WO2021240682A1 - レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法 - Google Patents

レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2021240682A1
WO2021240682A1 PCT/JP2020/020890 JP2020020890W WO2021240682A1 WO 2021240682 A1 WO2021240682 A1 WO 2021240682A1 JP 2020020890 W JP2020020890 W JP 2020020890W WO 2021240682 A1 WO2021240682 A1 WO 2021240682A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical path
laser
optical
pulse stretcher
optical pulse
Prior art date
Application number
PCT/JP2020/020890
Other languages
English (en)
French (fr)
Inventor
浩孝 宮本
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2022527353A priority Critical patent/JP7482225B2/ja
Priority to PCT/JP2020/020890 priority patent/WO2021240682A1/ja
Priority to CN202080099484.3A priority patent/CN115427892A/zh
Publication of WO2021240682A1 publication Critical patent/WO2021240682A1/ja
Priority to US17/938,246 priority patent/US20230022170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm

Definitions

  • the present disclosure relates to a method for manufacturing a laser device, a pulse width extending device, and an electronic device.
  • a KrF excimer laser apparatus that outputs a laser beam having a wavelength of about 248 nm and an ArF excimer laser apparatus that outputs a laser beam having a wavelength of about 193 nm are used.
  • the spectral line width of the naturally oscillated light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet rays such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolving power may decrease. Therefore, it is necessary to narrow the spectral line width of the laser beam output from the gas laser apparatus to a extent that chromatic aberration can be ignored.
  • the laser resonator of the gas laser apparatus is provided with a narrow band module (Line Narrow Module: LNM) including a narrow band element (etalon, grating, etc.) in order to narrow the spectral line width.
  • LNM Line Narrow Module
  • the gas laser device in which the spectral line width is narrowed is referred to as a narrow band gas laser device.
  • the laser apparatus includes a laser oscillator that outputs a pulsed laser beam, a first optical pulse stretcher arranged on the optical path of the pulsed laser beam, and an optical path of the pulsed laser beam.
  • a second optical pulse stretcher and a third optical pulse stretcher arranged on the optical path of the pulsed laser light are included, and the optical path length of the delayed optical path of the first optical pulse stretcher is L1, and the second optical pulse stretcher is used.
  • the optical path length of the delayed optical path is L2
  • the optical path length of the delayed optical path of the third optical pulse stretcher is L3, and n is an integer of 2 or more
  • L2 is an integral multiple of 2 or more of L1 and L3 is. , (N ⁇ 0.75) ⁇ L1 ⁇ L3 ⁇ (n ⁇ 0.25) ⁇ L1.
  • the pulse width stretching device is a pulse width stretching device that stretches the pulse width of the pulsed laser light, and has a first optical pulse stretcher arranged on the optical path of the pulsed laser light.
  • the second optical pulse stretcher and the third optical pulse stretcher are included, the optical path length of the delayed optical path of the first optical pulse stretcher is L1, the optical path length of the delayed optical path of the second optical pulse stretcher is L2, and the second.
  • the optical path length of the delayed optical path of the optical pulse stretcher of 3 is L3 and n is an integer of 2 or more
  • L2 is an integral multiple of 2 or more of L1 and L3 is (n-0.75) ⁇ L1.
  • ⁇ L3 ⁇ (n-0.25) ⁇ L1 is satisfied.
  • a method of manufacturing an electronic device includes a laser oscillator that outputs pulsed laser light, a first optical pulse stretcher arranged on the optical path of the pulsed laser light, and light of pulsed laser light.
  • a second optical pulse stretcher arranged on the path and a third optical pulse stretcher arranged on the optical path of the pulse laser light are included, and the optical path length of the delayed optical path of the first optical pulse stretcher is L1, No.
  • the optical path length of the delayed optical path of the optical pulse stretcher of 2 is L2
  • the optical path length of the delayed optical path of the third optical pulse stretcher is L3, and n is an integer of 2 or more
  • L2 is an integral multiple of 2 or more of L1.
  • L3 generates laser light whose pulse width is extended by the laser device, which satisfies (n-0.75) ⁇ L1 ⁇ L3 ⁇ (n-0.25) ⁇ L1, and exposes the laser light.
  • it includes outputting the laser light to the photosensitive substrate in the exposure device or irradiating the object to be irradiated with the laser light in the laser light irradiation device in order to output to the laser light irradiation device and manufacture the electronic device. ..
  • FIG. 1 is a diagram for explaining a spectral line width.
  • FIG. 2 is a diagram for explaining the definition of E95.
  • FIG. 3 is a diagram showing an example of a speckle image obtained by capturing a pattern consisting of light and dark spots.
  • FIG. 4 is a diagram showing a histogram of light and darkness of the speckle image shown in FIG.
  • FIG. 5 schematically shows a configuration example of the excimer laser apparatus according to the comparative example.
  • FIG. 6 schematically shows a pulse waveform of a pulsed laser beam output from an excimer laser apparatus according to a comparative example.
  • FIG. 7 schematically shows the configuration of the excimer laser apparatus according to the first embodiment.
  • FIG. 8 is a chart showing a setting example of the optical path lengths L1, L2, and L3 of the first OPS, the second OPS, and the third OPS, respectively.
  • FIG. 9 shows a pulse waveform obtained when the OPS system according to Comparative Example 1 shown in FIG. 8 is used.
  • FIG. 10 shows a pulse waveform obtained when the OPS system according to Example B shown in FIG. 8 is used.
  • FIG. 11 is a graph showing the change of TIS / (L2 + L3) with respect to the optical path length coefficient.
  • FIG. 12 schematically shows the configuration of the excimer laser apparatus according to the second embodiment.
  • FIG. 13 is a chart showing an example of setting the optical path lengths L1, L2, L3, and L4 of the first OPS, the second OPS, the third OPS, and the fourth OPS, respectively.
  • FIG. 14 shows a pulse waveform obtained when the OPS system according to Comparative Example 2 is used.
  • FIG. 15 shows a pulse waveform obtained when the OPS system according to Example G is used.
  • FIG. 16 is a graph showing the change of TIS / (L3 + L4) with respect to the optical path length coefficient.
  • FIG. 17 schematically shows a configuration example of a laser irradiation system to which a free-run excimer laser device is applied.
  • FIG. 18 schematically shows a configuration example of an excimer laser apparatus including a tunable solid-state laser system as a master oscillator.
  • FIG. 19 schematically shows a configuration example of the exposure apparatus.
  • the spectral line width is the total width of the spectral waveform of the laser beam as shown in FIG. 1 at the light intensity threshold.
  • the relative value of each light amount threshold value with respect to the light amount peak value is referred to as a line width threshold value Thresh (0 ⁇ Thresh ⁇ 1).
  • the half value of the peak value is called a line width threshold value of 0.5.
  • the full width at half maximum W / 2 of the spectral waveform at the line width threshold value 0.5 is specially referred to as full width at half maximum or FWHM (Full Width at Half Maximum).
  • the spectral purity for example, 95% purity E95, is the total width W95% of the portion of the total spectral energy that occupies 95% centered on the wavelength ⁇ 0, and the following equation (1) holds. ..
  • FIG. 3 is a diagram showing an example of a speckle image obtained by capturing a pattern consisting of light and dark spots.
  • FIG. 4 is a diagram showing a histogram of light and darkness of the speckle image shown in FIG.
  • Speckle contrast SC is generally used as a speckle evaluation index. Assuming that the standard deviation of the intensity of the speckle image is ⁇ and the average of the intensity of the speckle image is I macron (macron is written on I), the speckle contrast SC is expressed by the following equation (3). be able to.
  • TIS pulse time width is used as one of the indexes indicating the pulse time width of the laser beam.
  • the TIS pulse time width ⁇ T TIS is defined by the following equation (4).
  • TIS width refers to a TIS pulse time width.
  • FIG. 5 schematically shows a configuration example of the excimer laser device 10 according to the comparative example.
  • the comparative example of the present disclosure is a form recognized by the applicant as known only by the applicant, and is not a publicly known example that the applicant self-identifies.
  • the excimer laser apparatus 10 includes an oscillator 12, an optical pulse stretcher (OPS) system 14, a monitor module 16, a shutter 18, and a laser control unit 20.
  • the OPS system 14 includes a first OPS 100 and a second OPS 200.
  • the first OPS 100, the second OPS 200, the monitor module 16, and the shutter 18 are arranged in this order on the optical path of the pulsed laser beam output from the oscillator 12.
  • the optical path length L2 of the delayed optical path of the second OPS200 is an integral multiple of 2 or more with respect to L1. Is set to.
  • the optical path length L2 is set to be twice as long as L1.
  • the oscillator 12 includes a chamber 120, a charger 122, a pulse power module (PPM) 124, a band narrowing device 126, and an output coupling mirror 128.
  • PPM pulse power module
  • the narrowing band device 126 includes a prism beam expander (not shown) and a grating (not shown).
  • the prism beam expander and the grating are retrowed so that the incident angle and the diffraction angle match.
  • the output coupling mirror 128 is a reflection mirror having a reflectance of 40% to 60%.
  • the output coupling mirror 128 and the band narrowing device 126 form an optical resonator.
  • the chamber 120 is arranged on the optical path of the optical resonator.
  • the chamber 120 includes a pair of electrodes 130a and 130b, an insulating member 132, a front window 134, and a rear window 136.
  • the chamber 120 contains ArF or KrF or XeCl or XeF laser gas.
  • the electrode 130a is connected to the high voltage output terminal of the PPM 124 via the insulating member 132.
  • the electrode 130b is connected to the ground.
  • the electrodes 130a and 130b are arranged so as to have a predetermined gap spacing.
  • the electrodes 130a and 130b are discharge electrodes, and the space between the electrodes 130a and 130b is a discharge space (discharge region).
  • the front side window 134 and the rear side window 136 are arranged so that the laser light generated in the discharge space is transmitted.
  • the PPM 124 includes a switch 125 and a charging capacitor (not shown).
  • the switch 125 is connected to a signal line that transmits an ON signal of the switch 125 from the laser control unit 20.
  • the charger 122 is connected to the charging capacitor of the PPM 124.
  • the charger 122 receives the charging voltage data from the laser control unit 20 and charges the charging capacitor of the PPM 124.
  • the first OPS100 includes a beam splitter BS1 and four concave mirrors 101 to 104.
  • the beam splitter BS1 is arranged on the optical path of the pulsed laser beam output from the oscillator 12.
  • the beam splitter BS1 is coated with a film that reflects a part of the incident pulsed laser light and transmits the other part.
  • the reflectance of the beam splitter BS1 is preferably 40% to 70%, more preferably about 60%.
  • the concave mirrors 101 to 104 form a delayed optical path of the pulsed laser beam reflected by the first surface of the beam splitter BS1.
  • Each of the concave mirrors 101 to 104 is a concave mirror having substantially the same focal length of f1.
  • the concave mirror 101 and the concave mirror 102 are arranged so that the pulsed laser light reflected by the first surface of the beam splitter BS1 is reflected by the concave mirror 101 and incident on the concave mirror 102.
  • the concave mirror 103 and the concave mirror 104 are arranged so that the pulsed laser light reflected by the concave mirror 102 is reflected by the concave mirror 103 and incident on the concave mirror 104.
  • the concave mirror 104 is arranged so that the pulsed laser light reflected by the concave mirror 104 is incident on the second surface opposite to the first surface of the beam splitter BS1.
  • the pulsed laser light reflected on the first plane of the beam splitter BS1 inverts the image on the first plane of the beam splitter BS1 as the first image and forms an image. Is placed in.
  • the concave mirror 103 and the concave mirror 104 are arranged so that the first image is returned to the beam splitter BS1 again, and the second image is rotated forward as a second image on the second surface of the beam splitter BS1 so as to form an image.
  • the optical path length L1 refers to the one-circle delayed optical path length of the delayed optical path of the first OPS100. As an example, the optical path length L1 of the first OPS100 is 7 m.
  • the beam splitter BS1 is arranged so that the pulsed laser light transmitted without being reflected by the first surface of the beam splitter BS1 is incident on the second OPS200.
  • the second OPS200 is arranged on the optical path of the pulsed laser beam output from the first OPS100.
  • the second OPS200 includes a beam splitter BS2 and concave mirrors 201 to 204.
  • the beam splitter BS2 may have the same configuration as the beam splitter BS1.
  • Each of the concave mirrors 201 to 204 is a concave mirror of f2 having substantially the same focal length.
  • the focal length f2 is a focal length longer than the focal length f1.
  • the beam splitter BS2 and the concave mirrors 201 to 204 in the second OPS 200 are arranged in the same arrangement as the beam splitter BS1 and the concave mirrors 101 to 104 in the first OPS 100.
  • the optical path length L2 refers to the one-round delayed optical path length of the delayed optical path of the second OPS200.
  • the optical path length L2 of the second OPS200 is 14 m.
  • the monitor module 16 is arranged on the optical path of the pulsed laser beam output from the OPS system 14.
  • the monitor module 16 includes a beam splitter 162 and an optical sensor 164.
  • the optical sensor 164 is connected to the laser control unit 20, and the detection data of the optical sensor 164 is transmitted to the laser control unit 20.
  • the shutter 18 is arranged on the optical path of the pulsed laser beam transmitted through the monitor module 16.
  • the shutter 18 is connected to the laser control unit 20 via a signal line that transmits a shutter opening / closing signal.
  • the pulsed laser beam output from the excimer laser device 10 is input to the exposure device 80.
  • the laser control unit 20 is connected to the exposure control unit 82 of the exposure device 80.
  • the signal line between the laser control unit 20 and the exposure control unit 82 includes a signal line of the light emission trigger signal Tr, a signal line of data of the target pulse energy Et, and a signal line for passing and receiving other signals. Is done.
  • An amplifier including a laser chamber may be arranged between the oscillator 12 and the OPS system 14.
  • the laser control unit 20 receives the target pulse energy Et and the oscillation preparation signal from the exposure control unit 82, it outputs a signal to close the shutter 18 and closes the exit port of the excimer laser device 10.
  • the laser control unit 20 turns on the switch 125 of the PPM 124 in synchronization with the light emission trigger signal Tr at a predetermined repetition frequency, a high voltage is applied between the electrodes 130a and 130b of the oscillator 12.
  • the pulsed laser light output from the output coupling mirror 128 is incident on the OPS system 14.
  • the pulsed laser beam incident on the OPS system 14 is incident on the first surface of the beam splitter BS1 of the first OPS100.
  • a part of the pulsed laser beam incident on the first surface of the beam splitter BS1 is transmitted from the beam splitter BS1 and output from the first OPS100 as a pulse laser beam of 0 orbital light that does not orbit the delayed optical path.
