WO2021241707A1 - 中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法 - Google Patents

中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法 Download PDF

Info

Publication number
WO2021241707A1
WO2021241707A1 PCT/JP2021/020274 JP2021020274W WO2021241707A1 WO 2021241707 A1 WO2021241707 A1 WO 2021241707A1 JP 2021020274 W JP2021020274 W JP 2021020274W WO 2021241707 A1 WO2021241707 A1 WO 2021241707A1
Authority
WO
WIPO (PCT)
Prior art keywords
gypsum
boron
reducing agent
mass
water reducing
Prior art date
Application number
PCT/JP2021/020274
Other languages
English (en)
French (fr)
Inventor
洋介 佐藤
大介 内藤
夏樹 岡本
正樹 鈴木
陽作 池尾
淳道 櫛部
肇 岡本
丈巳 乗物
雅信 小田川
Original Assignee
吉野石膏株式会社
株式会社竹中工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉野石膏株式会社, 株式会社竹中工務店 filed Critical 吉野石膏株式会社
Priority to JP2022526648A priority Critical patent/JPWO2021241707A1/ja
Priority to EP21812325.5A priority patent/EP4137471A4/en
Priority to KR1020227040043A priority patent/KR20230004653A/ko
Priority to US17/998,289 priority patent/US20230271885A1/en
Priority to CA3177973A priority patent/CA3177973A1/en
Priority to CN202180037520.8A priority patent/CN115667179A/zh
Priority to AU2021280613A priority patent/AU2021280613A1/en
Publication of WO2021241707A1 publication Critical patent/WO2021241707A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0092Machines or methods for applying the material to surfaces to form a permanent layer thereon to webs, sheets or the like, e.g. of paper, cardboard
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0013Boron compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/10Carbohydrates or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/128Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/18Lignin sulfonic acid or derivatives thereof, e.g. sulfite lye
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/20Sulfonated aromatic compounds
    • C04B24/22Condensation or polymerisation products thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/30Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • C04B2111/0062Gypsum-paper board like materials
    • C04B2111/00629Gypsum-paper board like materials the covering sheets being made of material other than paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00862Uses not provided for elsewhere in C04B2111/00 for nuclear applications, e.g. ray-absorbing concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a neutron-shielding gypsum-based building board and a method for manufacturing a neutron-shielding gypsum-based building board.
  • the radiation use area In the radiation therapy facility, in order to prevent the radiation radiated to the affected area of the patient from leaking out of the radiation use area, the radiation use area is combined with a thick concrete wall or a thick concrete and a metal plate such as iron or lead. It is partitioned by wall materials such as walls. Therefore, when replacing the device for radiotherapy, it is necessary to demolish the wall material such as a concrete wall, replace the device, and then construct the wall again. When the demolished wall material is contaminated with radiation, there is a problem that man-hours and costs are required to dispose of the wall material.
  • Patent Document 1 discloses a radiation shielding wall constructed by stacking dry gypsum blocks formed of a radiation shielding material composition containing water and gypsum.
  • the radiation shielding wall disclosed in Patent Document 1 needs to be formed by stacking dry gypsum blocks, and further improvement in handleability is required.
  • one aspect of the present invention is to provide a neutron-shielding gypsum-based building board having excellent handleability.
  • gypsum and A boron-containing material in which the amount of boron contained is 1.0 part by mass or more and 120 parts by mass or less with respect to 100 parts by mass of the gypsum.
  • the boron-containing material contains one or more selected from calcium borate, boron carbide, boric acid, boron oxide, sodium borate, and calcium borate.
  • a neutron-shielding gypsum-based building board having a dry specific gravity of 0.65 or more and 1.6 or less.
  • the neutron-shielding gypsum-based building board of the present embodiment (hereinafter, also referred to as "building board”) can contain gypsum, a boron-containing material, and a water reducing agent.
  • the building board of the present embodiment can contain the above-mentioned boron-containing material in a ratio of 1.0 part by mass or more and 120 parts by mass or less of boron to 100 parts by mass of gypsum.
  • the building board can contain the water reducing agent in a ratio of 0.05 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of gypsum.
  • the boron-containing material preferably contains one or more selected from calcium borate, boron carbide, boric acid, boron oxide, sodium borate, and calcium boride.
  • the building board preferably has a dry specific gravity of 0.65 or more and 1.6 or less.
  • the building board of the present embodiment can have a board shape, that is, a plate shape. According to the building board of the present embodiment, since it has a board shape as described above, it can function as a radiation shielding wall only by fixing it. Therefore, according to the building board of the present embodiment, it is excellent in handleability as compared with a radiation shielding material which has, for example, a block shape and needs to be laminated to form a radiation shielding wall.
  • (1) Containing components The components contained in the building board of the present embodiment will be described below.
  • (1-1) Gypsum The building board of the present embodiment can contain gypsum as described above.
  • Neutron rays can be classified into fast neutrons, fast neutrons, thermal neutrons, etc. according to the magnitude of the energy they have. Then, among the above neutron rays, the energy of fast neutrons is decelerated by collision with hydrogen having a large absorption cross section in the energy region. Therefore, from the viewpoint of shielding fast neutron rays, it is preferable to use a material having a high hydrogen density for the building board. Since the hydrated water of gypsum contains hydrogen and the hydrogen density is high, the neutron beam shielding performance of the building board of the present embodiment can be enhanced by containing gypsum.
  • Gypsum is also excellent in moldability and curing speed. Therefore, since the building board of the present embodiment contains gypsum, the building board of the present embodiment, which is a radiation shielding material, can be manufactured with high productivity. (1-2) Boron-Containing Material
  • the building board of the present embodiment may further contain boron for the purpose of improving the radiation shielding performance against various types of radiation. Neutron rays, especially neutrons with energy in the thermal neutron beam region, are absorbed by the nuclei of boron. Therefore, when the building board of the present embodiment contains boron, the neutron beam shielding performance of the building board can be improved.
  • the neutron beam particularly the fast neutron beam and the thermal neutron beam can be shielded by containing gypsum and boron.
  • the building board of the present embodiment can contain boron as, for example, a boron-containing material.
  • the boron-containing material is not particularly limited as long as it is a material containing boron, but preferably contains one or more selected from calcium borate, boron carbide, boric acid, boron oxide, sodium borate, and calcium boride. ..
  • the boron-containing material can contain one or more selected from the compounds of the above-mentioned suitable boron-containing materials such as calcium borate. Therefore, as the boron-containing material, one or more compounds selected from the above compounds further containing, for example, hydrated water can be used. Further, as the boron-containing material, a mineral containing at least one selected from the compounds of the above-mentioned suitable boron-containing material can also be used. Specifically, for example, when the boron-containing material contains calcium borate, cholemanite can also be used as the boron-containing material.
  • the boron-containing material contains sodium borate, borax or the like can be used as the boron-containing material.
  • the boron-containing material may be composed of only one or more selected from the compounds of the above-mentioned suitable boron-containing materials such as calcium borate.
  • the boron-containing material contains at least one selected from calcium borate and boron carbide, and even more preferably contains one or more selected from cholemanite and boron carbide.
  • Colemanite is a stable material, so it is easy to handle, and it is inexpensive, so it can be suitably used. Further, boron carbide is a particularly stable material and is excellent in handleability, so that it can be suitably used.
  • the building board of the present embodiment preferably contains a boron-containing material in a proportion of 1.0 part by mass or more and 120 parts by mass or less of boron with respect to 100 parts by mass of gypsum. It is more preferable that the content is in a proportion of 0 parts by mass or more and 120 parts by mass or less.
  • the gypsum 100 parts by weight is meant the ratio of gypsum (CaSO 4 ⁇ 2H 2 O) 100 parts by weight.
  • the gypsum is usually dihydrate gypsum.
  • the building board may contain gypsum other than dihydrate gypsum as gypsum, for example, hemihydrate gypsum, but all the gypsum components contained in the building board are considered to form dihydrate gypsum.
  • the amount (ratio) of boron contained in the boron-containing material with respect to 100 parts by mass of gypsum can be obtained. The same applies to the water reducing agent described later.
  • the neutron beam shielding performance of the building board can be sufficiently improved.
  • the building board of the present embodiment can be manufactured by a pouring molding method. Therefore, the productivity can be improved as compared with the case of manufacturing by the extrusion molding method or the papermaking method, which has been conventionally used when manufacturing the radiation shielding material.
  • a water reducing agent in order to improve the dispersibility of gypsum or the like in the gypsum slurry and improve the fluidity of the gypsum slurry to be poured.
  • the water reducing agent is not particularly limited, and for example, a water reducing agent conventionally used in producing a cured gypsum body can be used.
  • the water reducing agent was selected from, for example, a naphthalene-based water reducing agent, a polycarboxylic acid-based water reducing agent, a lignin-based water reducing agent, a melamine-based water reducing agent, an aminosulfonic acid-based water reducing agent, a phosphoric acid-based water reducing agent, and a bisphenol-based water reducing agent.
  • a naphthalene-based water reducing agent was selected from, for example, a naphthalene-based water reducing agent, a polycarboxylic acid-based water reducing agent, a lignin-based water reducing agent, a melamine-based water reducing agent, an aminosulfonic acid-based water reducing agent, a phosphoric acid-based water reducing agent, and
  • the water reducing agent is preferably selected according to the boron-containing material used.
  • the water reducing agent is preferably one or more selected from a naphthalene-based water reducing agent and a melamine-based water reducing agent.
  • the water reducing agent is preferably one or more selected from a naphthalene-based water reducing agent, a polycarboxylic acid-based water reducing agent, a lignin-based water reducing agent, and a melamine-based water reducing agent. ..
  • the gypsum slurry can be easily made to have the desired viscosity while suppressing the amount of the water reducing agent used by using the above water reducing agents respectively.
  • the building board of the present embodiment preferably contains a water reducing agent in a proportion of 0.05 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of gypsum.
  • to 100 parts by mass of gypsum means the ratio to 100 parts by mass of dihydrate gypsum.
  • the content ratio of the water reducing agent By setting the content ratio of the water reducing agent to 0.05 parts by mass or more, the dispersibility of gypsum or the like in the gypsum slurry for manufacturing a building board can be enhanced, and the gypsum slurry can have a predetermined viscosity. Therefore, it is possible to obtain a building board that can be manufactured with high productivity.
  • the building board may contain any ingredient other than the gypsum, the boron-containing material and the water reducing agent described above.
  • the building board of the present embodiment can also contain bubbles caused by such bubbles.
  • the dry specific gravity of the building board can be set in a desired range.
  • the building board can also contain various additives.
  • Additives include strength improvers such as starch and polyvinyl alcohol, inorganic fibers such as glass fibers and lightweight aggregates, fireproof materials such as vermiculite, coagulation adjusters, and foam diameter adjusters such as sulfosuccinate-type surfactants. , Water repellents such as silicone and paraffin, and the like.
  • shape and physical properties of the building board (2-1) Shape and structure
  • the building board of the present embodiment may have a board shape as shown in the perspective view schematically shown in FIG. , The detailed configuration is not particularly limited. Since the building board of the present embodiment is preferably manufactured by the pouring molding method as described above, a surface material such as a base paper for a board or a glass fiber non-woven fabric can be arranged on the surface side.
  • the building board 10 of the present embodiment has surface materials on the first surface 101 side and the second surface 102 side located on the side opposite to the first surface 101. It is preferable that 11 is arranged.
  • the surface material 11 is not particularly limited and can be selected according to the type of building board to be manufactured.
  • the building board 10 of the present embodiment can be, for example, one selected from gypsum board, glass mat gypsum board, and glass fiber non-woven fabric-filled gypsum board. Therefore, as the surface material 11, for example, one selected from a base paper for a board, a glass fiber non-woven fabric, and a glass mat can be mentioned.
  • the gypsum core 12 contains the above-mentioned gypsum, a boron-containing material, and a water reducing agent.
  • the thickness T of the building board of the present embodiment is not particularly limited, but is preferably 9.5 mm or more and 25.0 mm or less, and more preferably 12.5 mm or more and 25.0 mm or less.
  • the thickness T of the building board of the present embodiment is preferably 0.65 or more and 1.6 or less, and more preferably 0.65 or more and 1.3 or less.
  • the dry specific gravity By setting the dry specific gravity to 0.65 or more, the proportion of gypsum contained can be sufficiently increased and the neutron beam shielding performance can be improved.
  • the dry specific density By setting the dry specific density to 1.6 or less, it is possible to make a lightweight building board, and the handleability is particularly improved. Further, by setting the dry specific gravity to 1.6 or less, it is possible to suppress the viscosity of the gypsum slurry used in manufacturing the building board from becoming excessively high, and to increase the productivity.
  • the dry specific gravity can be measured and calculated based on the specific gravity measuring method specified in JIS A 6901 (2014).
  • (2-3) Heat generation The building board of the present embodiment is preferably heat generation grade 2 or higher, that is, heat generation grade 1 or heat generation grade 2 in the heat generation test.
  • the exothermic test referred to here is specified in Annex A of JIS A 6901 (2014).
  • the heat-generating class 1 and heat-generating class 2 have a total calorific value of 8 MJ / m 2 or less until the end of the heating time, and there are no cracks or holes penetrating to the back surface harmful to fire prevention within the heating time, and the heating time.
