WO2021241233A1 - トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置 - Google Patents

トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2021241233A1
WO2021241233A1 PCT/JP2021/018085 JP2021018085W WO2021241233A1 WO 2021241233 A1 WO2021241233 A1 WO 2021241233A1 JP 2021018085 W JP2021018085 W JP 2021018085W WO 2021241233 A1 WO2021241233 A1 WO 2021241233A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracker
pass filter
power amplifier
module
block
Prior art date
Application number
PCT/JP2021/018085
Other languages
English (en)
French (fr)
Inventor
武 小暮
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180037482.6A priority Critical patent/CN115668758A/zh
Publication of WO2021241233A1 publication Critical patent/WO2021241233A1/ja
Priority to US18/056,016 priority patent/US20230072796A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/417A switch coupled in the output circuit of an amplifier being controlled by a circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present invention generally relates to a tracker module, a power amplification module, a high frequency module and a communication device. More specifically, the present invention relates to a tracker module including a tracker, a power amplification module including a tracker module, a high frequency module including a power amplification module, and a communication device including a high frequency module.
  • the ET method is a high-frequency amplification technique that changes the amplitude of the power supply voltage of the amplification element according to the amplitude of the envelope of the high-frequency signal. More specifically, the ET method reduces the power loss that occurs during operation when the power supply voltage is fixed by changing the collector voltage of the amplifier element according to the output voltage, and realizes high efficiency. It is a technology.
  • the power amplifier circuit described in Patent Document 1 includes a transistor that amplifies a signal input to a base and outputs it from a collector, changes the power supply voltage of the transistor according to the amplitude of the envelope of a high frequency signal, and changes the power supply voltage of the transistor. Supply voltage to the transistor.
  • a low-pass filter is connected to the path between the tracker and the power amplifier in order to reduce the harmonic component of the power supply voltage from the tracker.
  • the present invention has been made in view of the above points, and an object of the present invention is a tracker module and a power amplification module that can realize both low loss and good attenuation characteristics in each of a plurality of communication bands. , To provide high frequency modules and communication devices.
  • the tracker module includes an external connection terminal, a tracker, and a variable low-pass filter.
  • the external connection terminal is connected to the power amplifier.
  • the tracker supplies a power supply voltage to the power amplifier via the external connection terminal by an envelope tracking method.
  • the variable low-pass filter is provided on the path between the tracker and the external connection terminal.
  • the variable low-pass filter has a first block and a second block.
  • the first block contains at least one electronic component.
  • the second block is a block for varying the cutoff frequency of the variable low-pass filter.
  • the second block and the tracker are packaged in one package.
  • the first block and the tracker are provided separately from each other.
  • the high frequency module includes the tracker module, the power amplifier, and a transmission filter.
  • the transmission filter passes the high frequency signal amplified by the power amplifier.
  • the communication device includes the high frequency module and a signal processing circuit.
  • the signal processing circuit outputs a high frequency signal to the high frequency module.
  • both low loss and good attenuation characteristics can be realized in each of the plurality of communication bands.
  • FIG. 1 is a plan view of the tracker module according to the first embodiment.
  • FIG. 2 is a conceptual diagram showing the configurations of the tracker module, the power amplification module, the high frequency module, and the communication device according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing a main part of the tracker module of the same as above.
  • FIG. 4 is a graph showing the characteristics of the variable low-pass filter of the tracker module of the same as above.
  • FIG. 5 is a plan view of the tracker module according to the second embodiment.
  • FIG. 6 is a conceptual diagram showing the configurations of the tracker module, the power amplification module, the high frequency module, and the communication device according to the second embodiment.
  • FIG. 7 is a conceptual diagram showing a main part of the tracker module of the same as above.
  • FIG. 8 is a graph showing the characteristics of the variable low-pass filter of the tracker module of the same as above.
  • FIG. 9 is a conceptual diagram showing a main part of the tracker module according to the third embodiment.
  • the tracker module 1 includes a substrate 2, a tracker 3, and a variable low-pass filter 4. Further, the tracker module 1 includes an input terminal 11, an external connection terminal 12, and an output terminal 14. The tracker module 1 is connected to, for example, a battery (not shown) of a terminal or the like on which the high frequency module 7 is mounted, and a battery voltage V2 is supplied to the tracker module 1 from the battery.
  • a battery not shown
  • the tracker module 1 has a configuration in which one tracker 3 corresponds to a plurality of communication bands. More specifically, the tracker module 1 has a configuration in which one tracker supplies a power supply voltage V1 to a power amplifier 81 that amplifies transmission signals of a plurality of communication bands.
  • the communication device 9 includes a high frequency module 7, an antenna 91, and a signal processing circuit 92.
  • an envelope tracking method (hereinafter referred to as “ET method”) is used.
  • the ET method includes an analog envelope tracking method (hereinafter referred to as “analog ET method”) and a digital envelope tracking method (hereinafter referred to as “digital ET method”).
  • the analog ET method is a method in which the envelope of the amplitude of the high frequency signal input to the amplification element is continuously detected, and the amplitude level of the power supply voltage of the amplification element is changed according to the envelope.
  • the amplitude level of the power supply voltage changes continuously.
  • the digital ET method is a method in which the envelope of the amplitude of the high frequency signal input to the amplification element is detected discretely, and the amplitude level of the power supply voltage of the amplification element is changed according to the envelope.
  • the amplitude level of the high frequency signal is detected at regular intervals rather than continuously, and the detected amplitude level is quantized.
  • the amplitude level of the power supply voltage changes discretely (see FIG. 2).
  • the board 2 shown in FIG. 1 is a board separate from the board on which the power amplifier 81 (see FIG. 2) is arranged. As shown in FIG. 1, the substrate 2 has a first main surface 21 (one main surface) and a second main surface 22. The first main surface 21 and the second main surface 22 face each other in the thickness direction of the substrate 2.
  • the input terminal 11 is connected to the signal processing circuit 92, and a power supply control signal is input from the signal processing circuit 92.
  • the external connection terminal 12 is connected to the power amplifier 81 as shown in FIGS. 1 and 3. More specifically, the external connection terminal 12 is connected to the terminal 88 of the power amplifier 81.
  • the output terminal 14 is packaged with the tracker 3 in one package.
  • a variable low-pass filter 4 is connected to the output terminal 14.
  • Tracker 3 is configured to supply the power supply voltage V1 to the power amplifier 81 as shown in FIG. More specifically, the tracker 3 generates a power supply voltage V1 at a level corresponding to the envelope extracted from the modulated signal of the high frequency signal, and supplies the power supply voltage V1 to the power amplification module 8.
  • the tracker 3 is provided with an input terminal (not shown) into which a power control signal is input.
  • the input terminal is connected to the signal processing circuit 92, and the power supply control signal is input from the signal processing circuit 92.
  • the tracker 3 generates a power supply voltage V1 based on a power supply control signal input to the input terminal.
  • the tracker 3 changes the amplitude of the power supply voltage V1 based on the power supply control signal from the signal processing circuit 92.
  • the tracker 3 is an envelope tracking circuit that generates a power supply voltage V1 that fluctuates according to the envelope of the amplitude of the high frequency signal output from the signal processing circuit 92.
  • the tracker 3 is composed of, for example, a DC-DC converter, detects an amplitude level of a high frequency signal from an I-phase signal and a Q-phase signal, and generates a power supply voltage V1 using the detected amplitude level.
  • the tracker 3 supplies the power supply voltage V1 to the power amplifier 81 via the external connection terminal 12 by the ET method.
  • variable low-pass filter 4 is provided on the path P1 between the tracker 3 and the power amplifier 81, as shown in FIGS. 1 and 2. More specifically, the variable low-pass filter 4 is provided on the path P1 between the tracker 3 and the external connection terminal 12. The variable low-pass filter 4 reduces the harmonic component of the power supply voltage V1. As a result, noise caused by the power supply voltage V1 can be reduced.
  • variable low-pass filter 4 has a first block 5 and a second block 6.
  • the variable low-pass filter 4 is a so-called LC filter having an inductor and a capacitor as main components.
  • the first block 5 includes at least one electronic component. More specifically, the first block 5 includes two inductors 51 and 52 and a capacitor 53.
  • the inductor 51 is provided on the path P1 between the tracker 3 and the external connection terminal 12.
  • the inductor 52 is connected to the node N1 on the path P1.
  • the capacitor 53 is connected in series with the inductor 52.
  • the second block 6 is a block for changing the cutoff frequency of the variable low-pass filter 4, that is, the attenuation pole.
  • the second block 6 includes a switch 61.
  • the switch 61 has a common terminal 611 and a plurality of (two in the illustrated example) selection terminals 612,613.
  • the common terminal 611 is connected to the capacitor 53.
  • the selection terminal 612 is connected to the ground.
  • the selection terminal 613 is in a state where nothing is connected, that is, it is open.
  • the second block 6 is packaged with the tracker 3. That is, the tracker component (tracker IC) 13 is composed of the tracker 3 and the second block 6.
  • variable low-pass filter 4 operates as a filter when the common terminal 611 is connected to the selection terminal 612 in the switch 61 of the second block 6. On the other hand, when the common terminal 611 of the switch 61 is connected to the selection terminal 613, the variable low-pass filter 4 does not operate as a filter.
  • the tracker 3 and the second block 6 of the variable low-pass filter 4 are arranged on the substrate 2 as shown in FIG. ing. More specifically, the tracker 3 and the variable low-pass filter 4 are arranged on the first main surface 21 of the substrate 2. On the other hand, the external connection terminal 12 is arranged on the second main surface 22 of the substrate 2.
  • the first block 5 and the tracker 3 of the variable low-pass filter 4 are provided separately from each other.
  • the tracker component 13 including the tracker 3 is arranged adjacent to the first block 5 of the variable low-pass filter 4 on the substrate 2. More specifically, at least one of a plurality of electronic components (inductors 51, 52, capacitors 53) included in the first block 5 is arranged adjacent to the tracker 3.
  • the tracker 3 and the second block 6 of the variable low-pass filter 4 are packaged as a tracker component 13.
  • the tracker component 13 includes a tracker 3, an output terminal 14, and a second block 6 of the variable low-pass filter 4.
  • the tracker 3 supplies the power supply voltage V1 to the power amplifier 81 by the ET method.
  • the output terminal 14 is connected to the tracker 3.
  • the second block 6 is a block for varying the cutoff frequency of the variable low-pass filter 4.
  • the tracker 3 is provided separately from the first block 5.
