WO2021241442A1 - 電力管理システム、電力変換装置及び電力管理方法 - Google Patents

電力管理システム、電力変換装置及び電力管理方法 Download PDF

Info

Publication number
WO2021241442A1
WO2021241442A1 PCT/JP2021/019377 JP2021019377W WO2021241442A1 WO 2021241442 A1 WO2021241442 A1 WO 2021241442A1 JP 2021019377 W JP2021019377 W JP 2021019377W WO 2021241442 A1 WO2021241442 A1 WO 2021241442A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
measured value
calibration process
meter
distributed
Prior art date
Application number
PCT/JP2021/019377
Other languages
English (en)
French (fr)
Inventor
寛之 日▲高▼
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP21812949.2A priority Critical patent/EP4160223A1/en
Priority to JP2022526987A priority patent/JP7414988B2/ja
Priority to US17/999,039 priority patent/US20230221681A1/en
Publication of WO2021241442A1 publication Critical patent/WO2021241442A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/56Special tariff meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • This disclosure relates to a power management system, a power conversion device, and a power management method.
  • a mechanism for trading the output power of a distributed power source by measuring the output power of a distributed power source such as a solar cell device or a power storage device is known.
  • the measurement accuracy is guaranteed by measuring the output power of the distributed power source with a power meter certified by a third-party organization (hereinafter referred to as a meter with certification).
  • a power meter (hereinafter referred to as a smart meter) that measures the power flow or reverse power flow of the facility
  • the output power of the measuring device that measures the power consumption of the load equipment installed in the facility or the distributed power source installed in the facility is measured.
  • a mechanism for calibrating the measured value of the measuring device to be measured has been proposed. According to such a mechanism, it is attempted to secure the measurement accuracy of the measuring device by calibration using a smart meter without using a meter with certification (for example, Patent Document 1).
  • the power management system receives the reference measurement value of the reference power meter that measures at least one of the power flow power and the reverse power flow power of the facility having the distributed power supply and the load device at predetermined time intervals.
  • the first measured value of the first power meter provided on the power system side of the confluence point of the first receiving unit, the power line connected to the distributed power supply, and the power line connected to the load device is set at the predetermined time interval.
  • a second receiving unit that receives power at shorter intervals, and a third receiving unit that receives the second measured value of the second power meter that measures the power consumption of the load device at intervals shorter than the predetermined time interval.
  • a control unit that executes a second calibration process for the meter After executing the first calibration process for the first power meter based on the comparison result between the reference measured value and the first measured value, the second power based on the first measured value and the second measured value.
  • a control unit that executes a second calibration process for the meter is provided.
  • the power conversion device includes a first power interface connected to a power system, a second power interface connected to a load device, a third power interface connected to a distributed power supply, and the distributed power supply. It is provided with a confluence point of the power line connected to the power line and the power line connected to the load device, and a converter that at least converts the DC power output from the distributed power supply into AC power.
  • the power management method receives the reference measurement value of the reference power meter that measures at least one of the power flow power and the reverse power flow power of the facility having the distributed power supply and the load device at predetermined time intervals.
  • the first measured value of the first power meter provided on the power system side of the confluence point of the step and the power line connected to the distributed power supply and the power line connected to the load device is shorter than the predetermined time interval.
  • FIG. 1 shows a power management system 100 according to an embodiment.
  • FIG. 2 shows the PCS 230 according to the embodiment.
  • FIG. 3 is a diagram showing a power management method according to an embodiment.
  • FIG. 4 is a diagram showing a power management method according to an embodiment.
  • FIG. 5 is a diagram showing a power management method according to an embodiment.
  • FIG. 6 is a diagram showing a power management method according to an embodiment.
  • FIG. 7 is a diagram showing a power management method according to the first modification.
  • FIG. 8 shows the PCS 230 according to the second modification.
  • the power management system 100 includes a facility 10, a server 20, and a server 30.
  • the facility 10 is connected to the power system 110 by a power line.
  • the facility 10 is connected to the network 120 by a communication line.
  • the power line may be wired.
  • the communication line may be wireless or wired.
  • the facility 10, the server 20, and the server 30 are connected by the network 120.
  • the network 120 is the Internet.
  • the network 120 may include a dedicated line such as a VPN (Virtual Private Network).
  • the flow of electric power from the electric power system 110 to the facility 10 is referred to as a power flow
  • the flow of electric power from the facility 10 to the electric power system 110 is referred to as reverse power flow.
  • Facility 10 is a facility having a distributed power source (storage unit 210 and PV panel 220 in FIG. 1) and a load device 240.
  • the facility 10 may be a non-commercial facility such as a house, or may be a commercial facility such as an office or a store.
  • Facility 10 may be a factory.
  • the facility 10 has a power storage unit 210, a PV panel 220, a PCS (Power Conditioning System) 230, a load device 240, a reference power meter 250, and an EMS (Energy Management System) 260.
  • a power storage unit 210 for example, the facility 10 has a power storage unit 210, a PV panel 220, a PCS (Power Conditioning System) 230, a load device 240, a reference power meter 250, and an EMS (Energy Management System) 260.
  • PCS Power Conditioning System
  • the power storage unit 210 is an example of a distributed power source that charges and discharges electric power.
  • the power storage unit 210 may be an example of a distributed power source to which reverse power flow is not allowed.
  • the power storage unit 210 may be an example of a distributed power source to which a feed-in tariff (FIT) is not applied. However, reverse power flow may be allowed in the power storage unit 210, and FIT may be applied.
  • the power storage unit 210 is an example of a first distributed power source.
  • the power storage unit 210 may be an example of a second distributed power source.
  • the PV panel 220 is an example of a distributed power source that generates electricity in response to light such as sunlight.
  • the PV panel 220 may be an example of a distributed power source to which reverse power flow is allowed.
  • the PV panel 220 may be an example of a distributed power source to which FIT is applied.
  • the PV panel 220 is an example of a second distributed power source.
  • the PV panel 220 may be an example of a first distributed power source.
  • the PCS230 is an example of a power conversion device that converts DC power output from a distributed power source into AC power.
  • the PCS 230 converts the DC power output from the power storage unit 210 into AC power, and converts the AC power into DC power input to the power storage unit 210.
  • the PCS 230 converts the DC power output from the PV panel 220 into AC power. Details of the PCS230 will be described later (see FIG. 2).
  • the load device 240 is a device that consumes electric power. Although not particularly limited, the load device 240 may include an air conditioner or a lighting device.
  • the reference power meter 250 measures at least one of the power flow power and the reverse power flow power of the facility 10.
  • the reference power meter 250 is a power meter certified by a third-party organization and belongs to a power company.
  • the reference power meter 250 has a function of transmitting the reference measurement value of the reference power meter 250 at predetermined time intervals (for example, 30 minutes).
  • the reference power meter 250 may be a power meter whose operation of transmitting reference measurement values at intervals shorter than a predetermined time interval is prohibited.
  • the EMS260 manages the electric power of the facility 10.
  • the EMS 260 may manage the power flow power of the facility 10 or may manage the reverse power flow power of the facility 10.
  • the EMS 260 may manage the output power (discharge power) of the power storage unit 210, the input power (charge power) of the power storage unit 210, and the output power (power generation power) of the PV panel 220.
  • the EMS 260 may manage the power consumption of the load device 240.
  • the EMS 260 is connected to the PCS 230 by a communication line, and the above-mentioned electric power may be acquired from the PCS 230. Although omitted in FIG. 1, the EMS 260 is connected to various power meters (S1, S2, S3 and S4) described later by a communication line, and the above-mentioned power may be acquired from various power meters.
  • various power meters S1, S2, S3 and S4 described later by a communication line, and the above-mentioned power may be acquired from various power meters.
  • the server 20 is a server that manages the power system 110.
  • the server 20 may be a server managed by a power generation business operator, a power transmission and distribution business operator, a retail business operator, a resource aggregator, or the like.
  • the server 20 may send a control message instructing control to the distributed power source in the VPP (Virtual Power Plant).
  • the control message may include a power flow control message (for example, DR; Demand Response) requesting control of power flow power, or may include a reverse power flow control message requesting control of reverse power flow power, and may include an operating state of a distributed power source. It may include a power control message to control.
  • the server 30 is a server that manages the distributed power sources provided in the facility 10.
  • the server 30 may be a server managed by an entity that provides or manufactures distributed power sources.
  • the server 30 may collect information such as the output power of the distributed power source and the input power of the distributed power source for the purpose of maintenance of the distributed power source.
  • the server 30 may use the power flow of the facility 10, the reverse power flow of the facility 10, the power consumption of the load device 240, the output power of the distributed power source, the input power of the distributed power source, and the like. Information may be collected.
  • the power information collected by the server 30 may be used for purposes other than those described above.
  • the PCS 230 is an example of a power conversion device.
  • the PCS230 includes various interfaces (I1, I2, I3 and I4 in FIG. 2), various breakers (B1, B2, B3 and B4 in FIG. 2), and various power meters (FIG. 2). S1, S2, S3 and S4) and various confluence points (J1 and J2 in FIG. 2).
  • the PCS 230 has a DC / AC converter 231 (simply DC / AC in FIG. 2), a DC / AC converter 232 (simply DC / AC in FIG. 2), and a control unit 233.
  • I1 is an example of a first power interface connected to the power system 110 (reference power meter 250 in FIG. 2).
  • I2 is an example of a second power interface connected to the load device 240.
  • I3 and I4 are examples of a third power interface connected to a distributed power source.
  • I3 is an example of a power interface connected to the power storage unit 210
  • I4 is an example of a power interface connected to the PV panel 220.
  • These power interfaces may be configured by connectors. However, the embodiment is not limited to this, and the power interface may be a power line having no connector.
  • B1 is provided on the power line connecting J2 and I1, and is configured to be able to switch between connection and disconnection of the power line.
  • B1 may be used as a limiter for limiting the current of the facility 10 to or less than the value agreed in the contract between the facility 10 and the electric power company.
  • B2 is provided on a power line connecting J2 and I2, and is configured to be able to switch between connection and disconnection of the power line.
  • B3 is provided on the power line connecting J1 and I3, and is configured to be able to switch between connection and disconnection of the power line.
  • B4 is provided on a power line connecting J1 and I4, and is configured to be able to switch between connection and disconnection of the power line.
  • B4 is disconnected, the PV panel 220 is disconnected from the power system 110.
  • S1 is an example of a first watt-hour meter provided on the power system 110 side of J2.
  • S1 measures at least one of the power flow amount and the reverse power flow power of the facility 10. Theoretically, the value obtained by integrating the first measured value of S1 at a predetermined time interval agrees with the reference measured value of the above-mentioned reference power meter.
  • S2 is provided between J2 and I2, and is an example of a second power meter that measures the power consumption (that is, the second measured value) of the load device 240.
  • S3 is provided between J1 and I3, and has at least one of the output power of the power storage unit 210 (for example, the first distributed power source) and the input power of the power storage unit 210 (that is, the third measured value).
  • S4 is provided between J1 and I4, and is a third power meter (for example, a second distributed power meter) that measures the output power (that is, the third measured value) of the PV panel 220 (for example, the second distributed power source).
  • This is an example of a power supply meter). Theoretically, the sum of the third measured values of S3 and S4 is consistent with the difference between the first measured value of S1 and the second measured value of S2.
  • the sum of the third measured values of S3 matches the difference between the first measured value of S1 and the second measured value of S2, and the influence of the measured value of S3 is affected. If it can be excluded, the sum of the third measured values of S4 coincides with the difference between the first measured value of S1 and the second measured value of S2.
  • S1 to S4 do not have to be power meters certified by a third party like the reference power meter 250.
  • S1 to S4 may be power meters certified by a third-party organization.
  • J1 is a confluence point between the power line connected to the power storage unit 210 and the power line connected to the PV panel 220.
  • J2 is a confluence point between the power line connected to the distributed power source and the power line connected to the load device 240. J2 is provided on the power system 110 side of J1.
