the Granzyme B variant, and the receptor and the Granzyme B variant may be expressed in the same cell (eg, T cells). ..
  • compositions of the present disclosure can be used in combination (used in combination) with an antigen-binding molecule capable of binding to the extracellular binding domain of the chimeric receptor.
  • the antigen-binding molecule has the ability to bind to the target antigen, and the chimeric receptor can bind to the cell expressing the target antigen through the binding of the extracellular binding domain to the antigen-binding molecule.
  • the antigen-binding molecule comprises a linker that is cleaved by a protease and the extracellular binding domain is capable of binding to the antigen-binding molecule after linker cleavage.
  • the pharmaceutical compositions of the present disclosure may comprise cells expressing the chimeric receptor and cells expressing the Granzyme B variant, as well as antigen binding molecules capable of binding to the extracellular binding domain of the chimeric receptor. And the Granzyme B variant may be expressed in the same cell (eg T cell). Antigen binding capable of binding to the extracellular binding domain of granzyme B variants, cells expressing granzyme B variants, cells expressing receptors, receptors and cells expressing granzyme B variants, and chimeric receptors. When one or more of the molecules are used in combination (used in combination), they can be used simultaneously, separately or sequentially (eg, administered to an individual). In one aspect, the pharmaceutical compositions of the present disclosure are intended for use in cell injury, induction of cell death, suppression of cell proliferation, or treatment or prevention of cancer or inflammatory disease.
  • chimeric receptor when expressed on immune effector cells, including at least extracellular binding domains, transmembrane domains and intracellular signaling domains, produces specificity and intracellular signal production for target cells such as cancer cells. Refers to a recombinant polypeptide that causes.
  • chimeric antigen receptor or "CAR” means a chimeric receptor to which an extracellular binding domain binds to an antigen.
  • extracellular binding domain means any proteinaceous molecule or part thereof that can specifically bind to a molecule such as a predetermined antigen, for example, a light of a monoclonal antibody variable region specific to a tumor antigen or the like. It contains a single chain antibody (scFv) in which a chain (VL) and a heavy chain (VH) are bound in series.
  • scFv single chain antibody
  • VL chain
  • VH heavy chain
  • the extracellular binding domain can also be paraphrased as an extracellular recognition domain.
  • transmembrane domain includes a polypeptide that is located between the extracellular binding domain and the intracellular signaling domain and has the function of penetrating the cell membrane.
  • intracellular signaling domain is known to serve to transmit signals that trigger the activation or inhibition of intracellular biological processes, such as the activation of immune cells such as T cells or NK cells. It means any oligopeptide domain or polypeptide domain to be included, including a stimulatory molecule signaling domain derived from a stimulating molecule of at least one T cell, and a costimulatory molecule signaling domain derived from a co-stimulating molecule of at least one T cell.
  • neoantigen-liganded T cell receptor includes a T cell receptor designed to recognize neoantigen, which is a mutant antigen produced by a gene mutation in cancer cells.
  • the term "antigen-binding molecule” refers to a molecule that specifically binds to an antigenic determinant (epitope) in its broadest sense.
  • the antigen binding molecule is an antibody, antibody fragment, or antibody derivative.
  • the antigen-binding molecule is a non-antibody protein, or a fragment thereof, or a derivative thereof.
  • an antigen binding domain refers to a region that is specifically bound to and complementary to a part or all of an antigen.
  • an antigen-binding molecule comprises an antigen-binding domain. When the molecular weight of an antigen is large, the antigen-binding domain can bind only to a specific portion of the antigen. The specific portion is called an epitope.
  • the antigen binding domain comprises an antibody fragment that binds to a particular antigen.
  • the antigen binding domain may be provided by the variable domain of one or more antibodies.
  • the antigen binding domain comprises an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH).
  • antigen binding domain comprises a non-antibody protein or fragment thereof that binds to a particular antigen.
  • the antigen binding domain comprises a hinge region.
  • the term "specifically bound” means that one molecule of a specifically bound molecule does not show any significant binding to a molecule other than the one or more of the other molecule to which it binds. It means to combine with. It is also used when the antigen-binding domain is specific for a specific epitope among a plurality of epitopes contained in a certain antigen. Further, when the epitope to which the antigen-binding domain binds is contained in a plurality of different antigens, the antigen-binding molecule having the antigen-binding domain can bind to various antigens including the epitope.
  • antibody is used in the broadest sense, and is not limited to, but is not limited to, a monoclonal antibody, a polyclonal antibody, and a multispecific antibody (for example,) as long as it exhibits a desired antigen-binding activity. Includes various antibody structures, including bispecific antibodies) and antibody fragments.
  • Natural antibody refers to an immunoglobulin molecule with various naturally occurring structures.
  • a native IgG antibody is a heterotetrameric glycoprotein of approximately 150,000 daltons composed of two identical light chains that are disulfide-bonded and two identical heavy chains.
  • VH variable heavy chain domain
  • CH1, CH2, and CH3 constant domains
  • each light chain has a variable region (VL), also called a variable light chain domain or a light chain variable domain, followed by a stationary light chain (CL) domain.
  • VH variable heavy chain domain
  • VL variable region
  • the light chain of an antibody may be assigned to one of two types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequence of its constant domain.
  • variable region refers to the heavy or light chain domain of an antibody involved in binding the antibody to an antigen.
  • the heavy and light chain variable domains of native antibodies are similar, with each domain usually containing four conserved framework regions (FR) and three hypervariable regions (HVR).
  • FR conserved framework regions
  • HVR hypervariable regions
  • an antibody that binds to a particular antigen may be isolated by screening a complementary library of VL or VH domains using the VH or VL domain from the antibody that binds to that antigen, respectively. See, for example, Portolano et al., J. Immunol. 150: 880-887 (1993); Clarkson et al., Nature 352: 624-628 (1991).
  • the present disclosure is generically referred to as an effective amount of the Granzyme B variant of the present disclosure, cells expressing the Granzyme B variant, or a pharmaceutical composition containing them (hereinafter collectively referred to as the pharmaceutical composition of the present disclosure and the like).
  • an "effective amount" in the present invention is an individual that damages cells, induces cell death, suppresses cell proliferation, treats inflammatory diseases, treats cancer, or Means the dose of the pharmaceutical composition etc. of the present disclosure effective for preventing cell death.
  • the "treatment" in the present invention means that the pharmaceutical composition of the present disclosure or the like reduces the number of cancer cells in an individual, suppresses the growth of cancer cells, and determines the size of a tumor (tumor size). Decrease in volume and / or weight), suppression of tumor growth, suppression of cancer cell infiltration into peripheral organs, suppression of cancer cell metastasis, or various cancer-related causes Means that the symptoms are improved. Further, in some embodiments, "prevention" in the present invention means preventing an increase in the number of cancer cells due to the re-proliferation of decreased cancer cells, and re-proliferation of cancer cells in which proliferation is suppressed. Means to prevent the reduced tumor size (volume and / or weight) from increasing again.
  • the Granzyme B variants of the present disclosure can be used in combination with administration of cells expressing the receptor.
  • receptors include chimeric receptors that include extracellular binding domains, transmembrane domains and intracellular signaling domains.
  • T cell receptor Another example is the T cell receptor, which is designed to recognize neoantigens that normal T cells cannot recognize.
  • T cells are collected from a patient, and the chimeric receptor (for example, a chimeric antigen receptor) is encoded into the T cells. There is a means to introduce the gene to be used and the gene encoding the Granzyme B variant and transfer it to the patient again.
  • the gene is not limited to this, and the gene can be introduced and transferred to a patient separately.
  • the chimeric antigen receptor recognizes a cell surface antigen such as a cancer cell and activates T cells, which is disclosed in the present disclosure.
  • a high therapeutic effect is expected due to the enhanced cytotoxic activity of the Granzyme B variant.
  • the combination is high. Expected to have a therapeutic effect.
  • a combination with an antigen-binding molecule can be further used.
  • the antigen-binding molecule has the ability to bind to the target antigen, and the chimeric receptor can bind to the cell expressing the target antigen via the binding of the extracellular binding domain to the antigen-binding molecule.
  • the antigen-binding molecule should contain a linker cleaved by a protease in advance, and the chimeric receptor should be designed so that it can bind to the antigen-binding molecule after the linker is cleaved. Can be done.
  • T cells are collected from a patient, a gene encoding a chimeric receptor and a gene encoding a granzyme B variant are introduced into the T cells, and the T cells are transferred to the patient again.
  • a means for administering a pharmaceutical composition containing an antigen-binding molecule to a patient there is a means for administering a pharmaceutical composition containing an antigen-binding molecule to a patient.
  • Example 1 Construction of human wild-type granzyme B expression vector A sequence of human wild-type granzyme B (NCBI Reference Sequence. NP_004122.2) was gene-synthesized. Among the ORFs encoding Granzyme B, an artificial secretory signal sequence (MGILPSPGMPALLSLVSLLSVLLMGCVAETG (SEQ ID NO: 3)) and an enterrokinase recognition sequence (DDDDK (DDDDK)) are located on the 5'end side of the base sequence encoding amino acid number 21-247 (SEQ ID NO: 2).
  • an artificial secretory signal sequence MGILPSPGMPALLSLVSLLSVLLMGCVAETG (SEQ ID NO: 3)
  • DDDDK enterrokinase recognition sequence
  • the base sequence encoding SEQ ID NO: 4 was fused, and the base sequence encoding the histidine tag was added to the C-terminal side (J Vis Exp. 2015 Jun 10; (100): e52911.).
  • the nucleotide sequence encoding the sequence (SEQ ID NO: 5) was inserted into a mammalian cell expression vector.
  • Example 2 Preparation of a base sequence encoding a Granzyme B variant Substitution of a single amino acid residue with human wild-type granzyme B and substitution of a plurality of amino acid residues in combination thereof utilize a PCR reaction. It was carried out by a method known to those skilled in the art. The positions of the amino acids intended for modification were selected based on the crystal structure of human wild-type Granzyme B by identifying amino acid residues close to the substrate binding site (underlined amino acids in FIG. 1). Primers were designed to encode substitutions for these amino acid residues by substituting one of a total of 18 amino acids, excluding the unmodified amino acid and cysteine.
  • a total of 1476 species of the base sequence encoding the Granzyme B variant in which a single amino acid was substituted were prepared by a method known to those skilled in the art, such as PCR using the relevant primer.
  • a base sequence encoding a Granzyme B variant was prepared by a plurality of amino acid substitutions by the same method.
  • Example 3 Expression and purification of Granzyme B variant
  • the nucleotide sequence encoding Granzyme B prepared in Example 2 was transfected into 1 mL of a culture medium of Expi293 (invitrogen) by the method specified by the vendor. After 4 days, the culture supernatant was collected, further added with enterokinase at a final concentration of 0.3 ⁇ g / ml, and reacted at 4 ° C. for 16 hours. 1/10 amount of binding buffer (250 mM Tris, 3M NaCl, pH 7.5) was added to the reaction solution, and Ni Sepharose Excel (GE healthcare) suspended in equalibrium buffer (25 mM Tris-HCl, 500 mM NaCl, pH 7.5).
  • binding buffer 250 mM Tris, 3M NaCl, pH 7.5
  • Ni Sepharose Excel GE healthcare
  • Example 4 Measurement of protease activity of Granzyme B variant (4-1) Granzyme B variant (single amino acid substitution)
  • the expressed and purified Granzyme B is suspended in a 2-fold diluted enzyme reaction buffer (2X Reaction buffer, Promokine, PK-CA577-1068-80), and the final concentration of Ac-IEPD-pNA, which is a reaction substrate, is 0.5 mM. It was mixed with (Enzo, BML-P133). The absorbance of the reaction solution at 405 nm was measured.
  • FIG. 2 shows the relative protease activity of the Granzyme B variant used for measurement with respect to wild-type Granzyme B.
  • the position of the amino acid substitution in the variant refers to the corresponding amino acid number in the amino acid sequence of human wild-type granzyme B shown in SEQ ID NO: 1, and the amino acid sequence of the variant is the human wild type shown in SEQ ID NO: 1.
  • the modified amino acid sequence corresponding to amino acid numbers 21-247 of type Granzyme B is shown.
  • Example 5 Expression of Granzyme B variant in NK cell line
  • a wild-type granzyme B-derived secretory signal sequence and a cathepsin C / H recognition sequence are fused to the side, and a FLAG tag is fused to the C-terminal side.
  • the nucleotide sequence encoding these fusions is introduced into the NK cell line (NKL, ATCC No.) by the mammalian expression vector pGL4.30 (Promega, E8481). This NK cell line is selected with hygromycin B.
  • the cell line of the Granzyme B variant was membrane-permeated using the eBioscience TM Foxp3 / Transcription Factor Staining Buffer Set (invitrogen, 00-5523-00) by a method specified by those skilled in the art, and the tag fused to the C-terminal of Granzyme B.
  • Anti-FLAG antibody and its isotype control antibody Biolegend, 637310 and 400508 are used for fluorescent staining.
  • the stained cells are detected by FACS verse (BD).
  • BD FACS verse
  • Example 6 Measurement of in vitro cytotoxic activity of a cell line expressing a Granzyme B variant An established Granzyme B variant expressing cell line and a target cell (either BxPC-3, HuCCT-1, MCAS) The anti-EGFR antibody CetuH0-Hl076 / CetuL4-k0 // CetuH0-Kn125 / CetuL4-k0, which is added to a 96-well plate and diluted to each concentration, is added. After reaction at 37 ° C, LDH release associated with cell death is quantified using the Pierce LDH Cytotoxicity Assay Kit (Thermofisher Scientific, 88954) by the method specified by the vendor. As a result, it is shown that the transgenic cells expressing the Granzyme B variant show stronger cytotoxic activity than the transgenic cells expressing the wild-type Granzyme B.
  • Example 7 Preparation of viral vector encoding Granzyme B variant
  • the sequence encoding human wild-type Granzyme B and Granzyme B variant is pMCs-IRES-GFP Retroviral Vector (CELL BIOLABS, INC., RTV-040).
  • the retroviral vector is prepared by the method specified by the supplier.
  • Example 8 Gene introduction of Granzyme B variant into primary T cells HLA-A2 + peripheral blood mononuclear cell PBMC (Biological Specialty Corp, Colmar, PA, USA) derived from a healthy donor is Ficoll-Paque (GE Healthcare, USA). Piscataway, NJ, USA) Isolated by density gradient centrifugation.
  • PBMC peripheral blood mononuclear cell
  • PBMC in 24-well tissue culture plates 5% human AB serum (Sigma-Aldrich), 1% MEM non-essential amino acids, 1% penicillin-streptomycin and 100 U / ml recombinant human IL-2 (BioLegend, San Diego, CA, Cultured in 3 ⁇ 10 6 cells / well in AIM V medium (GIBCO brand; Invitrogen) supplemented with USA) and activated with 50 ng / ml OKT3 (eBioscience, San Diego, CA, USA). Two days later, cells are harvested for retroviral transduction.
  • a 24-well non-tissue culture treated plate (BD Biosciences, Franklin Lakes, NJ, USA) was used with a 10 ⁇ g / ml recombinant human fibronectin fragment (RetroNectin; Takara Bio Inc., Otsu, Shiga, Japan). Coat overnight at 4 ° C with 0.5 ml / well. After incubation, the wells were blocked for 30 minutes at room temperature using 1 ml Hanks solution (GIBCO brand; Invitrogen) with 2.5% human AB serum and 2.5% N-2-hydroxyethylpiperazine-N'-2-ethanesulfone.
  • GEBCO brand Invitrogen
  • Example 9 Evaluation of cytotoxic activity of T cells gene-introduced with Granzyme B variant T cells expressing Granzyme and target cells (BxPC-3, HuCCT-1, MCAS) prepared in Example 8 ) Is added to each 96-well plate, and the anti-EGFR anti-CD3 bispecific antibody CetuH0-F760nN17 / CetuL4-k0 // TR01H113- F760nP17 / L0011-k0 diluted to each concentration is added. After reaction at 37 ° C, LDH release associated with cell death is quantified using the Pierce LDH Cytotoxicity Assay Kit (Thermofisher scientific, 88954) by the method specified by the vendor. As a result, it is clarified that the transgenic cells expressing the modified granzyme B show stronger cytotoxic activity than the transgenic cells expressing the wild-type granzyme B.
  • Example 10 Evaluation of in vitro cell injury activity of T cells introduced with Granzyme B variant The cytotoxic activity of Granzyme-introduced T cells prepared in Example 8 is also evaluated by BD FACSVerse TM (BD Biosciences). Cancer cells BxPC-3, HuCCT-1 or MCAS are prepared as target cells. Target cells are seeded in 6 well plates in 1 ⁇ 10 5 cells or 3 ⁇ 10 5 cells, respectively. T cells expressing modified granzyme B or wild-type granzyme B are designated as effector cells, and are mixed so that the ratio of effector cells to target cells (E: T) is 1: 1 or 1: 3.
  • the anti-EGFR anti-CD3 bispecific antibody CetuH0-F760nN17 / CetuL4-k0 // TR01H113- F760nP17 / L0011-k0 is added at 10 ⁇ g per well.
  • Granzyme B-introduced T cells and target cells are recovered.
  • the recovered cells are stained with dead cells using the Zombie Aqua TM Fixable Viability Kit (BioLegend, 423102) and granzyme B-expressing T cells with an anti-human CD45 antibody (BioLegend, 304039).
  • Cell damage activity is assessed by the percentage of residual cancer cells.
  • the percentage of residual cancer cells is calculated as the percentage of CD45-fractional cells in living cells. This result indicates that the cytotoxic activity of granzyme-expressing T cells is enhanced in vitro.
  • the Granzyme B variant of the present disclosure exhibits higher protease activity than wild-type granzyme B and is therefore more useful than wild-type granzyme B in the treatment of inducing cell death of target cells (eg, cancer cells).
  • target cells eg, cancer cells
  • the Granzyme B variants of the present disclosure show high protease activity even in the presence of an inhibitor of wild-type granzyme B, and therefore wild-type in the treatment that induces cell death in tumors that highly express the inhibitor. More useful than Granzyme B.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Oncology (AREA)