  • the second block 6 and the tracker 3 are packaged in one package.
  • the power amplification module 8 includes a tracker module 1, a power amplifier 81, and a control circuit 82.
  • the power amplification module 8 amplifies the power of the high frequency signal (RF signal) output from the RF signal processing circuit 94 described later to a level necessary for transmitting it to a base station (not shown), and the amplified high frequency signal. It is an amplifier circuit that outputs.
  • the power amplifier 81 shown in FIG. 2 includes a transistor (amplifier element), a bias circuit, a resistor, an input matching circuit, and an output matching circuit.
  • the power amplifier 81 is a power amplifier that amplifies the transmission signal of the FDD. More specifically, the power amplifier 81 is a power amplifier that amplifies a transmission signal having a communication band in the mid band and a transmission signal having a communication band in the high band. The power amplifier 81 amplifies a transmission signal having a communication band of Band 30 and a transmission signal having a communication band of n41 as transmission signals having a high communication band.
  • the transistor (not shown) of the power amplifier 81 shown in FIG. 2 is, for example, an NPN transistor, which is an amplification element to which a power supply voltage V1 is supplied to amplify a high frequency signal.
  • the transistor amplifies the high frequency signal output from the RF signal processing circuit 94.
  • the base of the transistor is connected to the output end of an input matching circuit (not shown).
  • the base of the transistor may be electrically connected to the output end of the input matching circuit via a capacitor (not shown).
  • the collector of the transistor is electrically connected to the variable low-pass filter 4 of the tracker module 1.
  • the emitter of the transistor is the ground potential.
  • the power supply voltage V1 is supplied to the transistor.
  • a high frequency signal output from the input matching circuit is input to the base of the transistor.
  • a bias circuit (not shown) is connected to the base of the transistor via a resistor (not shown), and a predetermined bias current is superimposed on the high frequency signal output from the input matching circuit.
  • the tracker module 1 is connected to the collector of the transistor.
  • a power supply voltage V1 controlled according to the amplitude level of the high frequency signal is applied to the collector of the transistor from the tracker module 1. Further, the collector of the transistor is connected to the filter 71 via an output matching circuit (not shown).
  • the amplitude level of the power supply voltage V1 changes based on the change in the amplitude of the high frequency signal.
  • the bias circuit (not shown) of the power amplifier 81 shown in FIG. 2 is a circuit for biasing the transistor (not shown) of the power amplifier 81 to the operating point.
  • the bias circuit is composed of, for example, a transistor such as an HBT.
  • the bias circuit is connected to the base of the transistor that amplifies the high frequency signal. More specifically, the bias circuit has an output end connected between the output end of the input matching circuit and the base of the transistor.
  • the bias circuit is configured to supply a bias (bias current) to the base of the transistor.
  • the battery voltage supplied from the battery of the communication device 9 or the like on which the high frequency module 7 is mounted is applied to the collector of the transistor constituting the bias circuit.
  • the emitter of the transistor constituting the bias circuit is connected to the base of the transistor that amplifies the high frequency signal.
  • the bias circuit is not limited to the above-mentioned configuration, and may have another configuration as long as it is a circuit that biases the transistor that amplifies the high frequency signal to the operating point.
  • the output matching circuit (not shown) of the power amplifier 81 shown in FIG. 2 is connected to the output side of the transistor, and is connected to the output impedance of the transistor and the circuit on the output side of the transistor (5.1.5). For example, it is a matching circuit for matching with the input impedance of the filter 71).
  • the output matching circuit is composed of, for example, at least one of an inductor and a capacitor.
  • Control circuit controls the power amplifier 81 as shown in FIG. More specifically, the control circuit 82 controls the bias circuit of the power amplifier 81.
  • the filter filter 71 is a transmission filter of a communication band through which a high frequency signal is passed.
  • the filter 71 is provided in the path between the power amplification module 8 and the antenna terminal 74 in the transmission path. More specifically, the filter 71 is provided in the path between the power amplification module 8 and the switch 72.
  • the filter 71 passes a high frequency signal whose power is amplified by the power amplification module 8 and output from the power amplification module 8.
  • the transmission path is a path connecting the input terminal 73 and the antenna terminal 74 in order to transmit a high frequency signal from the antenna 91.
  • the switch switch 72 is a switch for switching the path connected to the antenna terminal 74.
  • the switch 72 is a switch that switches a filter connected to the antenna terminal 74 from among a plurality of filters including the filter 71.
  • the switch 72 has a common terminal 721 and a plurality of (two in the illustrated example) selection terminals 722 and 723.
  • the common terminal 721 is connected to the antenna terminal 74.
  • the selection terminal 722 is connected to the filter 71.
  • the selection terminal 723 is connected to another filter (not shown) different from the filter 71.
  • the switch 72 is, for example, a switch to which any one of a plurality of selection terminals 722 and 723 can be connected to the common terminal 721.
  • the switch 72 is, for example, a switch IC (Integrated Circuit).
  • the switch 72 is controlled by, for example, a signal processing circuit 92 described later.
  • the switch 72 switches the connection state between the common terminal 721 and the plurality of selection terminals 722 and 723 according to the control signal from the RF signal processing circuit 94 of the signal processing circuit 92.
  • the switch 72 may be a switch capable of simultaneously connecting a plurality of selection terminals 722 and 723 to the common terminal 721. In this case, the switch 72 is a switch capable of one-to-many connection.
  • the antenna 91 is connected to the antenna terminal 74 of the high frequency module 7 as shown in FIG.
  • the antenna 91 has a radiation function of radiating a high frequency signal (transmission signal) output from the high frequency module 7 by radio waves, and a reception function of receiving a high frequency signal (reception signal) as radio waves from the outside and outputting it to the high frequency module 7.
  • the signal processing circuit 92 includes a baseband signal processing circuit 93 and an RF signal processing circuit 94.
  • the signal processing circuit 92 outputs a high frequency signal to the high frequency module 7.
  • the baseband signal processing circuit 93 is, for example, a BBIC (Baseband Integrated Circuit), and performs signal processing on a high frequency signal.
  • the frequency of the high frequency signal is, for example, about several hundred MHz to several GHz.
  • the signal processing circuit 92 outputs a power supply control signal to the tracker 3 of the tracker module 1.
  • the power supply control signal is a signal including information regarding a change in the amplitude of the high frequency signal, and is output from the signal processing circuit 92 to the tracker module 1 in order to change the amplitude of the power supply voltage V1.
  • the power supply control signal is, for example, an I-phase signal and a Q-phase signal.
  • the communication bands supported by the power amplifier 81 that supplies the power supply voltage from the tracker 3 are the first communication band and the second communication band.
  • the switch 61 of the second block 6 connects the common terminal 611 and the selection terminal 612. That is, the series circuit of the inductor 52 and the capacitor 53 is connected to the ground.
  • the switch 61 of the second block 6 connects the common terminal 611 and the selection terminal 613. That is, the tip of the series circuit of the inductor 52 and the capacitor 53 is open.
  • the switch 61 of the second block 6 of the variable low-pass filter 4 As described above, the characteristic A1 and the characteristic A2 as shown in FIG. 4 can be switched. That is, the attenuation poles can be changed to frequencies f1 and f2.
  • variable low-pass filter 4 can reduce the harmonic component of the power supply voltage V1, so that the noise to the reception signal of the FDD can be reduced.
  • a variable low-pass filter 4 is provided between the external connection terminal 12 to which the power amplifier 81 is connected and the tracker 3.
  • the attenuation pole of the variable low-pass filter 4 can be changed according to each communication band, so that the loss is low in each communication band. It makes it possible to achieve both good damping characteristics.
  • the selection terminal 613 of the switch 61 is not limited to a state in which nothing is connected, that is, it is open.
  • it may be connected to the output of the power supply voltage V1.
  • the tracker module 1a according to the second embodiment is a tracker module according to the first embodiment in that the tracker 3a supplies a power supply voltage V1 to a plurality of power amplifiers 81, 811 and 812. It differs from 1 (see FIGS. 1 and 2).
  • the tracker module 1a according to the second embodiment includes a substrate 2, a tracker 3a, and a variable low-pass filter 4a, as shown in FIGS. 5 and 6. Further, the tracker module 1a includes an input terminal 11, a plurality of (three in the illustrated example) external connection terminals 12, 121, 122, and a plurality of (three in the illustrated example) output terminals 14a. Regarding the tracker module 1a according to the second embodiment, the same components as those of the tracker module 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the input terminal 11 is connected to the signal processing circuit 92 as shown in FIGS. 5 and 6 in the same manner as the input terminal 11 (see FIG. 1) of the first embodiment.
  • the power supply control signal is input from the signal processing circuit 92.
  • the external connection terminal 12 is connected to the power amplifier 81 as shown in FIGS. 5 and 6 in the same manner as the external connection terminal 12 (see FIG. 1) of the first embodiment.
  • the external connection terminal 121 is connected to the power amplifier 811.
  • the external connection terminal 122 is connected to the power amplifier 812.
  • the plurality of output terminals 14a are packaged together with the tracker 3a as shown in FIG.
  • the plurality of output terminals 14a include a first output terminal 14 and a plurality of (two in the illustrated example) second output terminals 141 and 142.
  • a variable low-pass filter 4a is connected to the first output terminal 14.
  • a low-pass filter 41 is connected to the second output terminal 141.
  • a low-pass filter 42 is connected to the second output terminal 142.
  • the low-pass filters 41 and 42 are provided separately from the tracker 3a, respectively.
  • Tracker 3a is configured to supply the power supply voltage V1 to the power amplifier 81 as shown in FIGS. 5 and 6. More specifically, the tracker 3a extracts an envelope from the modulated signal of the high frequency signal, generates a power supply voltage V1 at a level corresponding to the envelope, and supplies the envelope to the power amplifier 81. Further, the tracker 3a is configured to supply a power supply voltage to the power amplifiers 811 and 812.
  • the tracker 3a includes an input terminal (not shown) for inputting a power supply control signal and a voltage generation unit (not shown) for generating a power supply voltage V1.
  • the tracker 3a generates a power supply voltage V1 based on a power supply control signal input to the input terminal.
  • the high frequency module 7a amplifies the high frequency signal by using the ET method, so that the tracker 3a of the second embodiment outputs the power supply voltage V1.
  • variable low-pass filter 4a is connected on the path P1 between the tracker 3a and the power amplifier 81.