  • the DC / AC converter 231 converts the DC power output from the power storage unit 210 into AC power, and also converts the AC power into DC power input to the power storage unit 210.
  • the DC / AC converter 231 is an example of a converter that at least converts DC power output from a distributed power supply into AC power.
  • the DC / AC converter 232 converts the DC power output from the PV panel 220 into AC power.
  • the DC / AC converter 232 is an example of a converter that at least converts DC power output from a distributed power supply into AC power.
  • the control unit 233 includes a communication module and has a function of communicating with various power meters, a reference power meter 250, and an EMS 260.
  • the communication module may be a wireless communication module compliant with standards such as IEEE802.11a / b / g / n, ZigBee, Wi-SUN, LTE, and 5G, and a wired communication module compliant with standards such as IEEE802.3. May be.
  • the control unit 233 constitutes a first reception unit that receives the reference measurement value of the reference power meter 250 at predetermined time intervals.
  • the control unit 233 constitutes a second receiving unit that receives the first measured value of the first power meter (S1 in FIG. 2) at intervals shorter than a predetermined time interval (for example, 1 minute).
  • the control unit 233 constitutes a third receiving unit that receives the second measured value of the second power meter (S2 in FIG. 2) at an interval shorter than a predetermined time interval (for example, 1 minute).
  • the control unit 233 constitutes a fourth receiving unit that receives the third measured value of the third power meter (S3 or S4 in FIG. 2) at an interval shorter than a predetermined time interval (for example, 1 minute).
  • the control unit 233 includes at least one processor and controls the PCS 230.
  • At least one processor may be composed of a single integrated circuit (IC), or may be composed of a plurality of communicably connected circuits (such as integrated circuits and / or discrete circuits).
  • the control unit 233 executes the first calibration process for S1 based on the comparison result between the reference measured value and the first measured value.
  • the first calibration process may include a process of determining whether or not the error of S1 (first measured value) with respect to the reference power meter 250 (reference measured value) is within the allowable range.
  • the first calibration process may include a process of calculating a correction coefficient for correcting the first measured value when the error of S1 (first measured value) does not fall within the allowable range.
  • the control unit 233 executes the second calibration process related to S2 based on the first measured value and the second measured value after executing the first calibration process.
  • the second calibration process may include a process of determining whether or not the error of S2 (second measured value) with respect to S1 (first measured value) is within the allowable range.
  • the second calibration process may include a process of calculating a correction coefficient for correcting the second measurement value when the error of S2 (second measurement value) does not fall within the allowable range.
  • the control unit 233 may execute the second calibration process during a period in which the fluctuation of at least one of the output power and the input power of the distributed power source is equal to or less than a predetermined threshold value.
  • the second calibration process may be executed during a period in which the fluctuation of the output power and the input power of the power storage unit 210 is equal to or less than a predetermined threshold value.
  • the second calibration process may be executed during a period (for example, at night) when the fluctuation of the output power of the PV panel 220 is equal to or less than a predetermined threshold value.
  • control unit 233 may execute the second calibration process in a state where at least one of B3 and B4 is disconnected.
  • the period during which at least one of B3 and B4 is disconnected is synonymous with the period during which the fluctuation of at least one of the output power and the input power of the distributed power source is equal to or less than a predetermined threshold value.
  • the control unit 233 executes the third calibration process related to S3 based on the first measured value, the second measured value, and the third measured value. Similarly, after executing the second calibration process, the control unit 233 executes the third calibration process for S4 based on the first measured value, the second measured value, and the third measured value.
  • the third calibration process may include a process of determining whether or not the error of S3 (third measured value) with respect to the difference between the first measured value and the second measured value is within the allowable range.
  • the third calibration process may include a process of calculating a correction coefficient for correcting the third calibration process when the error of S3 (third measured value) does not fall within the allowable range.
  • the third calibration process may include a process of determining whether or not the error of S4 (third measured value) with respect to the difference between the first measured value and the second measured value is within the allowable range.
  • the third calibration process may include a process of calculating a correction coefficient for correcting the third calibration process when the error of S4 (third measured value) does not fall within the allowable range.
  • the control unit 233 may execute the third calibration process during a period in which the fluctuation of the power consumption of the load device 240 is equal to or less than a predetermined threshold value. Further, the control unit 233 may execute the third calibration process in a state where the B2 is disconnected.
  • the period during which B2 is disconnected is synonymous with the period during which the fluctuation of the power consumption of the load device 240 is equal to or less than a predetermined threshold value.
  • control unit 233 may execute at least one of the calibration process related to S3 and the calibration process related to S4 as the third calibration process.
  • control unit 233 may execute the third calibration process as shown below.
  • control unit 233 may execute the calibration process for S3 during the period when the fluctuation of the output power of the PV panel 220 is equal to or less than a predetermined threshold value. Further, the control unit 233 may execute the calibration process for S3 in the state where the B4 is disconnected. The period during which B4 is disconnected is synonymous with the period during which the fluctuation of the output power of the PV panel 220 is equal to or less than a predetermined threshold value. Similarly, the control unit 233 may execute the calibration process for S4 during the period when the fluctuation of the output power of the power storage unit 210 is equal to or less than a predetermined threshold value. Further, the control unit 233 may execute the calibration process regarding S4 in the state where the B3 is disconnected. The period during which B3 is disconnected is synonymous with the period during which the fluctuation of the output power of the power storage unit 210 is equal to or less than a predetermined threshold value.
  • the first calibration process is a calibration process relating to S1.
  • step S10 the control unit 233 requests the reference measurement value from the reference watt-hour meter 250.
  • step S11 the control unit 233 receives a response (reference measurement value) to the request from the reference watt-hour meter 250.
  • the control unit 233 receives the reference measurement value at predetermined time intervals.
  • the reference watt-hour meter 250 transmits the reference measurement value in response to the request of the control unit 233, but the reference measurement value may be autonomously transmitted at predetermined time intervals.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S10 and S11.
  • step S12A the control unit 233 requests the first measured value from S1.
  • step S13A the control unit 233 receives a response (first measured value) to the request from S1.
  • S1 transmits the first measured value in response to the request of the control unit 233, but the first measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S12A and S13A.
  • control unit 233 receives the first measured value N times within a predetermined time interval.
  • the N times are not particularly limited, but if the reception time interval of the reference measurement value is 30 minutes and the reception time interval of the first measurement value is 1 minute, N may be 30. ..
  • step S14 the control unit 233 executes such a process over the N1 cycle with steps S10 to S13N as one cycle.
  • the N1 cycle is the number of repetitions for ensuring the accuracy of the first calibration process, and is not particularly limited, but may be 4. Steps S10 to S13N may be counted as one cycle included in the N1 cycle.
  • step S15 the control unit 233 executes the first calibration process for S1 based on the comparison result between the reference measured value and the first measured value.
  • the first measured value to be compared with the reference measured value is an integrated value of the first measured value received over N times.
  • the control unit 233 can acquire the comparison result of the N1 cycle.
  • the first calibration process may be executed based on the average value of the error of the first measured value, may be executed based on the minimum value of the error of the first measured value, and the maximum error of the first measured value. It may be executed based on the value.
  • the second calibration process is a calibration process relating to S2.
  • the second calibration process is executed after at least the first calibration process is executed.
  • step S20 the control unit 233 requests the first measured value from S1.
  • step S21 the control unit 233 receives a response (first measured value) to the request from S1.
  • S1 transmits the first measured value in response to the request of the control unit 233, but the first measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S20 and S21.
  • step S22 the control unit 233 requests the second measured value from S2.
  • step S23 the control unit 233 receives a response (second measured value) to the request from S2.
  • S2 transmits the second measured value in response to the request of the control unit 233, but the second measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S22 and S23.
  • step S24 the control unit 233 executes such processing over N2 cycles with steps S20 to S23 as one cycle.
  • the N2 cycle is the number of repetitions for ensuring the accuracy of the second calibration process, and is not particularly limited, but may be 4. Steps S20 to S23 may be counted as one cycle included in the N2 cycle.
  • step S25 the control unit 233 executes the second calibration process related to S2 based on the first measured value and the second measured value.
  • the control unit 233 may execute the second calibration process during a period in which the fluctuation of at least one of the output power and the input power of the distributed power source is equal to or less than a predetermined threshold value. That is, the processes of steps S20 to S24 may be executed during a period in which the fluctuation of at least one of the output power and the input power of the distributed power source is equal to or less than a predetermined threshold value.
  • control unit 233 can acquire a sample of the N2 cycle.
  • the second calibration process may be executed based on the average value of the error of the second measured value, may be executed based on the minimum value of the error of the second measured value, and the maximum error of the second measured value. It may be executed based on the value.
  • the third calibration process (No. 1) is a calibration process relating to S3.
  • the third calibration process (No. 1) is executed after at least the first calibration process is executed.
  • the third calibration process (No. 1) may be executed after the second calibration process is executed.
  • step S30 the control unit 233 requests the first measured value from S1.
  • step S31 the control unit 233 receives a response (first measured value) to the request from S1.
  • S1 transmits the first measured value in response to the request of the control unit 233, but the first measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S30 and S31.
  • step S32 the control unit 233 requests the second measured value from S2.
  • step S33 the control unit 233 receives a response (second measured value) to the request from S2.
  • S2 transmits the second measured value in response to the request of the control unit 233, but the second measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S32 and S33.
  • step S34 the control unit 233 requests the third measured value from S3.
  • step S35 the control unit 233 receives the response to the request (third measured value) from S3.
  • S3 transmits the third measured value in response to the request of the control unit 233, but the third measured value may be autonomously transmitted at intervals shorter than the predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S34 and S35.
  • step S36 the control unit 233 executes such processing over N3 cycles with steps S30 to S35 as one cycle.
  • the N3 cycle is the number of repetitions for ensuring the accuracy of the third calibration process (No. 1), and is not particularly limited, but may be 4. Steps S30 to S35 may be counted as one cycle included in the N3 cycle.
  • step S37 the control unit 233 executes the third calibration process (No. 1) relating to S3 based on the first measured value, the second measured value, and the third measured value (measured value of S3).
  • the control unit 233 may execute the third calibration process (No. 1) during a period in which the fluctuation of the power consumption of the load device 240 is equal to or less than a predetermined threshold value.
  • the control unit 233 may execute the third calibration process (No. 1) during a period in which the fluctuation of the output power of the PV panel 220 is equal to or less than a predetermined threshold value. That is, the processes of steps S30 to S36 may be executed during a period in which the fluctuation of the output power of the PV panel 220 is equal to or less than a predetermined threshold value.
  • the control unit 233 can acquire a sample of the N3 cycle.
  • the third calibration process (No. 1) may be executed based on the average value of the error of the third measurement value of S3, or may be executed based on the minimum value of the error of the third measurement value of S3. It may be executed based on the maximum value of the error of the third measurement value of S3.
  • the third calibration process (No. 2) is a calibration process relating to S4.
  • the third calibration process (No. 2) is executed after at least the first calibration process is executed.
  • the third calibration process (No. 2) may be executed after the second calibration process is executed.
  • the third calibration process (No. 2) may be executed after the third calibration process (No. 1) is executed.