  • the pulsed laser light reflected on the first surface enters the delayed optical path of the first OPS100, and is formed by the concave mirror 101 and the concave mirror 102. Be reflected.
  • the optical image of the pulsed laser light reflected by the first surface of the beam splitter BS1 is imaged as a first transfer image by the concave mirror 101 and the concave mirror 102.
  • the first transfer image is imaged as a second transfer image on the second surface of the beam splitter BS1 by the concave mirror 103 and the concave mirror 104.
  • a part of the pulsed laser light incident on the second surface of the beam splitter BS1 from the concave mirror 104 is reflected by the second surface of the beam splitter BS1 and is one orbital light that orbits the delayed optical path of the first OPS100. It is output from the first OPS100 as a pulsed laser beam.
  • the pulse laser beam of the one-circle light is output with a delay time ⁇ t1 from the pulse laser beam of the zero-circle light.
  • the pulsed laser light transmitted through the beam splitter BS1 further enters the delayed optical path of the first OPS100, and the concave mirror 101 to It is reflected by 104 and reapplies to the second plane of the beam splitter BS1. Then, the pulsed laser beam reflected by the second surface of the beam splitter BS1 is output from the first OPS100 as the pulsed laser beam of the two-circling light that has made two orbits in the delayed optical path.
  • the pulsed laser beam of the two rounds of light is output with a delay time ⁇ t1 from the pulsed laser beam of the one round of light.
  • the pulse laser light of 3 or 4 or 5 or so is output from the first OPS100.
  • the light intensity of the pulsed light output from the first OPS 100 decreases as the number of laps of the delayed optical path increases.
  • the pulsed laser beam orbiting the delayed optical path of the first OPS100 is synthesized and output with a delay of an integral multiple of the delay time ⁇ t1 with respect to the pulsed laser beam of the 0 orbital light, so that the pulsed laser of each orbiting light is output.
  • the pulse waveform of light is superimposed. As a result, the pulse width is extended.
  • the pulse laser beam output from the first OPS100 has a pulse width extended by the second OPS200.
  • the pulse laser beam output from the output coupling mirror 128 of the oscillator 12 passes through each of the delayed optical paths of the first OPS 100 and the second OPS 200 a plurality of times, so that the pulse width of the pulsed laser beam is extended.
  • a part of the pulsed laser light that has passed through the first OPS100 and the second OPS200 is reflected by the beam splitter 162 and incident on the optical sensor 164.
  • the optical sensor 164 measures the pulse energy E of the incident pulsed laser beam.
  • the data showing the measurement result is transmitted from the optical sensor 164 to the laser control unit 20.
  • the laser control unit 20 sets the charger 122 so that the difference ⁇ E between the target pulse energy Et and the measured pulse energy E approaches 0.
  • the laser control unit 20 transmits an oscillation preparation completion signal to the exposure control unit 82 and opens the shutter 18.
  • the laser control unit 20 turns on the switch 125 of the PPM 124 in synchronization with the light emission trigger signal Tr from the exposure control unit 82, so that the pulse laser light is output from the oscillator 12, the pulse is extended by the OPS system 14, and the pulse is extended.
  • the pulse laser beam of the pulse energy close to the target pulse energy Et is output from the excima laser apparatus 10.
  • the pulsed laser light output from the excimer laser device 10 is incident on the exposure device 80, and the pulsed laser light is applied to a resist such as a semiconductor wafer (not shown).
  • the speckle contrast has a correlation with the pulse width and the coherent length of the pulsed laser beam, and when the pulse width of the pulsed laser beam is extended, the coherence is lowered and the speckle contrast is reduced. It was necessary to add an OPS on the optical path to extend the pulse width for the purpose of reducing speckle contrast.
  • An example of greatly extending the pulse width is known from Patent Document 1 (US Pat. No. 5,309,456) and the like.
  • Patent Document 2 US Pat. No. 6,238,063
  • FIG. 6 schematically shows a pulse waveform of a pulsed laser beam output from the excimer laser device 10 according to a comparative example.
  • FIG. 6 shows an example in which the optical path length L1 of the first OPS100 is 7 m and the optical path length L2 of the second OPS200 is 14 m.
  • the delay time when going around the delayed optical path of 7 m is about 23.3 ns.
  • the optical path length L2 of the second OPS 200 is set to an integral multiple of L1, specifically, an integer multiple of 2 or more so that the peak of the pulse waveform overlaps with the peak of the first OPS 100.
  • the pulse is efficiently performed by adding a relatively short delay optical path length. It is desirable to extend the width.
  • FIG. 7 schematically shows the configuration of the excimer laser apparatus 10A according to the first embodiment.
  • the excimer laser apparatus 10A shown in FIG. 7 will be described as being different from the configuration shown in FIG.
  • the excimer laser apparatus 10A according to the first embodiment includes an OPS system 14A including a third OPS 300 in place of the OPS system 14 shown in FIG.
  • the configuration of the first OPS100 and the second OPS200 is the same as the configuration shown in FIG.
  • the third OPS 300 is arranged on the optical path between the second OPS 200 and the monitor module 16. That is, the first OPS100, the second OPS200, and the third OPS300 are arranged in series on the optical path of the pulsed laser beam.
  • the excimer laser device 10A is an example of the "laser device” in the present disclosure.
  • the oscillator 12 is an example of the “laser oscillator” in the present disclosure.
  • the OPS system 14A is an example of the "pulse width extension device” in the present disclosure.
  • the first OPS100 is an example of the "first optical pulse stretcher” in the present disclosure.
  • the second OPS200 is an example of the “second optical pulse stretcher” in the present disclosure.
  • the third OPS300 is an example of the "third optical pulse stretcher” in the present disclosure.
  • the third OPS300 includes a beam splitter BS3 and concave mirrors 301 to 304.
  • the beam splitter BS3 is arranged on the optical path of the pulsed laser beam, and is coated with a film that reflects a part of the pulsed laser beam and transmits a part of the pulsed laser beam.
  • the reflectance of the beam splitter BS3 is preferably about 60%.
  • Each of the concave mirrors 301 to 304 is a concave mirror of f3 having substantially the same focal length.
  • the focal length f3 is a focal length longer than the focal length f1.
  • the beam splitter BS3 and the concave mirrors 301 to 304 are arranged in the same arrangement as the beam splitter BS1 and the concave mirrors 101 to 104 in the first OPS100.
  • the optical path length L3 refers to the one-round delayed optical path length of the delayed optical path of the third OPS300.
  • the third OPS added to the optical path length L1 of the first OPS100 having the shortest optical path length among them.
  • the optical path length L3 of the OPS is set to a value deviated from an integral multiple of L1. Specifically, assuming that the optical path length of the first OPS 100 is L1, the optical path length L3 of the delayed optical path of the third OPS 300 is set so as to satisfy the condition represented by the following equation (5).
  • N in the equation (5) is an integer of 2 or more.
  • n 5.
  • optical path length L3 satisfies the equation (6).
  • the optical path length of the OPS system 14A is set so as to satisfy the condition 1
  • the delay time when the first OPS100 goes around is about 23.3 ns.
  • the reason why the optical path length L1 of the first OPS100 is set to 7 m is as follows. That is, the pulse width of the pulsed laser beam output from the oscillator 12 is about 40 ns.
  • the delay time when going around the first OPS100 is 23.3 ns, which is about half of 40 ns.
  • the optical path length L1 is set so as to be.
  • the optical path length L2 of the second OPS is set so that the peak of the pulse waveform of the pulse passing through the delayed optical path of the second OPS 200 overlaps with the peak of the pulse waveform emitted from the first OPS 100. That is, L2 is set to an integral multiple of 2 or more of L1.
  • integer multiple here is not limited to a strict integer multiple, and may be generally an integer multiple, and may include, for example, a permissible range of ⁇ 0.25 or less for a certain integer.
  • the optical path length L3 of the delayed optical path of the third OPS is set so that the peak of the pulse waveform fills the valley between the peaks of the first OPS. That is, L3 is set to "an integer of 2 or more + 0.5" times L1.
  • the description of "0.5 times” here is not limited to a strict 0.5 times, and may be approximately 0.5 times, for example, an allowable range within ⁇ 0.25 with respect to 0.5. May be included.
  • the length is 25 m (99.0 ns to 110.7 ns).
  • FIG. 8 is a chart showing an example of setting the optical path lengths L1, L2, and L3 of the first OPS100, the second OPS200, and the third OPS300, respectively.
  • the pulse width (TIS width) realized when the optical path length L1 and the optical path length L2 are fixed to 7 m and 14 m, respectively, and the setting of the optical path length L3 is changed is shown.
  • L3 is set to an integral multiple of L1 (here, 5 times is exemplified).
  • the pulse width is 298.1 ns
  • TIS / (L2 + L3) is 6.08.
  • the value of TIS / (L2 + L3) indicates the rate of increase in the pulse width with respect to the amount of increase in the optical path length of the delayed optical path, and is an index indicating the efficiency of OPS. The larger the value of TIS / (L2 + L3), the more efficiently the pulse width can be extended.
  • Examples A to E are examples in which the optical path length L3 is set based on the condition 1 of the equation (5).
  • Example A can realize a larger pulse width with a shorter optical path length than that of Comparative Example 1.
  • Example B has a more preferable configuration than Example A, and can realize a larger pulse width with a shorter optical path length than that of Example A.
  • FIG. 9 shows a pulse waveform obtained when the OPS system according to Comparative Example 1 is used.
  • FIG. 10 shows a pulse waveform obtained when the OPS system 14A according to Example B is used.
  • TIS / (L2 + L3) is the largest in Example D.
  • Example D has a larger pulse width and a larger TIS / (L2 + L3) than Comparative Example 1.
  • Example E the pulse width is slightly smaller than that in Comparative Example 1, but the TIS / (L2 + L3) is large, and the pulse width can be efficiently extended.
  • FIG. 11 is a graph showing changes in TIS / (L2 + L3) with respect to the optical path length coefficient.
  • the horizontal axis represents the optical path length coefficient
  • the vertical axis represents TIS / (L2 + L3).
  • the optical path length coefficients of Comparative Examples 1 and Examples A to E and TIS / (L2 + L3) are plotted.
  • the optical path length coefficient k is preferably 0.25 ⁇ k ⁇ 0.75, and more preferably 0.35 ⁇ . It is particularly preferable that k ⁇ 0.65 and 0.5 ⁇ k ⁇ 0.65 are satisfied.
  • the pulse width can be efficiently extended with a relatively short optical path length.
  • the TIS / (L2 + L3) is larger than that of the configuration provided with the OPS system according to Comparative Example 1.
  • the excimer laser device 10A it is possible to generate a laser beam having an extended pulse width, and it is possible to reduce speckle.
  • the order of the first OPS100, the second OPS200, and the third OPS300 on the optical path of the pulsed laser beam is not limited to the example of FIG. 7, and can be appropriately replaced. If the combination of the numerical values of the optical path lengths L1, L2, and L3 is the same, the same pulse width is realized regardless of the arrangement order of the first OPS100, the second OPS200, and the third OPS300 on the optical path.
  • FIG. 7 an example in which a delayed optical path is formed by using four concave mirrors for each of the first OPS100, the second OPS200, and the third OPS300 is shown, but the configuration of the OPS is limited to this example.
  • the OPS may be configured to include five or more concave mirrors, and may be configured to include, for example, six or more concave mirrors. Further, the OPS may be configured to include a mirror other than the concave mirror.
  • FIG. 12 schematically shows the configuration of the excimer laser apparatus 10B according to the second embodiment.
  • the configuration shown in FIG. 12 will be described as being different from the excimer laser apparatus 10A shown in FIG. 7.
  • the excimer laser apparatus 10B shown in FIG. 12 includes an OPS system 14B including a fourth OPS 400 in place of the OPS system 14A in FIG. 7.
  • the first OPS100, the second OPS200, the third OPS300, and the fourth OPS400 are arranged in series on the optical path of the pulsed laser beam.
  • Other configurations may be similar to the configuration of FIG.
  • the excimer laser device 10B is an example of the "laser device” in the present disclosure.
  • the OPS system 14B is an example of the "pulse width extension device” in the present disclosure.
  • the fourth OPS400 is an example of the "fourth optical pulse stretcher" in the present disclosure.
  • the fourth OPS 400 is arranged on the optical path between the third OPS 300 and the monitor module 16.
  • the fourth OPS400 includes a beam splitter BS4 and concave mirrors 401 to 404.
  • the beam splitter BS4 may have the same configuration as the beam splitter BS1.
  • Each of the concave mirrors 401 to 404 is a concave mirror of f4 having substantially the same focal length.
  • the focal length f4 is a focal length longer than the focal length f1.
  • the beam splitter BS4 and the concave mirrors 401 to 404 in the fourth OPS 400 are arranged in the same arrangement as the beam splitter BS1 and the concave mirrors 101 to 104 in the first OPS 100.
  • the optical path length L4 refers to the one-round delayed optical path length of the delayed optical path of the fourth OPS400.
  • each of the optical path length L3 of the third OPS and the optical path length L4 of the fourth OPS is set so as to satisfy the following conditions.
  • N and m in the equation are integers of 2 or more, respectively.
  • n and m can be defined independently of each other.
  • the pulsed laser beam orbiting the delayed optical path of the third OPS 300 fills the valley portion of the pulse waveform generated by the delayed optical path of the optical path length L1. Further, when the optical path length L4 of the fourth OPS 400 satisfies the condition 2, the pulsed laser beam orbiting the delayed optical path of the fourth OPS 400 overlaps with the peak of the pulse waveform generated by the delayed optical path of the optical path length L1.
  • the setting conditions of the optical path length L1 of the first OPS100, the optical path length L2 of the second OPS200, and the optical path length L3 of the third OPS300 may be the same as those of the first embodiment. ..
  • the optical path length L3 of the third OPS300 is set so that the peak of the pulse waveform fills the valley between the peaks of the first OPS100, the second OPS200, and the fourth OPS400.
  • the optical path length L4 of the fourth OPS 400 is set so that the peak of the pulse waveform of the pulse passing through the delayed optical path of the fourth OPS 400 overlaps with the peak of the pulse waveform emitted from the first OPS 100. That is, the optical path length L4 is set to an integral multiple of 2 or more of L1.
  • integer multiple here is not limited to a strict integer multiple, as in the case of L2, and may be approximately an integer multiple. For example, a permissible range within ⁇ 0.25 for a certain integer. May be included.