  • the variable low-pass filter 4a reduces the harmonic component of the power supply voltage V1 as in the variable low-pass filter 4 (see FIG. 1) of the first embodiment. As a result, noise caused by the power supply voltage V1 can be reduced.
  • variable low-pass filter 4a has a first block 5a and a second block 6a.
  • the first block 5a includes at least one electronic component. More specifically, the first block 5a includes two inductors 51 and 52 as electronic components.
  • the inductor 51 is provided on the path P1 between the tracker 3a and the external connection terminal 12.
  • the inductor 52 is connected to the node N1 on the path P1.
  • Each of the plurality of inductors 51 and 52 is a mounting component mounted on the first main surface 21 of the substrate 2.
  • the second block 6a includes the DTC 62.
  • the DTC 62 is a variable capacitor having a variable capacitance.
  • the first end of the DTC 62 is connected in series with the inductor 52, and the second end of the DTC 62 is connected to the ground.
  • the second block 6a is packaged with the tracker 3a. That is, the tracker component 13a is composed of the tracker 3a and the second block 6a.
  • the tracker 3a and the variable low-pass filter 4a are arranged on the substrate 2 as shown in FIG. More specifically, the tracker 3a and the variable low-pass filter 4a are arranged on the first main surface 21 of the substrate 2. Further, the low-pass filters 41 and 42 are also arranged on the first main surface 21 of the substrate 2 like the variable low-pass filter 4.
  • the external connection terminal 12 is arranged on the second main surface 22 of the substrate 2. The two external connection terminals 121 and 122 are also arranged on the second main surface 22 of the substrate 2 like the external connection terminals 12. As described above, the tracker 3a and the second block 6a of the variable low-pass filter 4a are packaged as a tracker component 13a.
  • the communication bands supported by the power amplifier 81 that supplies the power supply voltage from the tracker 3a are the first communication band, the second communication band, and the third communication band.
  • the characteristics of the variable low-pass filter 4a are changed for each communication band.
  • the capacitance of the DTC 62 of the second block 6 is changed for each communication band. More specifically, the capacitance of the DTC 62 is changed between the first communication band, the second communication band, and the third communication band.
  • the characteristic B1, the characteristic B2, and the characteristic B3 can be switched as shown in FIG. That is, the attenuation poles can be changed to frequencies f1, f2, and f3.
  • the attenuation pole of the variable low-pass filter 4a can be changed according to each communication band, so that each communication can be performed. It makes it possible to achieve both low loss and good damping characteristics in the band.
  • the tracker module 1b according to the third embodiment is different from the tracker module 1 (see FIG. 4) according to the first embodiment in that it has a configuration as shown in FIG.
  • the tracker module 1b according to the third embodiment includes a tracker 3b and a variable low-pass filter 4b, as shown in FIG.
  • the same components as those of the tracker module 1 according to the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the tracker 3b is configured to supply the power supply voltage V1 to the power amplifier 81 as shown in FIG. More specifically, the tracker 3b extracts an envelope from the modulated signal of the high frequency signal, generates a power supply voltage V1 at a level corresponding to the envelope, and supplies the envelope to the power amplifier 81.
  • the tracker 3b includes an input terminal (not shown) for inputting a power supply control signal and a voltage generation unit (not shown) for generating a power supply voltage V1.
  • the tracker 3a generates a power supply voltage V1 based on a power supply control signal input to the input terminal.
  • the high frequency module 7 amplifies the high frequency signal by using the ET method, so that the tracker 3b outputs the power supply voltage V1.
  • variable low-pass filter 4b is connected on the path P1 between the tracker 3b and the power amplifier 81.
  • the variable low-pass filter 4b reduces the harmonic component of the power supply voltage V1 as in the variable low-pass filter 4 (see FIG. 4) of the first embodiment. As a result, noise caused by the power supply voltage V1 can be reduced.
  • variable low-pass filter 4b has a first block 5b and a second block 6b.
  • the first block 5b includes at least one electronic component. More specifically, the first block 5b includes an inductor 51 and a capacitor 53.
  • the inductor 51 is provided on the path P1 between the tracker 3b and the external connection terminal 12.
  • the capacitor 53 is connected to the node N1 on the path P1.
  • the second block 6b includes a plurality of (three in the illustrated example) inductors 63 to 65 and a plurality of (three in the illustrated example) switches 66 to 68.
  • the plurality of inductors 63 to 65 are connected in parallel with each other.
  • Each of the plurality of inductors 63 to 65 is connected in series with the capacitor 53.
  • the plurality of inductors 63 to 65 have a one-to-one correspondence with the plurality of switches 66 to 68, and are connected in series with the corresponding switches 66 to 68.
  • the inductor 63 is connected in series with the switch 66
  • the inductor 64 is connected in series with the switch 67
  • the inductor 65 is connected in series with the switch 68.
  • the series circuit of the inductors 63 to 65 and the switches 66 to 68 is connected to the ground.
  • the second block 6b is packaged with the tracker 3b. That is, the tracker component 13b is composed of the tracker 3b and the second block 6b.
  • the tracker 3b and the variable low-pass filter 4b are arranged on the substrate 2 (see FIG. 1). More specifically, the tracker 3b and the variable low-pass filter 4b are arranged on the first main surface 21 (see FIG. 1) of the substrate 2. As described above, the tracker 3b and the second block 6b of the variable low-pass filter 4b are packaged as a tracker component 13b.
  • the tracker component 13b including the tracker 3b is arranged adjacent to the first block 5b of the variable low-pass filter 4b on the substrate 2. More specifically, at least one of a plurality of electronic components (inductor 51, capacitor 53) included in the first block 5b is arranged adjacent to the tracker 3b.
  • the communication bands supported by the power amplifier 81 that supplies the power supply voltage from the tracker 3b are the first communication band, the second communication band, and the third communication band.
  • the tracker 3b outputs the power supply voltage V1.
  • the variable low-pass filter 4b passes the power supply voltage V1 from the tracker 3b.
  • the variable low-pass filter 4b reduces the harmonic component of the power supply voltage V1. That is, the variable low-pass filter 4b cuts the harmonic component of the power supply voltage V1 and passes the fundamental wave component of the power supply voltage V1. After that, the power supply voltage V1 that has passed through the variable low-pass filter 4b is applied to the power amplifier 81.
  • each of the switches 66 to 68 of the second block 6 is switched on and off for each communication band. More specifically, the switch to be turned on among the plurality of switches 66 to 68 is changed between the first communication band, the second communication band, and the third communication band.
  • the attenuation pole can be changed to the frequencies f1, f2, and f3 (see FIG. 8).
  • the attenuation pole of the variable low-pass filter 4b can be changed according to each communication band, so that each communication can be performed. It makes it possible to achieve both low loss and good damping characteristics in the band.
  • the tracker module (1; 1a; 1b) includes an external connection terminal (12), a tracker (3; 3a; 3b), and a variable low-pass filter (4; 4a; 4b).
  • the external connection terminal (12) is connected to the power amplifier (81).
  • the tracker (3; 3a; 3b) supplies a power supply voltage (V1) to a power amplifier (81) via an external connection terminal (12) by an envelope tracking method.
  • the variable low-pass filter (4; 4a; 4b) is provided on the path (P1) between the tracker (3; 3a; 3b) and the external connection terminal (12).
  • the variable low-pass filter (4) corresponds to each communication band.
  • the attenuation pole of 4a; 4b) can be changed. As a result, both low loss and good attenuation characteristics can be achieved in each of the plurality of communication bands.
  • the variable low-pass filter (4; 4a; 4b) has a first block (5; 5a; 5b) and a second block (6; 6a; 6b). ) And.
  • the first block (5; 5a; 5b) contains at least one electronic component.
  • the second block (6; 6a; 6b) is a block for varying the cutoff frequency of the variable low-pass filter (4; 4a; 4b).
  • the second block (6; 6a; 6b) and the tracker (3; 3a; 3b) are packaged in one package.
  • the first block (5; 5a; 5b) and the tracker (3; 3a; 3b) are provided separately from each other.
  • the tracker module (1a) according to the second aspect further includes a substrate (2) in the first aspect.
  • the substrate (2) has one main surface (first main surface 21).
  • the first block (5a) includes an inductor (51; 52) as an electronic component, which is a mounting component mounted on one main surface of the substrate (2).
  • the second block (6a) includes a variable capacitor (DTC62) that varies the capacitance.
  • the tracker module (1a) it is easy to obtain a high Q by using the inductor of the mounted component as the inductor (51; 52). Further, low loss can be realized by packaging the variable capacitor (DTC62), which is easy to make in the semiconductor process, with the tracker (3), that is, by forming it inside the IC.
  • DTC62 variable capacitor
  • the tracker module (1a) has a plurality of output terminals (14a) in any one of the first or second aspects.
  • the plurality of output terminals (14a) are packaged together with the tracker (3a).
  • the plurality of output terminals (14a) include a first output terminal (14) and a second output terminal (141; 142).
  • the first output terminal (14) is connected to the variable low-pass filter (4a).
  • the second output terminal (141; 142) is connected to a low-pass filter (41; 42) provided separately from the tracker (3a).
  • the external connection terminal (12) uses the FDD transmission signal as the power amplifier (81). It is connected to the power amplifier to be amplified.
  • the external connection terminal (12) is a power amplifier (81) and the communication band is a midband.
  • the power amplifier for amplifying the transmission signal and the communication band are connected to the power amplifier for amplifying the transmission signal which is a high band.
  • the external connection terminal (12) is a power amplifier (81) and the communication band is Band 30. It is connected to a power amplifier (81) that amplifies a transmission signal and a transmission signal whose communication band is n41.
  • variable low-pass filter (4; 4a; 4b) is a harmonic of the power supply voltage (V1). Reduce the ingredients.
  • the power amplification module (8) according to the eighth aspect includes a tracker module (1; 1a; 1b) according to any one of the first to seventh aspects, and a power amplifier (81).
  • the high frequency module (7; 7a) includes a tracker module (1; 1a; 1b), a power amplifier (81), and a filter (71) according to any one of the first to seventh aspects. Be prepared.
  • the filter (71) passes a high frequency signal amplified by the power amplifier (81).
  • the high frequency module (7; 7a) in the tracker module (1; 1a; 1b), when the power amplifier (81) corresponds to the transmission signal of a plurality of communication bands, each communication band The attenuation pole of the variable low-pass filter (4; 4a; 4b) can be changed accordingly. As a result, both low loss and good attenuation characteristics can be achieved in each of the plurality of communication bands.