Abstract

本発明は、プロテアーゼ活性および/または阻害因子への耐性が増強されたグランザイムB改変体;当該グランザイムB改変体をコードするポリヌクレオチド;当該グランザイムB改変体を発現する細胞;当該グランザイムB改変体を発現する細胞を含む医薬組成物;ならびに当該グランザイムB改変体を含む医薬組成物に関する。一部の態様において、医薬組成物は、キメラ受容体を発現する細胞および/または抗原結合分子と組み合わせて用いられ得る。

Description

改良されたグランザイムB改変体
 本発明は、プロテアーゼ活性および/または阻害因子への耐性が増強されたグランザイムB改変体;当該グランザイムB改変体をコードするポリヌクレオチド;当該グランザイムB改変体を発現する細胞;当該グランザイムB改変体を発現する細胞を含む医薬組成物;ならびに当該グランザイムB改変体を含む医薬組成物に関する。
 グランザイムは一群のファミリーからなるプロテアーゼである。グランザイムは、細胞傷害性のリンパ球であるT細胞やNK細胞で発現され、これらの細胞が標的抗原を認識するとパーフォリンなどとともに標的細胞(標的抗原を発現する細胞)に対して分泌されて細胞傷害活性を発揮する。グランザイムは標的細胞の細胞内に移行した後、BID、カスパーゼなど、多様な基質を切断し、最終的に標的細胞におけるアポトーシスに関わる情報伝達系を活性化するなどして標的細胞の細胞死を誘導する(非特許文献1)。
 グランザイムファミリーのうち、特に細胞傷害活性への寄与が大きいと示唆されているのがグランザイムAおよびグランザイムBである。このうち、グランザイムAが2量体を形成して機能する一方、グランザイムBは単量体で機能する。このためグランザイムBにおいては蛋白質工学を利用した改変体の作製およびその発現、精製が容易であり、創薬も視野に入れた研究開発が行われてきた。たとえば腫瘍関連抗原に結合するscFvをグランザイムBに融合した各種改変体(非特許文献2)が報告されている。
 一方で、グランザイムBの抗腫瘍剤としての利用には限界もある。その原因として天然のグランザイムBのプロテアーゼ活性に限界があることや、標的細胞におけるグランザイムBに対する阻害因子の発現により、グランザイムBの活性が抑制されることが挙げられる。非特許文献3においてはグランザイムBの活性阻害因子であるPI-9が腫瘍において高発現していることが示されている。また、非特許文献4においては腫瘍において産生が亢進することが知られているヘパリンがグランザイムB活性を阻害することが示されている。つまり、これらの阻害因子が高発現している腫瘍に対してはグランザイムBを作用させたとしても十分な細胞傷害活性が発揮されず、従って抗腫瘍活性も限定的となる事が考えられる。
 これらの阻害因子に耐性を持つグランザイム改変体として先行研究においてもPI-9耐性(特許文献1、非特許文献5)やヘパリン耐性(非特許文献6)のグランザイムB改変体が報告されている。また、VEGF や VEGF受容体を切断するためにラットグランザイムBに対する網羅的な改変を行ったグランザイムB改変体(特許文献2)の報告もある。
 一方、グランザイム等の細胞傷害性物質を治療に用いる場合、標的細胞(例えば腫瘍細胞)に対して特異的に細胞傷害作用を発揮することが好ましい。それを実現するための手法の一例として、野生型グランザイム等をコードする遺伝子とキメラ抗原受容体(CAR)をコードする遺伝子とを導入した細胞であって、CARが標的抗原と結合することにより当該細胞が活性化してグランザイム等の発現が増加する、遺伝子導入細胞を用いる方法が報告されている(特許文献3)。
US9528101B WO2005100556A2 特表2019-526285
How Do Cytotoxic Lymphocytes Kill Cancer Cells? Luis Martinez-Lostao, Alberto Anel and Julian PardoClin Cancer Res. 2015 Nov 15;21(22):5047-56 Delivery and therapeutic potential of human granzyme B Kurschus FC1, Jenne DE. Immunol Rev. 2010 May;235(1):159-71 Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumorsJ. P. Medema, J. de Jong, L. T. C. Peltenburg,E. M. E. Verdegaal, A. Gorter, S. A. Bres, K. L. M. C. Franken, M. Hahne, J. P. Albar, C. J. M. Melief, and R. OffringaProc Natl Acad Sci U S A. 2001 Sep 25; 98(20): 11515-11520 Cationic Sites on Granzyme B Contribute to Cytotoxicity by Promoting Its Uptake into Target CellsCatherina H. Bird, Jiuru Sun, Kheng Ung, Diana Karambalis, James C. Whisstock, Joseph A. Trapani, and Phillip I. BirdMol Cell Biol. 2005 Sep; 25(17): 7854-7867 Design of human granzyme B variants resistant to serpin B9Losasso V, Schifer S, Barth S, Carloni P.Proteins. 2012 Nov;80(11):2514-22 Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosisKurschus FC, Fellows E, Stegmann E, Jenne DE.Proc Natl Acad Sci U S A. 2008 Sep 16; 105(37): 13799-13804
 特許文献1で報告されたグランザイムB改変体は、ヒト野生型グランザイムBと比較したプロテアーゼ活性の増強は軽微であり、細胞傷害活性が十分ではない可能性がある。特許文献2は、ラットグランザイムBに対する網羅的な改変を行っているものの、阻害因子耐性についてのデータの開示はなく、これら改変体が阻害因子の存在下において十分な細胞傷害活性を発揮するか不明である。
 また、先行研究では、精製されたグランザイムBあるいはその改変体を直接静脈注射するなどして使用する方法が提案されているが、そのような使用法の場合、投与されたグランザイムBを取り込んだ細胞が細胞死を起こし、重篤な副作用を引き起こす恐れもある。したがって、グランザイムBを用いた治療方法として、直接注射以外の手法についての検討も求められる。
 このような課題に基づき、本発明は、プロテアーゼ活性を上昇させる改変を網羅的改変により複数見出し、それらを組み合わせることでグランザイムBの活性上昇を図った。その結果、先行文献において未報告の遺伝子改変によりグランザイムBプロテアーゼ活性が増強されることを見出した。さらにこれらの改変を組み合わせることで野生型グランザイムBに対して大幅な活性上昇が可能であることを示した。また、改変体のグランザイムB阻害剤に対する耐性を調べた結果、改変体が阻害剤存在下においても高いプロテアーゼ活性を示すことを示した。
 そこで本開示では、遺伝子改変によってプロテアーゼ活性および/または阻害因子耐性が増強したグランザイムB改変体を提供するとともに、このグランザイムB改変体の医薬用途として、当該改変体を含む医薬組成物、当該改変体を発現する細胞を含む医薬組成物、ならびに当該改変体と受容体および/または抗体医薬との併用による医薬組成物の構成を提供する。
 本開示はこのような知見に基づくものであり、具体的には以下に例示的に記載する実施態様を包含するものである。
〔1〕以下の1~20より選択される1以上のアミノ酸残基を含むグランザイムB改変体。
1)43位のT、E、NまたはV、2)44位のLまたはF、3)45位のQ、LまたはA、4)46位のI、E、FまたはQ、5)47位のV、6)48位のFまたはK、7)99位のL、8)106位のA、9)149位のM、10)151位のL、11)155位のP、12)172位のL、13)175位のQ、EまたはI、14)183位のP、15)184位のL、16)200位のR、17)217位のI、18)219位のF、19)222位のGまたはS、20)229位のV
〔2〕以下の1~12のいずれかのアミノ酸残基の組合せを含む〔1〕に記載のグランザイムB改変体。
1) 44位のL,48位のK,155位のP,172位のL,175位のIおよび200位のR
2) 44位のL,48位のE,155位のP,172位のL,175位のIおよび200位のR
3) 44位のF,48位のK,155位のP,172位のL,175位のIおよび200位のR
4) 44位のF,48位のE,155位のP,172位のL,175位のIおよび200位のR
5) 44位のL,46位のI,155位のP,172位のL,175位のIおよび200位のR
6) 44位のL,46位のE,155位のP,172位のL,175位のIおよび200位のR
7) 44位のL,46位のF,155位のP,172位のL,175位のIおよび200位のR
8) 44位のL,46位のQ,155位のP,172位のL,175位のIおよび200位のR
9) 44位のF,46位のI,155位のP,172位のL,175位のIおよび200位のR
10) 44位のF,46位のE,155位のP,172位のL,175位のIおよび200位のR
11) 44位のF,46位のF,155位のP,172位のL,175位のIおよび200位のR
12) 44位のF,46位のQ,155位のP,172位のL,175位のIおよび200位のR
〔3〕プロテアーゼ活性がヒト野生型グランザイムBよりも増強された〔1〕または〔2〕に記載のグランザイムB改変体。
〔4〕ヒト野生型グランザイムBに対する阻害因子への耐性を有する〔1〕~〔3〕のいずれかに記載のグランザイムB改変体。
〔5〕阻害因子がPI-9またはヘパリンである〔4〕に記載のグランザイムB改変体。
〔6〕〔1〕~〔5〕のいずれかに記載のグランザイムB改変体をコードする、単離された核酸。
〔7〕〔6〕に記載の単離された核酸を含むベクター。
〔8〕〔6〕に記載の単離された核酸または〔7〕に記載のベクターで形質転換または形質導入された細胞。
〔9〕〔1〕~〔5〕のいずれかに記載のグランザイムB改変体を発現する細胞。
〔10〕〔6〕に記載の単離された核酸、〔7〕に記載のベクターまたは〔8〕若しくは〔9〕に記載の細胞を含む医薬組成物。
〔11〕〔1〕~〔5〕のいずれかに記載のグランザイムB改変体を含む医薬組成物。
〔12〕受容体を発現する細胞の投与と組み合わせて用いるための、グランザイムB改変体を発現する細胞またはグランザイムB改変体を含む、医薬組成物であって、
受容体は、リガンドへの結合により当該受容体を発現する細胞を活性化し、
グランザイムB改変体は、プロテアーゼ活性がヒト野生型グランザイムBよりも増強され、かつヒト野生型グランザイムBに対する阻害因子への耐性を有する、医薬組成物。
〔13〕受容体は、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含み、細胞外結合ドメインを介してリガンドへ結合するキメラ受容体である〔12〕に記載の医薬組成物。
〔14〕受容体は、ネオアンチゲンをリガンドとするT細胞受容体である〔12〕に記載の医薬組成物。
〔15〕グランザイムB改変体は、〔1〕、〔2〕または〔5〕に記載のものである〔12〕~〔14〕のいずれかに記載の医薬組成物。
〔16〕受容体を発現する細胞を含む〔12〕~〔15〕のいずれかに記載の医薬組成物。
〔17〕受容体とグランザイムB改変体とが同一のT細胞内に発現する〔16〕に記載の医薬組成物。
〔18〕抗原結合分子の投与、およびキメラ受容体を発現する細胞の投与と組み合わせて用いるための、グランザイムB改変体を発現する細胞またはグランザイムB改変体を含む、医薬組成物であって、
抗原結合分子は標的抗原に対する結合能を有し、
キメラ受容体は、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含み、細胞外結合ドメインの抗原結合分子への結合を介して標的抗原を発現する細胞に結合することができ、
グランザイムB改変体は、プロテアーゼ活性がヒト野生型グランザイムBよりも増強され、かつヒト野生型グランザイムBに対する阻害因子への耐性を有する、医薬組成物。
〔19〕抗原結合分子は、プロテアーゼによって切断されるリンカーを含み、
細胞外結合ドメインは、リンカー切断後の抗原結合分子へ結合することができる〔18〕に記載の医薬組成物。
〔20〕グランザイムB改変体は、〔1〕、〔2〕または〔5〕に記載のものである〔18〕又は〔19〕に記載の医薬組成物。
〔21〕キメラ受容体を発現する細胞を含む〔18〕~〔20〕のいずれかに記載の医薬組成物。
〔22〕キメラ受容体とグランザイムB改変体とが同一のT細胞内に発現する〔21〕に記載の医薬組成物。
〔23〕キメラ受容体が、キメラ抗原受容体である〔13〕、〔15〕~〔22〕のいずれかに記載の医薬組成物。
〔A1〕ヒト野生型グランザイムBに対し、以下の1~20より選択される1以上のアミノ酸残基の変異を含むグランザイムB改変体。
1)43T、43E、43Nまたは43V、2)44Lまたは44F、3)45Q、45Lまたは45A、4)46I、46E、46Fまたは46Q、5)47V、6)48FまたはK、7)99L、8)106A、9)149M、10)151L、11)155P、12)172L、13)175Q、175Eまたは175I、14)183P、15)184L、16)200R、17)217I、18)219F、19)222Gまたは222S、20)229V
〔A2〕ヒト野生型グランザイムBに対し、以下の1~20より選択される1以上のアミノ酸残基の変異を含む〔A1〕に記載のグランザイムB改変体。
1)Q43T、Q43E、Q43NまたはQ43V、2)K44LまたはK44F、3)S45Q、S45LまたはS45A、4)L46I、L46E、L46FまたはL46Q、5)K47V、6)R48F、7)A99L、8)S106A、9)Q149M、10)A151L、11)K155P、12)K172L、13)S175Q、S175EまたはS175I、14)S183P、15)T184L、16)K200R、17)V217I、18)Y219F、19)N222GまたはN222S、20)A229V
〔A3〕アミノ酸残基の変異が、以下の1~12のいずれかである〔A1〕に記載のグランザイムB改変体。
1) 44L,48K,155P,172L,175Iおよび200R
2) 44L,48E,155P,172L,175Iおよび200R
3) 44F,48K,155P,172L,175Iおよび200R
4) 44F,48E,155P,172L,175Iおよび200R
5) 44L,46I,155P,172L,175Iおよび200R
6) 44L,46E,155P,172L,175Iおよび200R
7) 44L,46F,155P,172L,175Iおよび200R
8) 44L,46Q,155P,172L,175Iおよび200R
9) 44F,46I,155P,172L,175Iおよび200R
10) 44F,46E,155P,172L,175Iおよび200R
11) 44F,46F,155P,172L,175Iおよび200R
12) 44F,46Q,155P,172L,175Iおよび200R
〔A4〕アミノ酸残基の変異が、以下の1~12のいずれかである〔A3〕に記載のグランザイムB改変体。
1) K44L,R48K,K155P,K172L,S175IおよびK200R
2) K44L,R48E,K155P,K172L,S175IおよびK200R
3) K44F,R48K,K155P,K172L,S175IおよびK200R
4) K44F,R48E,K155P,K172L,S175IおよびK200R
5) K44L,L46I,K155P,K172L,S175IおよびK200R
6) K44L,L46E,K155P,K172L,S175IおよびK200R
7) K44L,L46F,K155P,K172L,S175IおよびK200R
8) K44L,L46Q,K155P,K172L,S175IおよびK200R
9) K44F,L46I,K155P,K172L,S175IおよびK200R