  • FIG. 13 is a chart showing setting examples of the optical path lengths L1, L2, L3, and L4 of the first OPS100, the second OPS200, the third OPS300, and the fourth OPS400, respectively.
  • TIS width pulse width
  • Comparative example 2 in FIG. 13 has a configuration in which L3 is set to 5 times that of L1 and L4 is set to 6 times that of L1.
  • the pulse width after extension is 467.3 ns
  • TIS / (L3 + L4) is 6.07.
  • the value of TIS / (L3 + L4) indicates the rate of increase in the pulse width with respect to the amount of increase in the optical path length, and is an index indicating the efficiency of OPS. The larger the value of TIS / (L3 + L4), the more efficiently the pulse width can be extended.
  • Examples F to L are examples in which the optical path length L3 and the optical path length L4 are set based on the condition 1 of the equation (5) and the condition 2 of the equation (7).
  • Example F can realize a larger pulse width with a shorter optical path length than that of Comparative Example 2.
  • Example G has a more preferable configuration than Example F, and can realize a larger pulse width with a shorter optical path length than that of Example F.
  • Examples F to L exemplified in FIG. 13 the one having the largest pulse width is Example G.
  • FIG. 14 shows a pulse waveform obtained when the OPS system according to Comparative Example 2 is used.
  • FIG. 15 shows a pulse waveform obtained when the OPS system 14B according to Example G is used.
  • the difference between the peaks and valleys of the pulse waveform is smaller than that of Comparative Example 2, and the pulse width can be extended with an optical path length shorter than that of Comparative Example 2. ing.
  • TIS / (L3 + L4) is the largest in Example I.
  • Example I has a larger pulse width and a larger TIS / (L3 + L4) than Comparative Example 2.
  • the pulse width of Example I is smaller than that of Example G, TIS / (L3 + L4) is large and the pulse width can be efficiently extended.
  • FIG. 16 is a graph showing changes in TIS / (L3 + L4) with respect to the optical path length coefficient.
  • the horizontal axis represents the optical path length coefficient
  • the vertical axis represents TIS / (L3 + L4).
  • the optical path length coefficients k and TIS / (L3 + L4) of Comparative Example 2 and Examples F to J are plotted.
  • the optical path length coefficient k is preferably 0.25 ⁇ k ⁇ 0.75, and more preferably 0.35 ⁇ . It is particularly preferable that k ⁇ 0.65 and 0.5 ⁇ k ⁇ 0.65 are satisfied.
  • the pulse width can be efficiently extended with a relatively short optical path length. Compared with the first embodiment, the pulse width can be extended more efficiently.
  • the order of the first OPS100, the second OPS200, the third OPS300, and the fourth OPS400 on the optical path of the pulsed laser beam is not limited to the example of FIG. 12, and can be appropriately replaced. If the combination of the numerical values of the optical path lengths L1, L2, L3 and L4 is the same, they are equivalent regardless of the arrangement order of the first OPS100, the second OPS200, the third OPS300 and the fourth OPS400 on the optical path.
  • the pulse width is realized.
  • the configuration of the fourth OPS 400 illustrated in FIG. 12 is not limited to the configuration of the fourth OPS 400, and the fourth OPS 400 may be configured to include five or more concave mirrors, and may include a mirror other than the concave mirror. You may.
  • Configuration Figure 17 schematically shows a configuration example of a laser irradiation system to which the free-run excimer laser device 10C is applied. The configuration shown in FIG. 17 will be described as different from that of FIG. 7.
  • the oscillator 12 shown in FIG. 7 includes a narrowing device 126, whereas the oscillator 12C shown in FIG. 17 includes a rear mirror 127 instead of the narrowing device 126.
  • the rear mirror 127 may be a high reflection mirror.
  • the oscillator 12C is an example of the "laser oscillator" in the present disclosure.
  • the laser irradiation system shown in FIG. 17 includes a laser light irradiation device 90 instead of the exposure device 80 of FIG. 7.
  • the laser light irradiation device 90 may be, for example, a laser processing machine that processes a substrate or the like with laser light, or a laser annealing device that polycrystallizes amorphous silicon. Further, the laser light irradiation device 90 may be a laser doping device that performs laser doping.
  • the laser light irradiation device 90 includes a laser light irradiation control unit 92.
  • the laser light irradiation control unit 92 includes a processor and controls the laser light irradiation device 90.
  • the laser light irradiation control unit 92 is connected to the laser control unit 20.
  • the laser light irradiation control unit 92 plays a role similar to that of the exposure control unit 82 in FIG. 7 with respect to the laser control unit 20.
  • a pulsed laser beam with a free-run spectral waveform is output from the oscillator 12C.
  • the pulsed laser beam output from the oscillator 12C is pulse-extended by the OPS system 14A.
  • the pulsed laser light output from the excimer laser device 10C is incident on the laser light irradiating device 90.
  • the material is processed, annealed, doped, etc. by irradiating an irradiated object such as a substrate (not shown) with pulsed laser light.
  • the object to be irradiated may be various materials such as semiconductors, glass, and ceramics.
  • various electronic devices can be manufactured by undergoing a plurality of steps.
  • the pulse width can be efficiently extended with a relatively short optical path length as in the first embodiment, and the laser light irradiation device 90 shown in FIG. 17 can be used.
  • the speckle of the irradiation beam is reduced. It is also possible to adopt a configuration in which the OPS system 14A of the excimer laser apparatus 10C shown in FIG. 17 is replaced with the OPS system 14B in FIG.
  • Excimer laser device including a solid-state laser system as a master oscillator 5.2.1 Configuration Figure 18 schematically shows a configuration example of an excimer laser device 12D including a solid-state laser system with a variable wavelength as a master oscillator. Instead of the oscillator 12 described with reference to FIGS. 7 and 12 or the oscillator 12C described with reference to FIG. 17, the excimer laser apparatus 12D shown in FIG. 18 can be applied.
  • the excimer laser device 12D is a MOPA (Master Oscillator Power Amplifier) laser including a solid-state laser system 40 and an excimer amplifier 50.
  • the solid-state laser system 40 includes a semiconductor laser 41 that outputs seed light, a semiconductor optical amplifier (SOA) 42, a titanium sapphire amplifier 43 that amplifies seed light, a wavelength conversion system 46, and a solid-state laser control unit.
  • a variable wavelength solid-state laser system including 48.
  • the semiconductor laser 41 is a distributed feedback type (DFB) semiconductor laser that outputs CW laser light having a wavelength of about 773.6 nm.
  • the semiconductor laser 41 will be referred to as a "DFB laser 41".
  • the DFB laser 41 has a configuration in which the oscillation wavelength is changed by controlling the temperature or the current value of the semiconductor laser element.
  • SOA42 is a semiconductor element that converts CW or pulse seed light into pulsed laser light having a predetermined pulse width by passing a pulse current through the semiconductor.
  • the SOA 42 pulses the CW laser light output from the DFB laser 41 and outputs the pulse-amplified pulsed laser light.
  • the titanium sapphire amplifier 43 includes a titanium sapphire crystal 44 and a pulse laser 45 for pumping.
  • the titanium sapphire crystal 44 is arranged on the optical path of the pulsed laser beam pulse-amplified by the SOA 42.
  • the pumping pulse laser 45 is, for example, a laser device that outputs the second harmonic light of the YLF laser.
  • YLF yttrium lithium fluoride
  • LiYF 4 is a solid-state laser crystal represented by the chemical formula LiYF 4.
  • the wavelength conversion system 46 is a wavelength conversion system that generates a fourth harmonic, and includes an LBO crystal and a KBBF crystal (not shown).
  • the LBO crystal is a nonlinear optical crystal represented by the chemical formula LiB 3 O 5.
  • the KBBF crystal is a nonlinear optical crystal represented by the chemical formula KBe 2 BO 3 F 2. Each of these nonlinear optical crystals is arranged on a rotating stage (not shown) so that the angle of incidence on the crystal can be changed.
  • the wavelength conversion system 46 converts the wavelength of the pulsed laser light of 773.6 nm and outputs the pulsed laser light having a wavelength of about 193.4 nm.
  • the excimer amplifier 50 includes a chamber 52, a PPM 54, a charger 56, a convex mirror 61, and a concave mirror 62.
  • the chamber 52 includes windows 71, 72, a pair of electrodes 74a, 74b, and an electrical insulating member 75.
  • ArF laser gas is housed inside the chamber 52.
  • the excimer amplifier 50 has a configuration in which seed light having a wavelength of 193.4 nm is passed through the discharge space between the electrodes 74a and 74b three times for amplification.
  • the convex mirror 61 and the concave mirror 62 are arranged outside the chamber 52 so that the pulsed laser beam output from the solid-state laser system 40 passes three passes and expands the beam.
  • the seed light having a wavelength of about 193.4 nm incident on the excimer amplifier 50 is reflected by the convex mirror 61 and the concave mirror 62, and thus passes through the discharge space between the electrodes 74a and 74b three times. As a result, the beam of seed light is expanded and amplified.
  • the laser control unit 20 receives the target wavelength ⁇ t and the target pulse energy Et, it transmits the target wavelength ⁇ t to the solid-state laser control unit 48 and charges the charging voltage so as to be the target pulse energy Et. Set to 56.
  • the solid-state laser control unit 48 changes the target oscillation wavelength ⁇ 1t of the DFB laser 41 so that the wavelength of the laser light output from the wavelength conversion system 46 becomes ⁇ t when the target wavelength ⁇ t is input from the laser control unit 20. do.
  • the solid-state laser control unit 48 changes the oscillation wavelength at high speed by controlling the current value flowing through the DFB laser 41.
  • the solid-state laser control unit 48 controls the rotation stage of each crystal so that the incident angle is such that the wavelength conversion efficiency of the LBO crystal and the KBBF crystal in the wavelength conversion system 46 is maximized.
  • the solid-state laser control unit 48 transmits a signal to the SOA 42 and the pumping pulse laser 45.
  • a pulse current is input to the SOA 42, and a pulse-amplified pulse laser beam is output from the SOA 42.
  • the titanium sapphire amplifier 43 the pulse is further amplified.
  • the pulsed laser beam pulse-amplified by the titanium sapphire amplifier 43 is incident on the wavelength conversion system 46.
  • the pulse laser beam having the target wavelength ⁇ t is output from the wavelength conversion system 46.
  • the laser control unit 20 When the laser control unit 20 receives the light emission trigger signal Tr from the exposure control unit 82 or the laser light irradiation control unit 92, the pulsed laser light output from the solid-state laser system 40 is incident on the discharge space of the chamber 52 of the excima amplifier 50. A trigger signal is given to the switch 55 of the PPM 54 and the pulse laser 45 for pumping so that an electric discharge sometimes occurs. As a result, the pulsed laser beam output from the solid-state laser system 40 is amplified by the excimer amplifier 50 in three passes.
  • the pulsed laser beam amplified by the excimer amplifier 50 is incident on the OPS system 14A in FIG. 7, the OPS system 14B in FIG. 12, or the OPS system 14A in FIG.
  • the excimer laser device 12D is an example of the "laser oscillator" in the present disclosure.
  • the pulsed laser light output from the OPS system 14A or 14B is sampled by the beam splitter 162 of the monitor module 16, the pulse energy E is measured by the optical sensor 164, and the wavelength ⁇ is measured by a wavelength monitor (not shown).
  • the laser control unit 20 sets the charging voltage of the charger 56 and the target of the DFB laser 41 so that the difference between the measured pulse energy E and the wavelength ⁇ and the target pulse energy Et and the target wavelength ⁇ t approaches 0, respectively.
  • the oscillation wavelength ⁇ 1t is controlled.
  • the pulsed laser beam transmitted through the beam splitter 162 of the monitor module 16 is incident on the exposure device 80 or the laser beam irradiation device 90 via the shutter 18.
  • the solid-state laser system includes, for example, a DFB laser that outputs a laser beam having a wavelength of 1547.2 nm and an SOA, without being limited to the example of FIG. Therefore, the wavelength conversion system may be a solid-state laser system that outputs 8th harmonic light (193.4 nm light).
  • an example of a multipath amplifier is shown as the excimer amplifier 50, but the present invention is not limited to this example, and an amplifier including, for example, a fabric pero resonator or a ring resonator may be used. Further, a configuration in which the excimer amplifier 50 shown in FIG. 18 is omitted may be adopted, or the pulse laser beam output from the solid-state laser system 40 may be incident on the OPS system 14A or the OPS system 14B to extend the pulse width. good. In this case, the solid-state laser system 40 is an example of the "laser oscillator" in the present disclosure.
  • the laser control unit 20, the exposure control unit 82, the laser light irradiation control unit 92, the solid-state laser control unit 48, and other control units are configured by using a processor.
  • each of these control units can be realized by a combination of hardware and software of a computer including a processor.
  • Software is synonymous with program.
  • the computer is configured to include a storage device such as a CPU (Central Processing Unit) and a memory.
  • the CPU is an example of a processor.
  • Programmable controllers are part of the computer concept.
  • the storage device is a non-transitory computer-readable medium that is a tangible object, and includes, for example, a memory that is a main storage device and a storage that is an auxiliary storage device.
  • the computer-readable medium may be, for example, a semiconductor memory, a hard disk drive (HDD) device, a solid state drive (SSD) device, or a combination thereof.
  • the program executed by the processor is stored on a computer-readable medium.
  • the storage device may be included in the processor.
  • a part of the processing function of the computer may be realized by using an integrated circuit represented by FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the devices including the processor may be connected to each other via a communication network such as a local area network or the Internet.
  • program units may be stored on both local and remote memory storage devices.
  • FIG. 19 schematically shows a configuration example of an exposure apparatus 80.
  • the exposure apparatus 80 includes an illumination optical system 804 and a projection optical system 806.
  • the illumination optical system 804 illuminates the reticle pattern of a reticle (not shown) arranged on the reticle stage RT by the laser light incident from the excimer laser device 10A.
  • the projection optical system 806 reduces-projects the laser beam transmitted through the reticle and forms an image on a workpiece (not shown) arranged on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a photoresist.
  • the exposure apparatus 80 exposes the workpiece to a laser beam reflecting the reticle pattern by moving the reticle stage RT and the workpiece table WT in parallel in synchronization with each other. After transferring the reticle pattern to the semiconductor wafer by the exposure process as described above, the semiconductor device can be manufactured by going through a plurality of steps.
  • the semiconductor device is an example of the "electronic device" in the present disclosure. Not limited to the excimer laser apparatus 10A, an excimer laser apparatus 10B or 10C may be used.