  • the communication device (9) includes the high frequency module (7) of the ninth aspect and the signal processing circuit (92).
  • the signal processing circuit (92) outputs a high frequency signal to the high frequency module (7).
  • the communication device (9) according to the tenth aspect, in the tracker module (1; 1a; 1b), when the power amplifier (81) corresponds to the transmission signal of a plurality of communication bands, it corresponds to each communication band. Therefore, the attenuation pole of the variable low-pass filter (4; 4a; 4b) can be changed. As a result, both low loss and good attenuation characteristics can be achieved in each of the plurality of communication bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。トラッカモジュール(1)は、外部接続端子(12)と、トラッカ(3)と、可変ローパスフィルタ(4)とを備える。外部接続端子(12)は、パワーアンプに接続される。トラッカ(3)は、エンベロープ・トラッキング方式によって電源電圧を、外部接続端子(12)を介してパワーアンプに供給する。可変ローパスフィルタ(4)は、トラッカ(3)と外部接続端子(12)との間の経路上に設けられている。可変ローパスフィルタ(4)において、第1ブロック(5)は、少なくとも1つの電子部品を含む。第2ブロック(6)は、可変ローパスフィルタ(4)のカットオフ周波数を可変させるためのブロックである。第2ブロック(6)及びトラッカ(3)は、ワンパッケージ化されている。第1ブロック(5)及びトラッカ(3)は、互いに別体に設けられている。

Description

トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置
 本発明は、一般にトラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置に関する。本発明は、より詳細には、トラッカを備えるトラッカモジュール、トラッカモジュールを備える電力増幅モジュール、電力増幅モジュールを備える高周波モジュール、及び、高周波モジュールを備える通信装置に関する。
 近年、エンベロープ・トラッキング方式(以下「ET方式」という)を用いた電力増幅回路が知られている(例えば、特許文献1参照)。ET方式とは、高周波信号の包絡線の振幅に応じて増幅素子の電源電圧の振幅を変化させる高周波増幅技術である。より詳細には、ET方式とは、増幅素子のコレクタ電圧を出力電圧に応じて変化させることにより、電源電圧が固定である場合での動作時に生じる電力のロスを減らし、高効率化を実現する技術である。
 特許文献1に記載された電力増幅回路は、ベースに入力される信号を増幅してコレクタから出力するトランジスタを備え、高周波信号の包絡線の振幅に応じてトランジスタの電源電圧を変化させ、当該電源電圧をトランジスタに供給する。
国際公開第2003/176147号
 ところで、特許文献1に記載された電力増幅回路では、トラッカからの電源電圧の高調波成分を低減させるために、トラッカとパワーアンプとの間の経路にローパスフィルタが接続されている。
 しかしながら、特許文献1に記載された従来の電力増幅回路では、複数の通信バンドに対応するパワーアンプに電源電圧を供給する経路が共通する場合、すべての通信バンドにおいて、同じ特性のローパスフィルタを通すことになる。このため、通信バンドによっては、低損失と良好な減衰特性とを両立させることが難しいという問題がある。
 本発明は上記の点に鑑みてなされた発明であり、本発明の目的は、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とするトラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置を提供することにある。
 本発明の一態様に係るトラッカモジュールは、外部接続端子と、トラッカと、可変ローパスフィルタとを備える。前記外部接続端子は、前記パワーアンプに接続される。前記トラッカは、エンベロープ・トラッキング方式によって電源電圧を、前記外部接続端子を介して前記パワーアンプに供給する。前記可変ローパスフィルタは、前記トラッカと前記外部接続端子との間の経路上に設けられている。前記可変ローパスフィルタは、第1ブロックと、第2ブロックとを有する。前記第1ブロックは、少なくとも1つの電子部品を含む。前記第2ブロックは、前記可変ローパスフィルタのカットオフ周波数を可変させるためのブロックである。前記第2ブロック及び前記トラッカは、ワンパッケージ化されている。前記第1ブロック及び前記トラッカは、互いに別体に設けられている。
 本発明の一態様に係る電力増幅モジュールは、前記トラッカモジュールと、前記パワーアンプとを備える。
 本発明の一態様に係る高周波モジュールは、前記トラッカモジュールと、前記パワーアンプと、送信フィルタとを備える。前記送信フィルタは、前記パワーアンプで増幅された前記高周波信号を通す。
 本発明の一態様に係る通信装置は、前記高周波モジュールと、信号処理回路とを備える。前記信号処理回路は、前記高周波モジュールに高周波信号を出力する。
 本発明の上記態様に係るトラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置によれば、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。
図1は、実施形態1に係るトラッカモジュールの平面図である。 図2は、実施形態1に係るトラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置の構成を示す概念図である。 図3は、同上のトラッカモジュールの要部を示す概念図である。 図4は、同上のトラッカモジュールの可変ローパスフィルタの特性を示すグラフである。 図5は、実施形態2に係るトラッカモジュールの平面図である。 図6は、実施形態2に係るトラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置の構成を示す概念図である。 図7は、同上のトラッカモジュールの要部を示す概念図である。 図8は、同上のトラッカモジュールの可変ローパスフィルタの特性を示すグラフである。 図9は、実施形態3に係るトラッカモジュールの要部を示す概念図である。
 以下、実施形態1~3に係るトラッカモジュールについて、図面を参照して説明する。下記の実施形態等において参照する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さ並びにそれぞれの比は、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態1)
 (1)トラッカモジュール
 実施形態1に係るトラッカモジュール1の構成について、図面を参照して説明する。
 実施形態1に係るトラッカモジュール1は、図1及び図2に示すように、基板2と、トラッカ3と、可変ローパスフィルタ4とを備える。また、トラッカモジュール1は、入力端子11と、外部接続端子12と、出力端子14とを備える。トラッカモジュール1は、例えば高周波モジュール7が搭載された端末等のバッテリ(図示せず)に接続されており、トラッカモジュール1には、バッテリからバッテリ電圧V2が供給される。
 トラッカモジュール1は、1つのトラッカ3が複数の通信バンドに対応している構成である。より詳細には、トラッカモジュール1は、1つのトラッカが、複数の通信バンドの送信信号を増幅させるパワーアンプ81に電源電圧V1を供給する構成である。
 (2)高周波モジュール
 次に、トラッカモジュール1を用いた高周波モジュール7について、図面を参照して説明する。
 高周波モジュール7は、図3に示すように、トラッカモジュール1を含む電力増幅モジュール8と、フィルタ71と、スイッチ72と、入力端子73と、アンテナ端子74とを備える。高周波モジュール7から出力される高周波信号は、後述のアンテナ91を介して基地局(図示せず)に送信される。高周波モジュール7は、後述の通信装置9等に用いられる。
 (3)通信装置
 次に、高周波モジュール7を用いた通信装置9について、図面を参照して説明する。
 通信装置9は、図2に示すように、高周波モジュール7と、アンテナ91と、信号処理回路92とを備える。
 ここで、高周波信号を増幅する際に、エンベロープ・トラッキング方式(以下「ET方式」という)が用いられる。ET方式には、アナログ・エンベロープ・トラッキング方式(以下「アナログET方式」という)と、デジタル・エンベロープ・トラッキング方式(以下「デジタルET方式」という)とがある。
 アナログET方式は、増幅素子に入力される高周波信号の振幅の包絡線(エンベロープ)を連続的に検出し、上記エンベロープに応じて、増幅素子の電源電圧の振幅レベルを変化させる方式である。アナログET方式では、エンベロープを連続的に検出するため、電源電圧の振幅レベルは連続的に変化する。
 デジタルET方式は、増幅素子に入力される高周波信号の振幅の包絡線(エンベロープ)を離散的に検出し、上記エンベロープに応じて、増幅素子の電源電圧の振幅レベルを変化させる方式である。デジタルET方式では、高周波信号の振幅レベルを連続的ではなく一定の間隔で検出し、検出した振幅レベルを量子化する。デジタルET方式では、エンベロープを離散的に検出するため、電源電圧の振幅レベルは離散的に変化する(図2参照)。
 (4)トラッカモジュールの各構成要素
 以下、実施形態1に係るトラッカモジュール1の各構成要素について、図面を参照して説明する。
 (4.1)基板
 図1に示す基板2は、パワーアンプ81(図2参照)が配置されている基板と別体の基板である。基板2は、図1に示すように、第1主面21(一の主面)と、第2主面22を有する。第1主面21及び第2主面22は、基板2の厚さ方向において互いに対向する。
 (4.2)入力端子・外部接続端子・出力端子
 入力端子11は、図1及び図2に示すように、信号処理回路92に接続されており、信号処理回路92から電源制御信号が入力される。外部接続端子12は、図1及び図3に示すように、パワーアンプ81に接続される。より詳細には、外部接続端子12は、パワーアンプ81の端子88に接続される。出力端子14は、図1に示すように、トラッカ3とワンパッケージ化されている。出力端子14には、可変ローパスフィルタ4が接続されている。
 (4.3)トラッカ
 トラッカ3は、図2に示すように、パワーアンプ81に電源電圧V1を供給するように構成されている。より詳細には、トラッカ3は、高周波信号の変調信号から取り出したエンベロープに応じたレベルの電源電圧V1を生成し、電源電圧V1を電力増幅モジュール8に供給する。
 トラッカ3は、電源制御信号が入力される入力端子(図示せず)を備える。入力端子は、信号処理回路92に接続されており、信号処理回路92から電源制御信号が入力される。トラッカ3は、入力端子に入力される電源制御信号に基づいて電源電圧V1を生成する。この際に、トラッカ3は、信号処理回路92からの電源制御信号に基づいて電源電圧V1の振幅を変化させる。言い換えると、トラッカ3は、信号処理回路92から出力される高周波信号の振幅の包絡線(エンベロープ)に応じて変動する電源電圧V1を生成するエンベロープ・トラッキング回路である。トラッカ3は、例えば、DC-DCコンバータにより構成されており、I相信号及びQ相信号から高周波信号の振幅レベルを検出し、検出した振幅レベルを用いて電源電圧V1を生成する。