  • step S40 the control unit 233 requests the first measured value from S1.
  • step S41 the control unit 233 receives a response (first measured value) to the request from S1.
  • S1 transmits the first measured value in response to the request of the control unit 233, but the first measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S40 and S41.
  • step S42 the control unit 233 requests the second measured value from S2.
  • step S43 the control unit 233 receives a response (second measured value) to the request from S2.
  • S2 transmits the second measured value in response to the request of the control unit 233, but the second measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S42 and S43.
  • step S44 the control unit 233 requests the third measured value from S3.
  • step S45 the control unit 233 receives a response (third measured value) to the request from S3.
  • S3 transmits the third measured value in response to the request of the control unit 233, but the third measured value may be autonomously transmitted at intervals shorter than the predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S44 and S45.
  • step S46 the control unit 233 requests the third measured value from S4.
  • step S47 the control unit 233 receives a response (third measured value) to the request from S4.
  • S4 transmits the third measured value in response to the request of the control unit 233, but the third measured value may be autonomously transmitted at an interval shorter than a predetermined time interval.
  • messages such as GET, GET response, and INF can be used as the messages used in steps S46 and S47.
  • step S48 the control unit 233 executes such processing over N4 cycles with steps S40 to S47 as one cycle.
  • the N4 cycle is the number of repetitions for ensuring the accuracy of the third calibration process (No. 2), and is not particularly limited, but may be 4. Steps S40 to S47 may be counted as one cycle included in the N4 cycle.
  • step S49 the control unit 233 executes the third calibration process (No. 2) regarding S4 based on the first measured value, the second measured value, and the third measured value (measured values of S3 and S4).
  • the control unit 233 may execute the third calibration process (No. 2) during a period in which the fluctuation of the power consumption of the load device 240 is equal to or less than a predetermined threshold value.
  • the control unit 233 may execute the third calibration process (No. 2) during a period in which the fluctuation of the output power of the power storage unit 210 is equal to or less than a predetermined threshold value. That is, the processes of steps S40 to S48 may be executed during a period in which the fluctuation of the output power of the power storage unit 210 is equal to or less than a predetermined threshold value.
  • the control unit 233 can acquire a sample of the N4 cycle.
  • the third calibration process (No. 2) may be executed based on the average value of the error of the third measurement value of S4, or may be executed based on the minimum value of the error of the third measurement value of S4. It may be executed based on the maximum value of the error of the third measurement value of S4.
  • the PCS 230 executes the first calibration process based on the reference measured value and the first measured value, and then executes the second calibration process related to S2 based on the first measured value and the second measured value.
  • the processing time of the second calibration process can be shortened by substituting the reference measurement value received at a predetermined time interval with the first measurement value that can be received at an interval shorter than the predetermined time interval. Can be done.
  • the second calibration process is executed with the breakers of the distributed power sources (B3 and B4 in FIG. 2) disconnected, the time for disconnecting the distributed power sources from the power system 110 can be shortened. As the number of power meters to be calibrated increases, the effect of shortening the processing time increases.
  • the PCS 230 may execute the second calibration process during a period in which the fluctuation of at least one of the output power and the input power of the distributed power source is equal to or less than a predetermined threshold value. According to such a configuration, even if there is a measurement error of S3 and S4, the influence of the measurement error of S3 and S4 can be reduced.
  • the PCS 230 may execute the third calibration process based on the first measured value, the second measured value, and the third measured value after executing the first calibration process and the second calibration process. According to such a configuration, the accuracy of the third calibration process can be ensured in a state where the measurement error of the second measured value is within the allowable range, so that the fluctuation of the power consumption of the load device 240 is equal to or less than the predetermined threshold value. It is not necessary to secure a period, and it is possible to suppress a decrease in user convenience.
  • the PCS 230 may execute the third calibration process during a period in which the fluctuation of the power consumption of the load device 240 is equal to or less than a predetermined threshold value. According to such a configuration, even if there is a measurement error of S2, the influence of the measurement error of S2 can be reduced.
  • the PCS 230 may execute the third calibration process (No. 1) relating to S3 during the period when the fluctuation of the output power of the PV panel 220 is equal to or less than a predetermined threshold value. According to such a configuration, even if there is a measurement error of S4, the influence of the measurement error of S4 can be reduced. Similarly, the PCS 230 may execute the third calibration process (No. 2) relating to S4 during a period in which the fluctuation of the output power of the power storage unit 210 is equal to or less than a predetermined threshold value. According to such a configuration, even if there is a measurement error of S3, the influence of the measurement error of S3 can be reduced.
  • the measured value of the electricity meter provided in the facility 10 is transmitted to the outside of the facility 10 (for example, the server 30).
  • the watt-hour meter measurement may be transmitted after the watt-hour meter configuration process has been performed.
  • step S50 the control unit 233 executes the first calibration process.
  • step S51 the control unit 233 starts a process of transmitting the first measured value to the EMS 260.
  • step S52 the EMS 260 starts a process of transmitting the first measured value to the server 30.
  • the process of step S51 and step S52 may be repeated until it becomes necessary to re-execute the first calibration process.
  • step S60 the control unit 233 executes the second calibration process.
  • step S61 the control unit 233 starts a process of transmitting the second measured value to the EMS 260.
  • step S62 the EMS 260 starts a process of transmitting the second measured value to the server 30. The process of step S61 and step S62 may be repeated until it becomes necessary to re-execute the second calibration process.
  • step S70 the control unit 233 executes the third calibration process.
  • step S71 the control unit 233 starts a process of transmitting the third measured value to the EMS 260.
  • step S72 the EMS 260 starts a process of transmitting the third measured value to the server 30. The process of step S71 and step S72 may be repeated until it becomes necessary to re-execute the third calibration process.
  • the third calibration process may include a calibration process for the first distributed power supply power meter (S3) and a calibration process for the second distributed power supply power meter (S4).
  • the control unit 233 may start transmitting the measured value of S3 after the calibration process for S3 is executed.
  • the control unit 233 may start transmitting the measured value of S4 after the calibration process relating to S4 is executed.
  • steps S50 to 52, steps S60 to 62, and steps S70 to 72 may be independent processes. Transmission of the measured value of the power meter may be started after the calibration process of all the power meters provided in the facility 10 is executed.
  • the first measured value transmitted to the server 30 may be transmitted to the server 20.
  • the second measured value and the third measured value transmitted to the server 30 may be transmitted to the server 20.
  • the entity that manages the server 20 is at least one of the first measured value, the second measured value, and the third measured value.
  • the electric power billing process may be performed, or the electric power purchase process may be performed. That is, instead of using the reference power meter 250 certified by a third-party organization, charging is performed using a power meter (at least one of S1, S2, S3 and S4) that is not required to be certified by a third-party organization. Processing or purchase processing may be performed.
  • the entity that manages the server 30 is at least one of the first measured value, the second measured value, and the third measured value. Based on this one, maintenance of the distributed power source (storage unit 210 or PV panel 220) provided in the facility 10 may be performed.
  • the PCS230 or EMS260 is the measured value.
  • the time when the calibration process is executed (hereinafter referred to as the calibration time) and the identification information of the power meter (for example, the reference power meter 250) used in the calibration process may be transmitted together with the measured value.
  • the server 20 or the server 30 measures based on the calibration time and the identification information even if the value is measured without using the reference power meter 250 certified by a third party. It can be confirmed that the value has a certain reliability.
  • the billing process performed on the server 20 is a process for charging the power used by the facility 10 from the server 20 side to the facility 10 side or the user of the facility 10 (hereinafter, simply the facility 10 side).
  • the purchase process means that even if the distributed power source is under the control of the facility 10, if the ownership of the distributed power source is not on the facility 10 side but on the third party (for example, the server 20 side), the server 20 in the billing process.
  • the cost paid to the side may be regarded as the cost for the facility 10 side to purchase the distributed power source from a third party.
  • the accumulated costs may be applied to the purchase cost of the distributed power source.
  • the ownership of the distributed power source is transferred from the third party to the facility 10.
  • the transmission of a part of the information transmitted before the transfer may be stopped and the billing process may not be performed.
  • the distributed power source is the PV panel 220
  • the process of transmitting the second measured value to the server 20 may be stopped, and the billing process of the server 20 may also be stopped.
  • the billing process on the server 20 may be stopped without stopping the transmission of a part of the information transmitted before the transfer.
  • PCS230 exemplifies a case where it is a hybrid PCS or a multi-PCS.
  • the PCS230 has a DC / DC converter 235, a DC / DC converter 236, and a DC / AC converter 237 instead of the DC / AC converter 231 and the DC / AC converter 232 shown in FIG.
  • the DC / DC converter 235 adjusts the voltage of the DC power (discharge power) output from the power storage unit 210, and adjusts the voltage of the DC power (charge power) input to the power storage unit 210.
  • the DC / DC converter 236 adjusts the voltage of the DC power (generated power) output from the PV panel 220.
  • the DC / AC converter 237 converts the DC power output from the DC / DC converter 235 and the DC / DC converter 236 into AC power, and converts the AC power into DC power input to the DC / DC converter 235.
  • the DC / AC converter 237 is provided between J1 and J2.
  • the calibration process (first calibration process, second calibration process, and third calibration process) is executed by the control unit 233 of the PCS230.
  • the calibration process may be performed by EMS260.
  • the power storage unit 210 and the PV panel 220 are provided in the facility 10 as distributed power sources.
  • the distributed power source provided in the facility 10 may include a fuel cell device, a wind power generation device, a geothermal power generation device, and the like.
  • the number of distributed power sources provided in the facility 10 may be one or three or more.
  • the third calibration process is executed after the first calibration process and the second calibration process are executed.
  • the third calibration process may be executed after the first calibration process is executed, and may be executed before the second calibration process is executed.
  • the calibration process (first calibration process, second calibration process, and third calibration process) may be executed in a predetermined cycle (for example, one week, one month, one year).
  • the first measured value matches the sum of the second measured value and the third measured value.
  • the measured value of S1 is the same as the total of the measured value of S2, the measured value of S3, and the measured value of S4.
  • the power flow power is represented by a positive value
  • the reverse power flow power is represented by a negative value
  • the power consumption of the load device 240 is represented by a positive value
  • the output of the power storage unit 210 is represented.
  • the electric power (discharge power) is represented by a negative value
  • the input power (charging power) of the power storage unit 210 is represented by a positive value
  • the output power (generated power) of the PV panel 220 is represented by a negative value.
  • the second calibration process and the third calibration process may be executed so that the above-mentioned relationship is established based on the measured value of S1 after the first calibration process is executed.
  • the measured values of S3 and S4 may be used in addition to the measured values of S1 and S2.
  • the measured values of S3 and S4 may be the measured values after the third calibration process is executed.
  • the third calibration process No.
  • the measured value of S4 may be used in addition to the measured values of S1, S2 and S3. In such a case, the measured value of S4 may be the measured value after the third calibration process (No. 2) is executed. In the third calibration process (No. 2), the measured value of S3 may be used in addition to the measured values of S1, S2 and S4. In such a case, the measured value of S3 may be the measured value after the third calibration process (No. 1) is executed.
  • the power consumption of the control unit 233 and the EMS 260 may be treated as a part of the power consumption of the load device 240.
  • the functions of the EMS 260 may be executed by a cloud server connected to the network 120.
  • the EMS 260 may be considered to include a cloud server.
  • the electric power may be an instantaneous electric power (kW) or an integrated electric energy (kWh) for a certain period (for example, 30 minutes).