Abstract

本開示の一観点に係るレーザ装置は、パルスレーザ光を出力するレーザ発振器と、パルスレーザ光の光路上に配置された第1の光学パルスストレッチャと、第2の光学パルスストレッチャと、第3の光学パルスストレッチャとを備える。第1の光学パルスストレッチャの遅延光路の光路長をL1、第2の光学パルスストレッチャの遅延光路の光路長をL2、第3の光学パルスストレッチャの遅延光路の光路長をL3、nを2以上の整数とした場合に、L2は、L1の2以上の整数倍であり、L3は、(n-0.75)×L1≦L3≦(n-0.25)×L1を満たす。

Description

レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法
 本開示は、レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、並びに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
米国特許第5309456号 米国特許第6238063号
概要
 本開示の1つの観点に係るレーザ装置は、パルスレーザ光を出力するレーザ発振器と、パルスレーザ光の光路上に配置された第1の光学パルスストレッチャと、パルスレーザ光の光路上に配置された第2の光学パルスストレッチャと、パルスレーザ光の光路上に配置された第3の光学パルスストレッチャと、を含み、第1の光学パルスストレッチャの遅延光路の光路長をL1、第2の光学パルスストレッチャの遅延光路の光路長をL2、第3の光学パルスストレッチャの遅延光路の光路長をL3、nを2以上の整数とした場合に、L2は、L1の2以上の整数倍であり、L3は、(n-0.75)×L1≦L3≦(n-0.25)×L1を満たす。
 本開示の他の1つの観点に係るパルス幅伸長装置は、パルスレーザ光のパルス幅を伸長させるパルス幅伸長装置であって、パルスレーザ光の光路上に配置される第1の光学パルスストレッチャと、第2の光学パルスストレッチャと、第3の光学パルスストレッチャとを含み、第1の光学パルスストレッチャの遅延光路の光路長をL1、第2の光学パルスストレッチャの遅延光路の光路長をL2、第3の光学パルスストレッチャの遅延光路の光路長をL3、nを2以上の整数とした場合に、L2は、L1の2以上の整数倍であり、L3は、(n-0.75)×L1≦L3≦(n-0.25)×L1を満たす。
 本開示の他の1つの観点に係る電子デバイスの製造方法は、パルスレーザ光を出力するレーザ発振器と、パルスレーザ光の光路上に配置された第1の光学パルスストレッチャと、パルスレーザ光の光路上に配置された第2の光学パルスストレッチャと、パルスレーザ光の光路上に配置された第3の光学パルスストレッチャと、を含み、第1の光学パルスストレッチャの遅延光路の光路長をL1、第2の光学パルスストレッチャの遅延光路の光路長をL2、第3の光学パルスストレッチャの遅延光路の光路長をL3、nを2以上の整数とした場合に、L2は、L1の2以上の整数倍であり、L3は、(n-0.75)×L1≦L3≦(n-0.25)×L1を満たす、レーザ装置によってパルス幅が伸長されたレーザ光を生成し、レーザ光を露光装置又はレーザ光照射装置に出力し、電子デバイスを製造するために、露光装置内で感光基板にレーザ光を露光すること、又はレーザ光照射装置内で被照射物にレーザ光を照射することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、スペクトル線幅を説明するための図である。 図2は、E95の定義を説明するための図である。 図3は、明暗の斑点からなるパターンを撮像したスペックル画像の一例を示す図である。 図4は、図3に示したスペックル画像の明暗のヒストグラムを示す図である。 図5は、比較例に係るエキシマレーザ装置の構成例を概略的に示す。 図6は、比較例に係るエキシマレーザ装置から出力されるパルスレーザ光のパルス波形を例示的に示す。 図7は、実施形態1に係るエキシマレーザ装置の構成を概略的に示す。 図8は、第1のOPS、第2のOPS及び第3のOPSのそれぞれの光路長L1,L2,L3の設定例を示す図表である。 図9は、図8に示す比較例1に係るOPSシステムを用いた場合に得られたパルス波形を示す。 図10は、図8に示す実施例Bに係るOPSシステムを用いた場合に得られたパルス波形を示す。 図11は、光路長係数に対するTIS/(L2+L3)の変化を示すグラフである。 図12は、実施形態2に係るエキシマレーザ装置の構成を概略的に示す。 図13は、第1のOPS、第2のOPS、第3のOPS及び第4のOPSのそれぞれの光路長L1,L2,L3,L4の設定例を示す図表である。 図14は、比較例2に係るOPSシステムを用いた場合に得られたパルス波形を示す。 図15は、実施例Gに係るOPSシステムを用いた場合に得られたパルス波形を示す。 図16は、光路長係数に対するTIS/(L3+L4)の変化を示すグラフである。 図17は、フリーランのエキシマレーザ装置を適用したレーザ照射システムの構成例を概略的に示す。 図18は、波長可変の固体レーザシステムをマスターオシレータとして含むエキシマレーザ装置の構成例を概略的に示す。 図19は、露光装置の構成例を概略的に示す。
実施形態
 -目次-
1.用語の説明
 1.1 E95の定義
 1.2 コヒーレント長の定義
 1.3 スペックルコントラストの定義
 1.4 TISパルス時間幅の定義
2.比較例に係るレーザ装置の概要
 2.1 構成
 2.2 動作
 2.3 課題
3.実施形態1
 3.1 構成
 3.2 動作
 3.3 作用・効果
 3.4 その他
4.実施形態2
 4.1 構成
 4.2 動作
 4.3 作用・効果
 4.4 その他
5.レーザ装置のバリエーション
 5.1 フリーランのエキシマレーザ装置
  5.1.1 構成
  5.1.2 動作
  5.1.3 作用・効果
 5.2 固体レーザシステムをマスターオシレータとして含むエキシマレーザ装置
  5.2.1 構成
  5.2.2 動作
  5.2.3 変形例
6.各種の制御部のハードウェア構成について
7.電子デバイスの製造方法について
8.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.用語の説明
 1.1 E95の定義
 スペクトル線幅とは、図1に示すようなレーザ光のスペクトル波形の光量閾値における全幅である。本明細書では、光量ピーク値に対する各光量閾値の相対値を線幅閾値Thresh(0<Thresh<1)ということにする。例えばピーク値の半値を線幅閾値0.5という。なお線幅閾値0.5におけるスペクトル波形の全幅W/2を特別に半値全幅又はFWHM(Full Width at Half Maximum)という。
 スペクトル純度、例えば95%純度E95とは、図2に示すように、全スペクトルエネルギのうち波長λを中心として95%を占める部分の全幅W95%であって、下記の式(1)が成り立つ。
Figure JPOXMLDOC01-appb-M000001
 なお本明細書で特に何も述べない場合は、スペクトル純度をE95として説明する。
 1.2 コヒーレント長の定義
 レーザ光の中心波長をλ、スペクトル線幅をΔλとすると、レーザ光のコヒーレント長は下記の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 1.3 スペックルコントラストの定義
 スペックルとは、レーザ光がランダムな媒質で散乱したときに生じる明暗の斑点である。図3は、明暗の斑点からなるパターンを撮像したスペックル画像の一例を示す図である。また、図4は、図3に示したスペックル画像の明暗のヒストグラムを示す図である。
 スペックル評価指標として、一般的にスペックルコントラストSCが使用される。スペックル画像の強度の標準偏差をσ、スペックル画像の強度の平均をIマクロン(Iの上にマクロンが記されたもの)とすると、スペックルコントラストSCは、下記の式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 パルスレーザ光のパルス幅を伸ばすと、コヒーレンスが低下しスペックルコントラストSCが小さくなる。
 1.4 TISパルス時間幅の定義
 レーザ光のパルス時間幅を表す指標の1つとしてTISパルス時間幅が用いられる。
 TISパルス時間幅ΔTTISは、以下の式(4)によって定義される。
Figure JPOXMLDOC01-appb-M000004
 ここで、tは時間である。I(t)は時間tにおける光強度である。本明細書において「TIS幅」とは、TISパルス時間幅を指す。
 2.比較例に係るレーザ装置の概要
 2.1 構成
 図5は、比較例に係るエキシマレーザ装置10の構成例を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 エキシマレーザ装置10は、発振器12と、光学パルスストレッチャ(Optical Pulse Stretcher:OPS)システム14と、モニタモジュール16と、シャッタ18と、レーザ制御部20とを含む。OPSシステム14は、第1のOPS100と、第2のOPS200とを含む。発振器12から出力されるパルスレーザ光の光路上に、第1のOPS100と、第2のOPS200と、モニタモジュール16と、シャッタ18とがこの順序で配置される。
 第1のOPS100の遅延光路の光路長をL1、第2のOPS200の遅延光路の光路長をL2とすると、第2のOPS200の遅延光路の光路長L2は、L1に対して2以上の整数倍に設定される。例えば、光路長L2は、L1の2倍の長さに設定される。
 発振器12は、チャンバ120と、充電器122と、パルスパワーモジュール(PPM)124と、狭帯域化装置126と、出力結合ミラー128とを含む。
 狭帯域化装置126は、図示しないプリズムビームエキスパンダと、図示しないグレーティングとを含む。プリズムビームエキスパンダとグレーティングとは、入射角度と回折角度とが一致するようにリトロー配置される。
 出力結合ミラー128は、反射率が40%~60%の反射ミラーである。出力結合ミラー128と狭帯域化装置126とは、光共振器を構成する。チャンバ120は、光共振器の光路上に配置される。
 チャンバ120は、1対の電極130a,130bと、絶縁部材132と、フロント側ウインドウ134と、リア側ウインドウ136とを含む。チャンバ120の中には、ArF又はKrF又はXeCl又はXeFのレーザガスが収容される。
 電極130aは、絶縁部材132を介してPPM124の高電圧の出力端子と接続される。電極130bはグランドに接続される。電極130aと電極130bとは、所定のギャップ間隔となるように配置される。電極130a,130bは放電電極であり、電極130a,130b間の空間が放電空間(放電領域)となる。
 フロント側ウインドウ134とリア側ウインドウ136は、放電空間で発生したレーザ光が透過するように配置される。
 PPM124は、スイッチ125と図示しない充電コンデンサとを含む。スイッチ125は、レーザ制御部20からのスイッチ125のON信号を伝送する信号ラインと接続される。
 充電器122は、PPM124の充電コンデンサと接続される。充電器122は、レーザ制御部20からの充電電圧のデータを受信し、PPM124の充電コンデンサを充電する。
 第1のOPS100は、ビームスプリッタBS1と、4枚の凹面ミラー101~104とを含む。ビームスプリッタBS1は、発振器12から出力されたパルスレーザ光の光路上に配置される。ビームスプリッタBS1は、入射したパルスレーザ光の一部を反射し、他の一部を透過する膜がコートされている。ビームスプリッタBS1の反射率は40%~70%であることが好ましく、約60%であることがより好ましい。
 凹面ミラー101~104は、ビームスプリッタBS1の第1の面で反射されたパルスレーザ光の遅延光路を構成する。凹面ミラー101~104のそれぞれは、焦点距離が全て略同じf1の凹面ミラーである。
 凹面ミラー101と凹面ミラー102とは、ビームスプリッタBS1の第1の面で反射されたパルスレーザ光を凹面ミラー101で反射し、凹面ミラー102に入射するように配置される。凹面ミラー103と凹面ミラー104とは、凹面ミラー102で反射されたパルスレーザ光を凹面ミラー103で反射し、凹面ミラー104に入射するように配置される。凹面ミラー104は、凹面ミラー104で反射されたパルスレーザ光がビームスプリッタBS1の第1の面とは反対側の第2の面に入射するように配置される。
 凹面ミラー101と凹面ミラー102とは、ビームスプリッタBS1の第1の面で反射されたパルスレーザ光が、ビームスプリッタBS1の第1の面における像を第1の像として反転して結像させるように配置される。凹面ミラー103と凹面ミラー104とは、第1の像を、再びビームスプリッタBS1に戻し、ビームスプリッタBS1の第2の面に第2の像として正転して結像させるように配置される。この場合は、第1のOPS100の遅延光路の光路長L1は、L1=8×f1となる。光路長L1は、第1のOPS100の遅延光路の一周遅延光路長を指す。一例として、第1のOPS100の光路長L1は7mである。
 ビームスプリッタBS1は、ビームスプリッタBS1の第1の面で反射されずに透過したパルスレーザ光を第2のOPS200に入射させるように配置される。
 第2のOPS200は、第1のOPS100から出力されたパルスレーザ光の光路上に配置される。第2のOPS200は、ビームスプリッタBS2と、凹面ミラー201~204とを含む。ビームスプリッタBS2は、ビームスプリッタBS1と同様の構成であってよい。凹面ミラー201~204のそれぞれは、焦点距離が全て略同じf2の凹面ミラーである。焦点距離f2は、焦点距離f1よりも長い焦点距離である。
 第2のOPS200におけるビームスプリッタBS2と凹面ミラー201~204とは、第1のOPS100におけるビームスプリッタBS1と凹面ミラー101~104と同様の配置関係に配置される。この場合は、第2のOPS200の遅延光路の光路長L2は、L2=8×f2となる。光路長L2は、第2のOPS200の遅延光路の一周遅延光路長を指す。一例として、第2のOPS200の光路長L2は14mである。
 モニタモジュール16は、OPSシステム14から出力されたパルスレーザ光の光路上に配置される。モニタモジュール16は、ビームスプリッタ162と光センサ164とを含む。光センサ164はレーザ制御部20と接続され、光センサ164の検出データはレーザ制御部20に送信される。シャッタ18は、モニタモジュール16を透過したパルスレーザ光の光路上に配置される。シャッタ18は、シャッタ開閉の信号を伝送する信号ラインを介してレーザ制御部20と接続される。
 エキシマレーザ装置10から出力されたパルスレーザ光は、露光装置80に入力される。レーザ制御部20は、露光装置80の露光制御部82と接続される。レーザ制御部20と露光制御部82との間の信号ラインには、発光トリガ信号Trの信号ラインと、目標パルスエネルギEtのデータの信号ラインと、その他の信号の受け渡しを行う信号ラインとが含まれる。なお、発振器12とOPSシステム14との間に、図示しないレーザチャンバを含む増幅器を配置してもよい。
 2.2 動作
 レーザ制御部20は、露光制御部82から目標パルスエネルギEtと発振準備信号を受信すると、シャッタ18を閉じる信号を出力し、エキシマレーザ装置10の出射口を閉じる。レーザ制御部20は、所定の繰り返し周波数で発光トリガ信号Trに同期してPPM124のスイッチ125をONすると、発振器12の電極130a,130b間に高電圧が印加される。
 電極130a,130b間で絶縁破壊が発生すると、電極130a,130b間で放電が発生し、レーザガスが励起される。その結果、狭帯域化装置126と出力結合ミラー128とから構成される光共振器でレーザ発振し、狭帯域化したパルスレーザ光が出力結合ミラー128から出力される。
 出力結合ミラー128から出力されたパルスレーザ光は、OPSシステム14に入射する。OPSシステム14に入射したパルスレーザ光は、第1のOPS100のビームスプリッタBS1の第1の面に入射する。ビームスプリッタBS1の第1の面に入射したパルスレーザ光のうちの一部は、ビームスプリッタBS1を透過し、遅延光路を周回していない0周回光のパルスレーザ光として第1のOPS100から出力される。
 ビームスプリッタBS1の第1の面に入射したパルスレーザ光のうち、第1の面で反射されたパルスレーザ光は、第1のOPS100の遅延光路に進入し、凹面ミラー101と凹面ミラー102とにより反射される。ビームスプリッタBS1の第1の面によって反射されたパルスレーザ光の光像は、凹面ミラー101と凹面ミラー102とにより、第1の転写像として結像される。そして第1の転写像は、凹面ミラー103と凹面ミラー104とによって、ビームスプリッタBS1の第2の面に第2の転写像として結像する。