  • the maximum heat generation rate does not exceed 200 kW / m 2 continuously for 10 seconds or more.
  • the exothermic first grade has a heating time of 20 minutes, and the exothermic second grade has a heating time of 10 minutes.
  • the Building Standards Law limits the building materials that can be used depending on the purpose and scale of the building.
  • the building board of the present embodiment By setting the building board of the present embodiment to have a heat generation level of 2 or higher, it can be applied to the interior restrictions required by the building to be used, so that it can be used in buildings of various uses and scales.
  • the building board can be made into a predetermined heat-generating grade by adjusting the addition amount of an organic component such as starch.
  • Manufacturing method of neutron-shielding gypsum-based building board A method for manufacturing a neutron-shielding gypsum-based building board according to this embodiment will be described.
  • the method for manufacturing a neutron-shielding gypsum-based building board of the present embodiment (hereinafter, also referred to as "method for manufacturing a building board”) can have the following steps.
  • a molding process for molding gypsum slurry. A curing process that cures the molded product obtained in the molding process.
  • the raw material can contain a boron-containing material at a ratio of 1.0 part by mass or more and 120 parts by mass or less of boron contained in 100 parts by mass of dihydrate gypsum.
  • the raw material can contain a water reducing agent in a ratio of 0.05 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of dihydrate gypsum.
  • the boron-containing material preferably contains one or more selected from calcium borate, boron carbide, boric acid, boron oxide, sodium borate, and calcium boride.
  • the dry specific gravity of the building board obtained after the curing step is preferably 0.65 or more and 1.6 or less.
  • (1) Manufacturing process Each process will be described below.
  • (1-1) Kneading step In the kneading step, gypsum, a boron-containing material, a water reducing agent, and a water-containing raw material can be kneaded. Each raw material will be described.
  • gypsum used in the method for manufacturing a building board of the present embodiment gypsum alone or mixed with natural gypsum, by-product gypsum, flue gas desulfurized gypsum, etc. is fired in the air or in water (including in steam). Either the ⁇ -type or ⁇ -type gypsum obtained can be used alone or as a mixture of both.
  • the gypsum used in the method for producing gypsum plate of the present embodiment may contain a small amount of type III anhydrous gypsum that is produced when the gypsum is obtained.
  • ⁇ -type gypsum For ⁇ -type gypsum, it is necessary to pressurize dihydrate gypsum such as natural gypsum in water or steam using an autoclave. Further, ⁇ -type gypsum can be produced by calcining dihydrate gypsum such as natural gypsum under normal pressure in the atmosphere.
  • the boron-containing material may be any material containing boron, but is selected from calcium borate, boron carbide, boric acid, boron oxide, sodium borate, and calcium borate as described above. It is preferable to include one or more types.
  • the boron-containing material can contain one or more selected from the above-mentioned suitable boron-containing material compounds such as calcium borate. Therefore, as the boron-containing material, one or more compounds selected from the above compounds further containing, for example, hydrated water can be used. Further, as the boron-containing material, a mineral containing at least one selected from the compounds of the above-mentioned suitable boron-containing material can also be used. Specifically, for example, when the boron-containing material contains calcium borate, cholemanite can also be used as the boron-containing material. Further, when the boron-containing material contains sodium borate, borax or the like can be used as the boron-containing material.
  • the boron-containing material may be composed of only one or more selected from the compounds of the above-mentioned suitable boron-containing materials such as calcium borate.
  • the boron-containing material contains at least one selected from calcium borate and boron carbide, and even more preferably contains one or more selected from cholemanite and boron carbide.
  • the raw material used in the method for manufacturing a building board of the present embodiment contains a boron-containing material in a ratio of 1.0 part by mass or more and 120 parts by mass or less with respect to 100 parts by mass of dihydrate gypsum. It is preferable to contain it.
  • the neutron beam shielding performance of the obtained building board can be sufficiently improved.
  • gypsum slurry can be easily prepared when manufacturing a building board, and the obtained building can be obtained.
  • the strength of the board can also be sufficiently increased.
  • the baked gypsum (semi-water gypsum) contained in the raw material changes from baked gypsum to dihydrate gypsum in the process of manufacturing the building board. Therefore, when preparing a raw material, a boron-containing material, a water reducing agent, etc. are used so that the ratio of boron and the water reducing agent described later to 100 parts by mass of dihydrate gypsum becomes a predetermined value when the board is used for construction. It is preferable to weigh and add.
  • the boron-containing material so that the ratio of the mass of boron contained in the boron-containing material to 100 parts by mass of dihydrate gypsum in the case of a building board satisfies the above range.
  • the raw material when the raw material contains, for example, a boron-containing material at a ratio of 10 parts by mass of boron to 100 parts by mass of dihydrate gypsum, the raw material contains the boron-containing material in the raw material. It means that the amount of boron contained is about 11.9 parts by mass with respect to 100 parts by mass of gypsum. This is done by 10 ⁇ 172 ⁇ 145 using 10 parts by mass, which is the amount of boron contained in the boron-containing material, the molecular weight of 172 of the dihydrate gypsum, and the molecular weight of 145 of the baked gypsum with respect to 100 parts by mass of the dihydrate gypsum. Can be calculated.
  • gypsum slurry can be poured and molded by a molding method. Therefore, in order to improve the dispersibility of gypsum or the like in the gypsum slurry and improve the fluidity of the gypsum slurry to be poured, it is preferable that the raw material contains a water reducing agent.
  • the water reducing agent is not particularly limited, and for example, a water reducing agent conventionally used in producing a cured gypsum body can be used.
  • the water reducing agent was selected from, for example, naphthalene-based water reducing agent, polycarboxylic acid-based water reducing agent, lignin-based water reducing agent, melamine-based water reducing agent, aminosulfonic acid-based water reducing agent, phosphoric acid-based water reducing agent, and bisphenol-based water reducing agent. More than one kind can be used.
  • the water reducing agent is preferably selected according to the boron-containing material used.
  • the water reducing agent is preferably one or more selected from a naphthalene-based water reducing agent and a melamine-based water reducing agent.
  • the water reducing agent is preferably one or more selected from a naphthalene-based water reducing agent, a polycarboxylic acid-based water reducing agent, a lignin-based water reducing agent, and a melamine-based water reducing agent. ..
  • the gypsum slurry can be easily made to have the desired viscosity while suppressing the amount of the water reducing agent used by using the above water reducing agents respectively.
  • the raw material preferably contains a water reducing agent in a proportion of 0.05 parts by mass or more and 2.0 parts by mass or less with respect to 100 parts by mass of dihydrate gypsum.
  • the content ratio of the water reducing agent By setting the content ratio of the water reducing agent to 0.05 parts by mass or more, the dispersibility of gypsum or the like in the gypsum slurry can be enhanced and the gypsum slurry can have a predetermined viscosity. Therefore, it is possible to manufacture a building board with high productivity.
  • the raw material can contain water.
  • the amount of water added when forming the gypsum slurry is not particularly limited, and can be any amount depending on the required fluidity, the specific gravity required for the obtained building board, and the like. ..
  • E Other components
  • the raw material of the gypsum slurry may contain any component other than the gypsum, boron-containing material, water reducing agent, and water described above.
  • foam can be added when forming a gypsum slurry.
  • the specific gravity of the building board obtained by adjusting the amount of foam added can be in a desired range.
  • the method of adding foam when forming the gypsum slurry is not particularly limited, and it can be added by any method.
  • a foaming agent foaming agent
  • water water for forming bubbles
  • bubbles are formed by stirring while taking in air, and the formed bubbles are used as gypsum or water (kneaded water of gypsum slurry).
  • foaming agent is added to water (water for forming bubbles) in advance, and bubbles are formed by stirring while taking in air, and the formed bubbles are used as gypsum or water (kneaded water of gypsum slurry).
  • the formed gypsum slurry can be added to the gypsum slurry formed by premixing calcined gypsum, a boron-containing material, a water reducing agent, water and the like to obtain a gypsum slurry to which bubbles have been added.
  • the foaming agent used when forming the foam is not particularly limited, and examples thereof include sodium alkyl sulfate, alkyl ether sulfate, sodium alkylbenzene sulfonic acid, and polyoxyethylene alkyl sulfate.
  • the amount of foam added is not particularly limited, and can be arbitrarily selected according to the specific gravity required for the building board to be produced.
  • the raw material may also contain various additives.
  • the additive include a strength improver such as starch and polyvinyl alcohol, an inorganic fiber such as glass fiber and a lightweight aggregate, a fire resistant material such as vermiculite, a coagulation adjuster, and a foam diameter adjustment such as a sulfosuccinate type surfactant.
  • a strength improver such as starch and polyvinyl alcohol
  • an inorganic fiber such as glass fiber and a lightweight aggregate
  • a fire resistant material such as vermiculite
  • a coagulation adjuster e.g., a foam diameter adjustment
  • foam diameter adjustment such as a sulfosuccinate type surfactant.
  • agents such as silicone and paraffin.
  • a solid component of a raw material is mixed and kneaded to form a gypsum composition, and then a liquid component such as water of the raw material is added to the obtained gypsum composition and further kneaded to obtain a gypsum slurry. You can also do it.
  • the means for kneading the raw materials is not particularly limited, and for example, a mixer or the like can be used.
  • the molding step the gypsum slurry obtained in the kneading step can be molded into a desired shape. Specifically, for example, a gypsum slurry can be placed between surface materials for molding.
  • the surface material for example, one selected from board base paper, glass fiber non-woven fabric, and glass mat can be used.
  • FIG. 2 is a side view partially and schematically showing a configuration example of a device for molding gypsum board.
  • the surface cover base paper (board base paper) 211 which is the surface material, is transported along the production line from the right side to the left side in the figure.
  • the mixer 22 can be placed at a predetermined position associated with the transfer line, for example, above or beside the transfer line. Then, in a single mixer 22, gypsum slurry can be produced by kneading gypsum, which is a raw material of gypsum slurry, a boron-containing material, a water reducing agent, water, and in some cases, various additives.
  • gypsum is a raw material of gypsum slurry, a boron-containing material, a water reducing agent, water, and in some cases, various additives.
  • a solid such as gypsum can be mixed and stirred in advance to form a gypsum composition which is a mixture, and then supplied to the mixer 22.
  • foam can be added from the gypsum slurry distribution ports 221, 222, 223, and the amount of foam added can be adjusted to obtain a gypsum slurry having an arbitrary density. For example, by adjusting the amount of foam added, the first gypsum slurry 23 and the second gypsum slurry 24 having different densities can be prepared.
  • the foam can also be supplied to the mixer 22 together with other raw materials of the gypsum slurry instead of the sampling port.
  • the obtained first gypsum slurry 23 is supplied onto the front cover base paper (board base paper) 211 and the back cover base paper (board base paper) 212 on the upstream side of the roll coater 26 through the delivery pipes 251, 252. ..
  • the upstream side means the upstream side in the transport direction of the front cover base paper 211 and the back cover base paper 212.
  • the first gypsum slurry 23 on the front cover base paper 211 and the back cover base paper 212 each reach the extension portion of the roll coater 26 and are extended at the extension portion.
  • the roll coater 26 has a coating roll 261 and a receiving roll 262, and a debris removing roll 263, and the first gypsum slurry 23 is spread by these rolls.
  • a thin layer of the first gypsum slurry 23 is formed on the surface cover base paper 211.
  • a thin layer of the first gypsum slurry 23 is formed on the back cover base paper 212.
  • FIG. 2 shows an example in which the first gypsum slurry 23 is applied to the front cover base paper 211 and the back cover base paper 212 using the roll coater 26, but the present invention is not limited to this form.
  • the roll coater 26 may be used to apply the first gypsum slurry 23 to only one of the front cover base paper 211 and the back cover base paper 212.
  • the first gypsum slurry 23 can be arranged only on the side end portion of the surface cover base paper 211.
  • the front cover base paper 211 is conveyed as it is, and the back cover base paper 212 is turned in the direction of the transport line of the front cover base paper 211 by the turning roller 27. Then, both the front cover base paper 211 and the back cover base paper 212 reach the molding machine 28.
  • the second gypsum slurry 24 is supplied from the mixer 22 through the conduit 253 between the thin layers formed on the front cover base paper 211 and the back cover base paper 212. Therefore, between the front cover base paper 211 and the back cover base paper 212, a layer formed by the first gypsum slurry 23, a layer formed by the second gypsum slurry 24, and a first gypsum slurry 23. It is possible to form a continuous laminated body in which the layers formed by Gypsum are laminated.
  • FIG. 2 shows an example in which the first gypsum slurry 23 and the second gypsum slurry 24 are manufactured by one mixer 22, but two mixers are provided and each mixer has the first gypsum slurry 23. , The second gypsum slurry 24 may be manufactured.
  • the form is not limited to the use of the first gypsum slurry and the second gypsum slurry, for example, in the form of producing a gypsum slurry having one kind of density and supplying the gypsum slurry on a board base paper. May be there.
  • a gypsum slurry having a predetermined density is supplied and deposited on a surface cover base paper (base paper for a board) that is continuously conveyed. Then, the lower paper is folded along the engraved lines attached to both end edges so as to wrap the gypsum slurry. At this time, the back cover base paper (board base paper) transported at the same speed is overlaid on the layer of the gypsum slurry. Then, it is molded by passing through a molding machine that determines the thickness and width of the gypsum board. Gypsum board can also be molded by the above procedure.
  • gypsum board as a building board