Abstract

電力管理システムは、基準電力メータの基準計測値を、所定時間間隔で受信する第1受信部と、分散電源に接続された電力線及び負荷機器に接続された電力線の合流ポイントよりも電力系統側に設けられた第1電力メータの第1計測値を、前記所定時間間隔よりも短い間隔で受信する第2受信部と、前記負荷機器の消費電力を計測する第2電力メータの第2計測値を、前記所定時間間隔よりも短い間隔で受信する第3受信部と、前記基準計測値と前記第1計測値との比較結果に基づいて前記第1電力メータに関する第1校正処理を実行した後に、前記第1計測値及び前記第2計測値に基づいて前記第2電力メータに関する第2校正処理を実行する制御部と、を備える。

Description

電力管理システム、電力変換装置及び電力管理方法
 本開示は、電力管理システム、電力変換装置及び電力管理方法に関する。
 太陽電池装置又は蓄電装置などの分散電源の出力電力を計測することによって、分散電源の出力電力を取り引きする仕組みが知られている。このような仕組みにおいては、第三者機関によって検定された電力メータ(以下、検定付きメータ)によって分散電源の出力電力を計測することによって計測精度が担保される。
 さらに、施設の潮流電力又は逆潮流電力を計測する電力メータ(以下、スマートメータ)を用いて、施設に設けられる負荷機器の消費電力を計測する計測装置又は施設に設けられる分散電源の出力電力を計測する計測装置の計測値を校正する仕組みが提案されている。このような仕組みによれば、検定付きメータを用いることなく、スマートメータを用いた校正によって、計測装置の計測精度を担保しようとしている(例えば、特許文献1)。
国際公開第2011/067988号パンフレット
 第1の特徴に係る電力管理システムは、分散電源及び負荷機器を有する施設の潮流電力及び逆潮流電力の少なくともいずれか1つを計測する基準電力メータの基準計測値を、所定時間間隔で受信する第1受信部と、前記分散電源に接続された電力線及び前記負荷機器に接続された電力線の合流ポイントよりも電力系統側に設けられた第1電力メータの第1計測値を、前記所定時間間隔よりも短い間隔で受信する第2受信部と、前記負荷機器の消費電力を計測する第2電力メータの第2計測値を、前記所定時間間隔よりも短い間隔で受信する第3受信部と、前記基準計測値と前記第1計測値との比較結果に基づいて前記第1電力メータに関する第1校正処理を実行した後に、前記第1計測値及び前記第2計測値に基づいて前記第2電力メータに関する第2校正処理を実行する制御部と、を備える。
 第2の特徴に係る電力変換装置は、電力系統に接続される第1電力インタフェースと、負荷機器に接続される第2電力インタフェースと、分散電源に接続される第3電力インタフェースと、前記分散電源に接続された電力線及び前記負荷機器に接続された電力線の合流ポイントと、前記分散電源から出力される直流電力を交流電力に少なくとも変換する変換器と、を備える。
 第3の特徴に係る電力管理方法は、分散電源及び負荷機器を有する施設の潮流電力及び逆潮流電力の少なくともいずれか1つを計測する基準電力メータの基準計測値を、所定時間間隔で受信するステップと、前記分散電源に接続された電力線及び前記負荷機器に接続された電力線の合流ポイントよりも電力系統側に設けられた第1電力メータの第1計測値を、前記所定時間間隔よりも短い間隔で受信するステップと、前記負荷機器の消費電力を計測する第2電力メータの第2計測値を、前記所定時間間隔よりも短い間隔で受信するステップと、前記基準計測値と前記第1計測値との比較結果に基づいて前記第1電力メータに関する第1校正処理を実行した後に、前記第1計測値及び前記第2計測値に基づいて前記第2電力メータに関する第2校正処理を実行するステップと、を備える。
図1は、実施形態に係る電力管理システム100を示すである。 図2は、実施形態に係るPCS230を示すである。 図3は、実施形態に係る電力管理方法を示す図である。 図4は、実施形態に係る電力管理方法を示す図である。 図5は、実施形態に係る電力管理方法を示す図である。 図6は、実施形態に係る電力管理方法を示す図である。 図7は、変更例1に係る電力管理方法を示す図である。 図8は、変更例2に係るPCS230を示すである。
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。但し、図面は模式的なものである。
 [実施形態]
 (電力管理システム)
 以下において、実施形態に係る電力管理システムについて説明する。図1に示すように、電力管理システム100は、施設10と、サーバ20と、サーバ30と、を有する。施設10は、電力線によって電力系統110と接続される。施設10は、通信線によってネットワーク120と接続される。特に限定されるものではないが、電力線は有線であってもよい。通信線は、無線であってもよく、有線であってもよい。施設10、サーバ20及びサーバ30は、ネットワーク120によって接続される。ネットワーク120は、インターネットである。ネットワーク120は、VPN(Virtual Private Network)などの専用回線を含んでもよい。以下において、電力系統110から施設10への電力の流れを潮流と称し、施設10から電力系統110への電力の流れを逆潮流と称する。
 施設10は、分散電源(図1では、蓄電ユニット210及びPVパネル220)及び負荷機器240を有する施設である。特に限定されるものではないが、施設10は、住宅などの非商用施設であってもよく、オフィス及び商店などの商用施設であってもよい。施設10は、工場であってもよい。
 例えば、施設10は、蓄電ユニット210と、PVパネル220と、PCS(Power Conditioning System)230と、負荷機器240と、基準電力メータ250と、EMS(Energy Management System)260と、を有する。
 蓄電ユニット210は、電力の充電及び電力の放電を行う分散電源の一例である。蓄電ユニット210は、逆潮流が許容されない分散電源の一例であってもよい。蓄電ユニット210は、固定買取価格(FIT(Feed-in Tariff))が適用されない分散電源の一例であってもよい。但し、蓄電ユニット210は、逆潮流が許容されてもよく、FITが適用されてもよい。例えば、蓄電ユニット210は、第1分散電源の一例である。蓄電ユニット210は、第2分散電源の一例であってもよい。
 PVパネル220は、太陽光などの光に応じて発電を行う分散電源の一例である。PVパネル220は、逆潮流が許容される分散電源の一例であってもよい。PVパネル220は、FITが適用される分散電源の一例であってもよい。例えば、PVパネル220は、第2分散電源の一例である。PVパネル220は、第1分散電源の一例であってもよい。
 PCS230は、分散電源から出力されるDC電力をAC電力に変換する電力変換装置の一例である。例えば、PCS230は、蓄電ユニット210から出力されるDC電力をAC電力に変換し、蓄電ユニット210に入力されるDC電力にAC電力を変換する。PCS230は、PVパネル220から出力されるDC電力をAC電力に変換する。PCS230の詳細については後述する(図2を参照)。
 負荷機器240は、電力を消費する機器である。特に限定されるものではないが、負荷機器240は、空調装置を含んでもよく、照明装置を含んでもよい。
 基準電力メータ250は、施設10の潮流電力及び逆潮流電力の少なくともいずれか1つを計測する。特に限定されるものではないが、基準電力メータ250は、第三者機関によって認証された電力メータであり、電力会社に帰属する電力メータである。基準電力メータ250は、基準電力メータ250の基準計測値を所定時間間隔(例えば、30分)毎に送信する機能を有する。基準電力メータ250は、所定時間間隔よりも短い間隔で基準計測値を送信する動作を禁止された電力メータであってもよい。
 EMS260は、施設10の電力を管理する。例えば、EMS260は、施設10の潮流電力を管理してもよく、施設10の逆潮流電力を管理してもよい。EMS260は、蓄電ユニット210の出力電力(放電電力)、蓄電ユニット210の入力電力(充電電力)、PVパネル220の出力電力(発電電力)を管理してもよい。EMS260は、負荷機器240の消費電力を管理してもよい。
 EMS260は、通信線によってPCS230と接続されており、上述した電力をPCS230から取得してもよい。図1では省略しているが、EMS260は、後述する各種電力メータ(S1、S2、S3及びS4)と通信線によって接続されており、上述した電力を各種電力メータから取得してもよい。
 サーバ20は、電力系統110を管理するサーバである。サーバ20は、発電事業者、送配電事業者或いは小売事業者、リソースアグリゲータなどの事業者によって管理されるサーバであってもよい。サーバ20は、VPP(Virtual Power Plant)において分散電源に対する制御を指示する制御メッセージを送信してもよい。制御メッセージは、潮流電力の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を含んでもよく、逆潮流電力の制御を要求する逆潮流制御メッセージを含んでもよく、分散電源の動作状態を制御する電源制御メッセージを含んでもよい。
 サーバ30は、施設10に設けられる分散電源を管理するサーバである。特に限定されるものではないが、サーバ30は、分散電源を提供又は製造するエンティティによって管理されるサーバであってもよい。例えば、サーバ30は、分散電源のメンテナンスなどを目的として、分散電源の出力電力、分散電源の入力電力などの情報を収集してもよい。或いは、サーバ30は、分散電源の動作の最適化などを目的として、施設10の潮流電力、施設10の逆潮流電力、負荷機器240の消費電力、分散電源の出力電力、分散電源の入力電力などの情報を収集してもよい。サーバ30によって収集される電力の情報は、上述した目的以外に用いられてもよい。
 (電力変換装置)
 以下において、実施形態に係る電力変換装置について説明する。上述したように、PCS230は、電力変換装置の一例である。
 図2に示すように、PCS230は、各種インタフェース(図2では、I1、I2、I3及びI4)と、各種ブレーカ(図2では、B1、B2、B3及びB4)と、各種電力メータ(図2では、S1、S2、S3及びS4)と、各種合流ポイント(図2では、J1及びJ2)を有する。PCS230は、DC/ACコンバータ231(図2では、単にDC/AC)と、DC/ACコンバータ232(図2では、単にDC/AC)と、制御部233と、を有する。
 I1は、電力系統110(図2では、基準電力メータ250)と接続される第1電力インタフェースの一例である。I2は、負荷機器240に接続される第2電力インタフェースの一例である。I3及びI4は、分散電源に接続される第3電力インタフェースの一例である。図2では、I3は、蓄電ユニット210に接続される電力インタフェースの一例であり、I4は、PVパネル220に接続される電力インタフェースの一例である。これらの電力インタフェースは、コネクタによって構成されていてもよい。但し、実施形態はこれに限定されるものではなく、電力インタフェースは、コネクタを有していない電力線であってもよい。