 凹面ミラー104からビームスプリッタBS1の第2の面に入射したパルスレーザ光の一部は、ビームスプリッタBS1の第2の面により反射され、第1のOPS100の遅延光路を1周回した1周回光のパルスレーザ光として第1のOPS100から出力される。この1周回光のパルスレーザ光は、0周回光のパルスレーザ光から遅延時間Δt1だけ遅れて出力される。このΔt1は、光速をcとすると、Δt1=L1/cと表すことができる。
 第2の転写像としてビームスプリッタBS1の第2の面に入射したパルスレーザ光のうち、ビームスプリッタBS1を透過したパルスレーザ光は、さらに第1のOPS100の遅延光路に進入し、凹面ミラー101~104により反射されて、再びビームスプリッタBS1の第2の面に入射する。そして、ビームスプリッタBS1の第2の面により反射されたパルスレーザ光は、遅延光路を2周回した2周回光のパルスレーザ光として第1のOPS100から出力される。この2周回光のパルスレーザ光は、1周回光のパルスレーザ光から遅延時間Δt1だけ遅れて出力される。
 この後、光の遅延光路の周回が繰り返されることにより、第1のOPS100からは、3周回光、4周回光、5周回光・・・のそれぞれのパルスレーザ光が出力される。第1のOPS100から出力されるパルス光は、遅延光路の周回数が多くなるほど光強度が低下する。
 第1のOPS100の遅延光路を周回したパルスレーザ光は、0周回光のパルスレーザ光に対して遅延時間Δt1の整数倍だけ遅れて合成されて出力されることにより、それぞれの周回光のパルスレーザ光のパルス波形が重畳される。結果として、パルス幅が伸長される。
 第1のOPS100から出力されたパルスレーザ光は、同様に、第2のOPS200によってパルス幅が伸長される。
 こうして、発振器12の出力結合ミラー128から出力されたパルスレーザ光が第1のOPS100と第2のOPS200の各遅延光路を複数回通過することによって、パルスレーザ光のパルス幅が伸長される。
 第1のOPS100及び第2のOPS200を通過したパルスレーザ光の一部は、ビームスプリッタ162によって反射され、光センサ164に入射する。光センサ164は入射したパルスレーザ光のパルスエネルギEを計測する。その計測結果を示すデータは光センサ164からレーザ制御部20に送信される。
 レーザ制御部20は、目標パルスエネルギEtと、計測されたパルスエネルギEとの差ΔEが0に近づくように充電器122を設定する。
 レーザ制御部20は、ΔEが許容範囲内に入ったら、露光制御部82に発振準備完了信号を送信し、シャッタ18を開ける。レーザ制御部20は、露光制御部82からの発光トリガ信号Trに同期して、PPM124のスイッチ125をONすることによって、発振器12からパルスレーザ光が出力され、OPSシステム14によってパルス伸長され、かつ、目標パルスエネルギEtに近いパルスエネルギのパルスレーザ光がエキシマレーザ装置10から出力される。
 エキシマレーザ装置10から出力されたパルスレーザ光が露光装置80に入射し、図示しない半導体ウエハ等のレジストにパルスレーザ光が照射される。
 2.3 課題
 スペックルコントラストは、パルスレーザ光のパルス幅及びコヒーレント長と相関があり、パルスレーザ光のパルス幅を伸ばすと、コヒーレンスが低下しスペックルコントラストが小さくなる。スペックルコントラストを低減する目的でパルス幅を伸長するために、光路上にOPSを追加する必要があった。パルス幅を大きく伸長する例は特許文献1(米国特許第5309456号)等により知られている。また、光路上にOPSを3段以上に接続する例は特許文献2(米国特許第6238063号)等により知られている。
 しかし、光路上に3段以上のOPSを直列に配置する場合の最適な遅延光路の光路長の組み合わせ条件は知られていなかった。
 図6は、比較例に係るエキシマレーザ装置10から出力されるパルスレーザ光のパルス波形を例示的に示す。図6には、第1のOPS100の光路長L1が7m、第2のOPS200の光路長L2が14mである場合の例が示されている。7mの遅延光路を一周した場合の遅延時間は約23.3nsとなる。第2のOPS200の光路長L2は、パルス波形のピークが第1のOPS100のピークと重なるように、L1の整数倍、具体的には2以上の整数倍に設定される。
 このようなOPSシステム14を備えるエキシマレーザ装置10の構成に対して、さらにパルス幅を伸長するために、OPSシステム14にさらなるOPSを追加する場合、比較的短い遅延光路長の追加によって効率よくパルス幅を伸長することが望まれる。
 3.実施形態1
 3.1 構成
 図7は、実施形態1に係るエキシマレーザ装置10Aの構成を概略的に示す。図7に示すエキシマレーザ装置10Aについて、図5に示す構成と異なる点を説明する。実施形態1に係るエキシマレーザ装置10Aは、図5に示すOPSシステム14に代えて、第3のOPS300を含むOPSシステム14Aを備える。
 第1のOPS100及び第2のOPS200の構成は図5に示す構成と同様である。第3のOPS300は、第2のOPS200とモニタモジュール16との間の光路上に配置される。すなわち、第1のOPS100、第2のOPS200及び第3のOPS300はパルスレーザ光の光路上に直列に配置される。
 エキシマレーザ装置10Aは本開示における「レーザ装置」の一例である。発振器12は本開示における「レーザ発振器」の一例である。OPSシステム14Aは本開示における「パルス幅伸長装置」の一例である。第1のOPS100は本開示における「第1の光学パルスストレッチャ」の一例である。第2のOPS200は本開示における「第2の光学パルスストレッチャ」の一例である。第3のOPS300は本開示における「第3の光学パルスストレッチャ」の一例である。
 第3のOPS300は、ビームスプリッタBS3と、凹面ミラー301~304とを含む。ビームスプリッタBS3は、パルスレーザ光の光路上に配置され、パルスレーザ光の一部を反射し、一部を透過する膜がコートされている。ビームスプリッタBS3の反射率は約60%が好ましい。
 凹面ミラー301~304のそれぞれは、焦点距離が全て略同じf3の凹面ミラーである。焦点距離f3は、焦点距離f1よりも長い焦点距離である。ビームスプリッタBS3と凹面ミラー301~304とは、第1のOPS100におけるビームスプリッタBS1と凹面ミラー101~104と同様の配置関係に配置される。この場合、第3のOPS300の遅延光路の光路長L3は、L3=8×f3となる。光路長L3は、第3のOPS300の遅延光路の一周遅延光路長を指す。
 第1のOPS100、第2のOPS200及び第3のOPS300の3段のOPSを含む構成において、これらのうち最も短い光路長を持つ第1のOPS100の光路長L1に対し、追加された第3のOPSの光路長L3を、L1の整数倍からずれた値に設定する。具体的には、第1のOPS100の光路長をL1とすると、第3のOPS300の遅延光路の光路長L3を、次式(5)で表される条件を満たすように設定する。
 [条件1]
 (n-0.75)×L1 ≦L3≦(n-0.25)×L1  (5)
 式(5)中のnは2以上の整数である。例えば、n=5であってもよい。
 光路長L3は、式(6)を満たすことが、さらに望ましい。
 (n-0.65)×L1 ≦L3≦(n-0.35)×L1  (6)
 3.2 動作
 以下、条件1を満たすように、OPSシステム14Aの光路長を設定する場合の例を説明する。既述のとおり、第1のOPS100の光路長L1が7mの場合、第1のOPS100を一周した場合の遅延時間は約23.3nsとなる。ここで、第1のOPS100の光路長L1を7mに設定した理由は次のとおりである。すなわち、発振器12から出力されるパルスレーザ光のパルス幅は、およそ40nsである。このパルスレーザ光に対して、1段の、なるべく短い光路長のOPSでパルス幅を効率よく伸長するために、第1のOPS100を一周した場合の遅延時間を、40nsの約半分の23.3nsとするように、光路長L1が設定されている。
 第2のOPSの光路長L2は、第2のOPS200の遅延光路を経由したパルスのパルス波形のピークが第1のOPS100から出たパルス波形のピークと重なるように設定される。すなわち、L2は、L1の2以上の整数倍に設定される。ここでの「整数倍」という記載は、厳密な整数倍に限定されず、おおむね整数倍であればよく、例えば、ある整数に対して±0.25以内の許容範囲が含まれてもよい。
 第2のOPS200の光路長L2の一例として、第2のOPS200の遅延光路を一周した場合の遅延時間が、ほぼ23.3×2=46.6nsとなるように、L2=12.25m~15.75m(40.8ns~52.4ns)とする。
 第3のOPSの遅延光路の光路長L3は、パルス波形のピークが第1のOPSのピーク間の谷を埋めるように設定される。すなわち、L3は、L1に対して「2以上の整数+0.5」倍に設定される。ここでの「0.5倍」という記載は、厳密な0.5倍に限定されず、おおむね0.5倍であればよく、例えば、0.5に対して±0.25以内の許容範囲が含まれてもよい。第3のOPS300の光路長L3の一例として、第3のOPS300を一周した場合の遅延時間が、ほぼ23.3×4.5=104.9nsとなるように、L3=29.75m~33.25m(99.0ns~110.7ns)とする。
 図8は、第1のOPS100、第2のOPS200及び第3のOPS300のそれぞれの光路長L1,L2,L3の設定例を示す図表である。ここでは、光路長L1と光路長L2をそれぞれ7mと14mに固定し、光路長L3の設定を変えた場合に実現されるパルス幅(TIS幅)が示されている。
 図8中の「比較例1」は、L3をL1の整数倍(ここでは5倍を例示)に設定したものである。比較例1では、パルス幅が298.1nsとなり、TIS/(L2+L3)は6.08である。TIS/(L2+L3)の値は、遅延光路の光路長の増加量に対するパルス幅の増加割合を示しており、OPSの効率を示す指標である。TIS/(L2+L3)の値が大きいほど、効率よくパルス幅を伸長できていることを表す。
 実施例A~Eは、式(5)の条件1に基づいて光路長L3を設定する場合の例である。実施例Aは、L3=33.25m=5×L1-0.25×L1の例である。実施例Aは比較例1と比べて、短い光路長で、より大きなパルス幅を実現できている。
 実施例Bは、L3=32.55m=5×L1-0.35×L1の例である。実施例Bは実施例Aよりもさらに好ましい構成であり、実施例Aと比べて、さらに短い光路長で、より大きなパルス幅を実現できている。
 図9は、比較例1に係るOPSシステムを用いた場合に得られたパルス波形を示す。図10は、実施例Bに係るOPSシステム14Aを用いた場合に得られたパルス波形を示す。これらの図面から明らかなように、実施例Bによれば、比較例1に比べて、パルスの山と谷の差が小さくなり、比較例1よりも短い光路長で、効率よくパルス幅を伸長できている。
 図8の図表に示される実施例A~Eのうち、TIS/(L2+L3)が最も大きくなるのは、実施例Dである。実施例Dは比較例1に比べてパルス幅が大きく、かつ、TIS/(L2+L3)も大きい。
 実施例Eは、比較例1に比べてパルス幅は僅かに小さくなるものの、TIS/(L2+L3)は大きく、効率よくパルス幅を伸長できている。
 光路長L3は、2以上の整数nと、光路長係数kとを用いて、L3=n×L1-k×L1=(n-k)×L1と表すことができる。kは0≦k<1を満たす値である。比較例1は、k=0の場合であり、実施例Bはk=0.35の場合である。
 図11は、光路長係数に対するTIS/(L2+L3)の変化を示すグラフである。横軸は光路長係数を表し、縦軸はTIS/(L2+L3)を表す。図11には、比較例1及び実施例A~Eのそれぞれの光路長係数とTIS/(L2+L3)とがプロットされている。図11から明らかなように、なるべく短い光路長で効率よくパルス幅を伸長する観点から、光路長係数kは0.25≦k≦0.75であることが好ましく、さらに好ましくは0.35≦k≦0.65であり、0.5≦k≦0.65を満たすことが特に好ましい。
 3.3 作用・効果
 実施形態1に係るOPSシステム14Aによれば、比較的短い光路長で効率よくパルス幅を伸長することができる。また、OPSシステム14Aを備えたエキシマレーザ装置10Aによれば、比較例1に係るOPSシステムを備えた構成と比較してTIS/(L2+L3)が大きくなる。
 エキシマレーザ装置10Aによれば、パルス幅が伸長されたレーザ光を生成することができ、スペックルを低減できる。
 3.4 その他
 パルスレーザ光の光路上における第1のOPS100、第2のOPS200及び第3のOPS300の並び順は、図7の例に限らず、適宜に入れ替え可能である。光路長L1、L2及びL3の数値の組み合わせが同じであれば、光路上における第1のOPS100、第2のOPS200及び第3のOPS300の配置順序によらず、同等のパルス幅が実現される。
 また、図7では、第1のOPS100、第2のOPS200及び第3のOPS300のそれぞれについて、4つの凹面ミラーを用いて遅延光路を形成する例を示したが、OPSの構成はこの例に限らない。OPSは、5つ以上の凹面ミラーを含む構成であってもよく、例えば6枚以上の凹面ミラーを含む構成であってもよい。また、OPSは、凹面ミラー以外のミラーを含んで構成されてもよい。
 4. 実施形態2
 4.1 構成
 図12は、実施形態2に係るエキシマレーザ装置10Bの構成を概略的に示す。図12に示す構成について、図7に示すエキシマレーザ装置10Aと異なる点を説明する。図12に示すエキシマレーザ装置10Bは、図7におけるOPSシステム14Aに代えて、第4のOPS400を含むOPSシステム14Bを備える。第1のOPS100、第2のOPS200、第3のOPS300及び第4のOPS400は、パルスレーザ光の光路上に直列に配置される。他の構成は図7の構成と同様であってよい。エキシマレーザ装置10Bは本開示における「レーザ装置」の一例である。OPSシステム14Bは本開示における「パルス幅伸長装置」の一例である。第4のOPS400は本開示における「第4の光学パルスストレッチャ」の一例である。
 第4のOPS400は、第3のOPS300とモニタモジュール16との間の光路上に配置される。第4のOPS400は、ビームスプリッタBS4と、凹面ミラー401~404とを含む。
 ビームスプリッタBS4は、ビームスプリッタBS1と同様の構成であってよい。凹面ミラー401~404のそれぞれは、焦点距離が全て略同じf4の凹面ミラーである。焦点距離f4は、焦点距離f1よりも長い焦点距離である。
 第4のOPS400におけるビームスプリッタBS4と凹面ミラー401~404とは、第1のOPS100におけるビームスプリッタBS1と凹面ミラー101~104と同様の配置関係に配置される。この場合は、第4のOPS400の遅延光路の光路長L4は、L4=8×f4となる。光路長L4は、第4のOPS400の遅延光路の一周遅延光路長を指す。
 第1のOPS100、第2のOPS200、第3のOPS300及び第4のOPS400を含む4段のOPSを含む構成の場合に、これらのうち最も短い光路長を持つ第1のOPS100の光路長L1に対し、第3のOPSの光路長L3及び第4のOPSの光路長L4のそれぞれを、下記の条件を満たすように設定する。
 [条件1]
 (n-0.75)×L1 ≦L3≦(n-0.25)×L1  (5)
 光路長L3は、既述の式(6)を満たす方がさらに望ましい。
 [条件2]
 (m-0.25)×L1 ≦L4≦(m+0.25)×L1  (7)
 式中のnとmは、それぞれ2以上の整数である。nとmは同じ値であってもよいし、異なる値であってもよく、例えば、n=5、m=6であってもよい。nとmとは互いに独立に定めることができる。
 第3のOPS300の光路長L3が条件1を満たすことで、第3のOPS300の遅延光路を周回したパルスレーザ光は、光路長L1の遅延光路によって生じるパルス波形の谷の部分を埋める。また、第4のOPS400の光路長L4が条件2を満たすことで、第4のOPS400の遅延光路を周回したパルスレーザ光は、光路長L1の遅延光路によって生じるパルス波形のピークと重なる。
 4.2 動作
 第1のOPS100の光路長L1と、第2のOPS200の光路長L2と、第3のOPS300の光路長L3との各光路長の設定条件は実施形態1と同様であってよい。
 第3のOPS300の光路長L3は、パルス波形のピークが第1のOPS100、第2のOPS200及び第4のOPS400のピーク-ピーク間の谷を埋めるように設定される。例えば、光路長L3は、第3のOPS300を一周した場合の遅延時間が、ほぼ23.3×4.5=104.9[ns]となるように、L3=29.75[m]~33.25[m](99.0[ns]~110.7[ns])とする。