10) K44F,L46E,K155P,K172L,S175IおよびK200R
11) K44F,L46F,K155P,K172L,S175IおよびK200R
12) K44F,L46Q,K155P,K172L,S175IおよびK200R
〔A5〕配列番号1に記載のヒト野生型グランザイムBに対し、1以上のアミノ酸残基の変異を含む〔A1〕~〔A4〕のいずれかに記載のグランザイムB改変体。
〔A6〕プロテアーゼ活性がヒト野生型グランザイムBよりも増強された〔A1〕~〔A5〕のいずれかに記載のグランザイムB改変体。
〔A7〕ヒト野生型グランザイムBに対する阻害因子への耐性を有する〔A1〕~〔A6〕のいずれかに記載のグランザイムB改変体。
〔A8〕阻害因子がPI-9またはヘパリンである〔A7〕に記載のグランザイムB改変体。
〔A9〕〔A1〕~〔A8〕のいずれかに記載のグランザイムB改変体をコードする、単離された核酸。
〔A10〕〔A9〕に記載の単離された核酸を含むベクター。
〔A11〕〔A9〕に記載の単離された核酸または〔A10〕に記載のベクターで形質転換または形質導入された細胞。
〔A12〕〔A1〕~〔A8〕のいずれかに記載のグランザイムB改変体を発現する細胞。
〔A13〕〔A9〕に記載の単離された核酸、〔A10〕に記載のベクターまたは〔A11〕若しくは〔A12〕に記載の細胞を含む医薬組成物。
〔A14〕〔A1〕~〔A8〕のいずれかに記載のグランザイムB改変体を含む医薬組成物。
〔A15〕グランザイムB改変体は、〔A1〕~〔A5〕のいずれかに記載のものである〔12〕~〔14〕のいずれかに記載の医薬組成物。
〔A16〕受容体を発現する細胞を含む〔A15〕に記載の医薬組成物。
〔A17〕受容体とグランザイムB改変体とが同一のT細胞内に発現する〔A16〕に記載の医薬組成物。
〔A18〕グランザイムB改変体は、〔A1〕~〔A5〕のいずれかに記載のものである〔18〕又は〔19〕に記載の医薬組成物。
〔A19〕キメラ受容体を発現する細胞を含む〔A18〕に記載の医薬組成物。
〔A20〕キメラ受容体とグランザイムB改変体とが同一のT細胞内に発現する〔A19〕に記載の医薬組成物。
〔A21〕受容体が、キメラ抗原受容体である〔A15〕~〔A20〕のいずれかに記載の医薬組成物。
〔B1〕グランザイムB改変体のin vitroプロテアーゼ活性がヒト野生型グランザイムBに対し1.5倍以上である〔3〕もしくは〔A6〕に記載のグランザイムB改変体、又は〔12〕もしくは〔18〕に記載の医薬組成物。
〔B2〕グランザイムB改変体のin vitroプロテアーゼ活性がヒト野生型グランザイムBに対し2倍以上である〔B1〕に記載のグランザイムB改変体又は医薬組成物。
〔B3〕阻害因子存在下でのin vitroプロテアーゼ活性がヒト野生型グランザイムBに対し1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、または1.5倍以上である〔4〕もしくは〔A7〕に記載のグランザイムB改変体、又は〔12〕もしくは〔18〕に記載の医薬組成物。
〔B4〕阻害因子存在下でのin vitroプロテアーゼ活性がヒト野生型グランザイムBに対し1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、1.5倍以上または2倍以上である〔B3〕に記載のグランザイムB改変体又は医薬組成物。
〔B5〕阻害因子がPI-9またはヘパリンである〔B3〕又は〔B4〕に記載のグランザイムB改変体又は医薬組成物。
〔B6〕〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体をコードする、単離された核酸。
〔B7〕〔B6〕に記載の単離された核酸を含むベクター。
〔B8〕〔B6〕に記載の単離された核酸または〔B7〕に記載のベクターで形質転換または形質導入された細胞。
〔B9〕〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体を発現する細胞。
〔B10〕〔B6〕に記載の単離された核酸、〔B7〕に記載のベクターまたは〔B8〕若しくは〔B9〕に記載の細胞を含む医薬組成物。
〔B11〕〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体を含む医薬組成物。
〔B12〕受容体は、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含み、細胞外結合ドメインを介してリガンドへ結合するキメラ受容体である〔B1〕~〔B5〕のいずれかに記載の医薬組成物。
〔B13〕受容体は、ネオアンチゲンをリガンドとするT細胞受容体である〔B1〕~〔B5〕のいずれかに記載の医薬組成物。
〔B14〕グランザイムB改変体は、〔1〕、〔2〕、または〔A1〕~〔A5〕のいずれかに記載のものである〔B1〕~〔B5〕、〔B12〕または〔B13〕のいずれかに記載の医薬組成物。
〔B15〕受容体を発現する細胞を含む〔B1〕~〔B5〕、または〔B12〕~〔B14〕のいずれかに記載の医薬組成物。
〔B16〕受容体とグランザイムB改変体とが同一のT細胞内に発現する〔B15〕に記載の医薬組成物。
〔B17〕抗原結合分子は、プロテアーゼによって切断されるリンカーを含み、
細胞外結合ドメインは、リンカー切断後の抗原結合分子へ結合することができる〔B1〕~〔B5〕に記載の医薬組成物。
〔B18〕グランザイムB改変体は、〔1〕、〔2〕、または〔A1〕~〔A5〕のいずれかに記載のものである〔B1〕~〔B5〕、または〔B17〕のいずれかに記載の医薬組成物。
〔B19〕キメラ受容体を発現する細胞を含む〔B1〕~〔B5〕、〔B17〕、または〔B18〕のいずれかに記載の医薬組成物。
〔B20〕キメラ受容体とグランザイムB改変体とが同一のT細胞内に発現する〔B19〕に記載の医薬組成物。
〔B21〕キメラ受容体が、キメラ抗原受容体である〔B12〕、〔B14〕~〔B20〕のいずれかに記載の医薬組成物。
〔C1〕がんの治療または予防において用いるための、〔10〕~〔23〕のいずれかに記載の医薬組成物。
〔C2〕炎症性疾患の治療又は予防において用いるための、〔10〕~〔23〕のいずれかに記載の医薬組成物。
〔C3〕がん又は炎症性疾患の治療又は予防において用いるための、〔1〕~〔5〕、〔A1〕~〔A8〕、もしくは〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体又は〔8〕もしくは〔9〕に記載の細胞。
〔C4〕〔1〕~〔5〕、〔A1〕~〔A8〕、もしくは〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体又は〔8〕もしくは〔9〕に記載の細胞を投与することを含む、がん又は炎症性疾患を治療又は予防する方法。
〔C5〕受容体を発現する細胞を投与することをさらに含み、受容体は、リガンドへの結合により当該受容体を発現する細胞を活性化する、〔C4〕に記載の方法。
〔C6〕受容体は、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含み、細胞外結合ドメインを介してリガンドへ結合するキメラ受容体である、〔C5〕に記載の方法。
〔C7〕抗原結合分子を投与することをさらに含み、抗原結合分子は標的抗原に対する結合能を有し、キメラ受容体は、細胞外結合ドメインの抗原結合分子への結合を介して標的抗原を発現する細胞に結合することができる、〔C6〕に記載の方法。
〔C8〕抗原結合分子は、プロテアーゼによって切断されるリンカーを含み、細胞外結合ドメインは、リンカー切断後の抗原結合分子へ結合することができる、〔C7〕に記載の方法。
〔C9〕受容体は、ネオアンチゲンをリガンドとするT細胞受容体である、〔C5〕に記載の方法。
〔C10〕前記投与が、受容体とグランザイムB改変体とを発現するT細胞の投与である、〔C5〕~〔C9〕のいずれかに記載の方法。
〔C11〕がん又は炎症性疾患の治療剤又は予防剤の製造における、〔1〕~〔5〕のいずれかに記載のグランザイムB改変体又は〔8〕もしくは〔9〕に記載の細胞の使用。
〔D1〕〔1〕~〔5〕、〔A1〕~〔A8〕、もしくは〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体をコードする、単離された核酸の製造方法。
〔D2〕〔6〕、〔A9〕、または〔B6〕に記載の単離された核酸を含むベクターの製造方法。
〔D3〕〔6〕、〔A9〕、または〔B6〕に記載の単離された核酸または〔7〕、〔A10〕、または〔B7〕に記載のベクターで形質転換または形質導入された細胞の製造方法。
〔D4〕〔1〕~〔5〕、〔A1〕~〔A8〕、もしくは〔B1〕~〔B5〕のいずれかに記載のグランザイムB改変体を発現する細胞の製造方法。
 非限定的な一態様において、本開示のグランザイムB改変体は、野生型グランザイムBと比べて高いプロテアーゼ活性および/または阻害因子への耐性を有する。このような有利な効果を有する本開示のグランザイムB改変体またはそれを発現する細胞を含む医薬組成物は、標的細胞の細胞死の誘導において、野生型グランザイムBおよび先行技術のグランザイムB改変体よりも有利である。また、本開示のグランザイムB改変体を、受容体を発現する細胞を用いた医薬品および/または抗体医薬品と併用することにより、標的細胞に特異的に細胞死を誘導可能である。
ヒト野生型グランザイムBのアミノ酸配列(NCBI Reference Sequence. NP_004122.2:配列番号1)におけるアミノ酸番号21-247(N末端側から21番目~247番目のアミノ酸)のアミノ酸配列(配列番号2)を示す。当該配列中、実施例2において改変を実施した位置のアミノ酸に下線を付している。 実施例4-1におけるグランザイムB改変体のプロテアーゼ活性の測定結果を示す。縦軸は、野生型グランザイムBのプロテアーゼ活性を1とした場合の各グランザイムB改変体のプロテアーゼ活性の相対値を示す。横軸は、測定に供した改変体のアミノ酸置換を示す。 実施例4-2におけるグランザイムB改変体のプロテアーゼ活性の測定結果を示す。縦軸は、(1)阻害剤非存在下(Buffer)、(2)ヘパリン存在下(Heparin)、または(3)PI-9存在下(PI-9)での野生型グランザイムBのプロテアーゼ活性を1とした場合の各グランザイムB改変体のプロテアーゼ活性の相対値を示す。横軸は、測定に供した改変体のアミノ酸置換を示す。
I.定義
 別途定義しない限り、本明細書で使用される技術用語および科学用語は、本発明が属する技術分野の当業者によって一般的に理解されるのと同じ意味を有する。Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994)、およびMarch, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992)は、本出願において使用される用語の多くに対する一般的指針を当業者に提供する。特許出願および刊行物を含む、本明細書に引用される全ての参考文献は、その全体が参照により本明細書に組み入れられる。
 本明細書を解釈する目的のために、以下の定義が適用され、該当する場合はいつでも、単数形で使用された用語は複数形をも含み、その逆もまた同様である。本明細書で使用される用語は、特定の態様を説明することのみを目的としており、限定を意図したものではないことが、理解されるべきである。下記の定義のいずれかが、参照により本明細書に組み入れられた任意の文書と矛盾する場合には、下記の定義が優先するものとする。
 本明細書でいう用語「グランザイムB」は、別段示さない限り、霊長類(例えば、ヒト)およびげっ歯類(例えば、マウスおよびラット)などの哺乳動物を含む、任意の脊椎動物供給源からの任意の野生型グランザイムBのことをいう。この用語は、「全長」のプロセシングを受けていないグランザイムBも、細胞中でのプロセシングの結果生じるいかなる形態のグランザイムBも包含する。この用語はまた、自然に生じるグランザイムBの変異体、例えば、スプライス変異体や対立遺伝子変異体も包含する。例示的なヒト野生型グランザイムBのアミノ酸配列は、配列番号1(NCBI Reference Sequence. NP_004122.2)に示されるが、必ずしもこれに限定されず、アミノ酸配列の一部異なるバリアントを含む。そのようなバリアントには、配列番号:1に対し、90%以上、95%以上、97%以上、または99%以上の相同性を有するアミノ酸配列で表されるヒト野生型グランザイムBが含まれる。
 本明細書において「変異」および「改変」は相互に交換可能に用いられ、アミノ酸配列へのアミノ酸残基の「付加」、アミノ酸配列からのアミノ酸残基の「欠失」、アミノ酸配列中へのアミノ酸残基の「挿入」、および/またはアミノ酸配列中のアミノ酸残基の「置換」が含まれる。所望の特徴(例えば、プロテアーゼ活性または阻害因子への耐性)を有する改変体(変異体)を得るために、付加、欠失、挿入、および置換の任意の組合せが導入され得る。一態様において、本開示のグランザイムB改変体は、1つまたは複数のアミノ酸残基の置換を含む。
 本明細書においてグランザイムBにおける各アミノ酸の位置が示される場合、配列番号1に例示されるヒト野生型グランザイムBのアミノ酸配列における対応するアミノ酸番号(配列番号1の場合、アミノ酸配列におけるN末端アミノ酸の位置を1とする連続番号)が指定される。例えば、本開示のグランザイムB改変体について、「44位のF(Phe)のアミノ酸残基を含む」と示される場合、当該グランザイムB改変体を構成するN末端側から44番目のアミノ酸残基がF(Phe)であることを意味する。
 また、本明細書においてグランザイムBのアミノ酸改変が示される場合、改変位置のアミノ酸番号の左側および右側、または左側、右側のいずれかに、それぞれ当該位置における改変前(すなわち野生型グランザイムB)および改変後のアミノ酸残基を(例えば一文字表記で)示す。例えば、配列番号1に示されるアミノ酸配列におけるN末端側から44番目のアミノ酸残基K(Lys)に対応する位置のアミノ酸残基がF(Phe)に改変される場合、本明細書では当該アミノ酸改変をK44Fと表す。また、単にグランザイムBのN末端側から44番目のアミノ酸残基がF(Phe)に改変されることを示す場合、44Fと表す。
 改変対象のグランザイムBのアミノ酸配列が配列番号1に示される配列と異なる部分があったとしても、当業者であれば、本明細書に示される改変位置が実際に改変対象となるグランザイムBにおいてどの位置に対応するかを、適宜(例えば配列アライメントを行うことにより)判断することができる。
 本開示において、グランザイムB改変体は、以下の1~20より選択される1以上のアミノ酸残基を含む。
1)43位のT、E、NまたはV、2)44位のLまたはF、3)45位のQ、LまたはA、4)46位のI、E、FまたはQ、5)47位のV、6)48位のFまたはK、7)99位のL、8)106位のA、9)149位のM、10)151位のL、11)155位のP、12)172位のL、13)175位のQ、EまたはI、14)183位のP、15)184位のL、16)200位のR、17)217位のI、18)219位のF、19)222位のGまたはS、20)229位のV
 また、別の局面において、本開示のグランザイムB改変体は、以下の1~12のいずれかのアミノ酸残基の組合せを含む。
1) 44位のL,48位のK,155位のP,172位のL,175位のIおよび200位のR
2) 44位のL,48位のE,155位のP,172位のL,175位のIおよび200位のR
3) 44位のF,48位のK,155位のP,172位のL,175位のIおよび200位のR
4) 44位のF,48位のE,155位のP,172位のL,175位のIおよび200位のR
5) 44位のL,46位のI,155位のP,172位のL,175位のIおよび200位のR
6) 44位のL,46位のE,155位のP,172位のL,175位のIおよび200位のR
7) 44位のL,46位のF,155位のP,172位のL,175位のIおよび200位のR
8) 44位のL,46位のQ,155位のP,172位のL,175位のIおよび200位のR
9) 44位のF,46位のI,155位のP,172位のL,175位のIおよび200位のR
10) 44位のF,46位のE,155位のP,172位のL,175位のIおよび200位のR
11) 44位のF,46位のF,155位のP,172位のL,175位のIおよび200位のR
12) 44位のF,46位のQ,155位のP,172位のL,175位のIおよび200位のR