 B1は、J2とI1とを接続する電力線上に設けられており、電力線の接続及び切断を切り替え可能に構成される。B1は、施設10と電力会社との間の契約で取り決めた値以下に施設10の電流を制限するためのリミッタとして用いられてもよい。B1が切断されると、電力系統110から施設10が切り離される。B2は、J2とI2とを接続する電力線上に設けられており、電力線の接続及び切断を切り替え可能に構成される。B2が切断されると、電力系統110から負荷機器240が切り離される。B3は、J1とI3とを接続する電力線上に設けられており、電力線の接続及び切断を切り替え可能に構成される。B3が切断されると、電力系統110から蓄電ユニット210が切り離される。B4は、J1とI4とを接続する電力線上に設けられており、電力線の接続及び切断を切り替え可能に構成される。B4が切断されると、電力系統110からPVパネル220が切り離される。
 S1は、J2よりも電力系統110側に設けられる第1電力メータの一例である。S1は、施設10の潮流電量及び逆潮流電力の少なくともいずれか1つを計測する。理論的には、S1の第1計測値を所定時間間隔で積算した値は、上述した基準電力メータの基準計測値と一致する。S2は、J2とI2との間に設けられており、負荷機器240の消費電力(すなわち、第2計測値)を計測する第2電力メータの一例である。S3は、J1とI3との間に設けられており、蓄電ユニット210(例えば、第1分散電源)の出力電力及び蓄電ユニット210入力電力の少なくともいずれか1つ(すなわち、第3計測値)を計測する第3電力メータ(例えば、第1分散電源電力メータ)の一例である。S4は、J1とI4との間に設けられており、PVパネル220(例えば、第2分散電源)の出力電力(すなわち、第3計測値)を計測する第3電力メータ(例えば、第2分散電源電力メータ)の一例である。理論的には、S3及びS4の第3計測値の合計は、S1の第1計測値とS2の第2計測値との差異と一致する。言い換えると、S4の計測値の影響を排除できれば、S3の第3計測値の合計は、S1の第1計測値とS2の第2計測値との差異と一致し、S3の計測値の影響を排除できれば、S4の第3計測値の合計は、S1の第1計測値とS2の第2計測値との差異と一致する。
 実施形態において、S1~S4は、基準電力メータ250のように、第三者機関によって認証された電力メータである必要はない。但し、S1~S4は、第三者機関によって認証された電力メータであってもよい。
 J1は、蓄電ユニット210に接続された電力線とPVパネル220に接続された電力線との合流ポイントである。J2は、分散電源に接続された電力線と負荷機器240に接続された電力線との合流ポイントである。J2は、J1よりも電力系統110側に設けられる。
 DC/ACコンバータ231は、蓄電ユニット210から出力されるDC電力をAC電力に変換するとともに、蓄電ユニット210に入力されるDC電力にAC電力を変換する。DC/ACコンバータ231は、分散電源から出力される直流電力を交流電力に少なくとも変換する変換器の一例である。
 DC/ACコンバータ232は、PVパネル220から出力されるDC電力をAC電力に変換する。DC/ACコンバータ232は、分散電源から出力される直流電力を交流電力に少なくとも変換する変換器の一例である。
 制御部233は、通信モジュールを含み、各種電力メータ、基準電力メータ250、EMS260と通信を行う機能を有する。通信モジュールは、IEEE802.11a/b/g/n、ZigBee、Wi-SUN、LTE、5Gなどの規格に準拠する無線通信モジュールであってもよく、IEEE802.3などの規格に準拠する有線通信モジュールであってもよい。
 実施形態では、制御部233は、基準電力メータ250の基準計測値を所定時間間隔で受信する第1受信部を構成する。制御部233は、第1電力メータ(図2ではS1)の第1計測値を、所定時間間隔よりも短い間隔(例えば、1分)で受信する第2受信部を構成する。制御部233は、第2電力メータ(図2ではS2)の第2計測値を、所定時間間隔よりも短い間隔(例えば、1分)で受信する第3受信部を構成する。制御部233は、第3電力メータ(図2ではS3又はS4)の第3計測値を、所定時間間隔よりも短い間隔(例えば、1分)で受信する第4受信部を構成する。
 制御部233は、少なくとも1つのプロセッサを含み、PCS230を制御する。少なくとも1つのプロセッサは、単一の集積回路(IC)によって構成されてもよく、通信可能に接続された複数の回路(集積回路及び又はディスクリート回路(discrete circuits)など)によって構成されてもよい。
 第1に、制御部233は、基準計測値と第1計測値との比較結果に基づいてS1に関する第1校正処理を実行する。第1校正処理は、基準電力メータ250(基準計測値)に対するS1(第1計測値)の誤差が許容範囲に収まるか否かを判定する処理を含んでもよい。第1校正処理は、S1(第1計測値)の誤差が許容範囲に収まらない場合に、第1計測値を補正する補正係数を算出する処理を含んでもよい。
 ここで、S1(第1計測値)の誤差が許容範囲に収まらない場合において、S1に使用を中止してS1の交換を促すメッセージが通知されてもよく、補正係数によって第1計測値を補正しながらS1の使用を継続してもよい。
 第2に、制御部233は、第1校正処理を実行した後に、第1計測値及び第2計測値に基づいてS2に関する第2校正処理を実行する。第2校正処理は、S1(第1計測値)に対するS2(第2計測値)の誤差が許容範囲に収まるか否かを判定する処理を含んでもよい。第2校正処理は、S2(第2計測値)の誤差が許容範囲に収まらない場合に、第2計測値を補正する補正係数を算出する処理を含んでもよい。
 ここで、S2(第2計測値)の誤差が許容範囲に収まらない場合において、S2に使用を中止してS2の交換を促すメッセージが通知されてもよく、補正係数によって第2計測値を補正しながらS2の使用を継続してもよい。
 制御部233は、分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において第2校正処理を実行してもよい。例えば、分散電源が蓄電ユニット210であるケースを想定すると、蓄電ユニット210の出力電力及び入力電力の変動が所定閾値以下である期間において第2校正処理が実行されてもよい。同様に、分散電源がPVパネル220であるケースを想定すると、PVパネル220の出力電力の変動が所定閾値以下である期間(例えば、夜間)において第2校正処理が実行されてもよい。さらに、制御部233は、B3及びB4の少なくともいずれか1つを切断した状態において第2校正処理を実行してもよい。B3及びB4の少なくともいずれか1つが切断された期間は、分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間と同義である。
 第3に、制御部233は、第2校正処理を実行した後に、第1計測値、第2計測値及び第3計測値に基づいてS3に関する第3校正処理を実行する。同様に、制御部233は、第2校正処理を実行した後に、第1計測値、第2計測値及び第3計測値に基づいてS4に関する第3校正処理を実行する。第3校正処理は、第1計測値と第2計測値との差異に対するS3(第3計測値)の誤差が許容範囲に収まるか否かを判定する処理を含んでもよい。第3校正処理は、S3(第3計測値)の誤差が許容範囲に収まらない場合に、第3校正処理を補正する補正係数を算出する処理を含んでもよい。同様に、第3校正処理は、第1計測値と第2計測値との差異に対するS4(第3計測値)の誤差が許容範囲に収まるか否かを判定する処理を含んでもよい。第3校正処理は、S4(第3計測値)の誤差が許容範囲に収まらない場合に、第3校正処理を補正する補正係数を算出する処理を含んでもよい。
 ここで、S3(第3計測値)の誤差が許容範囲に収まらない場合において、S3に使用を中止してS3の交換を促すメッセージが通知されてもよく、補正係数によって第3計測値を補正しながらS3の使用を継続してもよい。同様に、S4(第3計測値)の誤差が許容範囲に収まらない場合において、S4に使用を中止してS4の交換を促すメッセージが通知されてもよく、補正係数によって第3計測値を補正しながらS4の使用を継続してもよい。
 制御部233は、負荷機器240の消費電力の変動が所定閾値以下である期間において第3校正処理を実行してもよい。さらに、制御部233は、B2を切断した状態において第3校正処理を実行してもよい。B2が切断された期間は、負荷機器240の消費電力の変動が所定閾値以下である期間と同義である。
 上述したように、制御部233は、第3校正処理として、S3に関する校正処理及びS4に関する校正処理の少なくともいずれか1つを実行すればよい。制御部233は、S3に関する校正処理及びS4に関する校正処理の双方を実行する場合には、以下に示すように第3校正処理を実行してもよい。
 具体的には、制御部233は、PVパネル220の出力電力の変動が所定閾値以下である期間において、S3に関する校正処理を実行してもよい。さらに、制御部233は、B4が切断された状態においてS3に関する校正処理を実行してもよい。B4が切断された期間は、PVパネル220の出力電力の変動が所定閾値以下である期間と同義である。同様に、制御部233は、蓄電ユニット210の出力電力の変動が所定閾値以下である期間において、S4に関する校正処理を実行してもよい。さらに、制御部233は、B3が切断された状態においてS4に関する校正処理を実行してもよい。B3が切断された期間は、蓄電ユニット210の出力電力の変動が所定閾値以下である期間と同義である。
 (電力管理方法)
 以下において、実施形態に係る電力管理方法について説明する。
 第1に、第1校正処理について図3を参照しながら説明する。第1校正処理は、S1に関する校正処理である。
 図3に示すように、ステップS10において、制御部233は、基準計測値を基準電力メータ250に要求する。ステップS11において、制御部233は、要求に対する応答(基準計測値)を基準電力メータ250から受信する。上述したように、制御部233は、基準計測値を所定時間間隔毎に受信する。図3では、基準電力メータ250は、制御部233の要求に応じて基準計測値を送信するが、所定時間間隔毎に基準計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS10及びステップS11で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS12Aにおいて、制御部233は、第1計測値をS1に要求する。ステップS13Aにおいて、制御部233は、要求に対する応答(第1計測値)をS1から受信する。図3では、S1は、制御部233の要求に応じて第1計測値を送信するが、所定時間間隔よりも短い間隔で第1計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS12A及びステップS13Aで用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ここで、制御部233は、所定時間間隔内において、N回に亘って第1計測値を受信する。N回は特に限定されるものではないが、基準計測値の受信時間間隔が30分であり、第1計測値の受信時間間隔が1分である場合には、Nは30であってもよい。