 第4のOPS400の光路長L4は、第4のOPS400の遅延光路を経由したパルスのパルス波形のピークが第1のOPS100から出たパルス波形のピークと重なるように設定される。すなわち、光路長L4は、L1の2以上の整数倍に設定される。ここでの「整数倍」という記載は、L2の場合と同様に、厳密な整数倍に限定されず、おおむね整数倍であればよく、例えば、ある整数に対して±0.25以内の許容範囲が含まれてもよい。
 第4のOPS400の光路長L4の一例として、第4のOPS400を一周した場合の遅延時間が、ほぼ23.3×6=139.8[ns]となるように、L4=40.25[m]~43.75[m](134.0[ns]~145.6[ns])とする。
 図13は、第1のOPS100、第2のOPS200、第3のOPS300及び第4のOPS400のそれぞれの光路長L1,L2,L3,L4の設定例を示す図表である。ここでは、光路長L1と光路長L2をそれぞれ7mと14mに固定し、光路長L3及び光路長L4の設定を変えた場合に実現されるパルス幅(TIS幅)の例が示されている。
 図13中の「比較例2」は、L3をL1の5倍に設定し、L4をL1の6倍に設定した構成である。比較例2では、伸長後のパルス幅が467.3nsとなり、TIS/(L3+L4)は6.07である。TIS/(L3+L4)の値は、光路長の増加量に対するパルス幅の増加割合を示しており、OPSの効率を示す指標である。TIS/(L3+L4)の値が大きいほど、効率よくパルス幅を伸長できていることを表す。
 実施例F~Lは、式(5)の条件1及び式(7)の条件2に基づいて光路長L3及び光路長L4を設定する場合の例である。実施例Fは、L3=33.25[m]=5×L1-0.25×L1、L4=42[m]=6×L1の例である。実施例Fは、L3+L4=75.25mの光路増加によって、525.6nsのパルス幅が実現されており、TIS/(L3+L4)は、6.98である。実施例Fは比較例2と比べて、短い光路長で、より大きなパルス幅を実現できている。
 実施例Gは、L3=32.55[m]=5×L1-0.35×L1、L4=42[m]=6×L1の例である。実施例Gは実施例Fよりもさらに好ましい構成であり、実施例Fと比べて、さらに短い光路長で、より大きなパルス幅を実現できている。図13に例示した実施例F~Lのうち、パルス幅が最も大きくなるのは実施例Gである。
 図14は、比較例2に係るOPSシステムを用いた場合に得られたパルス波形を示す。図15は、実施例Gに係るOPSシステム14Bを用いた場合に得られたパルス波形を示す。これらの図面から明らかなように、実施例Gによれば、比較例2に比べて、パルス波形の山と谷の差が小さくなり、比較例2よりも短い光路長で、パルス幅を伸長できている。
 図13に例示した実施例F~Lのうち、TIS/(L3+L4)が最も大きくなるのは、実施例Iである。実施例Iは比較例2に比べてパルス幅が大きく、かつ、TIS/(L3+L4)も大きい。実施例Iは実施例Gに比べてパルス幅は小さいものの、TIS/(L3+L4)は大きく、効率よくパルス幅を伸長できている。
 図16は、光路長係数に対するTIS/(L3+L4)の変化を示すグラフである。横軸は光路長係数を表し、縦軸はTIS/(L3+L4)を表す。図16には、比較例2及び実施例F~Jのそれぞれの光路長係数kとTIS/(L3+L4)とがプロットされている。図16から明らかなように、なるべく短い光路長で効率よくパルス幅を伸長する観点から、光路長係数kは0.25≦k≦0.75であることが好ましく、さらに好ましくは0.35≦k≦0.65であり、0.5≦k≦0.65を満たすことが特に好ましい。
 4.3 作用・効果
 実施形態2によれば、比較的短い光路長で効率よくパルス幅を伸長することができる。実施形態1に比べて、さらに効率良くパルス幅を伸長することができる。
 4.4 その他
 パルスレーザ光の光路上における第1のOPS100、第2のOPS200、第3のOPS300及び第4のOPS400の並び順は、図12の例に限らず、適宜に入れ替え可能である。光路長L1、L2、L3及びL4の数値の組み合わせが同じであれば、光路上における第1のOPS100、第2のOPS200、第3のOPS300及び第4のOPS400の配置順序によらず、同等のパルス幅が実現される。また、図12に例示した第4のOPS400の構成に限らず、第4のOPS400は、5つ以上の凹面ミラーを含む構成であってもよく、また、凹面ミラー以外のミラーを含んで構成されてもよい。
 5.レーザ装置のバリエーション
 5.1 フリーランのエキシマレーザ装置
 5.1.1 構成
 図17は、フリーランのエキシマレーザ装置10Cを適用したレーザ照射システムの構成例を概略的に示す。図17に示す構成について、図7と異なる点を説明する。
 図7に示す発振器12は狭帯域化装置126を備えるのに対し、図17に示す発振器12Cは狭帯域化装置126に代えてリアミラー127を備える。リアミラー127は高反射ミラーであってよい。発振器12Cは本開示における「レーザ発振器」の一例である。
 また、図17に示すレーザ照射システムは、図7の露光装置80に代えて、レーザ光照射装置90を備える。レーザ光照射装置90は、例えば、レーザ光で基板等を加工するレーザ加工機、又はアモルファスシリコンを多結晶化するレーザアニール装置などであってもよい。また、レーザ光照射装置90は、レーザドーピングを行うレーザドーピング装置であってもよい。
 レーザ光照射装置90は、レーザ光照射制御部92を備える。レーザ光照射制御部92はプロセッサを含み、レーザ光照射装置90を制御する。レーザ光照射制御部92は、レーザ制御部20と接続される。レーザ光照射制御部92は、レーザ制御部20に対して、図7における露光制御部82と類似する役割を果たす。
 5.1.2 動作
 発振器12Cからはフリーランのスペクトル波形のパルスレーザ光が出力される。発振器12Cから出力されたパルスレーザ光はOPSシステム14Aによってパルス伸長される。エキシマレーザ装置10Cから出力されたパルスレーザ光はレーザ光照射装置90に入射する。
 レーザ光照射装置90において、図示しない基板等の被照射物にパルスレーザ光が照射されることにより、材料の加工、アニール又はドーピング等が行われる。被照射物は、例えば、半導体、ガラス、セラミックなど、様々な材料があり得る。レーザ光照射装置90内で被照射物にパルスレーザ光を照射した後、複数の工程を経ることで様々な電子デバイスを製造できる。
 5.1.3 作用・効果
 エキシマレーザ装置10Cによれば、実施形態1と同様に、比較的短い光路長で効率よくパルス幅を伸長することができ、図17に示すレーザ光照射装置90においても、照射ビームのスペックルが低減される。なお、図17に示すエキシマレーザ装置10CのOPSシステム14Aを、図12におけるOPSシステム14Bに置き換える構成を採用することも可能である。
 5.2 固体レーザシステムをマスターオシレータとして含むエキシマレーザ装置
 5.2.1 構成
 図18は、波長可変の固体レーザシステムをマスターオシレータとして含むエキシマレーザ装置12Dの構成例を概略的に示す。図7及び図12で説明した発振器12又は図17で説明した発振器12Cに代えて、図18に示すエキシマレーザ装置12Dを適用することができる。
 エキシマレーザ装置12Dは、固体レーザシステム40とエキシマ増幅器50とを含むMOPA(Master Oscillator Power Amplifier)レーザである。固体レーザシステム40は、シード光を出力する半導体レーザ41と、半導体光増幅器(Semiconductor Optical Amplifier:SOA)42と、シード光を増幅するチタンサファイヤ増幅器43と、波長変換システム46と、固体レーザ制御部48とを含む波長可変固体レーザシステムである。
 半導体レーザ41は、波長約773.6nmのCWレーザ光を出力する分布帰還型(Distributed Feedback:DFB)の半導体レーザである。以後、半導体レーザ41を「DFBレーザ41」という。DFBレーザ41は、半導体レーザ素子の温度又は電流値を制御することによって、発振波長を可変する構成である。
 SOA42は、半導体にパルス電流を流すことによって、CWもしくはパルスのシード光を所定のパルス幅のパルスレーザ光に変換する半導体素子である。SOA42は、DFBレーザ41から出力されたCWレーザ光をパルス化し、パルス増幅されたパルスレーザ光を出力する。
 チタンサファイヤ増幅器43は、チタンサファイヤ結晶44と、ポンピング用パルスレーザ45とを含む。チタンサファイヤ結晶44は、SOA42でパルス増幅されたパルスレーザ光の光路上に配置される。ポンピング用パルスレーザ45は、例えば、YLFレーザの第2高調波光を出力するレーザ装置である。YLF(イットリウムリチウムフルオライド)は、化学式LiYFで表される固体レーザ結晶である。
 波長変換システム46は、第4高調波を発生させる波長変換システムであって、図示しないLBO結晶及びKBBF結晶を含む。LBO結晶は化学式LiBで表される非線形光学結晶である。KBBF結晶は、化学式KBeBOで表される非線形光学結晶である。これらの非線形光学結晶のそれぞれは、図示しない回転ステージ上に配置され、結晶への入射角度が変化できるように構成されている。波長変換システム46は、773.6nmのパルスレーザ光を波長変換して、波長約193.4nmのパルスレーザ光を出力する。
 エキシマ増幅器50は、チャンバ52と、PPM54と、充電器56と、凸面ミラー61と、凹面ミラー62とを含む。チャンバ52は、ウインドウ71,72と、1対の電極74a,74bと、電気絶縁部材75とを含む。チャンバ52の内部にはArFレーザガスが収容される。
 エキシマ増幅器50は、電極74a,74b間の放電空間に、波長193.4nmのシード光を3回通して増幅を行う構成である。
 凸面ミラー61と凹面ミラー62は、チャンバ52の外側において、固体レーザシステム40から出力されたパルスレーザ光が3パスしてビーム拡大するように配置される。
 エキシマ増幅器50に入射した波長約193.4nmのシード光は、凸面ミラー61及び凹面ミラー62で反射することにより、電極74a,74b間の放電空間を3回通過する。これにより、シード光のビームが拡大されて増幅される。
 5.2.2 動作
 レーザ制御部20は、目標波長λtと目標パルスエネルギEtを受信すると、固体レーザ制御部48に目標波長λtを送信し、目標パルスエネルギEtとなるように充電電圧を充電器56に設定する。
 固体レーザ制御部48は、レーザ制御部20から目標波長λtが入力されると、波長変換システム46から出力されるレーザ光の波長がλtとなるように、DFBレーザ41の目標発振波長λ1tを変更する。目標発振波長λ1tは、目標波長λtの4倍(λ1t=4λt)である。固体レーザ制御部48は、DFBレーザ41に流れる電流値の制御によって発振波長を高速に変更する。
 また、固体レーザ制御部48は、波長変換システム46におけるLBO結晶及びKBBF結晶の波長変換効率が最大となるような入射角度となるように、それぞれの結晶の回転ステージを制御する。
 固体レーザ制御部48は、レーザ制御部20から発光トリガ信号Trが入力されると、SOA42とポンピング用パルスレーザ45とに信号を送信する。その結果、SOA42にパルス電流が入力され、SOA42からパルス増幅されたパルスレーザ光が出力される。そして、チタンサファイヤ増幅器43において、さらにパルス増幅される。チタンサファイヤ増幅器43によってパルス増幅されたパルスレーザ光は、波長変換システム46に入射する。その結果、波長変換システム46から目標波長λtのパルスレーザ光が出力される。
 レーザ制御部20は、露光制御部82又はレーザ光照射制御部92から発光トリガ信号Trを受信すると、固体レーザシステム40から出力されたパルスレーザ光がエキシマ増幅器50のチャンバ52の放電空間に入射した時に放電が生じるように、PPM54のスイッチ55とポンピング用パルスレーザ45にそれぞれトリガ信号を与える。その結果、固体レーザシステム40から出力されたパルスレーザ光はエキシマ増幅器50で3パス増幅される。
 エキシマ増幅器50で増幅されたパルスレーザ光は、図7におけるOPSシステム14A又は図12におけるOPSシステム14B又は図17におけるOPSシステム14Aに入射する。エキシマレーザ装置12Dは本開示における「レーザ発振器」の一例である。
 OPSシステム14A又は14Bから出力されたパルスレーザ光は、モニタモジュール16のビームスプリッタ162によってサンプルされ、光センサ164によってパルスエネルギEが計測され、図示しない波長モニタによって波長λが計測される。
 レーザ制御部20は、計測されたパルスエネルギE及び波長λと、目標パルスエネルギEt及び目標波長λtとの差がそれぞれ0に近づくように、それぞれ、充電器56の充電電圧とDFBレーザ41の目標発振波長λ1tを制御する。
 モニタモジュール16のビームスプリッタ162を透過したパルスレーザ光は、シャッタ18を介して、露光装置80又はレーザ光照射装置90に入射する。
 5.2.3 変形例
 固体レーザシステムの実施形態として、図18の例に限定されることなく、例えば、波長1547.2nmのレーザ光を出力するDFBレーザと、SOAとを含む固体レーザシステムであって、波長変換システムが8倍高調波光(193.4nm光)を出力する固体レーザシステムであってもよい。
 図18では、エキシマ増幅器50としてマルチパス増幅器の例を示したが、この例に限定されることなく、例えば、ファブリペロ共振器又はリング共振器を備えた増幅器であってもよい。また、図18に示すエキシマ増幅器50を省略した構成を採用してもよく、固体レーザシステム40から出力されたパルスレーザ光をOPSシステム14A又はOPSシステム14Bに入射させてパルス幅を伸長してもよい。この場合、固体レーザシステム40は本開示における「レーザ発振器」の一例である。
 6.各種の制御部のハードウェア構成について
 レーザ制御部20、露光制御部82、レーザ光照射制御部92、固体レーザ制御部48及びその他の各制御部は、プロセッサを用いて構成される。例えば、これらの各制御部は、プロセッサを含むコンピュータのハードウェア及びソフトウェアの組み合わせによって実現することが可能である。ソフトウェアはプログラムと同義である。
 コンピュータは、CPU(Central Processing Unit)及びメモリなどの記憶装置を含んで構成される。CPUはプロセッサの一例である。プログラマブルコントローラはコンピュータの概念に含まれる。記憶装置は、有体物たる非一時的なコンピュータ可読媒体であり、例えば、主記憶装置であるメモリ及び補助記憶装置であるストレージを含む。コンピュータ可読媒体は、例えば、半導体メモリ、ハードディスクドライブ(Hard Disk Drive:HDD)装置、若しくはソリッドステートドライブ(Solid State Drive:SSD)装置又はこれらの複数の組み合わせであってよい。プロセッサが実行するプログラムはコンピュータ可読媒体に記憶されている。記憶装置はプロセッサに含まれていてもよい。
 また、コンピュータの処理機能の一部は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)に代表される集積回路を用いて実現してもよい。
 また、複数の制御部の機能を1台のコンピュータで実現することも可能である。さらに本開示において、プロセッサを含む装置は、ローカルエリアネットワークやインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムユニットは、ローカル及びリモート両方のメモリストレージデバイスに保存されてもよい。
 7.電子デバイスの製造方法について
 図19は、露光装置80の構成例を概略的に示す。露光装置80は、照明光学系804と投影光学系806とを含む。照明光学系804は、エキシマレーザ装置10Aから入射したレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系806は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
 露光装置80は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。エキシマレーザ装置10Aに限らず、エキシマレーザ装置10B又は10Cなどを用いてもよい。
 8.その他
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。例えば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (17)