 本明細書において「プロテアーゼ活性」は、特にグランザイムBとの関連においては、グランザイムBがその基質を切断する活性を指す。グランザイムBのプロテアーゼ活性を評価する方法は当業者に公知であり、種々の活性測定キットや合成基質が市販されている。そのような合成基質の例として、グランザイムBの認識配列(例えばIle-Glu-Pro-Asp (IEPD))を持つ合成ペプチドが検出可能物質(例えばp-ニトロアニリド(pNA))で標識されたもの(例えばAc-IEPD-pNA)が知られている。グランザイムBが合成基質を切断することによりフリーの検出可能物質が放出され、それらを蛍光光度計や分光光度計で定量することができる。一例として、グランザイムB改変体のプロテアーゼ活性の評価は、本開示の実施例4に記載の手法により行うことができる。例えば、阻害剤存在下におけるプロテアーゼ活性の評価は、実施例4に記載の評価系を使い、同実施例と同様のグランザイムBおよび阻害因子の濃度条件下で測定することができる。
 本開示のグランザイムB改変体のプロテアーゼ活性は、野生型グランザイムBのプロテアーゼ活性と比べて増強されていることが好ましく、例えば野生型グランザイムBのプロテアーゼ活性よりも1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、または1.5倍以上高いことが好ましく、2倍以上または2.5倍以上高いことがより好ましく、3倍以上高いことが特に好ましい。
 野生型グランザイムBのプロテアーゼ活性は、PI-9、ヘパリン等の「阻害因子」により阻害されることが知られている。本開示のグランザイムB改変体は、そのような阻害因子への耐性を有することが好ましい。本明細書において、「阻害因子への耐性」とは、当該阻害因子の存在下で野生型グランザイムBよりも高いプロテアーゼ活性を発揮する能力をいう。そのような阻害因子の存在下での本開示のグランザイムB改変体のプロテアーゼ活性は、野生型グランザイムBと比べて1.1倍以上、1.2倍以上、1.3倍以上、1.4倍以上、または1.5倍以上高いことが好ましく、2倍以上、2.5倍以上、3倍以上、または3.5倍以上高いことがより好ましく、4倍以上、4.5倍以上、5倍以上、または5.5倍以上高いことが特に好ましい。
 「単離された」核酸は、そのもともとの環境の成分から分離された核酸分子のことをいう。単離された核酸は、その核酸分子を通常含む細胞の中に含まれた核酸分子を含むが、その核酸分子は染色体外に存在しているかまたは本来の染色体上の位置とは異なる染色体上の位置に存在している。
 本明細書で用いられる用語「ベクター」は、それが連結された別の核酸を増やすことができる、核酸分子のことをいう。この用語は、自己複製核酸構造としてのベクター、および、それが導入された宿主細胞のゲノム中に組み入れられるベクターを含む。あるベクターは、自身が動作的に連結された核酸の、発現をもたらすことができる。そのようなベクターは、本明細書では「発現ベクター」とも称される。
 用語「宿主細胞」、「宿主細胞株」、および「宿主細胞培養物」は、相互に交換可能に用いられ、外来核酸を導入された細胞(そのような細胞の子孫を含む)のことをいう。宿主細胞は「形質転換体」および「形質転換細胞」または「形質導入体」および「形質導入細胞」を含み、これには初代の形質転換細胞または形質導入細胞および継代数によらずその細胞に由来する子孫を含む。子孫は、親細胞と核酸の内容において完全に同一でなくてもよく、変異を含んでいてもよい。オリジナルの形質転換細胞または形質導入細胞がスクリーニングされたまたは選択された際に用いられたものと同じ機能または生物学的活性を有する変異体子孫も、本明細書では含まれる。
 本明細書において、「グランザイムBを発現する細胞」は、別段示されていない限り、内在性のグランザイムBを発現する細胞であっても、遺伝子導入によりグランザイムBを発現する細胞であってもよい。内在性のグランザイムBを発現する細胞としては、例えば、細胞傷害性のリンパ球であるT細胞やNK細胞が知られている。一方、グランザイムBを発現するよう遺伝子導入(トランスフェクト)される細胞は、T細胞やNK細胞に限定されず、種々の細胞において組換えグランザイムBを発現させて、(例えばその培養上清からグランザイムBを精製することにより)組換えグランザイムBを取得することができる。また、個体(例えば、健常ドナー、または特定の疾患に罹患している患者)に由来する細胞(例えば、末梢血単核細胞(PBMC))に、グランザイムBを発現する遺伝子を導入し、その遺伝子導入細胞を同じ個体または別の個体に投与することができる。グランザイムBを発現する遺伝子導入細胞を処理して特定の細胞型(例えば、細胞傷害性T細胞)に分化させた後に個体に投与してもよい。グランザイムBをコードする遺伝子を細胞に導入する方法としては、当業者に周知の種々の遺伝子導入技術を用いることができる。
 グランザイムBを発現する細胞は、キメラ受容体を発現する細胞と組み合わせて投与されてもよい。また、グランザイムBおよびキメラ受容体の両方を発現する細胞を用いてもよく、そのような細胞は、グランザイムBおよびキメラ受容体を同時にまたは別々に遺伝子導入することにより作製することができる。
 T細胞やNK細胞のように内在性のグランザイムBを発現する細胞にグランザイムB改変体を発現させる場合、当該細胞における内在性の野生型グランザイムBをノックアウトしてもよいし、ノックアウトしなくてもよい。
 用語「薬学的製剤」または「医薬組成物」は、その中に含まれた有効成分の生物学的活性が効果を発揮し得るような形態にある調製物であって、かつ当該製剤または組成物が投与される対象(subject)に許容できない程度に毒性のある追加の要素を含んでいない、調製物のことをいう。「有効成分」は、抗体やポリペプチド等として構成することもできるし、抗体やポリペプチド等(例えば本開示のグランザイムB改変体)を発現する細胞として構成することもできる。例えば、本開示のグランザイムB改変体をコードする核酸または当該核酸を含むベクターで形質転換または形質導入した細胞を、治療又は予防を目的として患者へ投与する場合、このような細胞を含む調整物は「薬学的製剤」または「医薬組成物」と呼ぶことができる。
 「薬学的に許容される担体」は、対象に対して無毒な、薬学的製剤または医薬組成物中の有効成分以外の成分のことをいう。薬学的に許容される担体は、これらに限定されるものではないが、緩衝液、賦形剤、安定化剤、または保存剤を含む。
 「個体」または「対象」は哺乳動物である。哺乳動物は、これらに限定されるものではないが、飼育動物(例えば、ウシ、ヒツジ、ネコ、イヌ、ウマ)、霊長類(例えば、ヒト、およびサルなどの非ヒト霊長類)、ウサギ、ならびに、げっ歯類(例えば、マウスおよびラット)を含む。特定の態様では、個体または対象は、ヒトである。
 一局面において、本開示は、グランザイムB改変体、グランザイムB改変体を発現する細胞、またはそれらを含む医薬組成物を提供する。
 一態様において、本開示の医薬組成物は、受容体を発現する細胞と併用する(組み合わせて用いる)ことができる。ここで、当該受容体は、リガンドへの結合により当該受容体を発現する細胞を活性化するものであり、例えば、細胞外結合ドメインを介してリガンドへ結合するキメラ受容体、およびネオアンチゲンをリガンドとするT細胞受容体を含むが、これらに限定されない。本開示の医薬組成物は、受容体を発現する細胞およびグランザイムB改変体を発現する細胞を含んでもよく、受容体およびグランザイムB改変体は同一の細胞(例えばT細胞)において発現されてもよい。
 このような本開示の医薬組成物は、キメラ受容体の細胞外結合ドメインと結合することができる抗原結合分子と併用する(組み合わせて用いる)ことができる。ここで、当該抗原結合分子は標的抗原に対する結合能を有し、キメラ受容体は、その細胞外結合ドメインの抗原結合分子への結合を介して標的抗原を発現する細胞に結合することができる。特定の態様において、抗原結合分子は、プロテアーゼによって切断されるリンカーを含み、細胞外結合ドメインは、リンカー切断後の抗原結合分子へ結合することができる。本開示の医薬組成物は、キメラ受容体を発現する細胞およびグランザイムB改変体を発現する細胞、ならびにキメラ受容体の細胞外結合ドメインと結合することができる抗原結合分子を含んでもよく、受容体およびグランザイムB改変体は同一の細胞(例えばT細胞)において発現されてもよい。
 グランザイムB改変体、グランザイムB改変体を発現する細胞、受容体を発現する細胞、受容体およびグランザイムB改変体を発現する細胞、ならびにキメラ受容体の細胞外結合ドメインと結合することができる抗原結合分子のうちの1つまたは複数を併用する(組み合わせて用いる)場合、それらを、同時に、別々に、または、順次に用いる(例えば、個体に投与する)ことができる。
 一態様において、本開示の医薬組成物は、細胞の傷害、細胞死の誘導、細胞増殖の抑制、またはがんもしくは炎症性疾患の治療もしくは予防において用いるためのものである。
用語「キメラ受容体」は、少なくとも、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含む、免疫エフェクター細胞に発現したとき、標的細胞、例えば癌細胞に対する特異性および細胞内シグナル産生をさせる、組換えポリペプチドを指す。用語「キメラ抗原受容体」あるいは「CAR」は細胞外結合ドメインが抗原に結合するキメラ受容体を意味する。
 用語「細胞外結合ドメイン」は、所定の抗原等の分子と特異的に結合し得る任意のタンパク質性分子またはその一部を意味し、例えば、腫瘍抗原等に特異的なモノクローナル抗体可変領域の軽鎖(VL)と重鎖(VH)を直列に結合させた単鎖抗体(scFv)を含む。細胞外結合ドメインは、細胞外認識ドメインと言い換えることもできる。
 用語「膜貫通ドメイン」は、該細胞外結合ドメインと該細胞内シグナル伝達ドメインの間に位置し、細胞膜を貫通する機能を有するポリペプチドを含む。
 用語「細胞内シグナル伝達ドメイン」は、細胞内での生物学的プロセスの活性化または阻害、例えば、T細胞もしくはNK細胞などの免疫細胞の活性化を引き起こすシグナルを伝達する働きをすることが知られる任意のオリゴペプチドドメインまたはポリペプチドドメインを意味し、少なくとも1つのT細胞の刺激分子由来の刺激分子シグナル伝達ドメイン、少なくとも1つのT細胞の共刺激分子由来の共刺激分子シグナル伝達ドメインを含む。
 本明細書で用語「ネオアンチゲンをリガンドとするT細胞受容体」は、がん細胞の遺伝子変異に伴って生まれた変異抗原であるネオアンチゲンを認識するように設計されたT細胞受容体を含む。
 本明細書で用語「抗原結合分子」は、その最も広い意味において、抗原決定基(エピトープ)に特異的に結合する分子を指す。一態様において、抗原結合分子は、抗体、抗体断片、または抗体誘導体である。一態様において、抗原結合分子は、非抗体タンパク質、またはその断片、もしくはその誘導体である。
 本明細書において「抗原結合ドメイン」とは、抗原の一部または全部に特異的に結合し且つ相補的である領域をいう。本明細書において、抗原結合分子は抗原結合ドメインを含んで成る。抗原の分子量が大きい場合、抗原結合ドメインは抗原の特定部分にのみ結合することができる。当該特定部分はエピトープと呼ばれる。一態様において、抗原結合ドメインは特定の抗原に結合する抗体断片を含む。抗原結合ドメインは一または複数の抗体の可変ドメインより提供され得る。非限定的な一態様において、抗原結合ドメインは抗体軽鎖可変領域(VL)と抗体重鎖可変領域(VH)とを含む。こうした抗原結合ドメインの例としては、「scFv(single chain Fv)」、「単鎖抗体(single chain antibody)」、「Fv」、「scFv2(single chain Fv 2)」、「Fab」または「Fab'」等が挙げられる。別の態様において、抗原結合ドメインは特定の抗原に結合する非抗体タンパク質またはその断片を含む。特定の態様において、抗原結合ドメインはヒンジ領域を含む。
 本明細書において「特異的に結合する」とは、特異的に結合する分子の一方の分子がその一または複数の結合する相手方の分子以外の分子に対しては何ら有意な結合を示さない状態で結合することをいう。また、抗原結合ドメインが、ある抗原中に含まれる複数のエピトープのうち特定のエピトープに対して特異的である場合にも用いられる。また、抗原結合ドメインが結合するエピトープが複数の異なる抗原に含まれる場合には、当該抗原結合ドメインを有する抗原結合分子は当該エピトープを含む様々な抗原と結合することができる。
 本明細書で用語「抗体」は、最も広い意味で使用され、所望の抗原結合活性を示す限りは、これらに限定されるものではないが、モノクローナル抗体、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体)および抗体断片を含む、種々の抗体構造を包含する。
 「天然型抗体」は、天然に生じる様々な構造を伴う免疫グロブリン分子のことをいう。例えば、天然型IgG抗体は、ジスルフィド結合している2つの同一の軽鎖と2つの同一の重鎖から構成される約150,000ダルトンのヘテロ四量体糖タンパク質である。N末端からC末端に向かって、各重鎖は、可変重鎖ドメインまたは重鎖可変ドメインとも呼ばれる可変領域 (VH) を有し、それに3つの定常ドメイン(CH1、CH2、およびCH3)が続く。同様に、N末端からC末端に向かって、各軽鎖は、可変軽鎖ドメインまたは軽鎖可変ドメインとも呼ばれる可変領域 (VL) を有し、それに定常軽鎖 (CL) ドメインが続く。抗体の軽鎖は、その定常ドメインのアミノ酸配列に基づいて、カッパ(κ)およびラムダ(λ)と呼ばれる、2つのタイプの1つに帰属させられてよい。
 用語「可変領域」または「可変ドメイン」は、抗体を抗原へと結合させることに関与する、抗体の重鎖または軽鎖のドメインのことをいう。天然型抗体の重鎖および軽鎖の可変ドメイン(それぞれVHおよびVL)は、通常、各ドメインが4つの保存されたフレームワーク領域 (FR) および3つの超可変領域 (HVR) を含む、類似の構造を有する。(例えば、Kindt et al. Kuby Immunology, 6th ed., W.H. Freeman and Co., page 91 (2007) 参照。)1つのVHまたはVLドメインで、抗原結合特異性を与えるに充分であろう。さらに、ある特定の抗原に結合する抗体は、当該抗原に結合する抗体からのVHまたはVLドメインを使ってそれぞれVLまたはVHドメインの相補的ライブラリをスクリーニングして、単離されてもよい。例えばPortolano et al., J. Immunol. 150:880-887 (1993); Clarkson et al., Nature 352:624-628 (1991) 参照。
 いくつかの態様において、本開示は、有効量の本開示のグランザイムB改変体、グランザイムB改変体を発現する細胞、またはそれらを含む医薬組成物(以下、本開示の医薬組成物等と総称することがある)を投与することを含む、細胞を傷害する、細胞死を誘導する、細胞増殖を抑制する、炎症性疾患を治療する、がんを治療する、またはがんを予防する方法を提供する。いくつかの態様において、本発明における「有効量」は、個体において、細胞を傷害する、細胞死を誘導する、細胞増殖を抑制する、炎症性疾患を治療する、がんを治療する、またはがんを予防するために有効な本開示の医薬組成物等の用量を意味する。
 いくつかの実施態様において、本発明における「治療」は、本開示の医薬組成物等によって、個体のがん細胞数が減少すること、がん細胞の増殖が抑制されること、腫瘍のサイズ(体積および/または重量)が減少すること、腫瘍増大が抑制されること、末梢器官へのがん細胞の浸潤を抑制すること、がん細胞の転移を抑制すること、またはがんに起因する様々な症状が改善されることを意味する。また、いくつかの実施態様において、本発明における「予防」は、減少したがん細胞が再度増殖することによるがん細胞数の増加を防止すること、増殖が抑制されたがん細胞の再増殖を防止すること、減少した腫瘍のサイズ(体積および/または重量)が再度増大することを防止すること、を意味する。
〔応用例〕
 本開示のグランザイムB改変体は、受容体を発現する細胞の投与と組み合わせて用いることができる。受容体の一例として、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含むキメラ受容体が挙げられる。また、他の例として、通常のT細胞では認識できないネオアンチゲンを認識するよう設計された T細胞受容体が挙げられる。これらの受容体を利用した技術と本開示のグランザイムB改変体との組合せの一つの態様として、患者からT細胞を採取し、かかるT細胞にキメラ受容体(例えば、キメラ抗原受容体)をコードする遺伝子と、グランザイムB改変体をコードする遺伝子とを導入し、再度患者に移入する手段がある。(なお、これに限定されずに、別々に遺伝子導入、患者へ移入することもできる。)キメラ抗原受容体ががん細胞などの細胞表面抗原を認識してT細胞を活性化させ、本開示のグランザイムB改変体による増強された細胞傷害活性が発揮されることにより、高い治療効果が期待される。