 ステップS14において、制御部233は、ステップS10~ステップS13Nを1つのサイクルとして、このような処理をN1サイクルに亘って実行する。N1サイクルは、第1校正処理の精度を担保するための繰り返し回数であり、特に限定されるものではないが、4であってもよい。ステップS10~ステップS13Nは、N1サイクルに含まれる1回のサイクルとしてカウントされてもよい。
 ステップS15において、制御部233は、基準計測値と第1計測値との比較結果に基づいてS1に関する第1校正処理を実行する。基準計測値と比較される第1計測値は、N回に亘って受信される第1計測値の積算値である。
 ここで、制御部233は、N1サイクルの比較結果を取得することが可能である。第1校正処理は、第1計測値の誤差の平均値に基づいて実行されてもよく、第1計測値の誤差の最小値に基づいて実行されてもよく、第1計測値の誤差の最大値に基づいて実行されてもよい。
 第2に、第2校正処理について図4を参照しながら説明する。第2校正処理は、S2に関する校正処理である。第2校正処理は、少なくとも第1校正処理を実行した後に実行される。
 図4に示すように、ステップS20において、制御部233は、第1計測値をS1に要求する。ステップS21において、制御部233は、要求に対する応答(第1計測値)をS1から受信する。図4では、S1は、制御部233の要求に応じて第1計測値を送信するが、所定時間間隔よりも短い間隔で第1計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS20及びステップS21で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS22において、制御部233は、第2計測値をS2に要求する。ステップS23において、制御部233は、要求に対する応答(第2計測値)をS2から受信する。図4では、S2は、制御部233の要求に応じて第2計測値を送信するが、所定時間間隔よりも短い間隔で第2計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS22及びステップS23で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS24において、制御部233は、ステップS20~ステップS23を1つのサイクルとして、このような処理をN2サイクルに亘って実行する。N2サイクルは、第2校正処理の精度を担保するための繰り返し回数であり、特に限定されるものではないが、4であってもよい。ステップS20~ステップS23は、N2サイクルに含まれる1回のサイクルとしてカウントされてもよい。
 ステップS25において、制御部233は、第1計測値及び第2計測値に基づいてS2に関する第2校正処理を実行する。ここで、制御部233は、分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において第2校正処理を実行してもよい。すなわち、ステップS20~ステップS24の処理は、分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において実行されてもよい。
 ここで、制御部233は、N2サイクルのサンプルを取得することが可能である。第2校正処理は、第2計測値の誤差の平均値に基づいて実行されてもよく、第2計測値の誤差の最小値に基づいて実行されてもよく、第2計測値の誤差の最大値に基づいて実行されてもよい。
 第3に、第3校正処理(その1)について図5を参照しながら説明する。例えば、第3校正処理(その1)は、S3に関する校正処理である。第3校正処理(その1)は、少なくとも第1校正処理を実行した後に実行される。第3校正処理(その1)は、第2校正処理を実行した後に実行されてもよい。
 図5に示すように、ステップS30において、制御部233は、第1計測値をS1に要求する。ステップS31において、制御部233は、要求に対する応答(第1計測値)をS1から受信する。図5では、S1は、制御部233の要求に応じて第1計測値を送信するが、所定時間間隔よりも短い間隔で第1計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS30及びステップS31で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS32において、制御部233は、第2計測値をS2に要求する。ステップS33において、制御部233は、要求に対する応答(第2計測値)をS2から受信する。図5では、S2は、制御部233の要求に応じて第2計測値を送信するが、所定時間間隔よりも短い間隔で第2計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS32及びステップS33で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS34において、制御部233は、第3計測値をS3に要求する。ステップS35において、制御部233は、要求に対する応答(第3計測値)をS3から受信する。図5では、S3は、制御部233の要求に応じて第3計測値を送信するが、所定時間間隔よりも短い間隔で第3計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS34及びステップS35で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS36において、制御部233は、ステップS30~ステップS35を1つのサイクルとして、このような処理をN3サイクルに亘って実行する。N3サイクルは、第3校正処理(その1)の精度を担保するための繰り返し回数であり、特に限定されるものではないが、4であってもよい。ステップS30~ステップS35は、N3サイクルに含まれる1回のサイクルとしてカウントされてもよい。
 ステップS37において、制御部233は、第1計測値、第2計測値及び第3計測値(S3の計測値)に基づいてS3に関する第3校正処理(その1)を実行する。ここで、制御部233は、負荷機器240の消費電力の変動が所定閾値以下である期間において第3校正処理(その1)を実行してもよい。さらに、制御部233は、PVパネル220の出力電力の変動が所定閾値以下である期間において第3校正処理(その1)を実行してもよい。すなわち、ステップS30~ステップS36の処理は、PVパネル220の出力電力の変動が所定閾値以下である期間において実行されてもよい。
 ここで、制御部233は、N3サイクルのサンプルを取得することが可能である。第3校正処理(その1)は、S3の第3計測値の誤差の平均値に基づいて実行されてもよく、S3の第3計測値の誤差の最小値に基づいて実行されてもよく、S3の第3計測値の誤差の最大値に基づいて実行されてもよい。
 第4に、第3校正処理(その2)について図6を参照しながら説明する。例えば、第3校正処理(その2)は、S4に関する校正処理である。第3校正処理(その2)は、少なくとも第1校正処理を実行した後に実行される。第3校正処理(その2)は、第2校正処理を実行した後に実行されてもよい。第3校正処理(その2)は、第3校正処理(その1)を実行した後に実行されてもよい。
 図6に示すように、ステップS40において、制御部233は、第1計測値をS1に要求する。ステップS41において、制御部233は、要求に対する応答(第1計測値)をS1から受信する。図6では、S1は、制御部233の要求に応じて第1計測値を送信するが、所定時間間隔よりも短い間隔で第1計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS40及びステップS41で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS42において、制御部233は、第2計測値をS2に要求する。ステップS43において、制御部233は、要求に対する応答(第2計測値)をS2から受信する。図6では、S2は、制御部233の要求に応じて第2計測値を送信するが、所定時間間隔よりも短い間隔で第2計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS42及びステップS43で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS44において、制御部233は、第3計測値をS3に要求する。ステップS45において、制御部233は、要求に対する応答(第3計測値)をS3から受信する。図6では、S3は、制御部233の要求に応じて第3計測値を送信するが、所定時間間隔よりも短い間隔で第3計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS44及びステップS45で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS46において、制御部233は、第3計測値をS4に要求する。ステップS47において、制御部233は、要求に対する応答(第3計測値)をS4から受信する。図6では、S4は、制御部233の要求に応じて第3計測値を送信するが、所定時間間隔よりも短い間隔で第3計測値を自律的に送信してもよい。特に限定されるものではないが、ステップS46及びステップS47で用いるメッセージとしては、GET、GET応答、INFなどのメッセージを用いることができる。
 ステップS48において、制御部233は、ステップS40~ステップS47を1つのサイクルとして、このような処理をN4サイクルに亘って実行する。N4サイクルは、第3校正処理(その2)の精度を担保するための繰り返し回数であり、特に限定されるものではないが、4であってもよい。ステップS40~ステップS47は、N4サイクルに含まれる1回のサイクルとしてカウントされてもよい。
 ステップS49において、制御部233は、第1計測値、第2計測値及び第3計測値(S3及びS4の計測値)に基づいてS4に関する第3校正処理(その2)を実行する。ここで、制御部233は、負荷機器240の消費電力の変動が所定閾値以下である期間において第3校正処理(その2)を実行してもよい。さらに、制御部233は、蓄電ユニット210の出力電力の変動が所定閾値以下である期間において第3校正処理(その2)を実行してもよい。すなわち、ステップS40~ステップS48の処理は、蓄電ユニット210の出力電力の変動が所定閾値以下である期間において実行されてもよい。
 ここで、制御部233は、N4サイクルのサンプルを取得することが可能である。第3校正処理(その2)は、S4の第3計測値の誤差の平均値に基づいて実行されてもよく、S4の第3計測値の誤差の最小値に基づいて実行されてもよく、S4の第3計測値の誤差の最大値に基づいて実行されてもよい。
 (作用及び効果)
 実施形態では、PCS230は、基準計測値及び第1計測値に基づいた第1校正処理を実行した後に、第1計測値及び第2計測値に基づいてS2に関する第2校正処理を実行する。このような構成によれば、所定時間間隔で受信する基準計測値を所定時間間隔よりも短い間隔で受信可能な第1計測値によって代替することによって、第2校正処理の処理時間を短縮することができる。さらに、分散電源のブレーカ(図2では、B3及びB4)を切断した状態で第2校正処理を実行するケースを想定した場合に、分散電源を電力系統110から切り離す時間を短縮することができる。校正処理を実行すべき電力メータの数が増えるほど、このような処理時間の短縮効果が増大する。