  1.  パルスレーザ光を出力するレーザ発振器と、
     前記パルスレーザ光の光路上に配置された第1の光学パルスストレッチャと、
     前記パルスレーザ光の光路上に配置された第2の光学パルスストレッチャと、
     前記パルスレーザ光の光路上に配置された第3の光学パルスストレッチャと、
     を含み、
     前記第1の光学パルスストレッチャの遅延光路の光路長をL1、前記第2の光学パルスストレッチャの遅延光路の光路長をL2、前記第3の光学パルスストレッチャの遅延光路の光路長をL3、nを2以上の整数とした場合に、
     L2は、L1の2以上の整数倍であり、
     L3は、
     (n-0.75)×L1 ≦L3≦(n-0.25)×L1
    を満たす、レーザ装置。
  2.  請求項1に記載のレーザ装置であって、
     L3は、
     (n-0.65)×L1 ≦L3≦(n-0.35)×L1
    を満たす、レーザ装置。
  3.  請求項1に記載のレーザ装置であって、
     前記第1の光学パルスストレッチャ、前記第2の光学パルスストレッチャ及び前記第3の光学パルスストレッチャのそれぞれは、ビームスプリッタと、4つ以上の凹面ミラーとを含む、レーザ装置。
  4.  請求項1に記載のレーザ装置であって、
     前記第1の光学パルスストレッチャ、前記第2の光学パルスストレッチャ及び前記第3の光学パルスストレッチャが前記パルスレーザ光の光路上に直列に配置される、レーザ装置。
  5.  請求項1に記載のレーザ装置であって、
     前記パルスレーザ光の光路上に配置された第4の光学パルスストレッチャをさらに備える、レーザ装置。
  6.  請求項5に記載のレーザ装置であって、
     前記第4の光学パルスストレッチャの遅延光路の光路長をL4、mを2以上の整数とした場合に、
     L4は、
     (m-0.25)×L1 ≦L4≦(m+0.25)×L1
    を満たす、レーザ装置。
  7.  請求項5に記載のレーザ装置であって、
     前記第1の光学パルスストレッチャ、前記第2の光学パルスストレッチャ、前記第3の光学パルスストレッチャ及び第4の光学パルスストレッチャのそれぞれは、ビームスプリッタと、4つ以上の凹面ミラーとを含む、レーザ装置。
  8.  請求項5に記載のレーザ装置であって、
     前記第1の光学パルスストレッチャ、前記第2の光学パルスストレッチャ、前記第3の光学パルスストレッチャ及び第4の光学パルスストレッチャが前記パルスレーザ光の光路上に直列に配置される、レーザ装置。
  9.  請求項1に記載のレーザ装置であって、
     前記レーザ発振器は、狭帯域化モジュールを含むエキシマレーザ装置である、レーザ装置。
  10.  請求項1に記載のレーザ装置であって、
     前記レーザ発振器は、フリーランのエキシマレーザ装置である、レーザ装置。
  11.  請求項1に記載のレーザ装置であって、
     前記レーザ発振器は、固体レーザシステムである、レーザ装置。
  12.  請求項11に記載のレーザ装置であって、
     前記固体レーザシステムは、半導体レーザと、半導体光増幅器と、を含む、レーザ装置。
  13.  パルスレーザ光のパルス幅を伸長させるパルス幅伸長装置であって、
     前記パルスレーザ光の光路上に配置される第1の光学パルスストレッチャと、第2の光学パルスストレッチャと、第3の光学パルスストレッチャとを含み、
     前記第1の光学パルスストレッチャの遅延光路の光路長をL1、
     前記第2の光学パルスストレッチャの遅延光路の光路長をL2、
     前記第3の光学パルスストレッチャの遅延光路の光路長をL3、
     nを2以上の整数とした場合に、
     L2は、L1の2以上の整数倍であり、
     L3は、
     (n-0.75)×L1 ≦L3≦(n-0.25)×L1
    を満たす、パルス幅伸長装置。
  14.  請求項9に記載のパルス幅伸長装置であって、
     L3は、
     (n-0.65)×L1 ≦L3≦(n-0.35)×L1
    を満たす、パルス幅伸長装置。
  15.  請求項9に記載のパルス幅伸長装置であって、
     前記パルスレーザ光の光路上に配置される第4の光学パルスストレッチャをさらに備え、
     前記第4の光学パルスストレッチャの遅延光路の光路長をL4、
     mを2以上の整数とした場合に、
     L4は、
     (m-0.25)×L1 ≦L4≦(m+0.25)×L1
    を満たす、パルス幅伸長装置。
  16.  電子デバイスの製造方法であって、
     パルスレーザ光を出力するレーザ発振器と、
     前記パルスレーザ光の光路上に配置された第1の光学パルスストレッチャと、
     前記パルスレーザ光の光路上に配置された第2の光学パルスストレッチャと、
     前記パルスレーザ光の光路上に配置された第3の光学パルスストレッチャと、
     を含み、
     前記第1の光学パルスストレッチャの遅延光路の光路長をL1、前記第2の光学パルスストレッチャの遅延光路の光路長をL2、前記第3の光学パルスストレッチャの遅延光路の光路長をL3、nを2以上の整数とした場合に、
     L2は、L1の2以上の整数倍であり、
     L3は、
     (n-0.75)×L1 ≦L3≦(n-0.25)×L1
    を満たす、レーザ装置によってパルス幅が伸長されたレーザ光を生成し、
     前記レーザ光を露光装置又はレーザ光照射装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板に前記レーザ光を露光すること、又は前記レーザ光照射装置内で被照射物に前記レーザ光を照射すること、を含む電子デバイスの製造方法。
  17.  請求項16に記載の電子デバイスの製造方法であって、
     前記レーザ装置は、前記パルスレーザ光の光路上に配置された第4の光学パルスストレッチャをさらに備え、
     前記第4の光学パルスストレッチャの遅延光路の光路長をL4、mを2以上の整数とした場合に、
     L4は、
     (m-0.25)×L1 ≦L4≦(m+0.25)×L1
    を満たす、電子デバイスの製造方法。
PCT/JP2020/020890 2020-05-27 2020-05-27 レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法 WO2021240682A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022527353A JP7482225B2 (ja) 2020-05-27 レーザ装置及び電子デバイスの製造方法
PCT/JP2020/020890 WO2021240682A1 (ja) 2020-05-27 2020-05-27 レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法
CN202080099484.3A CN115427892A (zh) 2020-05-27 2020-05-27 激光装置、脉冲宽度扩展装置和电子器件的制造方法
US17/938,246 US20230022170A1 (en) 2020-05-27 2022-10-05 Laser apparatus, pulse width stretching apparatus, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020890 WO2021240682A1 (ja) 2020-05-27 2020-05-27 レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/938,246 Continuation US20230022170A1 (en) 2020-05-27 2022-10-05 Laser apparatus, pulse width stretching apparatus, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2021240682A1 true WO2021240682A1 (ja) 2021-12-02