 同様に、患者から採取したT細胞へ、ネオアンチゲンをリガンドとするT細胞受容体をコードする遺伝子と、グランザイムB改変体をコードする遺伝子とを導入し、再度患者へ移入することにより、組合せによる高い治療効果が期待される。
 また、本開示のグランザイムB改変体とキメラ受容体との組み合わせでは、更に抗原結合分子(抗体等)との組み合わせを用いることもできる。この場合、抗原結合分子は標的抗原に対する結合能を有し、キメラ受容体は細胞外結合ドメインの抗原結合分子への結合を介して標的抗原を発現する細胞に結合することができる。抗原結合分子の一態様として、予め抗原結合分子にプロテアーゼによって切断されるリンカーを含ませておき、キメラ受容体は、リンカー切断後の抗原結合分子へ結合することができるように設計しておくことができる。このような組合せの一つの態様として、患者からT細胞を採取し、かかるT細胞にキメラ受容体をコードする遺伝子と、グランザイムB改変体をコードする遺伝子とを導入し、再度患者に移入し、これとは別に、抗原結合分子を含む医薬組成物を患者へ投与する手段がある。
 以下に改変グランザイムの構築、発現、精製、遺伝子導入、および傷病治療を目的とした利用に関する実施例を記載するが当該特許の実施法はこれらの実施例に限定されない。
〔実施例1〕ヒト野生型グランザイムB発現ベクターの構築
 ヒト野生型グランザイムBの配列(NCBI Reference Sequence. NP_004122.2)が遺伝子合成された。グランザイムBをコードするORFのうち、アミノ酸番号21-247(配列番号2)をコードする塩基配列の5’末端側に人工の分泌シグナル配列(MGILPSPGMPALLSLVSLLSVLLMGCVAETG(配列番号3))およびenterokinase認識配列(DDDDK(配列番号4))をコードする塩基配列が融合され、C末端側にはヒスチジンタグをコードする塩基配列が付加された(J Vis Exp. 2015 Jun 10;(100):e52911.)。当該配列(配列番号5)をコードする塩基配列は哺乳類細胞発現ベクターに挿入された。
 なお、本明細書中でグランザイムBのアミノ酸改変位置が示される場合、配列番号1に示されるヒト野生型グランザイムBのアミノ酸配列(NCBI Reference Sequence. NP_004122.2)における該当するアミノ酸番号が指定される。
〔実施例2〕グランザイムB改変体をコードする塩基配列の作製
 ヒト野生型グランザイムBに対する単一のアミノ酸残基の置換および、これらを組合せた複数のアミノ酸残基の置換が、PCR反応を利用して当業者公知の方法で行われた。
 改変を意図するアミノ酸の位置は、ヒト野生型グランザイムBの結晶構造に基づき、基質結合部位に近いアミノ酸残基を特定することにより選択された(図1における下線部のアミノ酸)。これらのアミノ酸残基に対し、改変前のアミノ酸およびシステインを除く全18種のアミノ酸のうちのいずれかに置換された置換体をコードするプライマーが設計された。該当プライマーを利用したPCR等、当業者公知の方法により単一のアミノ酸が置換されたグランザイムB改変体をコードする塩基配列、計1476種が作製された。
 また、同様の方法により、複数のアミノ酸置換によるグランザイムB改変体をコードする塩基配列が作製された。
〔実施例3〕グランザイムB改変体の発現および精製
 実施例2で作製されたグランザイムBをコードする塩基配列は1mL のExpi293(invitrogen)の培養液に当該業者指定の方法でトランスフェクトされた。4日後、培養上清が回収され、さらに終濃度0.3μg/mlのエンテロキナーゼが加えられ、4℃で16時間反応された。反応溶液に1/10量のbinding buffer(250 mM Tris, 3M NaCl, pH 7.5)が加えられ、さらにequilibrium buffer(25mM Tris-HCl, 500mM NaCl, pH 7.5) に懸濁したNi Sepharose Excel(GE healthcare, 17371201)50μLが加えられた。4℃, 1時間反応後、フィルタープレート(Merck, MSGVS2210)に反応溶液が添加された。グランザイムB を結合したNi Sepharose Excel はequilibrium buffer 200μLで5回洗浄し、さらにelution buffer(25mM Tris-HCl, 500mM NaCl, 500mM Imidazole, pH 7.5)で4℃,15min反応させることでグランザイムBが溶出された。溶出されたグランザイムB溶液の280 nmでの吸光度およびPACE法により算出された吸光係数を用いて、精製されたグランザイムBの濃度が算出された(Protein Science (1995) 4, 2411-2423)。
〔実施例4〕グランザイムB改変体のプロテアーゼ活性の測定
(4-1)グランザイムB改変体(単一アミノ酸置換)
 発現および精製されたグランザイムBは2倍希釈された酵素反応用Buffer(2X Reaction buffer, Promokine, PK-CA577-1068-80)に懸濁され、反応基質であるAc-IEPD-pNA終濃度0.5mM(Enzo, BML-P133)と混合された。反応溶液の405nmにおける吸光度が測定された。図2に測定に供したグランザイムB改変体の野生型グランザイムBに対する相対的プロテアーゼ活性が示されている。
 図2で示されるグランザイムBの活性は以下の式で定義される。
Fold change=(グランザイムB改変体のプロテアーゼ活性)/(野生型グランザイムBのプロテアーゼ活性)
 また、グランザイムBのプロテアーゼ活性は以下の式で定義される。
プロテアーゼ活性=(単位時間における反応溶液の405nmにおける吸光度変化)/(単位時間)
(4-2)グランザイムB改変体(複数アミノ酸置換)
 上記網羅的測定において1476種の改変体の測定を行った結果、33種の改変体で野生型グランザイムBに対して活性上昇が認められ、1443種の改変体で野生型の活性を下回った。これらグランザイムBのプロテアーゼ活性を上昇させる33種の改変について、複数の変異を組み合わせたグランザイムB改変体の改変体が実施例2に記載の方法で複数作製された。作製された改変体のうち、特に活性上昇が顕著であった例を表1に示す。表1において、改変体におけるアミノ酸置換の位置は、配列番号1に示されるヒト野生型グランザイムBのアミノ酸配列における該当するアミノ酸番号を指し、改変体のアミノ酸配列は、配列番号1に示されるヒト野生型グランザイムBのアミノ酸番号21-247に対応する改変体アミノ酸配列を示している。
Figure JPOXMLDOC01-appb-T000001
 阻害剤存在下においてプロテアーゼ活性を測定する場合、40μM ヘパリン(Heparin sodium salt from porcine intestinal mucosa, sigma aldrich, H3393-50KU)あるいは0.5μM PI-9(Recombinant Human Serpin B9/SERPINB9 (C-6His)(novoprotein, CJ32)および0.5mM DTT存在下において野生型グランザイムBまたはグランザイムB改変体が37℃、1時間インキュベートされ、さらに1mMのAc-IEPD-pNA溶液と容積比1:1で混合された。すべての溶液作成には2倍希釈された酵素反応用Buffer(2X Reaction buffer, Promokine, PK-CA577-1068-80)が用いられた。作製された改変体の阻害剤非存在下でのプロテアーゼ活性測定においては、阻害剤懸濁液の代わりに0.5mMDTTを含む酵素反応用Bufferと37℃、1時間インキュベートした後、1mMのAc-IEPD-pNA溶液と容積比1:1で混合して測定された。吸光度の測定は実施例4-1記載の方法と同様に行われた。測定の結果は図3(1)~(3)に示される。測定の結果、グランザイムBの活性は野生型グランザイムBと比較して上昇していること、および阻害剤存在下においても高いプロテアーゼ活性を維持することが確認された。
〔実施例5〕グランザイムB改変体のNK細胞株における発現
 実施例4で作成されたグランザイムB改変体および野生型グランザイムB(配列番号1)のアミノ酸番号21-247に対応するアミノ酸配列のN末端側に野生型グランザイムB由来の分泌シグナル配列およびCathepsin C/H認識配列が融合され、C末端側にFLAGタグを融合される。これらの融合体をコードする塩基配列は哺乳類用発現ベクターpGL4.30(Promega, E8481)により、NK細胞株(NKL,ATCC No.)へ遺伝子導入される。このNK細胞株はハイグロマイシンBで選択される。グランザイムB改変体の細胞株はeBioscienceTM Foxp3 / Transcription Factor Staining Buffer Set(invitrogen, 00-5523-00)を用いて当業者指定の方法で膜透過処理され、グランザイムBのC末端に融合されたタグを認識する抗FLAG抗体およびそのアイソタイプコントロール抗体(Biolegend, 637310 および400508)を利用して蛍光染色される。染色される細胞はFACS verse(BD)にて検出される。その結果、グランザイムBが遺伝子導入された細胞においてはグランザイムB発現に伴うピークが認められ、遺伝子導入されたグランザイムBが発現していることが確認される。
〔実施例6〕グランザイムB改変体を発現する細胞株のin vitro細胞傷害活性の測定
 樹立されるグランザイムB改変体発現細胞株およびターゲット細胞(BxPC-3,HuCCT-1,MCASのいずれか)が96ウェルプレートに添加され、さらに各濃度に希釈される抗EGFR抗体CetuH0-Hl076/CetuL4-k0//CetuH0-Kn125/CetuL4-k0が添加される。37℃で反応後、細胞死に伴うLDHリリースが Pierce LDH Cytotoxicity Assay Kit(Thermofisher Scientific, 88954)を用いて当該業者指定の方法により定量される。その結果、グランザイムB改変体を発現する遺伝子導入細胞の方が、野生型グランザイムBを発現する遺伝子導入細胞よりも強い細胞傷害活性を示すことが示される。
〔実施例7〕グランザイムB改変体をコードするウイルスベクターの作製
 ヒト野生型グランザイムBおよびグランザイムB改変体をコードする配列はpMCs-IRES-GFP Retroviral Vector(CELL BIOLABS,INC., RTV-040)を利用して当該業者指定の方法でレトロウイルスベクターが調製される。
〔実施例8〕プライマリーT細胞に対するグランザイムB改変体の遺伝子導入
 健常ドナーに由来するHLA-A2+末梢血単核細胞PBMC(Biological Specialty Corp, Colmar,PA,USA)がFicoll-Paque(GE Healthcare,Piscataway,NJ,USA)密度勾配遠心分離によって単離される。PBMCは24ウェル組織培養プレートで5%ヒトAB血清(Sigma-Aldrich)、1% MEM非必須アミノ酸、1%ペニシリン-ストレプトマイシン及び100U/mlの組換えヒトIL-2(BioLegend,San Diego,CA,USA)を添加するAIM V培地(GIBCOブランド;Invitrogen)中、3×106個/ウェルで培養され、50ng/mlのOKT3(eBioscience,San Diego,CA,USA)で活性化される。2日後、レトロウイルス形質導入のために細胞が回収される。形質導入のために、24ウェル非組織培養処理プレート(BD Biosciences,Franklin Lakes,NJ,USA)が、10μg/mlの組換えヒトフィブロネクチンフラグメント(RetroNectin;タカラバイオ株式会社、日本、滋賀県大津市)0.5ml/ウェルを用いて4℃で一晩コーティングされる。インキュベーション後、ウェルが2.5%ヒトAB血清を加えた1mlのハンクス液(GIBCOブランド;Invitrogen)を用いて室温で30分間ブロッキングされ、2.5% N-2-ヒドロキシエチルピペラジン-N'-2-エタンスルホン酸(HEPES)(GIBCOブランド;Invitrogen)を加えたハンクス液で洗浄される。
 形質導入は以前に記載される方法で行う(Johnson et al. Blood 114, 535-546 (2009))。簡潔に述べると、およそ2.5mlのレトロウイルス上清を各々のコーティングウェルに添加し、続いて32℃で2時間、2000gで遠心分離する。1.5mlのウイルス上清を取り出し、1×106個(0.5ml)の活性化PBMCを、100U/mlのIL-2の存在下で各々のウェルに添加する。プレートを1000gで10分間遠心分離した後、37℃で一晩インキュベートする。
 形質導入後、細胞が洗浄され、IL-2(100U/ml)の存在下で維持され、形質導入の5日後に実験に使用される。形質導入ヒトT細胞でのグランザイムBの発現が、グランザイムBのC末端に標識されるFLAGタグを認識する抗体(Biolegend, 637310)あるいはそのアイソタイプ対照抗体(Biolegend, 400508)で染色した後にフローサイトメトリーによって決定される。 
〔実施例9〕グランザイムB改変体を遺伝子導入されたT細胞の細胞傷害活性の評価
 実施例8で調製されたグランザイムを発現するT細胞およびターゲット細胞(BxPC-3,HuCCT-1,MCASのいずれか)が96ウェルプレートにそれぞれ添加され、さらに各濃度に希釈された抗EGFR抗CD3二重特異性抗体CetuH0-F760nN17/CetuL4-k0//TR01H113- F760nP17/L0011-k0が添加される。37℃で反応後、細胞死に伴うLDHリリースが Pierce LDH Cytotoxicity Assay Kit(Thermofisher scientific, 88954)を用いて当該業者指定の方法により定量される。その結果、改変グランザイムBを発現する遺伝子導入細胞の方が野生型グランザイムBを発現する遺伝子導入細胞よりも強い細胞傷害活性を示すことが明らかになる。
〔実施例10〕グランザイムB改変体を導入したT細胞のin vitro 細胞傷害活性の評価
 実施例8で作製されたグランザイム導入T細胞の細胞傷害活性はBD FACSVerseTM (BD Biosciences)でも評価される。癌細胞であるBxPC-3,HuCCT-1あるいはMCASが標的細胞として用意される。標的細胞は6 well plateに1×105 cellsまたは3×105 cells でそれぞれ播種される。改変グランザイムB あるいは野生型グランザイムBを発現するT細胞がエフェクター細胞とされ、エフェクター細胞対標的細胞(E:T)の割合が1:1あるいは1:3となるように混合される。次に抗EGFR抗CD3二重特異性抗体CetuH0-F760nN17/CetuL4-k0//TR01H113- F760nP17/L0011-k0は1 wellあたり10μgで添加される。添加後48時間後にグランザイムB導入T細胞及び標的細胞が回収される。回収された細胞はZombie AquaTM Fixable Viability Kit(BioLegend, 423102)を用いて死細胞が染色され、抗ヒトCD45抗体(BioLegend, 304039)を用いてグランザイムB発現T細胞が染色される。
 細胞傷害活性は残存癌細胞の割合で評価される。残存癌細胞の割合は、生細胞中のCD45-画分細胞の割合で算出される。この結果からin vitroにおけるグランザイム発現T細胞の細胞傷害活性の増強が示される。
 本開示のグランザイムB改変体は、野生型グランザイムBと比べて高いプロテアーゼ活性を示し、そのため、標的細胞(例えばがん細胞)の細胞死を誘導する治療において野生型グランザイムBよりも有用である。また、本開示のグランザイムB改変体は、野生型グランザイムBに対する阻害因子の存在下でも高いプロテアーゼ活性を示し、そのため、当該阻害因子を高発現している腫瘍の細胞死を誘導する治療において野生型グランザイムBよりも有用である。