 実施形態では、PCS230は、分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において第2校正処理を実行してもよい。このような構成によれば、仮にS3及びS4の計測誤差が存在する場合であっても、S3及びS4の計測誤差の影響を小さくすることができる。
 実施形態では、PCS230は、第1校正処理及び第2校正処理を実行した後に、第1計測値、第2計測値及び第3計測値に基づいて第3校正処理を実行してもよい。このような構成によれば、第2計測値の計測誤差が許容範囲である状態で第3校正処理の精度を担保することができるため、負荷機器240の消費電力の変動が所定閾値以下である期間を確保しなくてもよく、ユーザの利便性の低下を抑制することができる。
 実施形態では、PCS230は、負荷機器240の消費電力の変動が所定閾値以下である期間において第3校正処理を実行してもよい。このような構成によれば、仮にS2の計測誤差が存在する場合であっても、S2の計測誤差の影響を小さくすることができる。
 実施形態では、PCS230は、PVパネル220の出力電力の変動が所定閾値以下である期間においてS3に関する第3校正処理(その1)を実行してもよい。このような構成によれば、仮にS4の計測誤差が存在する場合であっても、S4の計測誤差の影響を小さくすることができる。同様に、PCS230は、蓄電ユニット210の出力電力の変動が所定閾値以下である期間においてS4に関する第3校正処理(その2)を実行してもよい。このような構成によれば、仮にS3の計測誤差が存在する場合であっても、S3の計測誤差の影響を小さくすることができる。
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
 変更例1では、施設10に設けられる電力メータの計測値は、施設10の外部(例えば、サーバ30)に送信される。電力メータの計測値は、電力メータの構成処理が実行された後に送信されてもよい。
 例えば、図7に示すように、ステップS50において、制御部233は、第1校正処理を実行する。ステップS51において、制御部233は、第1計測値をEMS260に送信する処理を開始する。ステップS52において、EMS260は、第1計測値をサーバ30に送信する処理を開始する。ステップS51及びステップS52の処理は、第1校正処理を再実行する必要が生じるまで繰り返されてもよい。
 図7に示すように、ステップS60において、制御部233は、第2校正処理を実行する。ステップS61において、制御部233は、第2計測値をEMS260に送信する処理を開始する。ステップS62において、EMS260は、第2計測値をサーバ30に送信する処理を開始する。ステップS61及びステップS62の処理は、第2校正処理を再実行する必要が生じるまで繰り返されてもよい。
 図7に示すように、ステップS70において、制御部233は、第3校正処理を実行する。ステップS71において、制御部233は、第3計測値をEMS260に送信する処理を開始する。ステップS72において、EMS260は、第3計測値をサーバ30に送信する処理を開始する。ステップS71及びステップS72の処理は、第3校正処理を再実行する必要が生じるまで繰り返されてもよい。
 ここで、第3校正処理は、第1分散電源電力メータ(S3)に関する校正処理及び第2分散電源電力メータ(S4)に関する校正処理を含んでもよい。制御部233は、S3に関する校正処理が実行された後に、S3の計測値の送信を開始してもよい。制御部233は、S4に関する校正処理が実行された後に、S4の計測値の送信を開始してもよい。
 図7において、ステップS50~ステップ52、ステップS60~ステップ62及びステップS70~ステップ72は互いに独立する処理であってもよい。電力メータの計測値の送信は、施設10に設けられる全ての電力メータの校正処理が実行された後に開始されてもよい。
 上述した動作例において、サーバ30に送信される第1計測値は、サーバ20に送信されてもよい。同様に、サーバ30に送信される第2計測値及び第3計測値は、サーバ20に送信されてもよい。
 第1計測値、第2計測値及び第3計測値がサーバ20に送信される場合には、サーバ20を管理するエンティティは、第1計測値、第2計測値及び第3計測値の少なくともいずれか1つに基づいて、電力の課金処理を行ってもよく、電力の買取処理を行ってもよい。すなわち、第三者機関によって認証された基準電力メータ250を用いずに、第三者機関による認証が必須ではない電力メータ(S1、S2、S3及びS4の少なくともいずれか1つ)を用いて課金処理又は買取処理が行われてもよい。
 第1計測値、第2計測値及び第3計測値がサーバ30に送信される場合には、サーバ30を管理するエンティティは、第1計測値、第2計測値及び第3計測値の少なくともいずれか1つに基づいて、施設10に設けられる分散電源(蓄電ユニット210又はPVパネル220)のメンテナンスを行ってもよい。
 第1計測値、第2計測値及び第3計測値の少なくともいずれか1つの計測値(以下、単に計測値)がサーバ20又はサーバ30に送信される場合には、PCS230又はEMS260は、計測値の校正処理が実行された時刻(以下、校正時刻)、校正処理で用いた電力メータ(例えば、基準電力メータ250)の識別情報を計測値とともに送信してもよい。このような校正によれば、サーバ20又はサーバ30は、第三者機関によって認証された基準電力メータ250を用いずに計測された値であっても、校正時刻及び識別情報に基づいて、計測値が一定の信頼性を有する値であることを確認することができる。
 サーバ20において行われる課金処理とは、サーバ20側から施設10側又は施設10のユーザ(以下、単に施設10側)に対して、施設10の使用電力に課金するための処理である。
 買取処理とは、施設10の管理下にある分散電源であっても、分散電源の所有権が施設10側ではなく第三者(例えば、サーバ20側)にある場合に、課金処理においてサーバ20側に支払った費用が、施設10側が分散電源を第三者から買い取るための費用とみなされる処理であってもよい。
 例えば、10年分の課金処理によって生じた費用を積み立てることによって、積み立てられた費用が分散電源の購入費用に充当されてもよい。このようなケースにおいて、11年目以降においては、分散電源の所有権は第三者から施設10側に移転される。所有権の移転後においては、移転前に送信された情報の一部の送信が中止され、課金処理が行われなくてもよい。例えば、分散電源がPVパネル220である場合は、第2計測値をサーバ20に送信する処理が中止され、サーバ20における課金処理も中止されてもよい。なお、所有権の移転後においては、移転前に送信された情報の一部の送信が中止されずに、サーバ20における課金処理が中止されてもよい。
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
 実施形態では、2以上の分散電源について個別のDC/ACコンバータが設けられるケースについて説明した。これに対して、変更例2では、2以上の分散電源について共通のDC/ACコンバータが設けられるケースについて説明する。言い換えると、PCS230は、ハイブリッドPCS又はマルチPCSであるケースについて例示する。
 図8に示すように、PCS230は、図2に示すDC/ACコンバータ231及びDC/ACコンバータ232に代えて、DC/DCコンバータ235、DC/DCコンバータ236及びDC/ACコンバータ237を有する。
 DC/DCコンバータ235は、蓄電ユニット210から出力されるDC電力(放電電力)の電圧を調整し、蓄電ユニット210に入力されるDC電力(充電電力)の電圧を調整する。DC/DCコンバータ236は、PVパネル220から出力されるDC電力(発電電力)の電圧を調整する。DC/ACコンバータ237は、DC/DCコンバータ235及びDC/DCコンバータ236から出力されるDC電力をAC電力に変換し、DC/DCコンバータ235に入力されるDC電力にAC電力を変換する。ここで、DC/ACコンバータ237は、J1とJ2との間に設けられる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 実施形態では、校正処理(第1校正処理、第2校正処理及び第3校正処理)は、PCS230の制御部233によって実行される。しかしながら、実施形態はこれに限定されるものではない。校正処理は、EMS260によって実行されてもよい。
 実施形態では、蓄電ユニット210及びPVパネル220が分散電源として施設10に設けられる。しかしながら、実施形態はこれに限定されるものではない。施設10に設けられる分散電源は、燃料電池装置、風力発電装置、地熱発電装置などを含んでもよい。施設10に設けられる分散電源は、1つであってもよく、3つ以上であってもよい。
 実施形態では、第3校正処理は、第1校正処理及び第2校正処理が実行された後に実行される。しかしながら、実施形態はこれに限定されるものではない。第3校正処理は、第1校正処理が実行された後に実行されればよく、第2校正処理が実行される前に実行されればよい。
 実施形態では特に触れていないが、校正処理(第1校正処理、第2校正処理及び第3校正処理)は、所定周期(例えば、1週間、1ヶ月、1年)で実行されてもよい。
 実施形態では特に触れていないが、理論的には、第1計測値は、第2計測値及第3計測値の合計と一致する。言い換えると、理論的には、S1の計測値は、S2の計測値、S3の計測値及びS4の計測値の合計と一致する。このようなケースにおいて、潮流電力がプラスの値で表されると想定すると、逆潮流電力はマイナスの値で表され、負荷機器240の消費電力はプラスの値で表され、蓄電ユニット210の出力電力(放電電力)はマイナスの値で表され、蓄電ユニット210の入力電力(充電電力)はプラスの値で表され、PVパネル220の出力電力(発電電力)はマイナスの値で表される。このような前提下において、第2校正処理及び第3校正処理は、第1校正処理が実行された後のS1の計測値に基づいて、上述した関係が成り立つように実行されればよい。例えば、第2校正処理において、S1及びS2の計測値に加えて、S3及びS4の計測値が利用されてもよい。このようなケースにおいて、S3及びS4の計測値は第3校正処理が実行された後の計測値であってもよい。第3校正処理(その1)において、S1、S2及びS3の計測値に加えて、S4の計測値が用いられてもよい。このようなケースにおいて、S4の計測値は第3校正処理(その2)が実行された後の計測値であってもよい。第3校正処理(その2)において、S1、S2及びS4の計測値に加えて、S3の計測値が用いられてもよい。このようなケースにおいて、S3の計測値は第3校正処理(その1)が実行された後の計測値であってもよい。
 実施形態では特に触れていないが、制御部233及びEMS260の消費電力は、負荷機器240の消費電力の一部として扱われてもよい。
 実施形態では特に触れていないが、EMS260の少なくとも一部の機能は、ネットワーク120に接続されたクラウドサーバによって実行されてもよい。EMS260は、クラウドサーバを含むと考えてもよい。
 実施形態では特に触れていないが、電力とは、瞬時電力(kW)であってもよく、一定期間(例えば、30分)の積算電力量(kWh)であってもよい。