Family

ID=78723099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020890 WO2021240682A1 (ja) 2020-05-27 2020-05-27 レーザ装置、パルス幅伸長装置及び電子デバイスの製造方法

Country Status (3)

Country Link
US (1) US20230022170A1 (ja)
CN (1) CN115427892A (ja)
WO (1) WO2021240682A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170908A1 (ja) * 2022-03-11 2023-09-14 ギガフォトン株式会社 訓練モデルの作成方法、レーザ装置及び電子デバイスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780325B (zh) * 2023-08-18 2023-11-03 深圳市中科融光医疗科技有限公司 一种激光高效耦合的光路装置及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216037A1 (en) * 2005-03-23 2006-09-28 Wiessner Alexander O Double-pass imaging pulse-stretcher
JP2009514246A (ja) * 2005-11-01 2009-04-02 サイマー インコーポレイテッド レーザシステム
JP2009246345A (ja) * 2008-03-12 2009-10-22 Komatsu Ltd レーザシステム
WO2014003018A1 (ja) * 2012-06-26 2014-01-03 ギガフォトン株式会社 レーザ装置の制御方法及びレーザ装置
WO2018020564A1 (ja) * 2016-07-26 2018-02-01 ギガフォトン株式会社 レーザシステム
WO2018047220A1 (ja) * 2016-09-06 2018-03-15 ギガフォトン株式会社 レーザ装置およびレーザアニール装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216037A1 (en) * 2005-03-23 2006-09-28 Wiessner Alexander O Double-pass imaging pulse-stretcher
JP2009514246A (ja) * 2005-11-01 2009-04-02 サイマー インコーポレイテッド レーザシステム
JP2009246345A (ja) * 2008-03-12 2009-10-22 Komatsu Ltd レーザシステム
WO2014003018A1 (ja) * 2012-06-26 2014-01-03 ギガフォトン株式会社 レーザ装置の制御方法及びレーザ装置
WO2018020564A1 (ja) * 2016-07-26 2018-02-01 ギガフォトン株式会社 レーザシステム
WO2018047220A1 (ja) * 2016-09-06 2018-03-15 ギガフォトン株式会社 レーザ装置およびレーザアニール装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170908A1 (ja) * 2022-03-11 2023-09-14 ギガフォトン株式会社 訓練モデルの作成方法、レーザ装置及び電子デバイスの製造方法

Also Published As

Publication number Publication date
US20230022170A1 (en) 2023-01-26
CN115427892A (zh) 2022-12-02
JPWO2021240682A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US7245420B2 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
US5901163A (en) Narrow band laser with etalon based output coupler
US20230022170A1 (en) Laser apparatus, pulse width stretching apparatus, and electronic device manufacturing method
US7899095B2 (en) Laser lithography system with improved bandwidth control
CN112771737B (zh) 激光系统和电子器件的制造方法
US6577665B2 (en) Molecular fluorine laser
US6567451B2 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
US20020186741A1 (en) Very narrow band excimer or molecular fluorine laser
CN112771444B (zh) 激光系统和电子器件的制造方法
US6490306B2 (en) Molecular fluorine laser with spectral linewidth of less than 1 pm
US6381256B1 (en) Molecular fluorine laser with spectral linewidth of less than 1 pm
US7072375B2 (en) Line-narrowed gas laser system
KR100505081B1 (ko) 노광용 에이알에프 엑시머 레이저 장치
JP7482225B2 (ja) レーザ装置及び電子デバイスの製造方法
US20220131335A1 (en) Laser apparatus, laser processing system, and method for manufacturing electronic device
WO2001001530A1 (en) Narrow band excimer laser with a prism-grating as line-narrowing optical element
Sengupta Krypton fluoride excimer laser for advanced microlithography
RU2607815C1 (ru) Составной резонатор эксимерного лазера
WO2001001531A1 (en) Molecular fluorine laser with spectral linewidth of less than 1pm
JPH0423480A (ja) 狭帯域レーザ装置
Ershov et al. Feasibility studies of operating KrF lasers at ultranarrow spectral bandwidths for 0.18-um line widths
WO2023170892A1 (ja) レーザ装置、レーザ加工システム、及びレーザ加工方法
JP3224525B2 (ja) エタロンベース出力カプラを備える狭帯域レーザ
WO2017046860A1 (ja) レーザシステム
CN117242656A (zh) 激光装置、激光控制方法以及电子器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937874

Country of ref document: EP

Kind code of ref document: A1