Claims (23)

  1.  以下の1~20より選択される1以上のアミノ酸残基を含むグランザイムB改変体。
    1)43位のT、E、NまたはV、2)44位のLまたはF、3)45位のQ、LまたはA、4)46位のI、E、FまたはQ、5)47位のV、6)48位のFまたはK、7)99位のL、8)106位のA、9)149位のM、10)151位のL、11)155位のP、12)172位のL、13)175位のQ、EまたはI、14)183位のP、15)184位のL、16)200位のR、17)217位のI、18)219位のF、19)222位のGまたはS、20)229位のV
  2.  以下の1~12のいずれかのアミノ酸残基の組合せを含む請求項1に記載のグランザイムB改変体。
    1) 44位のL,48位のK,155位のP,172位のL,175位のIおよび200位のR
    2) 44位のL,48位のE,155位のP,172位のL,175位のIおよび200位のR
    3) 44位のF,48位のK,155位のP,172位のL,175位のIおよび200位のR
    4) 44位のF,48位のE,155位のP,172位のL,175位のIおよび200位のR
    5) 44位のL,46位のI,155位のP,172位のL,175位のIおよび200位のR
    6) 44位のL,46位のE,155位のP,172位のL,175位のIおよび200位のR
    7) 44位のL,46位のF,155位のP,172位のL,175位のIおよび200位のR
    8) 44位のL,46位のQ,155位のP,172位のL,175位のIおよび200位のR
    9) 44位のF,46位のI,155位のP,172位のL,175位のIおよび200位のR
    10) 44位のF,46位のE,155位のP,172位のL,175位のIおよび200位のR
    11) 44位のF,46位のF,155位のP,172位のL,175位のIおよび200位のR
    12) 44位のF,46位のQ,155位のP,172位のL,175位のIおよび200位のR
  3.  プロテアーゼ活性がヒト野生型グランザイムBよりも増強された請求項1または2に記載のグランザイムB改変体。
  4.  ヒト野生型グランザイムBに対する阻害因子への耐性を有する請求項1~3のいずれかに記載のグランザイムB改変体。
  5.  阻害因子がPI-9またはヘパリンである請求項4に記載のグランザイムB改変体。
  6.  請求項1~5のいずれかに記載のグランザイムB改変体をコードする、単離された核酸。
  7.  請求項6に記載の単離された核酸を含むベクター。
  8.  請求項6に記載の単離された核酸または請求項7に記載のベクターで形質転換または形質導入された細胞。
  9.  請求項1~5のいずれかに記載のグランザイムB改変体を発現する細胞。
  10. 請求項6に記載の単離された核酸、請求項7に記載のベクターまたは請求項8若しくは9に記載の細胞を含む医薬組成物。
  11.  請求項1~5のいずれかに記載のグランザイムB改変体を含む医薬組成物。
  12.  受容体を発現する細胞の投与と組み合わせて用いるための、グランザイムB改変体を発現する細胞またはグランザイムB改変体を含む、医薬組成物であって、
    受容体は、リガンドへの結合により当該受容体を発現する細胞を活性化し、
    グランザイムB改変体は、プロテアーゼ活性がヒト野生型グランザイムBよりも増強され、かつヒト野生型グランザイムBに対する阻害因子への耐性を有する、医薬組成物。
  13.  受容体は、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含み、細胞外結合ドメインを介してリガンドへ結合するキメラ受容体である請求項12に記載の医薬組成物。
  14.  受容体は、ネオアンチゲンをリガンドとするT細胞受容体である請求項12に記載の医薬組成物。
  15.  グランザイムB改変体は、請求項1、2または5に記載のものである請求項12~14のいずれかに記載の医薬組成物。
  16.  受容体を発現する細胞を含む請求項12~15のいずれかに記載の医薬組成物。
  17.  受容体とグランザイムB改変体とが同一のT細胞内に発現する請求項16に記載の医薬組成物。
  18.  抗原結合分子の投与、およびキメラ受容体を発現する細胞の投与と組み合わせて用いるための、グランザイムB改変体を発現する細胞またはグランザイムB改変体を含む、医薬組成物であって、
    抗原結合分子は標的抗原に対する結合能を有し、
    キメラ受容体は、細胞外結合ドメイン、膜貫通ドメインおよび細胞内シグナル伝達ドメインを含み、細胞外結合ドメインの抗原結合分子への結合を介して標的抗原を発現する細胞に結合することができ、
    グランザイムB改変体は、プロテアーゼ活性がヒト野生型グランザイムBよりも増強され、かつヒト野生型グランザイムBに対する阻害因子への耐性を有する、医薬組成物。
  19.  抗原結合分子は、プロテアーゼによって切断されるリンカーを含み、
    細胞外結合ドメインは、リンカー切断後の抗原結合分子へ結合することができる請求項18に記載の医薬組成物。
  20.  グランザイムB改変体は、請求項1、2または5に記載のものである請求項18又は19に記載の医薬組成物。
  21.  キメラ受容体を発現する細胞を含む請求項18~20のいずれかに記載の医薬組成物。
  22.  キメラ受容体とグランザイムB改変体とが同一のT細胞内に発現する請求項21に記載の医薬組成物。
  23.  キメラ受容体が、キメラ抗原受容体である請求項13、15~22のいずれかに記載の医薬組成物。
PCT/JP2021/020334 2020-05-28 2021-05-28 改良されたグランザイムb改変体 WO2021241719A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21813986.3A EP4159237A1 (en) 2020-05-28 2021-05-28 Improved granzyme b variant
JP2022526656A JPWO2021241719A1 (ja) 2020-05-28 2021-05-28
CN202180044766.8A CN115768897A (zh) 2020-05-28 2021-05-28 改进的粒酶b变体
US17/926,673 US20230203108A1 (en) 2020-05-28 2021-05-28 Improved granzyme b variant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093777 2020-05-28
JP2020093777 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241719A1 true WO2021241719A1 (ja) 2021-12-02