 上記より、トラッカ3は、ET方式によって電源電圧V1を、外部接続端子12を介してパワーアンプ81に供給する。
 (4.4)可変ローパスフィルタ
 可変ローパスフィルタ4は、図1及び図2に示すように、トラッカ3とパワーアンプ81との間の経路P1上に設けられている。より詳細には、可変ローパスフィルタ4は、トラッカ3と外部接続端子12との間の経路P1上に設けられている。可変ローパスフィルタ4は、電源電圧V1の高調波成分を低減させる。これにより、電源電圧V1に起因するノイズを低減させることができる。
 可変ローパスフィルタ4は、図3に示すように、第1ブロック5と、第2ブロック6とを有する。可変ローパスフィルタ4は、インダクタとキャパシタとを主構成要素とするフィルタいわゆるLCフィルタである。
 第1ブロック5は、少なくとも1つの電子部品を含む。より詳細には、第1ブロック5は、2つのインダクタ51,52と、キャパシタ53とを含む。インダクタ51は、トラッカ3と外部接続端子12との間の経路P1上に設けられている。インダクタ52は、経路P1上のノードN1に接続されている。キャパシタ53は、インダクタ52と直列に接続されている。
 第2ブロック6は、可変ローパスフィルタ4のカットオフ周波数つまり減衰極を可変させるためのブロックである。実施形態1では、第2ブロック6は、スイッチ61を含む。スイッチ61は、共通端子611と、複数(図示例では2つ)の選択端子612,613とを有する。共通端子611は、キャパシタ53に接続されている。選択端子612は、グランドに接続されている。選択端子613は、何も接続されていない状態つまり開放されている。
 第2ブロック6は、トラッカ3とワンパッケージ化されている。すなわち、トラッカ3と第2ブロック6とで、トラッカ部品(トラッカIC)13が構成されている。
 可変ローパスフィルタ4は、第2ブロック6のスイッチ61において共通端子611が選択端子612に接続される場合、フィルタとして動作する。一方、スイッチ61の共通端子611が選択端子613に接続される場合、可変ローパスフィルタ4は、フィルタとして動作しない。
 (4.5)トラッカ、可変ローパスフィルタ及び外部接続端子の配置関係
 上述したトラッカモジュール1において、トラッカ3及び可変ローパスフィルタ4の第2ブロック6は、図1に示すように、基板2に配置されている。より詳細には、トラッカ3及び可変ローパスフィルタ4は、基板2の第1主面21に配置されている。一方、外部接続端子12は、基板2の第2主面22に配置されている。
 可変ローパスフィルタ4の第1ブロック5及びトラッカ3は、互いに別体に設けられている。実施形態1では、トラッカ3を含むトラッカ部品13は、基板2において、可変ローパスフィルタ4の第1ブロック5と隣接して配置されている。より詳細には、第1ブロック5に含まれる複数の電子部品(インダクタ51,52、キャパシタ53)の少なくとも1つがトラッカ3と隣接して配置されている。
 一方、上述したように、トラッカ3及び可変ローパスフィルタ4の第2ブロック6は、トラッカ部品13としてワンパッケージ化されている。
 上述したように、トラッカ部品13は、トラッカ3と、出力端子14と、可変ローパスフィルタ4の第2ブロック6とを備える。トラッカ3は、ET方式によって電源電圧V1をパワーアンプ81に供給する。出力端子14は、トラッカ3に接続されている。第2ブロック6は、可変ローパスフィルタ4のカットオフ周波数を可変させるためのブロックである。トラッカ3は、第1ブロック5と別体に設けられる。第2ブロック6及びトラッカ3は、ワンパッケージ化されている。
 (5)高周波モジュールの各構成要素
 以下、実施形態1に係る高周波モジュール7の各構成要素について、図面を参照して説明する。
 (5.1)電力増幅モジュール
 電力増幅モジュール8は、図2に示すように、トラッカモジュール1と、パワーアンプ81と、制御回路82とを備える。
 電力増幅モジュール8は、後述のRF信号処理回路94から出力される高周波信号(RF信号)の電力を、基地局(図示せず)に送信するために必要なレベルまで増幅し、増幅した高周波信号を出力する増幅回路である。
 (5.1.1)パワーアンプ
 図2に示すパワーアンプ81は、図示しないが、トランジスタ(増幅素子)と、バイアス回路と、抵抗と、入力整合回路と、出力整合回路とを備える。
 ここで、パワーアンプ81は、FDDの送信信号を増幅させるパワーアンプである。より詳細には、パワーアンプ81は、通信バンドがミッドバンドである送信信号と、通信バンドがハイバンドである送信信号とを増幅させるパワーアンプである。パワーアンプ81は、通信バンドがハイバンドである送信信号として、通信バンドがBand30である送信信号と、通信バンドがn41である送信信号とを増幅させる。
 (5.1.2)トランジスタ
 図2に示すパワーアンプ81のトランジスタ(図示せず)は、例えばNPNトランジスタであり、電源電圧V1が供給されて高周波信号を増幅する増幅素子である。トランジスタは、RF信号処理回路94から出力される高周波信号を増幅する。トランジスタのベースは、入力整合回路(図示せず)の出力端に接続されている。なお、トランジスタのベースは、キャパシタ(図示せず)を介して入力整合回路の出力端に電気的に接続されていてもよい。トランジスタのコレクタは、トラッカモジュール1の可変ローパスフィルタ4に電気的に接続されている。トランジスタのエミッタは、グランド電位である。
 トランジスタには、電源電圧V1が供給される。トランジスタのベースには、入力整合回路から出力される高周波信号が入力される。また、トランジスタのベースには、抵抗(図示せず)を介してバイアス回路(図示せず)が接続されており、入力整合回路から出力された高周波信号に所定のバイアス電流が重畳される。トランジスタのコレクタには、トラッカモジュール1が接続されている。トランジスタのコレクタには、トラッカモジュール1から、高周波信号の振幅レベルに応じて制御される電源電圧V1が印加される。また、トランジスタのコレクタは、出力整合回路(図示せず)を介してフィルタ71に接続されている。
 ここで、上述したように、ET方式が用いられているので、電源電圧V1の振幅レベルは、高周波信号の振幅の変化に基づいて変化する。
 (5.1.3)バイアス回路
 図2に示すパワーアンプ81のバイアス回路(図示せず)は、パワーアンプ81のトランジスタ(図示せず)を動作点にバイアスするための回路である。バイアス回路は、例えば、HBT等のトランジスタで構成されている。
 バイアス回路は、高周波信号を増幅するトランジスタのベースに接続されている。より詳細には、バイアス回路は、入力整合回路の出力端とトランジスタのベースとの間に接続されている出力端を有する。そして、バイアス回路は、トランジスタのベースにバイアス(バイアス電流)を供給するように構成されている。
 図示を省略するが、バイアス回路を構成するトランジスタのコレクタには、例えば高周波モジュール7が搭載された通信装置9等のバッテリから供給されるバッテリ電圧が印加される。バイアス回路を構成するトランジスタのエミッタは、高周波信号を増幅するトランジスタのベースに接続されている。なお、バイアス回路は、上述した構成に限定されず、高周波信号を増幅するトランジスタを動作点にバイアスする回路であれば他の構成であってもよい。
 (5.1.4)入力整合回路
 図2に示すパワーアンプ81の入力整合回路(図示せず)は、トランジスタの入力側に接続されており、トランジスタの入力側の回路(例えばRF信号処理回路94)の出力インピーダンスとトランジスタの入力インピーダンスとを整合させるための整合回路である。入力整合回路は、例えば、インダクタ及びキャパシタのうちの少なくとも1つで構成されている。
 (5.1.5)出力整合回路
 図2に示すパワーアンプ81の出力整合回路(図示せず)は、トランジスタの出力側に接続されており、トランジスタの出力インピーダンスとトランジスタの出力側の回路(例えばフィルタ71)の入力インピーダンスとを整合させるための整合回路である。出力整合回路は、例えば、インダクタ及びキャパシタのうちの少なくとも1つで構成されている。
 (5.1.6)制御回路
 制御回路82は、図2に示すように、パワーアンプ81を制御する。より詳細には、制御回路82は、パワーアンプ81のバイアス回路を制御する。
 (5.2)フィルタ
 フィルタ71は、図2に示すように、高周波信号を通過させる通信バンドの送信フィルタである。フィルタ71は、送信経路のうち電力増幅モジュール8とアンテナ端子74との間の経路に設けられている。より詳細には、フィルタ71は、電力増幅モジュール8とスイッチ72との間の経路に設けられている。フィルタ71は、電力増幅モジュール8で電力が増幅されて電力増幅モジュール8から出力される高周波信号を通す。送信経路は、高周波信号をアンテナ91から送信するために、入力端子73とアンテナ端子74とを結ぶ経路である。
 なお、フィルタ71は、送信フィルタであることに限定されず、送信フィルタと受信フィルタとの両方を含むデュプレクサであってもよいし、3つ以上のフィルタを含むマルチプレクサであってもよい。
 (5.3)スイッチ
 スイッチ72は、図2に示すように、アンテナ端子74に接続させる経路を切り替えるスイッチである。言い換えると、スイッチ72は、フィルタ71を含む複数のフィルタの中からアンテナ端子74に接続されるフィルタを切り替えるスイッチである。
 スイッチ72は、共通端子721と、複数(図示例では2つ)の選択端子722,723とを有する。共通端子721は、アンテナ端子74に接続されている。選択端子722は、フィルタ71に接続されている。選択端子723は、フィルタ71とは異なる他のフィルタ(図示せず)に接続されている。
 スイッチ72は、例えば、共通端子721に複数の選択端子722,723のうちのいずれか1つを接続可能なスイッチである。スイッチ72は、例えば、スイッチIC(Integrated Circuit)である。スイッチ72は、例えば、後述の信号処理回路92によって制御される。スイッチ72は、信号処理回路92のRF信号処理回路94からの制御信号に従って、共通端子721と複数の選択端子722,723との接続状態を切り替える。なお、スイッチ72は、共通端子721に複数の選択端子722,723を同時に接続可能なスイッチであってもよい。この場合、スイッチ72は、一対多の接続が可能なスイッチである。
 (5.4)アンテナ端子
 アンテナ端子74は、図2に示すように、後述のアンテナ91が接続される端子である。高周波モジュール7からの高周波信号は、アンテナ端子74を介して、アンテナ91に出力される。また、図示しないが、アンテナ91からの高周波信号は、アンテナ端子74を介して、高周波モジュール7に出力される。
 (6)通信装置の各構成要素
 以下、実施形態1に係る通信装置9の各構成要素について、図面を参照して説明する。
 (6.1)アンテナ
 アンテナ91は、図2に示すように、高周波モジュール7のアンテナ端子74に接続されている。アンテナ91は、高周波モジュール7から出力された高周波信号(送信信号)を電波にて放射する放射機能と、高周波信号(受信信号)を電波として外部から受信して高周波モジュール7へ出力する受信機能とを有する。
 (6.2)信号処理回路
 信号処理回路92は、図2に示すように、ベースバンド信号処理回路93と、RF信号処理回路94とを備える。信号処理回路92は、高周波モジュール7に高周波信号を出力する。
 ベースバンド信号処理回路93は、例えばBBIC(Baseband Integrated Circuit)であり、高周波信号に対する信号処理を行う。高周波信号の周波数は、例えば、数百MHzから数GHz程度である。