Claims (9)

  1.  分散電源及び負荷機器を有する施設の潮流電力及び逆潮流電力の少なくともいずれか1つを計測する基準電力メータの基準計測値を、所定時間間隔で受信する第1受信部と、
     前記分散電源に接続された電力線及び前記負荷機器に接続された電力線の合流ポイントよりも電力系統側に設けられた第1電力メータの第1計測値を、前記所定時間間隔よりも短い間隔で受信する第2受信部と、
     前記負荷機器の消費電力を計測する第2電力メータの第2計測値を、前記所定時間間隔よりも短い間隔で受信する第3受信部と、
     前記基準計測値と前記第1計測値との比較結果に基づいて前記第1電力メータに関する第1校正処理を実行した後に、前記第1計測値及び前記第2計測値に基づいて前記第2電力メータに関する第2校正処理を実行する制御部と、を備える電力管理システム。
  2.  前記制御部は、前記分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において、前記第2校正処理を実行する、請求項1に記載の電力管理システム。
  3.  前記分散電源の出力電力又は入力電力の少なくともいずれか1つを計測する第3電力メータの第3計測値を、前記所定時間間隔よりも短い間隔で受信する第4受信部を備え、
     前記制御部は、前記第2校正処理を実行した後に、前記第1計測値、前記第2計測値及び前記第3計測値に基づいて前記第3電力メータに関する第3校正処理を実行する、請求項1又は請求項2に記載の電力管理システム。
  4.  前記制御部は、前記負荷機器の消費電力の変動が所定閾値以下である期間において、前記第3校正処理を実行する、請求項3に記載の電力管理システム。
  5.  前記分散電源は、第1分散電源と、第2分散電源と、を含み、
     前記第3電力メータは、前記第1分散電源の出力電力又は入力電力の少なくともいずれか1つを計測する第1分散電源電力メータと、前記第2分散電源の出力電力又は入力電力の少なくともいずれか1つを計測する第2分散電源電力メータと、を含み、
     前記制御部は、前記第3校正処理として、前記第1分散電源電力メータに関する校正処理及び前記第2分散電源電力メータに関する校正処理の少なくともいずれか1つを実行する、請求項3又は請求項4に記載の電力管理システム。
  6.  前記制御部は、
     前記第2分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において、前記第1分散電源電力メータに関する校正処理を実行し、或いは、
     前記第1分散電源の出力電力及び入力電力の少なくともいずれか1つの変動が所定閾値以下である期間において、前記第2分散電源電力メータに関する校正処理を実行する、請求項5に記載の電力管理システム。
  7.  前記第2分散電源電力メータに関する校正処理を実行した後に、前記第2分散電源電力メータの計測値を外部に送信する送信部を備える、請求項5又は請求項6に記載の電力管理システム。
  8.  電力系統に接続される第1電力インタフェースと、
     負荷機器に接続される第2電力インタフェースと、
     分散電源に接続される第3電力インタフェースと、
     前記分散電源に接続された電力線及び前記負荷機器に接続された電力線の合流ポイントと、
     前記分散電源から出力される直流電力を交流電力に少なくとも変換する変換器と、を備える電力変換装置。
  9.  分散電源及び負荷機器を有する施設の潮流電力及び逆潮流電力の少なくともいずれか1つを計測する基準電力メータの基準計測値を、所定時間間隔で受信するステップと、
     前記分散電源に接続された電力線及び前記負荷機器に接続された電力線の合流ポイントよりも電力系統側に設けられた第1電力メータの第1計測値を、前記所定時間間隔よりも短い間隔で受信するステップと、
     前記負荷機器の消費電力を計測する第2電力メータの第2計測値を、前記所定時間間隔よりも短い間隔で受信するステップと、
     前記基準計測値と前記第1計測値との比較結果に基づいて前記第1電力メータに関する第1校正処理を実行した後に、前記第1計測値及び前記第2計測値に基づいて前記第2電力メータに関する第2校正処理を実行するステップと、を備える電力管理方法。
PCT/JP2021/019377 2020-05-27 2021-05-21 電力管理システム、電力変換装置及び電力管理方法 WO2021241442A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21812949.2A EP4160223A1 (en) 2020-05-27 2021-05-21 Power management system, power conversion device, and power management method
JP2022526987A JP7414988B2 (ja) 2020-05-27 2021-05-21 電力管理システム、電力変換装置及び電力管理方法
US17/999,039 US20230221681A1 (en) 2020-05-27 2021-05-21 Power management system, power conversion device and power management method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020091886 2020-05-27
JP2020-091886 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241442A1 true WO2021241442A1 (ja) 2021-12-02

Family

ID=78744726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019377 WO2021241442A1 (ja) 2020-05-27 2021-05-21 電力管理システム、電力変換装置及び電力管理方法

Country Status (4)

Country Link
US (1) US20230221681A1 (ja)
EP (1) EP4160223A1 (ja)
JP (1) JP7414988B2 (ja)
WO (1) WO2021241442A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069851A1 (ja) * 2022-09-29 2024-04-04 住友電気工業株式会社 計測精度管理システム、管理装置、管理方法、管理プログラム、及び充放電装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067988A1 (ja) 2009-12-02 2011-06-09 日本電気株式会社 電力計測システム、電力計測方法および情報処理装置
JP2012173265A (ja) * 2011-02-24 2012-09-10 Toshiba Corp 消費エネルギー按分計算装置
WO2013168415A1 (ja) * 2012-05-11 2013-11-14 パナソニック株式会社 管理装置および管理システム
JP2014036550A (ja) * 2012-08-10 2014-02-24 Sharp Corp パワーコンディショナおよび電力供給システム
JP2014087073A (ja) * 2012-10-19 2014-05-12 Nichicon Corp パワーコンディショナ装置および該装置を備えたマルチパワーコンディショナシステム
JP2014202542A (ja) * 2013-04-02 2014-10-27 パナソニック株式会社 計測装置
JP2015186408A (ja) * 2014-03-26 2015-10-22 Jx日鉱日石エネルギー株式会社 燃料電池システムの運転方法、及び、燃料電池システム
JP2017135888A (ja) * 2016-01-28 2017-08-03 パナソニックIpマネジメント株式会社 電力変換システム
US20190137592A1 (en) * 2016-04-20 2019-05-09 HYDRO-QUéBEC Online calibration of meters and detection of electrical non-compliances

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067988A1 (ja) 2009-12-02 2011-06-09 日本電気株式会社 電力計測システム、電力計測方法および情報処理装置
JP2012173265A (ja) * 2011-02-24 2012-09-10 Toshiba Corp 消費エネルギー按分計算装置
WO2013168415A1 (ja) * 2012-05-11 2013-11-14 パナソニック株式会社 管理装置および管理システム
JP2014036550A (ja) * 2012-08-10 2014-02-24 Sharp Corp パワーコンディショナおよび電力供給システム
JP2014087073A (ja) * 2012-10-19 2014-05-12 Nichicon Corp パワーコンディショナ装置および該装置を備えたマルチパワーコンディショナシステム
JP2014202542A (ja) * 2013-04-02 2014-10-27 パナソニック株式会社 計測装置
JP2015186408A (ja) * 2014-03-26 2015-10-22 Jx日鉱日石エネルギー株式会社 燃料電池システムの運転方法、及び、燃料電池システム
JP2017135888A (ja) * 2016-01-28 2017-08-03 パナソニックIpマネジメント株式会社 電力変換システム
US20190137592A1 (en) * 2016-04-20 2019-05-09 HYDRO-QUéBEC Online calibration of meters and detection of electrical non-compliances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069851A1 (ja) * 2022-09-29 2024-04-04 住友電気工業株式会社 計測精度管理システム、管理装置、管理方法、管理プログラム、及び充放電装置

Also Published As

Publication number Publication date
JPWO2021241442A1 (ja) 2021-12-02
US20230221681A1 (en) 2023-07-13
JP7414988B2 (ja) 2024-01-16
EP4160223A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP6596930B2 (ja) 制御支援装置及び方法、並びに制御装置
JP6175514B2 (ja) 電力制御装置、機器制御装置、及び方法
EP2592710A1 (en) Power control device and power control method
JP6396531B2 (ja) 電力制御装置、機器制御装置、及び方法
EP2592740A1 (en) Power control device
KR101845166B1 (ko) 미니 태양광 발전시스템의 제어 방법 및 그 장치
JP6386064B2 (ja) 電力管理装置、電力管理方法及び電力管理システム
WO2021241442A1 (ja) 電力管理システム、電力変換装置及び電力管理方法
US20230275436A1 (en) Power management server and power management method
JP2019017154A (ja) 電源管理方法及び電源管理装置
JP7203269B2 (ja) 電源管理方法及び電源管理装置
US11881711B2 (en) Power management server and power management method
WO2021060142A1 (ja) 電力管理システム及び電力管理方法
JP2021086384A (ja) 電力管理装置、電力管理方法及び電力管理プログラム
JP2020022317A (ja) 制御システム、制御方法、プログラム
US20220383404A1 (en) Bid assistance system and bid assistance method
US20240128751A1 (en) Extended duration ac battery
JP6665134B2 (ja) 電力制御装置、機器制御装置、及び方法
JP2022085443A (ja) 電力管理システム
JP6735507B2 (ja) 電力変換システム、電源システム、電力管理システム
JP2022191478A (ja) 電力管理装置及び電力管理方法
JP2019024306A (ja) 電力制御装置、機器制御装置、及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021812949

Country of ref document: EP

Effective date: 20230102