Family

ID=78744806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020334 WO2021241719A1 (ja) 2020-05-28 2021-05-28 改良されたグランザイムb改変体

Country Status (6)

Country Link
US (1) US20230203108A1 (ja)
EP (1) EP4159237A1 (ja)
JP (1) JPWO2021241719A1 (ja)
CN (1) CN115768897A (ja)
TW (1) TW202210632A (ja)
WO (1) WO2021241719A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100556A2 (en) * 2004-04-12 2005-10-27 Catalyst Biosciences Cleavage of vegf and vegf receptor by wild-type and mutant proteases
WO2006026451A2 (en) * 2004-08-26 2006-03-09 Children's Hospital Inc. Targeted expression of apoptosis-inducing genes for disease treatment
WO2013041659A2 (en) * 2011-09-23 2013-03-28 Pharmedartis Gmbh Novel serine protease variants
JP2015532102A (ja) * 2012-10-04 2015-11-09 リサーチ ディベロップメント ファウンデーション セリンプロテアーゼ分子および療法
WO2017143026A1 (en) * 2016-02-16 2017-08-24 Research Development Foundation Sortase-modified molecules and uses thereof
JP2019526285A (ja) 2016-09-01 2019-09-19 キメラ・バイオエンジニアリング,インコーポレーテッド Gold最適化CAR T細胞
WO2020169620A1 (en) * 2019-02-18 2020-08-27 Atb Therapeutics Method of producing a binder-toxin fusion protein in a plant cell or a whole plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100556A2 (en) * 2004-04-12 2005-10-27 Catalyst Biosciences Cleavage of vegf and vegf receptor by wild-type and mutant proteases
WO2006026451A2 (en) * 2004-08-26 2006-03-09 Children's Hospital Inc. Targeted expression of apoptosis-inducing genes for disease treatment
WO2013041659A2 (en) * 2011-09-23 2013-03-28 Pharmedartis Gmbh Novel serine protease variants
JP2015532102A (ja) * 2012-10-04 2015-11-09 リサーチ ディベロップメント ファウンデーション セリンプロテアーゼ分子および療法
WO2017143026A1 (en) * 2016-02-16 2017-08-24 Research Development Foundation Sortase-modified molecules and uses thereof
JP2019526285A (ja) 2016-09-01 2019-09-19 キメラ・バイオエンジニアリング,インコーポレーテッド Gold最適化CAR T細胞
WO2020169620A1 (en) * 2019-02-18 2020-08-27 Atb Therapeutics Method of producing a binder-toxin fusion protein in a plant cell or a whole plant

Non-Patent Citations (60)