 ベースバンド信号処理回路93は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号は、例えば、外部から入力される音声信号、画像信号等である。ベースバンド信号処理回路93は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号(IQ信号)として生成される。ベースバンド信号処理回路93から出力される変調信号は、IQ信号として出力される。IQ信号とは、振幅及び位相をIQ平面上で表した信号である。IQ信号の周波数は、例えば、数MHzから数10MHz程度である。
 RF信号処理回路94は、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路94は、例えば、ベースバンド信号処理回路93から出力される変調信号(IQ信号)に対して所定の信号処理を行う。より詳細には、RF信号処理回路94は、ベースバンド信号処理回路93から出力される変調信号に対してアップコンバートなどの信号処理を行い、信号処理が行われた高周波信号を電力増幅モジュール8へ出力する。なお、RF信号処理回路94は、変調信号から高周波信号へのダイレクトコンバージョンを行うことに限定されない。RF信号処理回路94は、変調信号を中間周波数(Intermediate Frequency:IF)信号に変換し、変換されたIF信号から高周波信号が生成されるようにしてもよい。
 信号処理回路92は、トラッカモジュール1のトラッカ3に電源制御信号を出力する。電源制御信号は、高周波信号の振幅の変化に関する情報を含む信号であり、電源電圧V1の振幅を変化させるために信号処理回路92からトラッカモジュール1に出力される。電源制御信号は、例えば、I相信号及びQ相信号である。
 (7)トラッカモジュールの動作
 次に、実施形態1に係るトラッカモジュール1の動作について、図面を参照して説明する。トラッカ3から電源電圧を供給するパワーアンプ81が対応する通信バンドは、第1通信バンドと第2通信バンドとする。
 トラッカ3が電源電圧V1を出力する。可変ローパスフィルタ4は、トラッカ3からの電源電圧V1を通す。可変ローパスフィルタ4は電源電圧V1の高調波成分を低減させる。すなわち、可変ローパスフィルタ4は、電源電圧V1の高調波成分をカットし、電源電圧V1の基本波成分を通す。その後、パワーアンプ81には、可変ローパスフィルタ4を通った電源電圧V1が印加される。
 この際に、通信バンドごとに、可変ローパスフィルタ4の特性を変化させる。第1通信バンドの場合、第2ブロック6のスイッチ61は、共通端子611と選択端子612とを接続させる。つまり、インダクタ52及びキャパシタ53の直列回路はグランドに接続される。一方、第2通信バンドの場合、第2ブロック6のスイッチ61は、共通端子611と選択端子613とを接続させる。つまり、インダクタ52及びキャパシタ53の直列回路の先端は開放となる。
 上記のように可変ローパスフィルタ4の第2ブロック6のスイッチ61を切り替えることによって、図4に示すような特性A1と特性A2とを切り替えることができる。つまり、減衰極を周波数f1,f2と変更することができる。
 パワーアンプ81がFDDの送信信号を増幅させる場合、可変ローパスフィルタ4により、電源電圧V1の高調波成分を低減させることができるので、FDDの受信信号へのノイズを低減させることができる。
 (8)効果
 実施形態1に係るトラッカモジュール1では、パワーアンプ81が接続される外部接続端子12とトラッカ3との間に可変ローパスフィルタ4が設けられている。これにより、パワーアンプ81が複数の通信バンドの送信信号に対応する場合において、各通信バンドに応じて、可変ローパスフィルタ4の減衰極を変更させることができるので、各通信バンドにおいて、低損失と良好な減衰特性との両方を実現可能とする。
 (9)変形例
 実施形態1の変形例として、可変ローパスフィルタ4の第2ブロック6において、スイッチ61の選択端子613は、何も接続されていない状態つまり開放されていることに限定されず、例えば、電源電圧V1の出力に接続されていてもよい。
 (実施形態2)
 実施形態2に係るトラッカモジュール1aは、図5及び図6に示すように、トラッカ3aが複数のパワーアンプ81,811,812に電源電圧V1を供給するする点で、実施形態1に係るトラッカモジュール1(図1及び図2参照)と相違する。
 (1)構成
 実施形態2に係るトラッカモジュール1aは、図5及び図6に示すように、基板2と、トラッカ3aと、可変ローパスフィルタ4aとを備える。また、トラッカモジュール1aは、入力端子11と、複数(図示例では3つ)の外部接続端子12,121,122と、複数(図示例では3つ)の出力端子14aとを備える。なお、実施形態2に係るトラッカモジュール1aに関し、実施形態1に係るトラッカモジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 (1.1)入力端子・外部接続端子・出力端子
 入力端子11は、実施形態1の入力端子11(図1参照)と同様、図5及び図6に示すように、信号処理回路92に接続されており、信号処理回路92から電源制御信号が入力される。
 外部接続端子12は、実施形態1の外部接続端子12(図1参照)と同様、図5及び図6に示すように、パワーアンプ81に接続される。外部接続端子121は、パワーアンプ811に接続される。外部接続端子122は、パワーアンプ812に接続される。
 複数の出力端子14aは、実施形態1の出力端子14(図1参照)と同様、図5に示すように、トラッカ3aとワンパッケージ化されている。複数の出力端子14aは、第1出力端子14と、複数(図示例では2つ)の第2出力端子141,142とを含む。第1出力端子14には、可変ローパスフィルタ4aが接続されている。第2出力端子141には、ローパスフィルタ41が接続されている。第2出力端子142には、ローパスフィルタ42が接続されている。ローパスフィルタ41,42は、それぞれ、トラッカ3aとは別体に設けられている。
 (1.2)トラッカ
 トラッカ3aは、図5及び図6に示すように、パワーアンプ81に電源電圧V1を供給するように構成されている。より詳細には、トラッカ3aは、高周波信号の変調信号からエンベロープを取り出し、エンベロープに応じたレベルの電源電圧V1を生成し、パワーアンプ81に供給する。さらに、トラッカ3aは、パワーアンプ811,812に電源電圧を供給するように構成されている。
 トラッカ3aは、実施形態1のトラッカ3と同様、電源制御信号が入力される入力端子(図示せず)と、電源電圧V1を生成する電圧生成部(図示せず)とを備える。トラッカ3aは、入力端子に入力される電源制御信号に基づいて電源電圧V1を生成する。実施形態2においても、実施形態1と同様、高周波モジュール7aは、ET方式を用いて高周波信号を増幅するため、実施形態2のトラッカ3aは、電源電圧V1を出力する。
 (1.3)可変ローパスフィルタ
 可変ローパスフィルタ4aは、図5及び図6に示すように、トラッカ3aとパワーアンプ81との間の経路P1上に接続されている。可変ローパスフィルタ4aは、実施形態1の可変ローパスフィルタ4(図1参照)と同様、電源電圧V1の高調波成分を低減させる。これにより、電源電圧V1に起因するノイズを低減させることができる。
 可変ローパスフィルタ4aは、図7に示すように、第1ブロック5aと、第2ブロック6aとを有する。
 第1ブロック5aは、少なくとも1つの電子部品を含む。より詳細には、第1ブロック5aは、電子部品として、2つのインダクタ51,52を含む。インダクタ51は、トラッカ3aと外部接続端子12との間の経路P1上に設けられている。インダクタ52は、経路P1上のノードN1に接続されている。複数のインダクタ51,52の各々は、基板2の第1主面21に実装される実装部品である。
 第2ブロック6aは、DTC62を含む。DTC62は、キャパシタンスを可変する可変キャパシタである。DTC62の第1端は、インダクタ52と直列に接続されており、DTC62の第2端は、グランドに接続されている。
 第2ブロック6aは、トラッカ3aとワンパッケージ化されている。すなわち、トラッカ3aと第2ブロック6aとで、トラッカ部品13aが構成されている。
 (1.4)トラッカ、ローパスフィルタ及び外部接続端子の配置関係
 上述したトラッカモジュール1aにおいて、トラッカ3a及び可変ローパスフィルタ4aは、図5に示すように、基板2に配置されている。より詳細には、トラッカ3a及び可変ローパスフィルタ4aは、基板2の第1主面21に配置されている。また、ローパスフィルタ41,42も、可変ローパスフィルタ4と同様、基板2の第1主面21に配置されている。一方、外部接続端子12は、基板2の第2主面22に配置されている。2つの外部接続端子121,122も、外部接続端子12と同様、基板2の第2主面22に配置されている。上述したように、トラッカ3a及び可変ローパスフィルタ4aの第2ブロック6aは、トラッカ部品13aとしてワンパッケージ化されている。
 また、実施形態2では、トラッカ3aを含むトラッカ部品13aは、基板2において、可変ローパスフィルタ4aの第1ブロック5と隣接して配置されている。より詳細には、第1ブロック5に含まれる複数の電子部品(インダクタ51,52)の少なくとも1つがトラッカ3と隣接して配置されている。
 (2)トラッカモジュールの動作
 次に、実施形態2に係るトラッカモジュール1aの動作について、図面を参照して説明する。トラッカ3aから電源電圧を供給するパワーアンプ81が対応する通信バンドは、第1通信バンド、第2通信バンド及び第3通信バンドとする。
 トラッカ3aが電源電圧V1を出力する。可変ローパスフィルタ4aは、トラッカ3aからの電源電圧V1を通す。可変ローパスフィルタ4aは電源電圧V1の高調波成分を低減させる。すなわち、可変ローパスフィルタ4aは、電源電圧V1の高調波成分をカットし、電源電圧V1の基本波成分を通す。その後、パワーアンプ81には、可変ローパスフィルタ4aを通った電源電圧V1が印加される。
 この際に、通信バンドごとに、可変ローパスフィルタ4aの特性を変化させる。通信バンドごとに、第2ブロック6のDTC62のキャパシタンスを変更する。より詳細には、第1通信バンドのときと第2通信バンドのときと第3通信バンドのときとで、DTC62のキャパシタンスを変更する。
 上記のように可変ローパスフィルタ4aの第2ブロック6aのDTC62のキャパシタンスの大きさを切り替えることによって、図8に示すような特性B1と特性B2と特性B3とを切り替えることができる。つまり、減衰極を周波数f1,f2,f3と変更することができる。
 (3)効果
 実施形態2に係るトラッカモジュール1aにおいても、実施形態1に係るトラッカモジュール1と同様、各通信バンドに応じて、可変ローパスフィルタ4aの減衰極を変更させることができるので、各通信バンドにおいて、低損失と良好な減衰特性との両方を実現可能とする。
 実施形態2に係るトラッカモジュール1aでは、トラッカ3aが、複数の出力端子14として、可変ローパスフィルタ4aに接続されている第1出力端子14と、トラッカ3aとは別体に設けられるローパスフィルタ41,42に接続されている第2出力端子141,142と、を含む。これにより、キャパシタンスを可変する機能を必要としない場合、損失を低くすることできるので、効率を高めることができる。
 (実施形態3)
 実施形態3に係るトラッカモジュール1bは、図9に示すような構成である点で、実施形態1に係るトラッカモジュール1(図4参照)と相違する。
 (1)構成
 実施形態3に係るトラッカモジュール1bは、図9に示すように、トラッカ3bと、可変ローパスフィルタ4bとを備える。なお、実施形態3に係るトラッカモジュール1bに関し、実施形態1に係るトラッカモジュール1と同様の構成要素については、同一の符号を付して説明を省略する。
 (1.1)トラッカ