  • various building boards can be manufactured by changing the base paper for a board, which is a surface material, to a glass fiber non-woven fabric (glass tissue), a glass mat, or the like, and arranging the board so as to be buried on the surface or near the surface.
  • a curing step of hydrating and curing the gypsum slurry can be carried out.
  • the hardening step can be carried out by allowing acicular crystals of dihydrate gypsum to be formed by a hydration reaction of the baked gypsum (hemihydrate gypsum) in the gypsum slurry to condense and solidify. Therefore, the curing step can be carried out by reacting between the gypsum contained in the gypsum slurry and water in the molded body formed in the molding step and the hydration reaction of the gypsum progresses.
  • the building board manufacturing method of the present embodiment further includes an arbitrary step such as a rough cutting step, a drying step, a cutting step, and a loading step, if necessary. Can be done.
  • (1-4-1) Rough cutting step For example, after the above molding step, a rough cutting step of roughly cutting the molded product formed in the molding step with a rough cutting cutter is carried out while the curing step is in progress or after the curing step is completed. You may.
  • the rough cutting cutter can cut the continuous molded body formed in the molding step to a predetermined length.
  • (1-4-2) Drying Step In addition, a drying step of drying excess water from the molded product formed in the molding process or the molded product roughly cut in the rough cutting step can be carried out. In the drying step, a molded product having been cured can be supplied. The drying step can be carried out by forcibly drying the molded product using a dryer.
  • the method for forcibly drying the molded product with a dryer is not particularly limited, but for example, a dryer is provided on the transport path of the molded product, and the molded product is continuously dried by passing through the dryer. can do. It is also possible to carry the molded product into the dryer and dry the molded product for each batch. (1-4-3) Cutting step, loading step Further, for example, a cutting step of cutting a molded product into a product having a predetermined length after drying, a obtained gypsum cured product, a gypsum board, etc. It is possible to carry out a loading process or the like of stacking, storing in a warehouse, or loading onto a truck or the like for shipping.
  • the obtained building board may have a board shape, and its detailed configuration is not particularly limited, but it is manufactured by the casting method as described above, so that it is on the surface side. A surface material such as base paper for board or glass fiber non-woven fabric can be placed on the surface.
  • the surface material examples include one selected from board base paper, glass fiber non-woven fabric, and glass mat.
  • the surface material may be arranged on the outermost surface of the gypsum core, or may be arranged so that a part or the whole thereof is embedded in the gypsum core.
  • (2-2) Dry Specific Density The dry specific gravity of the building board obtained after the curing step is preferably 0.65 or more and 1.6 or less, and more preferably 0.65 or more and 1.3 or less.
  • the dry specific gravity By setting the dry specific gravity to 0.65 or more, the proportion of gypsum contained can be sufficiently increased and the neutron beam shielding performance can be improved.
  • the dry specific density By setting the dry specific density to 1.6 or less, it is possible to make a lightweight building board, and the handleability is particularly improved. Further, by setting the dry specific gravity to 1.6 or less, it is possible to suppress the viscosity of the gypsum slurry prepared in the kneading step from becoming excessively high and to increase the productivity.
  • (2-3) Heat-generating board The building board obtained after the curing step is preferably heat-generating grade 2 or higher in the heat-generating test.
  • the obtained building board By setting the obtained building board to heat generation level 2 or higher, it can be applied to the interior restrictions required by the building to be used, so it can be used in buildings of various uses and scales. For example, by adjusting the amount of an organic component such as starch added, a predetermined exothermic grade can be obtained.
  • the compressive strength of the manufactured building board was measured using an autograph (model: AG-10NKI manufactured by Shimadzu Corporation).
  • the prepared building board was cut out to have a size of 2 cm in length ⁇ 2 cm in width on a surface perpendicular to the thickness direction and used as a test piece.
  • the height of each test piece is equal to the thickness of each building board. For example, in the case of Experimental Example 1-1 below, the height of the test piece is 15 mm, which is the same as the thickness of the manufactured building board.
  • the load applied to the test piece was set to 3 mm / min. (Fever test)
  • the exothermic test was carried out according to Annex A of JIS A 6901 (2014).
  • the neutron beam shielding performance of the building board having the composition prepared in each experimental example was evaluated using a rectangular parallelepiped analysis model having a length of 20 cm, a width of 20 cm, and a thickness of 20 cm. Then, from the neutron beam shielding performance obtained from the analysis results of the above analysis model, the neutron beam shielding rate was calculated by adding the thickness of the building board produced in the following experimental example.
  • PHITS Particle and heavy ion transport code system
  • Experimental Examples 1-1 to 1-11, Experimental Examples 2-1 to 2-8 are Examples, Experimental Examples 1-12 to 1-18, Experimental Examples 2-9, and Experimental Examples 2-10. Is a comparative example.
  • [Experimental Example 1-1] A gypsum board was manufactured as a building board using the device shown in FIG.
  • the procedure for producing gypsum board will be described with reference to FIG. (Kneading process)
  • the surface cover base paper (board base paper) 211 is continuously conveyed along the production line from the right side to the left side in FIG. 2.
  • ⁇ -type gypsum, boron-containing material, colemanite, naphthalene-based water reducing agent, and water-containing raw material were mixed.
  • the amount of foam to be added was adjusted.
  • the foam was prepared by foaming a foaming agent (main component: alkyl ether sulfate).
  • the raw material contains choremanite in a ratio of 5.6 parts by mass of boron to 100 parts by mass of dihydrate gypsum. Further, the raw material contains a naphthalene-based water reducing agent in a ratio of 1.5 parts by mass with respect to 100 parts by mass of dihydrate gypsum. It was confirmed by ICP emission spectroscopic analysis that the obtained gypsum board also contained each component in the same ratio. The same was true for the following other experimental examples.
  • the gypsum slurry obtained in the mixer 22 is supplied onto the front cover base paper 211 and the back cover base paper (board base paper) 212 on the upstream side of the roll coater 26 from the sampling ports 221 and 222 through the delivery pipes 251 and 252. bottom.
  • the first gypsum slurry 23 on the front cover base paper 211 and the back cover base paper 212 each reach the extension portion of the roll coater 26 and are spread.
  • a thin layer of the first gypsum slurry 23 is formed on the surface cover base paper 211.
  • a thin layer of the first gypsum slurry 23 is formed on the back cover base paper 212.
  • the front cover base paper 211 is conveyed as it is, and the back cover base paper 212 is turned in the direction of the transport line of the front cover base paper 211 by the turning roller 27.
  • both the front cover base paper 211 and the back cover base paper 212 reach the molding machine 28.
  • the second gypsum slurry 24 is supplied through the pipe line 253 between the front cover base paper 211, which is the base paper for the board, and the thin layer formed on the back cover base paper 212.
  • the molding machine 28 by passing through the molding machine 28, a continuous layer formed by the first gypsum slurry 23 and the second gypsum slurry 24 is arranged between the front cover base paper 211 and the back cover base paper 212. Laminated body is formed. At this time, the gypsum board was molded so as to have a thickness of 15 mm. (Curing process) The obtained molded product, specifically gypsum slurry, was cured in the process of transportation. (Rough cutting process) The molded product hardens and leads to a rough cutting cutter (not shown).
  • a continuous molded body was cut into a plate-shaped body of a predetermined length by a rough cutting cutter to form a semi-finished product of gypsum board, which is a plate-shaped body composed of a core material mainly composed of gypsum covered with base paper. ..
  • the coarsely cut molded product was passed through a dryer (not shown) and forcibly dried to remove excess water.
  • Cut process After the drying process, the product was cut into a product having a predetermined length to obtain gypsum board, which is a building board.
  • Example 1-4 When preparing the gypsum slurry in the kneading step, the amount of water to be added was adjusted so that the specific gravity of the obtained gypsum board was 1.3, but the gypsum was the same as in Experimental Example 1-1. The board was manufactured and evaluated. The evaluation results are shown in Table 1.
  • Example 1-5 Experimental Example 1-6
  • the amount of the water reducing agent contained in the raw material was 0.8 parts by mass (Experimental Example 1-5) and 0.1 parts by mass (1-5 parts by mass) with respect to 100 parts by mass of dihydrate gypsum. Experimental example 1-6) was used.
  • Example 1-7 A gypsum board was manufactured and evaluated in the same manner as in Experimental Example 1-1, except that a melamine-based water reducing agent was used instead of the naphthalene-based water reducing agent when preparing the gypsum slurry in the kneading step. .. The evaluation results are shown in Table 1.
  • Example 1-8 Experimental Example 1-9
  • a gypsum board was manufactured and evaluated in the same manner as in Experimental Example 1-1, except that the thickness of the gypsum board to be manufactured was set to the value shown in Table 1 in the molding step. The evaluation results are shown in Table 1.
  • Example 1-10 When preparing the gypsum slurry in the kneading step, the amount of the water reducing agent contained in the raw material was 1.0 part by mass with respect to 100 parts by mass of the dihydrate gypsum in the same manner as in Experimental Example 1-1. Gypsum board was manufactured and evaluated. The evaluation results are shown in Table 1.
  • Example 1-11 When preparing the gypsum slurry in the kneading step, a melamine-based water reducing agent was used as the water reducing agent, and the amount of the water reducing agent contained in the raw material was 1.0 part by mass with respect to 100 parts by mass of the dihydrate gypsum. Except for the above points, gypsum board was manufactured and evaluated in the same manner as in Experimental Example 1-1. The evaluation results are shown in Table 1.
  • Example 1-14 Experimental Example 1-15
  • the amount of the water reducing agent contained in the raw material was 3.0 parts by mass (Experimental Example 1-14) and 0.02 parts by mass (Experimental Example 1-14) with respect to 100 parts by mass of dihydrate gypsum.
  • Experimental example 1-15 was used. Except for the above points, gypsum board was manufactured and evaluated in the same manner as in Experimental Example 1-1. The evaluation results are shown in Table 1.
  • Example 1-16 to 1-18 When preparing a gypsum slurry in the kneading step, a melamine-based water reducing agent (Experimental Example 1-16), a lignin-based water reducing agent (Experimental Example 1-17), and a polycarboxylic acid-based water reducing agent (Experimental Example 1-18) are used as water reducing agents. ) was used respectively. Except for the above points, gypsum board was manufactured and evaluated in the same manner as in Experimental Example 1-14. The evaluation results are shown in Table 1.
  • Example 2-1 In preparing the gypsum slurry in the kneading step, using a boron carbide (B 4 C) as a boron-containing material, the amount of water reducing agent material contains, per 100 parts by weight of gypsum, 0.8 part by weight And said. Except for the above points, gypsum board was manufactured and evaluated in the same manner as in Experimental Example 1-1. The evaluation results are shown in Table 1.
  • Example 2-4 When preparing the gypsum slurry in the kneading step, the amount of the water reducing agent contained in the raw material was the same as in Experimental Example 2-1 except that the amount was 2.0 parts by mass with respect to 100 parts by mass of dihydrate gypsum. Gypsum board was manufactured and evaluated. The evaluation results are shown in Table 1.
  • Example 2-5 A gypsum board was manufactured and evaluated in the same manner as in Experimental Example 2-1 except that a polycarboxylic acid-based water reducing agent was used instead of the naphthalene-based water reducing agent when preparing the gypsum slurry in the kneading step. went. The evaluation results are shown in Table 1.
  • Example 2-6 When preparing the gypsum slurry in the kneading step, the amount of the water reducing agent contained in the raw material was set to 1.5 parts by mass with respect to 100 parts by mass of the dihydrate gypsum. Further, when preparing the gypsum slurry in the kneading step, the amount of water to be added was adjusted so that the specific gravity of the obtained gypsum board was 1.5. Except for the above points, gypsum board was manufactured and evaluated in the same manner as in Experimental Example 2-5. The evaluation results are shown in Table 1.
  • Example 2-7 Experimental Example 2-8
  • Experimental examples except that a lignin-based water reducing agent (Experimental Example 2-7) and a melamine-based water reducing agent (Experimental Example 2-8) were used instead of the naphthalene-based water reducing agent when preparing the gypsum slurry in the kneading step.
  • a gypsum board was manufactured and evaluated in the same manner as in the case of 2-1. The evaluation results are shown in Table 1.
  • Example 2-9 When preparing the gypsum slurry in the kneading step, the amount of boron carbide contained in the raw material was adjusted so that the amount of boron contained was 313.2 parts by mass with respect to 100 parts by mass of dihydrate gypsum. Except for the above points, gypsum board was manufactured and evaluated in the same manner as in Experimental Example 2-1. The evaluation results are shown in Table 1. [Experimental Example 2-10] A polycarboxylic acid-based water reducing agent was used instead of the naphthalene-based water reducing agent, and the amount of the water reducing agent contained in the raw material was 1.5 parts by mass with respect to 100 parts by mass of dihydrate gypsum.
  • the gypsum boards produced in Experimental Examples 1-1 to 1-11 and Experimental Examples 2-1 to 2-8 are all having a neutron beam shielding rate of more than 60%. It was confirmed that it has sufficient neutron beam shielding performance.
  • All of these gypsum boards have a board shape, that is, a plate shape. Therefore, it was confirmed that it could function as a radiation shielding wall only by fixing it, and that it was excellent in handleability.
  • the gypsum board manufactured in Experimental Example 1-13 had too much boron-containing material, so that the gypsum board manufactured was brittle and could not be subjected to a compressive strength test or the like.
  • the gypsum board produced in Experimental Example 2-9 is presumed to have a high neutron beam shielding rate due to the high content of boron, but the compounding ratio of gypsum etc. decreases, so the obtained gypsum board is compressed. It was confirmed that the strength was low and it was not suitable for practical use. Since the compressive strength of gypsum board is low and not suitable for practical use, the neutron beam shielding rate was not evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Laminated Bodies (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