* Cited by examiner, † Cited by third party
Title
ADAM J ERICSEN;GABRIEL J STARRETT;JUSTIN M GREENE;MICHAEL LAUCK;MUTHUSWAMY RAVEENDRAN;DAVID RIO DEIROS;MARIEL S MOHNS;NICOLAS VINC: "Whole genome sequencing of SIV-infected macaques identifies candidate loci that may contribute to host control of virus replication", GENOME BIOLOGY, BIOMED CENTRAL LTD., vol. 15, no. 11, 7 November 2014 (2014-11-07), pages 478, XP021202977, ISSN: 1465-6906, DOI: 10.1186/s13059-014-0478-z *
ANDONIOU CHRISTOPHER E., SUTTON VIVIEN R., WIKSTROM MATTHEW E., FLEMING PETER, THIA KEVIN Y. T., MATTHEWS ANTONY Y., KAISERMAN DIO: "A Natural Genetic Variant of Granzyme B Confers Lethality to a Common Viral Infection", PLOS PATHOGENS, PUBLIC LIBRARY OF SCIENCE, US, vol. 10, no. 12, 11 December 2014 (2014-12-11), US , pages e1004526, XP055880723, ISSN: 1553-7366, DOI: 10.1371/journal.ppat.1004526 *
BOTS MICHAEL, VAN BOSTELEN LIESBETH, RADEMAKER MIRJAM TGA, OFFRINGA RIENK, MEDEMA JAN PAUL: "Serpins prevent granzyme‐induced death in a species‐specific manner", IMMUNOLOGY AND CELL BIOLOGY, CARLTON, AU, vol. 84, no. 1, 1 February 2006 (2006-02-01), AU , pages 79 - 86, XP055881089, ISSN: 0818-9641, DOI: 10.1111/j.1440-1711.2005.01417.x *
CASCIOLA-ROSEN LIVIA, GARCIA-CALVO MARGARITA, BULL HERBERT G., BECKER JOSEPH W., HINES TONIE, THORNBERRY NANCY A., ROSEN ANTONY: "Mouse and Human Granzyme B Have Distinct Tetrapeptide Specificities and Abilities to Recruit the Bid Pathway", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 282, no. 7, 1 February 2007 (2007-02-01), US , pages 4545 - 4552, XP055881090, ISSN: 0021-9258, DOI: 10.1074/jbc.M606564200 *
CATHERINA H. BIRD, JIURU SUN, KHENG UNG, DIANA KARAMBALIS, JAMES C. WHISSTOCK, JOSEPH A.,TRAPANI, PHILLIP I. BIRD: "ationic Sites on Granzyme B Contribute to Cytotoxicity by Promoting Its Uptake into Target Cells ", MOL CELL BIOL, vol. 25, no. 17, September 2005 (2005-09-01), pages 7854 - 7867
CHEN MUHUA, SUN RUIXIN, SHI BIZHI, WANG YI, DI SHENGMENG, LUO HONG, SUN YANSHA, LI ZONGHAI, ZHOU MIN, JIANG HUA: "Antitumor efficacy of chimeric antigen receptor T cells against EGFRvIII-expressing glioblastoma in C57BL/6 mice", BIOMEDICINE & PHARMACOTHERAPY, ELSEVIER, FR, vol. 113, 1 May 2019 (2019-05-01), FR , pages 108734, XP055881094, ISSN: 0753-3322, DOI: 10.1016/j.biopha.2019.108734 *
CLARKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CULLEN SEAN P., ADRAIN COLIN, LÜTHI ALEXANDER U., DURIEZ PATRICK J., MARTIN SEAMUS J.: "Human and murine granzyme B exhibit divergent substrate preferences", THE JOURNAL OF CELL BIOLOGY, THE ROCKEFELLER UNIVERSITY PRESS, US, vol. 176, no. 4, 12 February 2007 (2007-02-12), US , pages 435 - 444, XP055880726, ISSN: 0021-9525, DOI: 10.1083/jcb.200612025 *
DATABASE Nucleotide [online] 13 November 2014 (2014-11-13), "Macaca fascicularis granzyme B (GzmB) gene, GzmB- 1:01:01 allele, complete cds", XP055881103, retrieved from ncbi Database accession no. KM281203.1 *
DATABASE Protein [online] 1 April 2014 (2014-04-01), "PREDICTED: granzyme B [Lipotes vexillifer]", XP055881142, retrieved from ncbi Database accession no. XP_007471896.1 *
DATABASE Protein [online] 1 June 2015 (2015-06-01), "PREDICTED: granzyme B [Propithecus coquereli]", XP055881108, retrieved from ncbi Database accession no. XP_012502759.1 *
DATABASE Protein [online] 16 September 2019 (2019-09-16), "Granzyme B-like isoform XI [Delphinapterus leucas]", XP055881138, retrieved from ncbi Database accession no. XP_022409388.1 *
DATABASE Protein [online] 18 April 2018 (2018-04-18), "Granzyme B-like isoform XI [Neophocaena asiaeorientalis asiaeorientalis]", XP055881098, retrieved from ncbi Database accession no. XP_024624959.1 *
DATABASE Protein [online] 19 March 2015 (2015-03-19), "Granzyme B [Tupaia chinensis]", XP055881111, retrieved from ncbi Database accession no. ELW69303.1 *
DATABASE Protein [online] 19 March 2015 (2015-03-19), "Granzyme B, partial [Bos mutus]", XP055881157, retrieved from ncbi Database accession no. ELR49680.1 *
DATABASE Protein [online] 21 March 2019 (2019-03-21), "Granzyme B isoform X1 [Physeter catodon]", XP055881137, retrieved from ncbi Database accession no. XP_007119743.1 *
DATABASE Protein [online] 24 November 2014 (2014-11-24), "Granzyme B [Saimiri boliviensis boliviensis]", XP055882163, retrieved from ncbi Database accession no. XP_003924294.2 *
DATABASE Protein [online] 25 January 2018 (2018-01-25), "Granzyme B [Trichechus manatus latirostris", XP055882166, retrieved from ncbi Database accession no. XP_004376613.1 *
DATABASE Protein [online] 26 June 2015 (2015-06-26), "PREDICTED: granzyme B-like [Dipodomys ordii]", XP055882146, retrieved from ncbi Database accession no. XP_012880796.1 *
DATABASE Protein [online] 26 June 2015 (2015-06-26), "PREDICTED: granzyme B-like [Dipodomys ordii]", XP055882148, retrieved from ncbi Database accession no. XP_012880811.1 *
DATABASE Protein [online] 27 April 2020 (2020-04-27), "Granzyme B [Tursiops truncatus]", XP055881145, retrieved from ncbi Database accession no. XP_033708488.1 *
DATABASE Protein [online] 28 June 2017 (2017-06-28), "Granzyme B [Aotus nancymaae]", XP055882159, retrieved from ncbi Database accession no. XP_012323554.1 *
DATABASE Protein [online] 30 March 2015 (2015-03-30), "PREDICTED: granzyme B [Cercocebus atys]", XP055882156, retrieved from ncbi Database accession no. XP_011946523.1 *
DATABASE Protein [online] 30 September 2019 (2019-09-30), "Granzyme B isoform XI [Gorilla gorilla gorilla]", XP055882165, retrieved from ncbi Database accession no. XP_004055081.1 *
DATABASE Protein [online] 31 December 2014 (2014-12-31), "PREDICTED: granzyme B-like [Bison bison bison]", XP055881150, retrieved from ncbi Database accession no. XP_010841689.1 *
DATABASE Protein [online] 4 October 2019 (2019-10-04), "Granzyme B [Camelus dromedarius]", XP055881160, retrieved from ncbi Database accession no. KAB1278066.1 *
DATABASE Protein [online] 6 February 2019 (2019-02-06), "Granzyme B-like [Ovis aries]", XP055881154, retrieved from ncbi Database accession no. XP_027813308.1 *
DATABASE Protein [online] 8 September 2016 (2016-09-08), "PREDICTED: granzyme B [Capra hircus]", XP055881152, retrieved from ncbi Database accession no. XP_017900778.1 *
DATABASE UniProtKB [online] 22 April 2020 (2020-04-22), "Granzyme B", XP055881171, Database accession no. A0A2F0B3Z3 *
DATABASE UniProtKB [online] 26 February 2020 (2020-02-26), "Granzyme B", XP055882151, retrieved from UniProt Database accession no. A0A2K5YY00 *
DEROUAZI, M. ET AL.: "Novel cell -penetrating peptide-based vaccine induces robust CD 4+ and CD 8+ T cell -mediated antitumor immunity", CANCER RES., vol. 75, no. 15, 2015, pages 3020 - 3031, XP055227770, DOI: 10.1158/0008-5472.CAN-14-3017 *
FU ZHIRONG, THORPE MICHAEL, AKULA SRINIVAS, HELLMAN LARS: "Asp-ase Activity of the Opossum Granzyme B Supports the Role of Granzyme B as Part of Anti-Viral Immunity Already during Early Mammalian Evolution", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, vol. 11, no. 5, 6 May 2016 (2016-05-06), pages e0154886, XP055880513, DOI: 10.1371/journal.pone.0154886 *
GRAHAM, L. D. ET AL.: "Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities", BIOCHEMISTRY, vol. 32, 1993, pages 6250 - 6258, XP055043971, DOI: 10.1021/bi00075a019 *
HEHMANN-TITT, G. ET AL.: "Improving the therapeutic potential of human granzyme B for targeted cancer therap y", ANTIBODIES, vol. 2, 2013, pages 19 - 49, XP002747507, DOI: 10.3390/antib2010019 *
HLONGWANE PRECIOUS, MUNGRA NEELAKSHI, MADHESWARAN SURESH, AKINRINMADE OLUSIJI, CHETTY SHIVAN, BARTH STEFAN: "Human Granzyme B Based Targeted Cytolytic Fusion Proteins", BIOMEDICINES, MDPI AG, vol. 6, no. 2, 20 June 2018 (2018-06-20), pages 72, XP055789608, DOI: 10.3390/biomedicines6020072 *
J VIS EXP, no. 100, 10 June 2015 (2015-06-10), pages e52911
J. P. MEDEMA, J. DE JONG, L. T. C. PELTENBURG, E. M. E. VERDEGAAL, A. GORTER, S. A. BRES, K. L. M. C. FRANKEN, M. HAHNE, J. P. ALB: "Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors ", PROC NATL ACAD SCI USA., vol. 98, no. 20, 25 September 2001 (2001-09-25), pages 11515 - 11520
JENNE DE: "Delivery and therapeutic potential of human granzyme B Kurschus FC1", IMMUNOL REV, vol. 235, no. 1, May 2010 (2010-05-01), pages 159 - 71, XP055179509, DOI: 10.1111/j.0105-2896.2010.00894.x
JOHNSON ET AL., BLOOD, vol. 114, 2009, pages 535 - 546
KINDT ET AL.: "Kuby Immunology", 2007, W.H. FREEMAN AND CO, pages: 91
KURSCHUS FC, FELLOWS E, STEGMANN E, JENNE DE: "Granzyme B delivery via perforin is restricted by size, but not by heparan sulfate-dependent endocytosis", PROC NATL ACAD SCI USA., vol. 105, no. 37, 16 September 2008 (2008-09-16), pages 13799 - 13804, XP009106108, DOI: 10.1073/pnas.0801724105
LOSASSO V, SCHIFER S, BARTH S, CARLONI P: "Design of human granzyme B variants resistant to serpin B9 ", PROTEINS, vol. 80, no. 11, November 2012 (2012-11-01), pages 2514 - 22, XP055094445, DOI: 10.1002/prot.24133
LOSASSO, V. ET AL.: "Design of human granzyme B variants resistant to serpin B9", PROTEINS, vol. 80, 2012, pages 2514 - 2522, XP055094445, DOI: 10.1002/prot.24133 *
LUIS MARTINEZ-LOSTAO, ALBERTO ANEL,JULIAN PARDO: " How Do Cytotoxic Lymphocytes Kill Cancer Cells?", CLIN CANCER RES., no. 22, 15 November 2015 (2015-11-15), pages 5047 - 56
MARCH: "Mechanisms and Structure", vol. Advanced Organic Chemistry Reactions, 1992, JOHN WILEY & SONS
NAKAJIMA H, PARK H L, HENKART P A: "Synergistic roles of granzymes A and B in mediating target cell death by rat basophilic leukemia mast cell tumors also expressing cytolysin/perforin.", JOURNAL OF EXPERIMENTAL MEDICINE, ROCKEFELLER UNIVERSITY PRESS, US, vol. 181, no. 3, 1 March 1995 (1995-03-01), US , pages 1037 - 1046, XP055880515, ISSN: 0022-1007, DOI: 10.1084/jem.181.3.1037 *
OBEROI PRANAV, JABULOWSKY ROBERT A., BÄHR-MAHMUD HAYAT, WELS WINFRIED S.: "EGFR-Targeted Granzyme B Expressed in NK Cells Enhances Natural Cytotoxicity and Mediates Specific Killing of Tumor Cells", PLOS ONE, PUBLIC LIBRARY OF SCIENCE, vol. 8, no. 4, 3 April 2013 (2013-04-03), pages e61267, XP055880719, DOI: 10.1371/journal.pone.0061267 *
OBEROI PRANAV, WELS WINFRIED S: "Arming NK cells with enhanced antitumor activity : CARs and beyond", ONCOIMMUNOLOGY, vol. 2, no. 8, 1 August 2013 (2013-08-01), pages e25220, XP055880707, DOI: 10.4161/onci.25220 *
OLADAPO O. YEKU, TERENCE J. PURDON, MYTHILI KONERU, DAVID SPRIGGS, RENIER J. BRENTJENS: "Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment", SCIENTIFIC REPORTS, vol. 7, no. 1, 1 December 2017 (2017-12-01), XP055579095, DOI: 10.1038/s41598-017-10940-8 *
PIUKO, K. ET AL.: "Identification and characterization of equine granzyme B", VET. IMMUNOL. IMMUNOPATHOL., vol. 118, 2007, pages 239 - 251, XP022153308, DOI: 10.1016/j.vetimm.2007.05.002 *
PORTOLANO ET AL., J. IMMUNOL., vol. 150, 1993, pages 880 - 887
PROTEIN SCIENCE, vol. 4, 1995, pages 2411 - 2423
QINGHUA HE, XIANHAN JIANG, XINKE ZHOU, JINSHENG WENG: "Targeting cancers through TCR-peptide/MHC interactions", JOURNAL OF HEMATOLOGY & ONCOLOGY, vol. 12, no. 1, 1 December 2019 (2019-12-01), XP055679806, DOI: 10.1186/s13045-019-0812-8 *
RUGGLES SANDRA WAUGH ET AL: "Characterization of structural determinants of granzyme B reveals potent mediators of extended substrate specificity.", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 279, no. 29, 16 July 2004 (2004-07-16), US , pages 30751 - 30759, XP002304824, ISSN: 0021-9258, DOI: 10.1074/jbc.M400949200 *
SCHIFFER S, HANSEN H P, HEHMANN-TITT G, HUHN M, FISCHER R, BARTH S, THEPEN T: "Efficacy of an adapted granzyme B-based anti-CD30 cytolytic fusion protein against PI-9-positive classical Hodgkin lymphoma cells in a murine model", BLOOD CANCER JOURNAL, vol. 3, no. 3, 1 March 2013 (2013-03-01), pages e106 - e106, XP055880528, DOI: 10.1038/bcj.2013.4 *
SINGER J., JENSEN‐JAROLIM E.: "IgE‐based immunotherapy of cancer: challenges and chances", ALLERGY, WILEY-BLACKWELL PUBLISHING LTD., UNITED KINGDOM, vol. 69, no. 2, 1 February 2014 (2014-02-01), United Kingdom , pages 137 - 149, XP055880517, ISSN: 0105-4538, DOI: 10.1111/all.12276 *
SINGLETON ET AL.: "Dictionary of Microbiology and Molecular Biology", 1994, J. WILEY & SONS
SMITH, A. J.: "New horizons in therapeutic antibody discovery: opportunities and challenges versus small-molecule therapeutics", J. BIOMOL. SCREEN., vol. 20, no. 4, 2015, pages 437 - 453, XP009184906, DOI: 10.1177/1087057114562544 *
VAN DAMME PETRA, MAURER-STROH SEBASTIAN, PLASMAN KIM, VAN DURME JOOST, COLAERT NIKLAAS, TIMMERMAN EVY, DE BOCK PIETER-JAN, GOETHAL: "Analysis of Protein Processing by N-terminal Proteomics Reveals Novel Species-specific Substrate Determinants of Granzyme B Orthologs", MOLECULAR & CELLULAR PROTEOMICS, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 8, no. 2, 1 February 2009 (2009-02-01), US , pages 258 - 272, XP055881091, ISSN: 1535-9476, DOI: 10.1074/mcp.M800060-MCP200 *
YANG JIE, ALAN PEMBERTON, W. IVAN MORRISON, TIM CONNELLEY: "Granzyme B is an essential mediator in CD 8 T cell killing of theileria parva-infected cell s", INFECT. IMMUN., vol. 87, no. 1, 1 January 2019 (2019-01-01), pages e00386 - 18, XP055880505 *

Also Published As

Publication number Publication date
TW202210632A (zh) 2022-03-16
US20230203108A1 (en) 2023-06-29
EP4159237A1 (en) 2023-04-05
CN115768897A (zh) 2023-03-07
JPWO2021241719A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP2022081543A (ja) 抗trem2抗体及びその使用方法
AU2013329372B2 (en) Therapies based on control of regulatory T cell stability and function via a Neuropilin-1:Semaphorin axis
KR102040235B1 (ko) RGMa 결합 단백질 및 그 사용
TW202120548A (zh) 特異性結合mage-a的抗原結合蛋白
CN111601821B (zh) 具有对FcRn的亲和力提高以及对至少一个Fc片段受体的亲和力提高的Fc片段的变体
TW202112824A (zh) 進一步與mhc分子結合的募集因子
JP2019512207A (ja) Foxp3由来のペプチドに特異的なt細胞受容体様抗体
CN112409483A (zh) 抗pd-l1纳米抗体
WO2023020537A1 (zh) 一种双特异性抗体及其用途
RU2725807C2 (ru) Растворимый универсальный усиливающий adcc синтетический слитный ген, пептидная технология и их применение
JP2021518761A (ja) 配列類似性19、メンバーa5抗体を有する抗ファミリー及びその使用方法
JP2022514187A (ja) IVIGの代替のための多量体ハイブリッドFc蛋白質
KR102231685B1 (ko) 인간 항-il-32 항체
WO2021241719A1 (ja) 改良されたグランザイムb改変体
US20230303658A1 (en) Human non-naturally occurring modified fc region of igg specifically binding to non-naturally occurring modified fc receptor
JP2021506343A (ja) 糖鎖改変
TW202309071A (zh) 特異性結合prame之抗原結合蛋白
TW202144420A (zh) 一種免疫細胞啟動劑的開發及應用
EP3313871A1 (en) Proteins comprising a mutated lair-1 fragment and uses thereof
US10654930B2 (en) Composition and method for treating amyotrophic lateral sclerosis
KR102669477B1 (ko) 신규 항-pvr 항체 또는 이의 항원 결합 단편, 및 이의 용도
WO2024120418A1 (zh) 抗ccr8抗体及其应用
RU2820162C2 (ru) Варианты с fc-фрагментом, обладающие повышенной аффинностью к fcrn и повышенной аффинностью по меньшей мере к одному рецептору fc-фрагмента
CN117651718A (zh) 特异性结合prame的抗原结合蛋白
AU2015282844A9 (en) Human-derived anti-human IL-20 antibodies and assay for the identification of anti-cytokine antibodies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813986

Country of ref document: EP

Effective date: 20230102