 トラッカ3bは、図9に示すように、パワーアンプ81に電源電圧V1を供給するように構成されている。より詳細には、トラッカ3bは、高周波信号の変調信号からエンベロープを取り出し、エンベロープに応じたレベルの電源電圧V1を生成し、パワーアンプ81に供給する。
 トラッカ3bは、実施形態1のトラッカ3と同様、電源制御信号が入力される入力端子(図示せず)と、電源電圧V1を生成する電圧生成部(図示せず)とを備える。トラッカ3aは、入力端子に入力される電源制御信号に基づいて電源電圧V1を生成する。実施形態3においても、実施形態1と同様、高周波モジュール7は、ET方式を用いて高周波信号を増幅するため、トラッカ3bは、電源電圧V1を出力する。
 (1.2)可変ローパスフィルタ
 可変ローパスフィルタ4bは、図9に示すように、トラッカ3bとパワーアンプ81との間の経路P1上に接続されている。可変ローパスフィルタ4bは、実施形態1の可変ローパスフィルタ4(図4参照)と同様、電源電圧V1の高調波成分を低減させる。これにより、電源電圧V1に起因するノイズを低減させることができる。
 可変ローパスフィルタ4bは、図9に示すように、第1ブロック5bと、第2ブロック6bとを有する。
 第1ブロック5bは、少なくとも1つの電子部品を含む。より詳細には、第1ブロック5bは、インダクタ51及びキャパシタ53を含む。インダクタ51は、トラッカ3bと外部接続端子12との間の経路P1上に設けられている。キャパシタ53は、経路P1上のノードN1に接続されている。
 第2ブロック6bは、複数(図示例では3つ)のインダクタ63~65と、複数(図示例では3つ)のスイッチ66~68とを含む。複数のインダクタ63~65は、互いに並列に接続されている。そして、複数のインダクタ63~65の各々は、キャパシタ53と直列に接続されている。複数のインダクタ63~65は、複数のスイッチ66~68と一対一に対応し、対応するスイッチ66~68と直列に接続されている。具体的には、インダクタ63は、スイッチ66と直列に接続されており、インダクタ64は、スイッチ67と直列に接続されており、インダクタ65は、スイッチ68と直列に接続されている。インダクタ63~65とスイッチ66~68との直列回路は、グランドに接続されている。
 実施形態3においても、第2ブロック6bは、トラッカ3bとワンパッケージ化されている。すなわち、トラッカ3bと第2ブロック6bとで、トラッカ部品13bが構成されている。
 (1.3)トラッカ、ローパスフィルタ及び外部接続端子の配置関係
 上述したトラッカモジュール1bにおいて、トラッカ3b及び可変ローパスフィルタ4bは、基板2(図1参照)に配置されている。より詳細には、トラッカ3b及び可変ローパスフィルタ4bは、基板2の第1主面21(図1参照)に配置されている。上述したように、トラッカ3b及び可変ローパスフィルタ4bの第2ブロック6bは、トラッカ部品13bとしてワンパッケージ化されている。
 また、トラッカ3bを含むトラッカ部品13bは、基板2において、可変ローパスフィルタ4bの第1ブロック5bと隣接して配置されている。より詳細には、第1ブロック5bに含まれる複数の電子部品(インダクタ51、キャパシタ53)の少なくとも1つがトラッカ3bと隣接して配置されている。
 (2)トラッカモジュールの動作
 次に、実施形態3に係るトラッカモジュール1bの動作について、図面を参照して説明する。トラッカ3bから電源電圧を供給するパワーアンプ81が対応する通信バンドは、第1通信バンド、第2通信バンド及び第3通信バンドとする。
 トラッカ3bが電源電圧V1を出力する。可変ローパスフィルタ4bは、トラッカ3bからの電源電圧V1を通す。可変ローパスフィルタ4bは電源電圧V1の高調波成分を低減させる。すなわち、可変ローパスフィルタ4bは、電源電圧V1の高調波成分をカットし、電源電圧V1の基本波成分を通す。その後、パワーアンプ81には、可変ローパスフィルタ4bを通った電源電圧V1が印加される。
 この際に、通信バンドごとに、可変ローパスフィルタ4bの特性を変化させる。通信バンドごとに、第2ブロック6のスイッチ66~68の各々のオンオフを切り替える。より詳細には、第1通信バンドのときと第2通信バンドのときと第3通信バンドのときとで、複数のスイッチ66~68のうちオン状態にするスイッチを変更する。
 上記のように可変ローパスフィルタ4bの第2ブロック6bのスイッチ66~68のオンオフを切り替えることによって、減衰極を周波数f1,f2,f3(図8参照)と変更することができる。
 (3)効果
 実施形態3に係るトラッカモジュール1bにおいても、実施形態1に係るトラッカモジュール1と同様、各通信バンドに応じて、可変ローパスフィルタ4bの減衰極を変更させることができるので、各通信バンドにおいて、低損失と良好な減衰特性との両方を実現可能とする。
 以上説明した実施形態及び変形例は、本発明の様々な実施形態及び変形例の一部に過ぎない。また、実施形態及び変形例は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係るトラッカモジュール(1;1a;1b)は、外部接続端子(12)と、トラッカ(3;3a;3b)と、可変ローパスフィルタ(4;4a;4b)とを備える。外部接続端子(12)は、パワーアンプ(81)に接続される。トラッカ(3;3a;3b)は、エンベロープ・トラッキング方式によって電源電圧(V1)を、外部接続端子(12)を介してパワーアンプ(81)に供給する。可変ローパスフィルタ(4;4a;4b)は、トラッカ(3;3a;3b)と外部接続端子(12)との間の経路(P1)上に設けられている。
 第1の態様に係るトラッカモジュール(1;1a;1b)によれば、パワーアンプ(81)が複数の通信バンドの送信信号に対応する場合において、各通信バンドに応じて、可変ローパスフィルタ(4;4a;4b)の減衰極を変更させることができる。その結果、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。
 第1の態様に係るトラッカモジュール(1;1a;1b)では、可変ローパスフィルタ(4;4a;4b)は、第1ブロック(5;5a;5b)と、第2ブロック(6;6a;6b)とを有する。第1ブロック(5;5a;5b)は、少なくとも1つの電子部品を含む。第2ブロック(6;6a;6b)は、可変ローパスフィルタ(4;4a;4b)のカットオフ周波数を可変させるためのブロックである。第2ブロック(6;6a;6b)及びトラッカ(3;3a;3b)は、ワンパッケージ化されている。第1ブロック(5;5a;5b)及びトラッカ(3;3a;3b)は、互いに別体に設けられている。
 第1の態様に係るトラッカモジュール(1;1a;1b)によれば、低損失と良好な減衰特性とを効果的に得ることができる。
 第2の態様に係るトラッカモジュール(1a)は、第1の態様において、基板(2)を更に備える。基板(2)は、一の主面(第1主面21)を有する。第1ブロック(5a)は、電子部品として、基板(2)の一の主面に実装される実装部品であるインダクタ(51;52)を含む。第2ブロック(6a)は、キャパシタンスを可変する可変キャパシタ(DTC62)を含む。
 第2の態様に係るトラッカモジュール(1a)によれば、インダクタ(51;52)として実装部品のインダクタを用いることで、高Qを得やすくなる。また、半導体プロセスで作りやすい可変キャパシタ(DTC62)を、トラッカ(3)とワンパッケージ化することつまりIC内部に形成することで、低損失を実現することができる。
 第3の態様に係るトラッカモジュール(1a)は、第1又は2の態様のいずれか1つにおいて、複数の出力端子(14a)を有する。複数の出力端子(14a)は、トラッカ(3a)とワンパッケージ化されている。複数の出力端子(14a)は、第1出力端子(14)と、第2出力端子(141;142)とを含む。第1出力端子(14)は、可変ローパスフィルタ(4a)に接続されている。第2出力端子(141;142)は、トラッカ(3a)とは別体に設けられるローパスフィルタ(41;42)に接続されている。
 第3の態様に係るトラッカモジュール(1a)によれば、キャパシタンスを可変する機能を必要としない場合、損失を低くすることできるので、効率を高めることができる。
 第4の態様に係るトラッカモジュール(1;1a;1b)では、第1~3の態様のいずれか1つにおいて、外部接続端子(12)は、パワーアンプ(81)として、FDDの送信信号を増幅させるパワーアンプに接続される。
 第5の態様に係るトラッカモジュール(1;1a;1b)では、第1~3の態様のいずれか1つにおいて、外部接続端子(12)は、パワーアンプ(81)として、通信バンドがミッドバンドである送信信号を増幅させるパワーアンプ及び通信バンドがハイバンドである送信信号を増幅させるパワーアンプに接続される。
 第6の態様に係るトラッカモジュール(1;1a;1b)では、第1~3の態様のいずれか1つにおいて、外部接続端子(12)は、パワーアンプ(81)として、通信バンドがBand30である送信信号及び通信バンドがn41である送信信号を増幅させるパワーアンプ(81)に接続される。
 第7の態様に係るトラッカモジュール(1;1a;1b)では、第1~6の態様のいずれか1つにおいて、可変ローパスフィルタ(4;4a;4b)は、電源電圧(V1)の高調波成分を低減させる。
 第8の態様に係る電力増幅モジュール(8)は、第1~7の態様のいずれか1つのトラッカモジュール(1;1a;1b)と、パワーアンプ(81)とを備える。
 第8の態様に係る電力増幅モジュール(8)によれば、トラッカモジュール(1;1a;1b)において、パワーアンプ(81)が複数の通信バンドの送信信号に対応する場合において、各通信バンドに応じて、可変ローパスフィルタ(4;4a;4b)の減衰極を変更させることができる。その結果、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。
 第9の態様に係る高周波モジュール(7;7a)は、第1~7の態様のいずれか1つのトラッカモジュール(1;1a;1b)と、パワーアンプ(81)と、フィルタ(71)とを備える。フィルタ(71)は、パワーアンプ(81)で増幅された高周波信号を通す。
 第9の態様に係る高周波モジュール(7;7a)によれば、トラッカモジュール(1;1a;1b)において、パワーアンプ(81)が複数の通信バンドの送信信号に対応する場合において、各通信バンドに応じて、可変ローパスフィルタ(4;4a;4b)の減衰極を変更させることができる。その結果、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。
 第10の態様に係る通信装置(9)は、第9の態様の高周波モジュール(7)と、信号処理回路(92)とを備える。信号処理回路(92)は、高周波モジュール(7)に高周波信号を出力する。
 第10の態様に係る通信装置(9)によれば、トラッカモジュール(1;1a;1b)において、パワーアンプ(81)が複数の通信バンドの送信信号に対応する場合において、各通信バンドに応じて、可変ローパスフィルタ(4;4a;4b)の減衰極を変更させることができる。その結果、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。
 1,1a,1b トラッカモジュール
 11 入力端子
 12,121,122 外部接続端子
 13,13a,13b トラッカ部品
 14 第1出力端子(出力端子)
 14a 出力端子
 141,142 第2出力端子
 2 基板
 21 第1主面
 22 第2主面
 3,3a,3b トラッカ
 4,4a,4b 可変ローパスフィルタ
 41,42 ローパスフィルタ
 5,5a,5b 第1ブロック
 51,52 インダクタ
 53 キャパシタ
 6,6a,6b 第2ブロック
 61 スイッチ
 611 共通端子
 612,613 選択端子
 62 DTC
 63,64,65 インダクタ
 66,67,68 スイッチ
 7 高周波モジュール
 71 フィルタ
 72 スイッチ
 721 共通端子
 722,723 選択端子
 73 入力端子
 74 アンテナ端子