石膏と、 前記石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下であるホウ素含有材料と、 前記石膏100質量部に対して0.05質量部以上2.0質量部以下の減水剤と、を含有し、 前記ホウ素含有材料が、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含み、 乾燥比重が0.65以上1.6以下である中性子線遮蔽石膏系建築用ボードを提供する。

Description

中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法
 本発明は、中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法に関するものである。
 近年医療現場において放射線治療が行われている。
 放射線治療施設においては、患者の患部に照射した放射線が放射線使用領域外に漏れ出ることを抑制するため、放射線使用領域を厚いコンクリート壁や、厚いコンクリートと鉄、鉛などの金属板とを組み合わせた壁などの壁材により区画している。このため、放射線治療用の装置を交換する場合などには、コンクリート壁等の壁材を取り壊し、装置を交換した後に再度壁を構築する必要があった。取り壊した壁材が放射線に汚染されている場合には、壁材の廃棄にも工数や、コストを要するという問題があった。
 そのため、従来から放射線を遮蔽する放射線遮蔽材料について各種検討がなされてきた。
 例えば特許文献1には、水と石膏とを含む放射線遮蔽材組成物により成形された乾式石膏ブロックを積み重ねて構築された放射線遮蔽壁が開示されている。
日本国特開2014-89127号公報
 しかしながら、特許文献1に開示された放射線遮蔽壁は、乾式石膏ブロックを積み重ねて形成する必要があり、さらなる取り扱い性の向上が求められていた。
 本発明は上記従来技術の問題点に鑑み、本発明の一側面では、取り扱い性に優れた中性子線遮蔽石膏系建築用ボードを提供することを目的とする。
 上記課題を解決するため本発明の一形態によれば、石膏と、
 前記石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下であるホウ素含有材料と、
 前記石膏100質量部に対して0.05質量部以上2.0質量部以下の減水剤と、を含有し、
 前記ホウ素含有材料が、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含み、
 乾燥比重が0.65以上1.6以下である中性子線遮蔽石膏系建築用ボードを提供する。
 本発明の一形態によれば、取り扱い性に優れた中性子線遮蔽石膏系建築用ボードを提供することができる。
本発明の実施形態における中性子線遮蔽石膏系建築用ボードの説明図。 本発明の実施形態における中性子線遮蔽石膏系建築用ボードの製造方法の説明図。
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
[中性子線遮蔽石膏系建築用ボード]
 本実施形態の中性子線遮蔽石膏系建築用ボードの一構成例について説明する。
 本実施形態の中性子線遮蔽石膏系建築用ボード(以下、「建築用ボード」とも記載する)は、石膏と、ホウ素含有材料と、減水剤とを含有できる。
 本実施形態の建築用ボードは、上記ホウ素含有材料を、石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下となる割合で含有できる。
 また、建築用ボードは、減水剤を、石膏100質量部に対して0.05質量部以上2.0質量部以下の割合で含有できる。
 ホウ素含有材料は、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含むことが好ましい。
 建築用ボードは、乾燥比重が0.65以上1.6以下であることが好ましい。
 本実施形態の建築用ボードは、ボード形状、すなわち板状形状を有することができる。本実施形態の建築用ボードによれば、上述のようにボード形状を有するため、固定するのみで、放射線遮蔽壁として機能させることができる。従って、本実施形態の建築用ボードによれば、例えばブロック形状等を有し、積層して放射線遮蔽壁を形成する必要がある放射線遮蔽材と比較して、取り扱い性に優れる。
(1)含有成分
 以下、まず本実施形態の建築用ボードが有する成分について説明する。
(1-1)石膏
 本実施形態の建築用ボードは、上述のように石膏を含有できる。
 放射線の中でも特に遮蔽が困難とされる中性子線は、弾性散乱によるエネルギー吸収により遮蔽することが有効である。
 中性子線は、有するエネルギーの大きさに応じて、高速中性子、速中性子、および熱中性子などに分類できる。そして、上記中性子線のうち、速中性子は、そのエネルギー領域において吸収断面積の大きな水素との衝突によりエネルギーが減速する。このため、速中性子線を遮蔽する観点から、建築用ボードには、水素密度の高い材料を用いることが好ましい。石膏は水和水が水素を含有し、水素密度が高いため、本実施形態の建築用ボードが石膏を含有することで、該建築用ボードの中性子線遮蔽性能を高めることができる。
 石膏はさらに、成形性、硬化速度にも優れる。このため、本実施形態の建築用ボードが、石膏を含有することで、放射線遮蔽材料である本実施形態の建築用ボードを生産性良く製造できる。
(1-2)ホウ素含有材料
 本実施形態の建築用ボードは、各種放射線に対する放射線遮蔽性能を向上させる目的で、ホウ素をさらに含むことができる。中性子線、特に熱中性子線領域のエネルギーを有する中性子線は、ホウ素の原子核に吸収される。このため、本実施形態の建築用ボードがホウ素を含有することで、建築用ボードの中性子線遮蔽性能を向上させることができる。
 以上のように、本実施形態の建築用ボードによれば、石膏およびホウ素を含むことで、中性子線、特に速中性子線、および熱中性子線を遮蔽できる。
 本実施形態の建築用ボードは、ホウ素を例えばホウ素含有材料として含有できる。ホウ素含有材料は、ホウ素を含有する材料であれば特に限定されないが、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含むことが好ましい。
 本実施形態の建築用ボードにおいて、ホウ素含有材料は、ホウ酸カルシウム等の上記好適なホウ素含有材料の化合物から選択された1種類以上を含有できる。このため、ホウ素含有材料として、例えば水和水等をさらに含む上記化合物から選択された1種類以上の化合物を用いることもできる。また、ホウ素含有材料として、上記好適なホウ素含有材料の化合物から選択された1種類以上を含む鉱物等を用いることもできる。具体的には、例えば、ホウ素含有材料がホウ酸カルシウムを含む場合、ホウ素含有材料としてコレマナイトを用いることもできる。また、ホウ素含有材料がホウ酸ナトリウムを含む場合、ホウ素含有材料として硼砂等を用いることもできる。なお、ホウ素含有材料は、ホウ酸カルシウム等の上記好適なホウ素含有材料の化合物から選択された1種類以上のみから構成することもできる。
 ホウ素含有材料は、中でもホウ酸カルシウム、および炭化ホウ素から選択された1種類以上を含むことがより好ましく、コレマナイト、および炭化ホウ素から選択された1種類以上を含むことがさらに好ましい。
 コレマナイトは、安定な材料であるため取り扱い性に優れ、安価であることから好適に用いることができる。また、炭化ホウ素は、特に安定な材料であり、取り扱い性に優れるため、好適に用いることができる。
 本実施形態の建築用ボードは、ホウ素含有材料を、石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下となる割合で含有することが好ましく、3.0質量部以上120質量部以下となる割合で含有することがより好ましい。
 なお、「石膏100質量部に対して」とは、二水石膏(CaSO・2HO)100質量部に対する割合を意味する。建築用ボード中においては通常、石膏は二水石膏となっている。建築用ボードは、石膏として二水石膏以外の石膏、例えば半水石膏等を含む場合も考えられるが、建築用ボードが含有する石膏成分は、全て二水石膏を形成しているとみなして、石膏100質量部に対するホウ素含有材料が含有するホウ素の量(割合)を求められる。後述する減水剤の場合も同様である。
 石膏100質量部に対する、ホウ素含有材料が含有するホウ素の質量の割合を1.0質量部以上とすることで、建築用ボードの中性子線遮蔽性能を十分に高めることができる。
 また、石膏100質量部に対する、ホウ素含有材料が含有するホウ素の質量の割合を120質量部以下とすることで、建築用ボードを製造する際に石膏スラリーを調製し易くでき、得られる建築用ボードの強度も十分に高めることができる。
(1-3)減水剤
 本実施形態の建築用ボードは、流し込み成形法により製造できる。このため、放射線遮蔽材料を製造する際に従来用いられていた、押出成形法や抄造法により製造する場合と比較して、生産性良く製造を行うことができる。
 そして、流し込み成形法により建築用ボードを製造する場合、石膏スラリー中の石膏等の分散性を高め、流し込む石膏スラリーの流動性を向上させるため、減水剤を添加することが好ましい。
 減水剤は、特に限定されず、例えば石膏硬化体を製造する際に従来から用いられている減水剤を用いることができる。減水剤としては、例えばナフタレン系減水剤、ポリカルボン酸系減水剤、リグニン系減水剤、メラミン系減水剤、アミノスルホン酸系減水剤、リン酸系減水剤、およびビスフェノール系減水剤から選択された1種類以上を用いることができる。
 減水剤は、用いるホウ素含有材料に応じて選択することが好ましい。例えば、ホウ素含有材料としてコレマナイトを用いる場合、減水剤は、ナフタレン系減水剤、およびメラミン系減水剤から選択された1種類以上であることが好ましい。
 また、ホウ素含有材料として炭化ホウ素を用いる場合、減水剤は、ナフタレン系減水剤、ポリカルボン酸系減水剤、リグニン系減水剤、およびメラミン系減水剤から選択された1種類以上であることが好ましい。
 ホウ素含有材料としてコレマナイトや、炭化ホウ素を用いる場合、それぞれ上記減水剤を用いることで、減水剤の使用量を抑制しつつ、石膏スラリーを容易に目的の粘度とすることができる。
 本実施形態の建築用ボードは、石膏100質量部に対して、減水剤を0.05質量部以上2.0質量部以下の割合で含有することが好ましい。
 なお、ここでも「石膏100質量部に対して」とは、二水石膏100質量部に対する割合を意味する。
 上記減水剤の含有割合を0.05質量部以上とすることで、建築用ボードを製造するための石膏スラリー中の石膏等の分散性を高め、石膏スラリーを所定の粘度とすることができる。このため、生産性良く製造できる建築用ボードとすることができる。
 また、上記減水剤の含有割合を2.0質量部より多くしても、石膏スラリーの粘度に大きな変化がない。このため、減水剤の含有割合を2.0質量部以下とすることで、建築用ボードの生産性を高めつつ、建築用ボードのコストを抑制できる。
(1-4)その他の成分
 建築用ボードは、ここまで説明した石膏、ホウ素含有材料、および減水剤以外にも任意の成分を含有することができる。
 例えば、石膏スラリーを形成する際には泡を添加することもできる。このため、本実施形態の建築用ボードは、係る泡に起因する気泡を含むこともできる。気泡の含有量を調整することで、建築用ボードの乾燥比重を所望の範囲とすることができる。
 また、建築用ボードはその他に各種添加剤を含有することもできる。
 添加剤としては、澱粉、ポリビニルアルコール等の強度向上剤や、ガラス繊維等の無機繊維および軽量骨材、バーミキュライト等の耐火材、凝結調整剤、スルホコハク酸塩型界面活性剤等の泡径調整剤、シリコーンやパラフィン等の撥水剤等が挙げられる。
(2)建築用ボードの形状、物性について
(2-1)形状、構成
 本実施形態の建築用ボードは、図1に模式的に示した斜視図のようにボード形状を有していればよく、その詳細な構成は特に限定されない。本実施形態の建築用ボードは、既述のように流し込み成形法により製造することが好ましいため、表面側にボード用原紙や、ガラス繊維不織布等の表面材を配置できる。
 このため、図1に示すように、本実施形態の建築用ボード10は、第1の表面101側と、第1の表面101と反対側に位置する第2の表面102側とに、表面材11が配置されていることが好ましい。表面材11としては、特に限定されず、製造する建築用ボードの種類に応じて選択できる。本実施形態の建築用ボード10は、例えば石膏ボード、ガラスマット石膏ボード、ガラス繊維不織布入石膏板から選択された1種とすることができる。このため、表面材11としては、例えばボード用原紙、ガラス繊維不織布、およびガラスマットから選択された1種が挙げられる。図1において表面材11は石膏コア12の最表面に配置した例を示しているが、係る形態に限定されない。表面材11は、石膏コア12内に一部または全体が埋設されるように配置されていてもよい。なお、石膏コア12は、既述の石膏と、ホウ素含有材料と、減水剤とを含む。
 本実施形態の建築用ボードの厚さTは特に限定されないが、例えば9.5mm以上25.0mm以下であることが好ましく、12.5mm以上25.0mm以下であることがより好ましい。建築用ボードの厚さTを9.5mm以上とすることで、石膏や、ホウ素含有材料の含有量を十分に多くし、中性子線遮蔽性能を発揮できる。また、建築用ボードの厚さTを25.0mm以下とすることで、取り扱い性能を特に高められる。
(2-2)乾燥比重
 本実施形態の建築用ボードの乾燥比重は、0.65以上1.6以下であることが好ましく、0.65以上1.3以下であることがより好ましい。
 乾燥比重を0.65以上とすることで、含有する石膏の割合を十分に高め、中性子線遮蔽性能を高めることができる。乾燥比重を1.6以下とすることで、軽量な建築用ボードとすることができ、取り扱い性を特に高められる。また、乾燥比重を1.6以下とすることで、建築用ボードを製造する際に用いる石膏スラリーの粘度が過度に高くなることを抑制し、生産性を高めることができる。
 乾燥比重は、JIS A 6901(2014)で規定される比重の測定方法に基づいて測定、算出できる。
(2-3)発熱性
 本実施形態の建築用ボードは、発熱性試験で発熱性2級以上、すなわち発熱性1級または発熱性2級であることが好ましい。ここでいう発熱性試験は、JIS A 6901(2014)の付属書Aに規定されている。発熱性1級、発熱性2級は、加熱時間終了時までの総発熱量が8MJ/m以下であり、加熱時間内に防火上有害な裏面まで貫通する亀裂、孔などがなく、加熱時間内に最高発熱速度が10秒以上継続して200kW/mを超えない。発熱性1級は加熱時間が20分、発熱性2級は加熱時間が10分となる。
 建築基準法によって、建物の用途や規模により使用できる建築材料が限定されている。本実施形態の建築用ボードを発熱性2級以上とすることで、使用する建物が要求される内装制限にも適応することができるため、各種用途や規模の建物においても使用できる。建築用ボードは、例えば澱粉等の有機成分の添加量を調整することで、所定の発熱性の等級とすることができる。
[中性子線遮蔽石膏系建築用ボードの製造方法]
 本実施形態の中性子線遮蔽石膏系建築用ボードの製造方法について説明する。
 本実施形態の中性子線遮蔽石膏系建築用ボードの製造方法(以下、「建築用ボードの製造方法」とも記載する)は以下の工程を有することができる。
 少なくとも焼石膏、ホウ素含有材料、減水剤、および水を含有する原料を混練し、石膏スラリーを形成する混練工程。 
 石膏スラリーを成形する成形工程。 
 成形工程で得られた成形体を硬化させる硬化工程。
 原料は、ホウ素含有材料を、二水石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下となる割合で含有できる。
 また、原料は、減水剤を、二水石膏100質量部に対して0.05質量部以上2.0質量部以下の割合で含有できる。
 ホウ素含有材料は、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含むことが好ましい。
 硬化工程後に得られる建築用ボードの乾燥比重は、0.65以上1.6以下であることが好ましい。
(1)製造工程について
 以下、各工程について説明する。
(1-1)混練工程
 混練工程では、焼石膏、ホウ素含有材料、減水剤、および水を含有する原料を混練できる。各原料について説明する。
(1-1-1)原料について
(A)焼石膏
 焼石膏は硫酸カルシウム・1/2水和物ともいい、水硬性を有する無機組成物である。本実施形態の建築用ボードの製造方法で用いる焼石膏としては、天然石膏、副産石膏および排煙脱硫石膏等の単独若しくは混合した石膏を大気中、または水中(蒸気中を含む)で焼成して得られるα型、β型焼石膏のいずれかを単独で、もしくは両者の混合品を使用できる。本実施形態の石膏板の製造方法で用いる焼石膏は、焼石膏を得る際に微量に生成するIII型無水石膏を含んでいても問題ない。
 α型焼石膏は天然石膏等の二水石膏を、オートクレーブを用い、水中または水蒸気中で加圧焼成する必要がある。また、β型焼石膏は天然石膏等の二水石膏を大気中で常圧焼成することにより製造できる。
(B)ホウ素含有材料
 ホウ素含有材料は、ホウ素を含有する材料であればいいが、上述のようにホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含むことが好ましい。
 ホウ素含有材料は、ホウ酸カルシウム等の上記好適なホウ素含有材料の化合物から選択された1種類以上を含有できる。このため、ホウ素含有材料として、例えば水和水等をさらに含む上記化合物から選択された1種類以上の化合物を用いることもできる。また、ホウ素含有材料として、上記好適なホウ素含有材料の化合物から選択された1種類以上を含む鉱物等を用いることもできる。具体的には、例えば、ホウ素含有材料がホウ酸カルシウムを含む場合、ホウ素含有材料としてコレマナイトを用いることもできる。また、ホウ素含有材料がホウ酸ナトリウムを含む場合、ホウ素含有材料として硼砂等を用いることもできる。なお、ホウ素含有材料は、ホウ酸カルシウム等の上記好適なホウ素含有材料の化合物から選択された1種類以上のみから構成することもできる。
 ホウ素含有材料は、中でもホウ酸カルシウム、および炭化ホウ素から選択された1種類以上を含むことがより好ましく、コレマナイト、および炭化ホウ素から選択された1種類以上を含むことがさらに好ましい。
 本実施形態の建築用ボードの製造方法において用いる原料は、ホウ素含有材料を、二水石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下となる割合で含有することが好ましい。
 二水石膏100質量部に対する、ホウ素含有材料が含有するホウ素の質量の割合を1.0質量部以上とすることで、得られる建築用ボードの中性子線遮蔽性能を十分に高めることができる。
 また、二水石膏100質量部に対する、ホウ素含有材料が含有するホウ素の質量の割合を120質量部以下とすることで、建築用ボードを製造する際に石膏スラリーを調製し易くでき、得られる建築用ボードの強度も十分に高めることができる。
 硬化工程で後述するが、原料が含有する焼石膏(半水石膏)は、建築用ボードを製造する過程で焼石膏から二水石膏へと変化する。従って、建築用ボードとした際に、二水石膏100質量部に対するホウ素や、後述する減水剤の割合が所定の値となるように、原料を調製する際にホウ素含有材料や、減水剤等を秤量し、添加することが好ましい。このため、ホウ素含有材料は、建築用ボードとした際の二水石膏100質量部に対する、ホウ素含有材料が含有するホウ素の質量の割合が上記範囲を充足するように添加することが好ましい。
 なお、原料が、例えばホウ素含有材料を、二水石膏100質量部に対して、含有するホウ素の量が10質量部となる割合で含有するとは、該原料が、ホウ素含有材料を、原料中の焼石膏100質量部に対して、含有するホウ素の量が約11.9質量部となるように含有することを意味する。これは、上記二水石膏100質量部に対する、ホウ素含有材料が含有するホウ素の量である10質量部、二水石膏の分子量172、および焼石膏の分子量145を用いて、10×172÷145により算出できる。
 ここではホウ素含有材料の場合を例に説明したが、減水剤に関しても同様のことが言える。
(C)減水剤
 後述する成形工程では、石膏スラリーを流し込み成形法により成形できる。このため、石膏スラリー中の石膏等の分散性を高め、流し込む石膏スラリーの流動性を向上させるため、原料は減水剤を含むことが好ましい。
 減水剤は、特に限定されず、例えば石膏硬化体を製造する際に従来から用いられている減水剤を用いることができる。減水剤としては、例えばナフタレン系減水剤、ポリカルボン酸系減水剤、リグニン系減水剤、メラミン系減水剤、アミノスルホン酸系減水剤、リン酸系減水剤およびビスフェノール系減水剤から選択された1種類以上を用いることができる。
 減水剤は、用いるホウ素含有材料に応じて選択することが好ましい。例えば、ホウ素含有材料としてコレマナイトを用いる場合、減水剤は、ナフタレン系減水剤、およびメラミン系減水剤から選択された1種類以上であることが好ましい。
 また、ホウ素含有材料として炭化ホウ素を用いる場合、減水剤は、ナフタレン系減水剤、ポリカルボン酸系減水剤、リグニン系減水剤、およびメラミン系減水剤から選択された1種類以上であることが好ましい。
 ホウ素含有材料としてコレマナイトや、炭化ホウ素を用いる場合、それぞれ上記減水剤を用いることで、減水剤の使用量を抑制しつつ、石膏スラリーを容易に目的の粘度とすることができる。
 本実施形態の建築用ボードの製造方法において原料は、二水石膏100質量部に対して、減水剤を0.05質量部以上2.0質量部以下の割合で含有することが好ましい。
 上記減水剤の含有割合を0.05質量部以上とすることで、石膏スラリー中の石膏等の分散性を高め、石膏スラリーを所定の粘度とすることができる。このため、生産性良く建築用ボードを製造できる。
 また、上記減水剤の含有割合を2.0質量部より多くしても、石膏スラリーの粘度に大きな変化がない。このため、減水剤の含有割合を2.0質量部以下とすることで、建築用ボードの生産性を高めつつ、建築用ボードのコストを抑制できる。
(D)水
 焼石膏やホウ素含有材料等を混練して石膏スラリーとするため、原料は水を含有できる。石膏スラリーを形成する際の水の添加量は特に限定されるものではなく、要求される流動性や、得られる建築用ボードに要求される比重等に応じて任意の添加量とすることができる。
(E)その他の成分
 石膏スラリーの原料は、ここまで説明した焼石膏、ホウ素含有材料、減水剤、および水以外にも任意の成分を含有することができる。
 例えば、石膏スラリーを形成する際には泡を添加することもできる。泡の添加量を調整することにより得られる建築用ボードの比重を所望の範囲とすることができる。
 石膏スラリーを形成する際に泡を添加する方法は特に限定されず、任意の方法により添加することができる。例えば予め発泡剤(起泡剤)を水(泡形成用の水)に添加し、空気を取り込みながら撹拌することで泡を形成し、形成した泡を、焼石膏や水(石膏スラリーの練水)と一緒に混合することにより、泡を添加した石膏スラリーを形成できる。または、焼石膏、ホウ素含有材料、減水剤、および水等を予め混合して形成した石膏スラリーに、形成した泡を添加することにより、泡を添加した石膏スラリーとすることもできる。
 泡を形成する際に使用する発泡剤としては特に限定されるものではないが、例えば、アルキル硫酸ソーダ、アルキルエーテル硫酸塩、アルキルベンゼンスルホン酸ソーダ、ポリオキシエチレンアルキル硫酸塩などが挙げられる。
 泡の添加量は特に限定されるものではなく、作製する建築用ボードに要求される比重に応じて任意に選択することができる。
 また、原料はその他に各種添加剤を含有することもできる。添加剤としては、例えば澱粉やポリビニルアルコール等の強度向上剤や、ガラス繊維等の無機繊維および軽量骨材、バーミキュライト等の耐火材、凝結調整剤、スルホコハク酸塩型界面活性剤等の泡径調整剤、シリコーンやパラフィン等の撥水剤等が挙げられる。
(1-1-2)混練工程の操作について
 原料を混練し、石膏スラリーを調製する際、原料を構成する全ての成分を同時に混練してもよいが、混練を複数回に分けて実施することもできる。例えば、原料のうち固体成分を混合、混練して石膏組成物を形成した後、得られた石膏組成物に原料のうちの水等の液体成分を添加してさらに混練を行い、石膏スラリーとすることもできる。
 なお、原料を混練する手段は特に限定されるものではなく、例えばミキサー等を用いることができる。
(1-2)成形工程
 成形工程では、混練工程で得られた石膏スラリーを、所望の形状に成形することができる。具体的には、例えば表面材の間に石膏スラリーを配置して成形できる。なお、表面材としては例えばボード用原紙、ガラス繊維不織布、およびガラスマットから選択された1種を用いることができる。
 そして、成形工程ではボード形状、すなわち板状形状に成形できる。
 ここで、建築用ボードとして石膏ボードを製造する際の混練工程、成形工程の構成例について図2を用いて説明する。図2は、石膏ボードを成形する装置の構成例を部分的かつ概略的に示す側面図である。
 図中右側から左側へと表面材である表面カバー原紙(ボード用原紙)211が、生産ラインに沿って搬送される。
 ミキサー22は、搬送ラインと関連する所定の位置、例えば、搬送ラインの上方または横に配置することができる。そして、単一のミキサー22において、石膏スラリーの原料である焼石膏と、ホウ素含有材料と、減水剤と、水と、場合によってはさらに各種添加剤とを混練し、石膏スラリーを製造できる。
 なお、既述のように、焼石膏等の固体は予め混合撹拌して混合物である石膏組成物としてからミキサー22に供給することもできる。
 また、必要に応じて泡を石膏スラリーの分取口221、222、223より添加し、泡の添加量を調整することにより任意の密度の石膏スラリーとすることもできる。例えば泡の添加量を調整することで、密度の異なる第1の石膏スラリー23と、第2の石膏スラリー24とを調製することができる。泡は分取口ではなく、ミキサー22に石膏スラリーの他の原料とともに供給することもできる。
 そして、得られた第1の石膏スラリー23を、送出管251、252を通じて、ロールコーター26の上流側で表面カバー原紙(ボード用原紙)211および裏面カバー原紙(ボード用原紙)212上に供給する。なお、上記上流側とは、表面カバー原紙211や裏面カバー原紙212の搬送方向における上流側を意味する。表面カバー原紙211および裏面カバー原紙212上の第1の石膏スラリー23は、それぞれ、ロールコーター26の延展部に至り、延展部で延展される。なお、ロールコーター26は、塗布ロール261、受けロール262、および粕取りロール263を有しており、これらのロールにより第1の石膏スラリー23は延展される。
 第1の石膏スラリー23の薄層が、表面カバー原紙211上に形成される。また、同様に第1の石膏スラリー23の薄層が、裏面カバー原紙212上に形成される。なお、図2ではロールコーター26を用いて第1の石膏スラリー23を表面カバー原紙211および裏面カバー原紙212に塗布する例を示しているが、係る形態に限定されるものではない。例えば、ロールコーター26を用いて第1の石膏スラリー23を表面カバー原紙211、または裏面カバー原紙212のいずれか一方のみに塗布してもよい。また、第1の石膏スラリー23を表面カバー原紙211の側端部のみに配置することもできる。
 表面カバー原紙211は、そのまま搬送され、裏面カバー原紙212は、転向ローラ27によって表面カバー原紙211の搬送ライン方向に転向される。そして、表面カバー原紙211および裏面カバー原紙212の両方は、成形機28に達する。ここで、表面カバー原紙211、裏面カバー原紙212の上に形成された薄層の間に、ミキサー22から管路253を通じて第2の石膏スラリー24が供給される。このため、表面カバー原紙211と、裏面カバー原紙212との間に、第1の石膏スラリー23により形成された層と、第2の石膏スラリー24により形成された層と、第1の石膏スラリー23により形成された層とが積層された連続的な積層体を形成できる。
 図2では1台のミキサー22により第1の石膏スラリー23と、第2の石膏スラリー24と、を製造した例を示したが、ミキサーを2台設け、各ミキサーで第1の石膏スラリー23と、第2の石膏スラリー24と、を製造してもよい。
 また、第1の石膏スラリーと、第2の石膏スラリーと、を用いる形態に限定されるものではなく、例えば一種類の密度の石膏スラリーを製造し、これをボード用原紙上に供給する形態であっても良い。
 具体的には例えば、連続して搬送される表面カバー原紙(ボード用原紙)上に所定の密度とした石膏スラリーを供給、堆積する。そして、当該石膏スラリーを巻き込むように下紙をその両端縁部にそれぞれつけられた刻線に沿って折り込む。この際、石膏スラリーの層の上に同速で搬送される裏面カバー原紙(ボード用原紙)を重ねる。次いで、石膏ボードの厚みと幅とを決定する成形機を通過させて成形する。以上の手順により石膏ボードを成形することもできる。
 なお、ここでは、建築用ボードとして石膏ボードを製造する場合を例に説明したが、係る形態に限定されない。例えば表面材であるボード用原紙をガラス繊維不織布(ガラスティッシュ)や、ガラスマット等に変更し、これを表面もしくは表面近くに埋没させるように配置する等して、各種建築用ボードを製造できる。
(1-3)硬化工程
 次に、石膏スラリーを水和硬化させる硬化工程を実施できる。
 硬化工程は、石膏スラリー中の焼石膏(半水石膏)が、水和反応により二水石膏の針状結晶が生じて凝結、凝固することにより実施できる。このため、成形工程で形成した成形体内で、石膏スラリー中に含まれる焼石膏と水との間で反応し、焼石膏の水和反応が進行することにより硬化工程を実施することができる。
(1-4)その他の工程
 また、本実施形態の建築用ボードの製造方法は、さらに必要に応じて、粗切断工程や、乾燥工程、裁断工程、積込工程等の任意の工程を設けることができる。
(1-4-1)粗切断工程
 例えば上記成形工程の後、硬化工程の進行中または硬化工程が終了した後に、成形工程で成形した成形体を粗切断カッターにより粗切断する粗切断工程を実施してもよい。粗切断工程では粗切断カッターにより、成形工程で形成された連続的な成形体を所定の長さに切断することができる。
(1-4-2)乾燥工程
 また、成形工程で成形した成形体、または粗切断工程で粗切断された成形体について余剰な水分を乾燥させる乾燥工程を実施できる。なお、乾燥工程には、硬化工程が終了した成形体を供給することができる。乾燥工程では乾燥機を用いて成形体を強制乾燥することにより実施できる。
 乾燥機により成形体を強制乾燥する方法は特に限定されるものではないが、例えば成形体の搬送経路上に乾燥機を設け、成形体が乾燥機内を通過することにより連続的に成形体を乾燥することができる。また、乾燥機内に成形体を搬入しバッチごとに成形体を乾燥することもできる。
(1-4-3)裁断工程、積込工程
 またさらに、例えば成形体を乾燥した後に、所定の長さの製品に裁断する裁断工程や、得られた石膏硬化体、または石膏ボードをリフター等により積み重ね、倉庫内に保管したり、出荷したりするためにトラック等へ積み込む積込工程等を実施することができる。
(2)得られる建築用ボードの形状、物性について
 既述の建築用ボードの製造方法によれば、既述の建築用ボードを製造できる。このため、既に説明した事項は説明を一部省略する。具体的には以下の特性を有することができる。
(2-1)形状、構成
 得られる建築用ボードは、ボード形状を有していればよく、その詳細な構成は特に限定されないが、既述のように流し込み成形法により製造するため、表面側にボード用原紙や、ガラス繊維不織布等の表面材を配置できる。
 なお、表面材としては、例えばボード用原紙、ガラス繊維不織布、およびガラスマットから選択された1種が挙げられる。表面材は、石膏コアの最表面に配置してもよく、石膏コア内にその一部または全体が埋設されるように配置されていてもよい。
(2-2)乾燥比重
 硬化工程後に得られる建築用ボードの乾燥比重は、0.65以上1.6以下であることが好ましく、0.65以上1.3以下であることがより好ましい。
 乾燥比重を0.65以上とすることで、含有する石膏の割合を十分に高め、中性子線遮蔽性能を高めることができる。乾燥比重を1.6以下とすることで、軽量な建築用ボードとすることができ、取り扱い性を特に高められる。また、乾燥比重を1.6以下とすることで、混練工程で調製する石膏スラリーの粘度が過度に高くなることを抑制し、生産性を高めることができる。
(2-3)発熱性
 硬化工程後に得られる建築用ボードは、発熱性試験で発熱性2級以上であることが好ましい。
 得られる建築用ボードを発熱性2級以上とすることで、使用する建物が要求される内装制限にも適応することができるため、各種用途や規模の建物においても使用できる。例えば澱粉等の有機成分の添加量を調整することで、所定の発熱性の等級とすることができる。
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(1)評価方法
 ここではまず、以下の実験例で得られた石膏スラリー、および建築用ボードの評価方法について説明する。
(1-1)石膏スラリー
(粘度)
 ブルックフィールド型粘度計(B型粘度計)を使用して、常温(25℃)にて測定した。
(1-2)建築用ボード
(乾燥比重)
 乾燥比重は、JIS A 6901(2014)で規定される比重の測定方法に基づいて測定、算出した。
(厚さ)
 厚さは、JIS A 6901(2014)で規定される厚さの測定方法に基づいて測定、算出した。
(圧縮強度)
 オートグラフ(島津製作所製 型式:AG-10NKI)を用いて、作製した建築用ボードの圧縮強度を測定した。作製した建築用ボードを厚さ方向と垂直な面において、縦2cm×横2cmのサイズとなるように切り出して試験体とした。なお、各試験体の高さは、各建築用ボードの厚さと等しくなり、例えば以下の実験例1-1の場合、試験体の高さは作製した建築用ボードの厚さと同じ15mmとなる。そして試験体にかける荷重は3mm/minとした。
(発熱性試験)
 発熱性試験は、JIS A 6901(2014)の付属書Aに従って実施した。
(中性子線遮蔽率)
 各実験例で作製した組成の建築用ボードについて、縦20cm、横20cm、厚さ20cmの直方体の解析モデルを用いて、中性子線遮蔽性能を評価した。そして、上記解析モデルでの解析結果により得られた中性子線遮蔽性能から、以下の実験例で作製した建築用ボードの厚みを加味し、中性子線遮蔽率を算出した。
 解析モデルを用いた中性子線遮蔽性能の評価に当たっては、計算コードとして、PHITS(Particle and heavy ion transport code system)を用いた。なお、PHITSはver.3.02を用いた。
 解析の際の線種としては点線源の中性子線(25meV)を用いた。また、換算係数は、ICRP Publication 74に開示されているものを用いた。
(2)各実験例の条件、結果
 以下の各実験例における建築用ボードの製造条件、手順、および結果について説明する。
 実験例1-1~実験例1-11、実験例2-1~実験例2-8が実施例、実験例1-12~実験例1-18、実験例2-9、実験例2-10が比較例となる。
[実験例1-1]
 図2に示した装置を用いて建築用ボードとして石膏ボードを製造した。
 石膏ボードの作製手順について図2を用いて説明する。
(混練工程)
 図2中右側から左側へと表面カバー原紙(ボード用原紙)211を、生産ラインに沿って連続的に搬送する。
 単一のミキサー22において、β型の焼石膏と、ホウ素含有材料であるコレマナイトと、ナフタレン系減水剤と、水を含有する原料を混合した。
 なお、本実験例や、以下に示す他の実験例において、原料を混合する際、得られる石膏ボードの乾燥比重が表1に示す値となるように、添加する水の量や、必要に応じて添加する泡の量を調整した。泡を添加する場合、泡は発泡剤(主成分:アルキルエーテル硫酸塩)を発泡して作製した。
 表1に示すように、原料は、コレマナイトを、二水石膏100質量部に対して、含有するホウ素の量が5.6質量部となる割合で含有する。また、原料は、ナフタレン系減水剤を、二水石膏100質量部に対して、1.5質量部の割合で含有する。なお、得られた石膏ボードにおいても、各成分を同じ比率で含有することをICP発光分光分析によって確認できた。以下の他の実験例においても同様であった。
(成形工程)
 そして、ミキサー22において得られた石膏スラリーについて、分取口221、222から送出管251、252を通じて、ロールコーター26の上流側で表面カバー原紙211および裏面カバー原紙(ボード用原紙)212上に供給した。
 表面カバー原紙211および裏面カバー原紙212上の第1の石膏スラリー23は、それぞれ、ロールコーター26の延展部に至り、延展される。第1の石膏スラリー23の薄層が、表面カバー原紙211上に形成される。また、同様に第1の石膏スラリー23の薄層が、裏面カバー原紙212上に形成される。
 表面カバー原紙211は、そのまま搬送され、裏面カバー原紙212は、転向ローラ27によって表面カバー原紙211の搬送ライン方向に転向される。
 そして、表面カバー原紙211および裏面カバー原紙212の両方は、成形機28に達する。ここで、ボード用原紙である表面カバー原紙211、および裏面カバー原紙212の上に形成された薄層の間に、第2の石膏スラリー24が、管路253を通じて供給される。
 そして、成形機28を通過することにより、表面カバー原紙211と、裏面カバー原紙212との間に、第1の石膏スラリー23、および第2の石膏スラリー24により形成された層が配置された連続的な積層体が形成される。この際、石膏ボードの厚みが15mmとなるように成形した。
(硬化工程)
 得られた成形体、具体的には石膏スラリーは、搬送する過程で硬化させた。
(粗切断工程)
 成形体は硬化すると共に図示しない粗切断カッターに至る。粗切断カッターにより、連続的な成形体を所定の長さの板状体に切断し、原紙で被覆された石膏を主体とする芯材からなる板状体である石膏ボードの半製品を形成した。
(乾燥工程)
 粗切断した成形体は、図示しない乾燥機を通過させ、強制乾燥することで余分な水分を除去した。
(裁断工程)
 乾燥工程後、所定の長さの製品に裁断して建築用ボードである石膏ボードを得た。
 得られた石膏ボードについて、既述の評価を行った。評価結果を表1に示す。
[実験例1-2、実験例1-3]
 混練工程で石膏スラリーを調製する際に、原料が含有するコレマナイトの量を、二水石膏100質量部に対して、含有するホウ素の量が13.1質量部(実験例1-2)、1.4質量部(実験例1-3)となるように調整した。以上の点以外は、実験例1-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-4]
 混練工程で石膏スラリーを調製する際に、添加する水の量等を調整し、得られる石膏ボードの比重が1.3となるように調整した点以外は実験例1-1と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-5、実験例1-6]
 混練工程で石膏スラリーを調製する際に、原料が含有する減水剤の量を、二水石膏100質量部に対して、0.8質量部(実験例1-5)、0.1質量部(実験例1-6)とした。また、添加する水の量等を調整することで、得られる石膏ボードの乾燥比重が0.9(実験例1-5)、0.65(実験例1-6)となるように調整した。以上の点以外は実験例1-1と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-7]
 混練工程で石膏スラリーを調製する際に、ナフタレン系減水剤に替えてメラミン系減水剤を用いた点以外は、実験例1-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-8、実験例1-9]
 成形工程で、製造する石膏ボードの厚さを表1に示す値となるようにした点以外は、実験例1-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-10]
 混練工程で石膏スラリーを調製する際に、原料が含有する減水剤の量を、二水石膏100質量部に対して、1.0質量部とした点以外は実験例1-1と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-11]
 混練工程で石膏スラリーを調製する際に、減水剤としてメラミン系減水剤を用い、原料が含有する減水剤の量を、二水石膏100質量部に対して、1.0質量部とした。以上の点以外は実験例1-1と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-12、実験例1-13]
 混練工程で石膏スラリーを調製する際に、原料が含有するコレマナイトの量を、二水石膏100質量部に対して、含有するホウ素の量が0.7質量部(実験例1-12)、132.3質量部(実験例1-13)となるように調整した。以上の点以外は、実験例1-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-14、実験例1-15]
 混練工程で石膏スラリーを調製する際に、原料が含有する減水剤の量を、二水石膏100質量部に対して、3.0質量部(実験例1-14)、0.02質量部(実験例1-15)とした。以上の点以外は実験例1-1と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例1-16~実験例1-18]
 混練工程で石膏スラリーを調製する際に、減水剤としてメラミン系減水剤(実験例1-16)、リグニン系減水剤(実験例1-17)、ポリカルボン酸系減水剤(実験例1-18)をそれぞれ用いた。以上の点以外は実験例1-14と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-1]
 混練工程で石膏スラリーを調製する際に、ホウ素含有材料として炭化ホウ素(BC)を用い、原料が含有する減水剤の量を、二水石膏100質量部に対して、0.8質量部とした。以上の点以外は、実験例1-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-2、実験例2-3]
 混練工程で石膏スラリーを調製する際に、原料が含有する炭化ホウ素の量を、二水石膏100質量部に対して、含有するホウ素の量が70.5質量部(実験例2-2)、118.0質量部(実験例2-3)となるように調整した。以上の点以外は、実験例2-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-4]
 混練工程で石膏スラリーを調製する際に、原料が含有する減水剤の量を、二水石膏100質量部に対して、2.0質量部とした点以外は実験例2-1と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-5]
 混練工程で石膏スラリーを調製する際に、ナフタレン系減水剤に替えてポリカルボン酸系減水剤を用いた点以外は、実験例2-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-6]
 混練工程で石膏スラリーを調製する際に、原料が含有する減水剤の量を、二水石膏100質量部に対して、1.5質量部とした。また、混練工程で石膏スラリーを調製する際に、添加する水の量等を調整し、得られる石膏ボードの比重が1.5となるように調整した。以上の点以外は実験例2-5と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-7、実験例2-8]
 混練工程で石膏スラリーを調製する際に、ナフタレン系減水剤に替えてリグニン系減水剤(実験例2-7)、メラミン系減水剤(実験例2-8)を用いた点以外は、実験例2-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-9]
 混練工程で石膏スラリーを調製する際に、原料が含有する炭化ホウ素の量を、二水石膏100質量部に対して、含有するホウ素の量が313.2質量部となるように調整した。以上の点以外は、実験例2-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
[実験例2-10]
 ナフタレン系減水剤に替えてポリカルボン酸系減水剤を用い、原料が含有する減水剤の量を、二水石膏100質量部に対して、1.5質量部とした。また、混練工程で石膏スラリーを調製する際に、添加する水の量等を調整し、得られる石膏ボードの比重が1.7となるように調整した。以上の点以外は、実験例2-1の場合と同様にして石膏ボードを製造し、評価を行った。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1によると、実施例である実験例1-1~実験例1-11、実験例2-1~実験例2-8で製造した石膏ボードはいずれも中性子線遮蔽率が60%を超え、十分な中性子線遮蔽性能を有することを確認できた。
 これらの石膏ボードはいずれもボード形状、すなわち板状形状を有する。このため、固定するのみで、放射線遮蔽壁として機能させることができ、取り扱い性に優れることを確認できた。
 しかし、実験例1-12で製造した石膏ボードについては、ホウ素の含有量が十分ではないため、中性子線遮蔽率が26.71%と低くなることを確認できた。
 実験例1-13で製造した石膏ボードについては、ホウ素含有材料の含有量が多すぎたため、製造した石膏ボードは脆く、圧縮強度試験等を実施できなかった。
 実験例1-14、実験例1-16は、それぞれ同じ減水剤を用いた実験例1-1、実験例1-7と比較して、減水剤の含有量を倍にしたが、石膏スラリーの粘度は同程度になることを確認できた。すなわち、石膏ボードについて、減水剤の含有割合を2.0質量部より多くしても、石膏スラリーの粘度に大きな変化がないことを確認できた。このため、減水剤の含有割合を2.0質量部以下とすることで、建築用ボードの生産性を高めつつ、建築用ボードのコストを抑制できることを確認できた。
 ただし、実験例1-15においては、減水剤の含有量を0.02質量部と少なくしたため、石膏スラリーの粘度が高くなり、石膏ボードの形状に成形することが困難であった。
 実験例1-17、実験例1-18については、石膏スラリーの粘度が高くなり、石膏ボードの形状に成形することが困難であった。
 実験例2-9で製造した石膏ボードについては、ホウ素の含有量が多いため、中性子線遮蔽率が高くなると推認されるが、石膏等の配合割合が低下するため、得られた石膏ボードの圧縮強度が低くなり、実用に適しないことが確認できた。なお、石膏ボードの圧縮強度が低く実用に適しないため、中性子線遮蔽率については評価しなかった。
 実験例2-10については、比重を1.7にするため、水等の添加量を抑制したところ、石膏スラリーの粘度が150dPa・sよりも高くなり、石膏スラリーを混練することが困難であった。このため、石膏ボードを製造できなかった。
 以上に中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法を、実施形態等で説明したが、本発明は上記実施形態等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
 本出願は、2020年5月29日に日本国特許庁に出願された特願2020-094834号に基づく優先権を主張するものであり、特願2020-094834号の全内容を本国際出願に援用する。
10  中性子線遮蔽石膏系建築用ボード
101 第1の表面
102 第2の表面
11  表面材

Claims (10)

  1.  石膏と、
     前記石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下であるホウ素含有材料と、
     前記石膏100質量部に対して0.05質量部以上2.0質量部以下の減水剤と、を含有し、
     前記ホウ素含有材料が、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含み、
     乾燥比重が0.65以上1.6以下である中性子線遮蔽石膏系建築用ボード。
  2.  前記ホウ素含有材料がコレマナイトであり、
     前記減水剤が、ナフタレン系減水剤、およびメラミン系減水剤から選択された1種類以上である請求項1に記載の中性子線遮蔽石膏系建築用ボード。
  3.  前記ホウ素含有材料が炭化ホウ素であり、
     前記減水剤が、ナフタレン系減水剤、ポリカルボン酸系減水剤、リグニン系減水剤、およびメラミン系減水剤から選択された1種類以上である請求項1に記載の中性子線遮蔽石膏系建築用ボード。
  4.  第1の表面側と、前記第1の表面と反対側に位置する第2の表面側とに、表面材が配置されており、前記表面材がボード用原紙、ガラス繊維不織布、およびガラスマットから選択された1種である請求項1から請求項3のいずれか1項に記載の中性子線遮蔽石膏系建築用ボード。
  5.  発熱性2級以上である請求項1から請求項4のいずれか1項に記載の中性子線遮蔽石膏系建築用ボード。
  6.  少なくとも焼石膏、ホウ素含有材料、減水剤、および水を含有する原料を混練し、石膏スラリーを形成する混練工程と、
     前記石膏スラリーを成形する成形工程と、
     前記成形工程で得られた成形体を硬化させる硬化工程とを有し、
     前記原料は、前記ホウ素含有材料を、二水石膏100質量部に対して、含有するホウ素の量が1.0質量部以上120質量部以下となる割合で含有し、
     前記原料は、前記減水剤を、二水石膏100質量部に対して0.05質量部以上2.0質量部以下の割合で含有し、
     前記ホウ素含有材料が、ホウ酸カルシウム、炭化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、硼化カルシウムから選択された1種類以上を含み、
     前記硬化工程後に得られる中性子線遮蔽石膏系建築用ボードの乾燥比重が0.65以上1.6以下である中性子線遮蔽石膏系建築用ボードの製造方法。
  7.  前記ホウ素含有材料がコレマナイトであり、
     前記減水剤が、ナフタレン系減水剤、およびメラミン系減水剤から選択された1種類以上である請求項6に記載の中性子線遮蔽石膏系建築用ボードの製造方法。
  8.  前記ホウ素含有材料が炭化ホウ素であり、
     前記減水剤が、ナフタレン系減水剤、ポリカルボン酸系減水剤、リグニン系減水剤、およびメラミン系減水剤から選択された1種類以上である請求項6に記載の中性子線遮蔽石膏系建築用ボードの製造方法。
  9.  前記成形工程では、表面材の間に前記石膏スラリーを配置して成形し、
     前記表面材がボード用原紙、ガラス繊維不織布、およびガラスマットから選択された1種である請求項6から請求項8のいずれか1項に記載の中性子線遮蔽石膏系建築用ボードの製造方法。
  10.  前記硬化工程後に得られる中性子線遮蔽石膏系建築用ボードが、発熱性2級以上である請求項6から請求項9のいずれか1項に記載の中性子線遮蔽石膏系建築用ボードの製造方法。
PCT/JP2021/020274 2020-05-29 2021-05-27 中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法 WO2021241707A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022526648A JPWO2021241707A1 (ja) 2020-05-29 2021-05-27
EP21812325.5A EP4137471A4 (en) 2020-05-29 2021-05-27 NEUTRON BEAM SHIELDING GYPSUM BOARD AND METHOD FOR PRODUCING A NEUTRON BEAM SHIELDING GYPSUM BOARD
KR1020227040043A KR20230004653A (ko) 2020-05-29 2021-05-27 중성자선 차폐 석고계 건축용 보드 및 중성자선 차폐 석고계 건축용 보드 제조방법
US17/998,289 US20230271885A1 (en) 2020-05-29 2021-05-27 Neutron beam shielding gypsum-based building board and method of manufacturing neutron beam shielding gypsum-based building board
CA3177973A CA3177973A1 (en) 2020-05-29 2021-05-27 Neutron beam shielding gypsum-based building board, and method of manufacturing neutron beam shielding gypsum-based building board
CN202180037520.8A CN115667179A (zh) 2020-05-29 2021-05-27 中子束遮蔽石膏系建筑用板、中子束遮蔽石膏系建筑用板的制造方法
AU2021280613A AU2021280613A1 (en) 2020-05-29 2021-05-27 neutron beam shielding gypsum-based construction board, and method for producing neutron beam shielding gypsum-based construction board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094834 2020-05-29
JP2020094834 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021241707A1 true WO2021241707A1 (ja) 2021-12-02

Family

ID=78744653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020274 WO2021241707A1 (ja) 2020-05-29 2021-05-27 中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法

Country Status (9)

Country Link
US (1) US20230271885A1 (ja)
EP (1) EP4137471A4 (ja)
JP (1) JPWO2021241707A1 (ja)
KR (1) KR20230004653A (ja)
CN (1) CN115667179A (ja)
AU (1) AU2021280613A1 (ja)
CA (1) CA3177973A1 (ja)
TW (1) TW202212287A (ja)
WO (1) WO2021241707A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023088897A (ja) * 2021-12-15 2023-06-27 株式会社三栄建築設計 板状建築資材、積層板、および板状建築資材の製造方法
WO2023127776A1 (ja) * 2021-12-28 2023-07-06 吉野石膏株式会社 石膏組成物の製造方法、石膏組成物、石膏組成物用の鉱物原料及び硬化体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540292A (ja) * 2007-10-05 2010-12-24 クナウフ ギプス カーゲー 硫酸カルシウム‐硫酸バリウムをベースとする建築ボードの製造方法
JP2012127725A (ja) * 2010-12-14 2012-07-05 Taiheiyo Consultant:Kk 中性子吸収体
JP2013184853A (ja) * 2012-03-08 2013-09-19 Giken Kogyo Kk 放射線遮蔽ボード
JP2014089127A (ja) 2012-10-30 2014-05-15 Takenaka Komuten Co Ltd 放射線遮蔽壁
JP2016166739A (ja) * 2015-02-26 2016-09-15 有限会社技研産業 放射線遮蔽組成物、放射線遮蔽材料及び放射線遮蔽建材
JP2020094834A (ja) 2018-12-10 2020-06-18 株式会社タダノ 地表面推定方法、計測領域表示システムおよびクレーン

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157801A (ja) * 2006-12-25 2008-07-10 Fujita Corp 中性子遮蔽低放射化コンクリートおよびモルタル
KR101423098B1 (ko) 2013-01-04 2014-07-25 권정희 연소조절이 가능한 휴대형 석유버너
CN108218371B (zh) * 2016-12-15 2020-08-25 北新集团建材股份有限公司 一种防水防辐射的纸面石膏板及其制备方法
JP7014369B2 (ja) * 2018-04-19 2022-02-15 株式会社竹中工務店 放射線遮蔽ボード及び放射線遮蔽ボードの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540292A (ja) * 2007-10-05 2010-12-24 クナウフ ギプス カーゲー 硫酸カルシウム‐硫酸バリウムをベースとする建築ボードの製造方法
JP2012127725A (ja) * 2010-12-14 2012-07-05 Taiheiyo Consultant:Kk 中性子吸収体
JP2013184853A (ja) * 2012-03-08 2013-09-19 Giken Kogyo Kk 放射線遮蔽ボード
JP2014089127A (ja) 2012-10-30 2014-05-15 Takenaka Komuten Co Ltd 放射線遮蔽壁
JP2016166739A (ja) * 2015-02-26 2016-09-15 有限会社技研産業 放射線遮蔽組成物、放射線遮蔽材料及び放射線遮蔽建材
JP2020094834A (ja) 2018-12-10 2020-06-18 株式会社タダノ 地表面推定方法、計測領域表示システムおよびクレーン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023088897A (ja) * 2021-12-15 2023-06-27 株式会社三栄建築設計 板状建築資材、積層板、および板状建築資材の製造方法
JP7360136B2 (ja) 2021-12-15 2023-10-12 株式会社三栄建築設計 板状建築資材、積層板、および板状建築資材の製造方法
WO2023127776A1 (ja) * 2021-12-28 2023-07-06 吉野石膏株式会社 石膏組成物の製造方法、石膏組成物、石膏組成物用の鉱物原料及び硬化体の製造方法

Also Published As

Publication number Publication date
EP4137471A4 (en) 2023-11-15
JPWO2021241707A1 (ja) 2021-12-02
CN115667179A (zh) 2023-01-31
US20230271885A1 (en) 2023-08-31
AU2021280613A1 (en) 2023-01-19
KR20230004653A (ko) 2023-01-06
EP4137471A1 (en) 2023-02-22
CA3177973A1 (en) 2021-12-02
TW202212287A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2021241707A1 (ja) 中性子線遮蔽石膏系建築用ボード、中性子線遮蔽石膏系建築用ボードの製造方法
US8142915B2 (en) Foamed slurry and building panel made therefrom
US8088218B2 (en) Foamed slurry and building panel made therefrom
AU2006259588B2 (en) Effective use of dispersants in wallboard containing foam
RU2404148C2 (ru) Эффективное применение диспергаторов в стеновой плите, содержащей пену
JP4322678B2 (ja) 永久変形に対する耐性が増大した石膏含有組成物
JP2010513213A (ja) ナフタレンスルホネートおよび変性剤を含む石膏組成物
US20080009565A1 (en) Foamed slurry and building panel made therefrom
KR20080032094A (ko) 2-반복하는 단위 분산제를 활용한 석고 제품 및 이들을제조하기 위한 방법
CN108349811A (zh) 用于似水泥的浆料的发泡改性剂、方法和产品
KR20080034128A (ko) 개질제 및 분산제를 사용한 석고 슬러리 제조방법
CA2823006C (en) Effective use of melamine sulfonate condensate dispersants in wallboard containing foam
JP5669992B2 (ja) 石膏系建材、および、石膏系建材の製造方法
JP6389826B2 (ja) 石膏スラリー、石膏硬化体、石膏系建材、石膏ボード、石膏スラリーの製造方法、石膏硬化体の製造方法、石膏系建材の製造方法、石膏ボードの製
CN113242842A (zh) 耐火绝热组合物、耐火绝热组合物浆料、耐火绝热板以及耐火绝热结构体
RU2805440C1 (ru) Экранирующая пучки нейтронов строительная панель на основе гипса и способ изготовления экранирующей пучки нейтронов строительной панели на основе гипса
KR20150099782A (ko) 칼슘 설페이트계 제품
US20230002278A1 (en) Gypsum wallboard having multiple blended surfactants
WO2020214126A2 (en) Production method of a construction element and a construction element produced by this method
JP2023146922A (ja) 耐火断熱組成物、耐火断熱組成物スラリー、耐火断熱板及び耐火断熱構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3177973

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022526648

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227040043

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021812325

Country of ref document: EP

Effective date: 20221114

WWE Wipo information: entry into national phase

Ref document number: 2022130305

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021280613

Country of ref document: AU

Date of ref document: 20210527

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 522441422

Country of ref document: SA