 8 電力増幅モジュール
 81,811,812 パワーアンプ
 82 制御回路
 88 端子
 9 通信装置
 91 アンテナ
 92 信号処理回路
 93 ベースバンド信号処理回路
 94 RF信号処理回路
 N1 ノード
 P1 経路
 V1 電源電圧
 V2 バッテリ電圧
 f1,f2,f3 周波数
 A1,A2 特性
 B1,B2,B3 特性

Claims (10)

  1.  パワーアンプに接続される外部接続端子と、
     エンベロープ・トラッキング方式によって電源電圧を、前記外部接続端子を介して前記パワーアンプに供給するトラッカと、
     前記トラッカと前記外部接続端子との間の経路上に設けられている可変ローパスフィルタと、を備え、
     前記可変ローパスフィルタは、
      少なくとも1つの電子部品を含む第1ブロックと、
      前記可変ローパスフィルタのカットオフ周波数を可変させるための第2ブロックと、を有し、
     前記第2ブロック及び前記トラッカは、ワンパッケージ化されており、 前記第1ブロック及び前記トラッカは、互いに別体に設けられている、
     トラッカモジュール。
  2.  一の主面を有する実装基板を更に備え、
     前記第1ブロックは、前記電子部品として、前記実装基板の前記一の主面に実装される実装部品であるインダクタを含み、
     前記第2ブロックは、キャパシタンスを可変する可変キャパシタを含む、
     請求項1に記載のトラッカモジュール。
  3.  前記トラッカとワンパッケージ化されている複数の出力端子を更に有し、
     前記複数の出力端子は、
      前記可変ローパスフィルタに接続されている第1出力端子と、
      前記トラッカとは別体に設けられるローパスフィルタに接続されている第2出力端子と、を含む、
     請求項1又は2に記載のトラッカモジュール。
  4.  前記外部接続端子は、前記パワーアンプとして、FDDの送信信号を増幅させるパワーアンプに接続される、
     請求項1~3のいずれか1項に記載のトラッカモジュール。
  5.  前記外部接続端子は、前記パワーアンプとして、通信バンドがミッドバンドである送信信号を増幅させるパワーアンプ及び通信バンドがハイバンドである送信信号を増幅させるパワーアンプに接続される、
     請求項1~3のいずれか1項に記載のトラッカモジュール。
  6.  前記外部接続端子は、前記パワーアンプとして、通信バンドがBand30である送信信号及び通信バンドがn41である送信信号を増幅させるパワーアンプに接続される、
     請求項1~3のいずれか1項に記載のトラッカモジュール。
  7.  前記可変ローパスフィルタは、前記電源電圧の高調波成分を低減させる、
     請求項1~6のいずれか1項に記載のトラッカモジュール。
  8.  請求項1~7のいずれか1項に記載のトラッカモジュールと、
     前記パワーアンプと、を備える、
     電力増幅モジュール。
  9.  請求項1~7のいずれか1項に記載のトラッカモジュールと、
     前記パワーアンプと、
     前記パワーアンプで増幅された高周波信号を通す送信フィルタと、を備える、
     高周波モジュール。
  10.  請求項9に記載の高周波モジュールと、
     前記高周波モジュールに高周波信号を出力する信号処理回路と、を備える、
     通信装置。
PCT/JP2021/018085 2020-05-25 2021-05-12 トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置 WO2021241233A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180037482.6A CN115668758A (zh) 2020-05-25 2021-05-12 跟踪器模块、功率放大模块、高频模块以及通信装置
US18/056,016 US20230072796A1 (en) 2020-05-25 2022-11-16 Tracker module, power amplifier module, radio frequency module, communication device, and radio frequency circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020090956 2020-05-25
JP2020-090956 2020-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/056,016 Continuation US20230072796A1 (en) 2020-05-25 2022-11-16 Tracker module, power amplifier module, radio frequency module, communication device, and radio frequency circuit

Publications (1)

Publication Number Publication Date
WO2021241233A1 true WO2021241233A1 (ja) 2021-12-02

Family

ID=78723379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018085 WO2021241233A1 (ja) 2020-05-25 2021-05-12 トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置

Country Status (3)

Country Link
US (1) US20230072796A1 (ja)
CN (1) CN115668758A (ja)
WO (1) WO2021241233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189020A1 (ja) * 2022-04-01 2023-10-05 株式会社村田製作所 高周波回路及び増幅方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176529A (ja) * 2010-02-24 2011-09-08 Sumitomo Electric Ind Ltd 増幅器及び信号処理装置
US20140266462A1 (en) * 2013-03-14 2014-09-18 Motorola Mobility Llc Low power consumption adaptive power amplifier
JP2016201787A (ja) * 2015-04-13 2016-12-01 株式会社村田製作所 電力増幅モジュール
JP2018182720A (ja) * 2017-04-12 2018-11-15 株式会社村田製作所 電力増幅モジュール及び高周波モジュール
WO2019065027A1 (ja) * 2017-09-29 2019-04-04 株式会社村田製作所 ハイブリッドフィルタ装置およびマルチプレクサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176529A (ja) * 2010-02-24 2011-09-08 Sumitomo Electric Ind Ltd 増幅器及び信号処理装置
US20140266462A1 (en) * 2013-03-14 2014-09-18 Motorola Mobility Llc Low power consumption adaptive power amplifier
JP2016201787A (ja) * 2015-04-13 2016-12-01 株式会社村田製作所 電力増幅モジュール
JP2018182720A (ja) * 2017-04-12 2018-11-15 株式会社村田製作所 電力増幅モジュール及び高周波モジュール
WO2019065027A1 (ja) * 2017-09-29 2019-04-04 株式会社村田製作所 ハイブリッドフィルタ装置およびマルチプレクサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189020A1 (ja) * 2022-04-01 2023-10-05 株式会社村田製作所 高周波回路及び増幅方法

Also Published As

Publication number Publication date
CN115668758A (zh) 2023-01-31
US20230072796A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP6528845B2 (ja) アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置
US10171053B2 (en) Apparatus and methods for power amplifiers with an injection-locked oscillator driver stage
EP3046254B1 (en) Power amplifier and transmission apparatus
US20060293011A1 (en) Doherty amplifier and transmitter using mixer
JP2005536922A (ja) 高出力ドハティ増幅器
TWI654831B (zh) 通訊模組
JP2019083476A (ja) 電力増幅回路
WO2021241233A1 (ja) トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置
WO2018030278A1 (ja) 電力増幅モジュール、フロントエンド回路および通信装置
Elgaard et al. A 27 GHz adaptive bias variable gain power amplifier and T/R switch in 22nm FD-SOI CMOS for 5G antenna arrays
CN108134585B (zh) 射频功率放大电路及其超带宽输出匹配电路
WO2021241474A1 (ja) トラッカモジュール、電力増幅モジュール、高周波モジュール及び通信装置
WO2021161928A1 (ja) 電力増幅回路、高周波回路及び通信装置
US20220376665A1 (en) Radio-frequency circuit and communication device
CN218124668U (zh) 射频前端模组
KR101960651B1 (ko) 낮은 임피던스 공급 피드를 가진 포락선 추적 전력 증폭기
Cao et al. A 28 GHz fully integrated GaN enhanced single‐sideband time‐modulated MMIC for phased array system
WO2021251217A1 (ja) 高周波モジュール及び通信装置
JP2008205821A (ja) 高周波電力増幅装置及びそれを用いた送信装置
JP6618649B1 (ja) 無線周波数電力増幅器のモジュール、無線携帯デバイス、及び無線周波数出力信号の相互変調を低減する方法
JP2021176223A (ja) 電力増幅回路
WO2021261184A1 (ja) 高周波回路及び通信装置
WO2022113476A1 (ja) 電力増幅回路、高周波回路及び通信装置
CN113572439B (zh) 功率放大电路
WO2022254875A1 (ja) 高周波回路および通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP