WO2021240609A1 - クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム - Google Patents

クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム Download PDF

Info

Publication number
WO2021240609A1
WO2021240609A1 PCT/JP2020/020569 JP2020020569W WO2021240609A1 WO 2021240609 A1 WO2021240609 A1 WO 2021240609A1 JP 2020020569 W JP2020020569 W JP 2020020569W WO 2021240609 A1 WO2021240609 A1 WO 2021240609A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
mass
unit
chromatogram
analysis
Prior art date
Application number
PCT/JP2020/020569
Other languages
English (en)
French (fr)
Inventor
桐子 松尾
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2020/020569 priority Critical patent/WO2021240609A1/ja
Priority to JP2022527286A priority patent/JP7416232B2/ja
Priority to CN202080100625.9A priority patent/CN115516302B/zh
Priority to US17/926,319 priority patent/US20230236159A1/en
Publication of WO2021240609A1 publication Critical patent/WO2021240609A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8624Detection of slopes or peaks; baseline correction
    • G01N30/8631Peaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8651Recording, data aquisition, archiving and storage

Definitions

  • the present invention relates to a chromatograph mass spectrometer such as a liquid chromatograph mass spectrometer or a gas chromatograph mass spectrometer, a method for processing data obtained by chromatograph mass spectrometry, and a computer program for that purpose.
  • a chromatograph mass spectrometer such as a liquid chromatograph mass spectrometer or a gas chromatograph mass spectrometer
  • a method for processing data obtained by chromatograph mass spectrometry and a computer program for that purpose.
  • a liquid chromatograph mass spectrometer (LC-MS) or a gas chromatograph mass spectrometer (GC-MS) is widely used for qualitative analysis and quantification of a plurality of components (compounds) contained in a sample.
  • the mass spectrometric section of the latter stage repeatedly performs mass spectrometry on the sample containing various components separated in time by the chromatograph in the first stage, for example, within a predetermined mass-to-charge ratio (m / z) range. It is possible to acquire each of the mass spectra over.
  • the chromatogram or mass spectrum is appropriately displayed on the display screen to display the target location (time or mass). It is necessary to observe the waveforms in the vicinity (charge ratio, etc.) in detail and compare multiple waveform shapes.
  • a device for displaying for the purpose of efficiently performing such work there is a device described in Patent Document 1.
  • the mass spectrum at that holding time is displayed. As a result, the user can easily grasp the chromatographic peak and the corresponding mass spectrum by a simple operation.
  • LC-MS and GC-MS using a tandem mass spectrometer as a detector in fields that require qualitative and quantitative analysis of multiple samples and multiple components, such as inspection of residual pesticides in food and inspection of pollutants in environmental water.
  • the use is progressing.
  • the quadrupole-time-of-flight mass analyzer Q-TOF type mass analyzer
  • the general triple quadrupole mass analyzer Since it is possible to measure with high mass accuracy and mass resolution, it is effective in identifying and quantifying components in complex samples.
  • DDA first obtains a mass spectrum (MS spectrum) by ordinary mass spectrometry (MS analysis), and precursors ions having a specific mass-charge ratio selected based on the intensity of peaks observed in the MS spectrum. This is a method for acquiring MS / MS spectra in which various product ions are observed by performing MS / MS analysis. In DDA, MS / MS analysis is not performed if there is no peak in the MS spectrum that satisfies the appropriate conditions. On the other hand, the DIA divides the mass-to-charge ratio range to be measured into a plurality of parts, sets a mass window for each, and collectively treats the ions having the mass-to-charge ratio contained in each mass window as precursor ions. It is a method to obtain MS / MS spectrum for each mass window by comprehensively scanning and measuring product ions generated from.
  • the present invention has been made in view of these problems, and in a chromatograph mass spectrometer in which MS / MS analysis is automatically performed according to predetermined settings and conditions, the acquired MS spectrum and MS n spectrum are used. Its main purpose is to make it easy for the user to understand the relationship between the two.
  • One aspect of the chromatograph mass analysis data processing method according to the present invention made to solve the above problems includes a mass analysis unit capable of MS n analysis (n is an integer of 2 or more), and components in a sample.
  • a mass analysis unit capable of MS n analysis (n is an integer of 2 or more), and components in a sample.
  • n is an integer of 2 or more
  • a chromatogram display processing step of creating a chromatogram at a specific mass-to-charge ratio based on the data collected by the measuring unit and displaying it on the screen of the display unit.
  • a time specification step that specifies the retention time according to the user's operation on the displayed chromatogram, and Based on the data collected by the measuring unit, the MS spectrum corresponding to the specified retention time, the ion having the mass-to-charge ratio of the peak appearing in the MS spectrum, or the mass charge to which the mass-to-charge ratio belongs.
  • An MS n spectrum which is the result of MS n analysis corresponding to the specified retention time, is created using the ions included in the ratio range as precursor ions, and the MS spectrum and the MS n spectrum are displayed on the same screen as the chromatogram.
  • the spectrum display processing step to be displayed in Have In the time designation step, the holding time is designated by performing an operation of moving the pointer displayed on the chromatogram. In the spectrum display processing step, as the pointer is moved, the display of the MS spectrum and the MS n spectrum is updated corresponding to each holding time during the movement.
  • a measurement unit that includes a mass spectrometer capable of MS n analysis (n is an integer of 2 or more), temporally separates the components in the sample with a chromatograph, and repeatedly performs mass spectrometry on the separated sample.
  • a chromatogram display processing unit that creates a chromatogram at a specific mass-to-charge ratio based on the data collected by the measurement unit and displays it on the screen of the display unit.
  • a time specification unit that specifies the retention time according to the user's operation on the displayed chromatogram, Based on the data collected by the measuring unit, the MS spectrum corresponding to the specified retention time, the ion having the mass-to-charge ratio of the peak appearing in the MS spectrum, or the mass charge to which the mass-to-charge ratio belongs.
  • An MS n spectrum which is the result of MS n analysis corresponding to the specified retention time, is created using the ions included in the ratio range as precursor ions, and the MS spectrum and the MS n spectrum are displayed on the same screen as the chromatogram.
  • the spectrum display processing unit to be displayed on the Equipped with The time designation unit specifies the holding time by causing the user to perform an operation of moving the pointer displayed on the chromatogram. As the pointer is moved, the spectrum display processing unit updates the display of the MS spectrum and the MS n spectrum corresponding to each holding time during the movement.
  • one aspect of the chromatograph mass analysis data processing program according to the present invention made to solve the above problems includes a mass analysis unit capable of MS n analysis (n is an integer of 2 or more) in a sample.
  • This is a chromatograph mass analysis data processing program that processes the data collected by the measuring unit, which separates the components of the above in time with a chromatograph and repeatedly mass-analyzes the separated sample, using a computer.
  • a chromatogram display processing function unit that creates a chromatogram at a specific mass-to-charge ratio based on the data collected by the measurement unit and displays it on the screen of the display unit.
  • a time specification function unit that specifies the retention time according to the user's operation on the displayed chromatogram, Based on the data collected by the measuring unit, the MS spectrum corresponding to the specified retention time, the ion having the mass-to-charge ratio of the peak appearing in the MS spectrum, or the mass charge to which the mass-to-charge ratio belongs.
  • An MS n spectrum which is the result of MS n analysis corresponding to the specified retention time, is created using the ions included in the ratio range as precursor ions, and the MS spectrum and the MS n spectrum are displayed on the same screen as the chromatogram.
  • the chromatograph is a liquid chromatograph or a gas chromatograph.
  • the chromatograph mass analysis data processing program is stored in a computer-readable non-temporary recording medium such as a CD-ROM, a DVD-ROM, a memory card, or a USB memory (dongle). Can be provided to the user. Alternatively, it can be provided to the user in the form of data transfer via a communication line such as the Internet. Of course, when a user purchases a new system, the data processing program can be preliminarily incorporated in the computer included in the system.
  • the chromatogram that is, the extraction at a specific mass-to-charge ratio displayed on the display screen.
  • the user specifies a retention time of interest by a predetermined operation. Then, the MS spectrum corresponding to the specified retention time, that is, based on the data acquired at that retention time, and the MS spectrum corresponding to the retention time, that is, observed in the MS spectrum, are subject to the extracted ion chromatogram.
  • the MS n spectrum with an ion having a certain mass-to-charge ratio as a precursor ion is displayed on the same screen as the extracted ion chromatogram.
  • the user can easily visually grasp the relationship between the MS spectrum and the MS / MS spectrum for each holding time.
  • the collected data can be analyzed in a more multifaceted manner, and useful and accurate information can be obtained for identification and quantification of compounds.
  • the user moves, for example, a pointer displayed on an extracted ion chromatogram.
  • the MS spectrum and the MS n spectrum corresponding to each holding time during the movement are displayed one after another. Therefore, the user can confirm the MS spectrum and the MS / MS spectrum in the holding time during and after the movement of the pointer in substantially real time.
  • both the temporal variation of the MS spectrum and the temporal variation of the MS / MS spectrum for a specific precursor ion having a parent-child relationship with the MS spectrum can be grasped visually and quickly at the same time.
  • the schematic block diagram of the LC-MS analysis system which is one Embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram of the LC-MS analysis system of the present embodiment.
  • this LC-MS analysis system includes a measurement unit including a liquid chromatograph unit 1 and a mass spectrometry unit 2, a control / processing unit 4, an input unit 5, and a display unit 6. ..
  • the data management computer 7 shown in FIG. 1 is basically an unnecessary component of the system, but may be included in the system as described later.
  • the liquid chromatograph unit 1 includes a mobile phase container 10 in which a mobile phase is stored, a liquid feed pump 11 that sucks the mobile phase and feeds it at a substantially constant flow rate, and an injector 12 that injects a sample liquid into the mobile phase. , A column 13 for temporally separating various components contained in the sample liquid, and the like.
  • the mass spectrometer 2 is a quadrupole-time-of-flight (Q-TOF type) mass spectrometer, and includes an ionization chamber 201 having a substantially atmospheric pressure atmosphere and a vacuum chamber 20 whose inside is divided into four. ..
  • a first intermediate vacuum chamber 202, a second intermediate vacuum chamber 203, a first high vacuum chamber 204, and a second high vacuum chamber 205 are provided, and each chamber has a higher degree of vacuum in this order. It is evacuated by a vacuum pump. That is, the mass spectrometric unit 2 adopts a configuration of a multi-stage differential exhaust system.
  • an electrospray ionization (ESI) probe 21 to which an eluate is supplied from the outlet of the column 13 is arranged, and the ionization chamber 201 and the first intermediate vacuum chamber 202 are desolving tubes having a small diameter. It communicates through 22.
  • the first intermediate vacuum chamber 202 and the second intermediate vacuum chamber 203 communicate with each other through an orifice formed at the top of the skimmer 24, and ions are formed in the first intermediate vacuum chamber 202 and the second intermediate vacuum chamber 203, respectively.
  • Guides 23 and 25 are arranged.
  • a quadrupole mass filter 26 and a collision cell 27 in which an ion guide 28 is arranged are provided in the first high vacuum chamber 204.
  • a plurality of electrodes arranged so as to straddle the first high vacuum chamber 204 and the second high vacuum chamber 205 form an ion guide 29.
  • a time-of-flight mass separator of the orthogonal acceleration system including an orthogonal acceleration unit 30 and an ion flight unit 31 having a reflector, and an ion detector 32 are provided. There is.
  • the control / processing unit 4 includes an analysis control unit 40, a data storage unit 41, a chromatogram creation unit 42, a spectrum creation unit 43, a spectrum calculation unit 44, a display processing unit 45, and an input reception unit 46 as functional blocks.
  • the substance of the control / processing unit 4 is a personal computer, a workstation, or the like, and by executing one or more dedicated software (computer programs) installed in such a computer on the computer, each of the above functional blocks can be obtained. It can be a structure that is embodied.
  • Such computer programs may be stored and provided to the user on a computer-readable non-temporary recording medium such as a CD-ROM, DVD-ROM, memory card, USB memory (dongle). ..
  • it can be provided to the user in the form of data transfer via a communication line such as the Internet.
  • it can be pre-installed on a computer that is part of the system when the user purchases the system.
  • the analysis control unit 40 controls the measurement unit to perform LC / MS analysis on the prepared sample. Next, a typical measurement operation performed under the control of the analysis control unit 40 will be schematically described.
  • the liquid feed pump 11 sucks the mobile phase from the mobile phase container 10 and sends it to the column 13 at a substantially constant flow rate.
  • the injector 12 injects the sample into the mobile phase in response to an instruction from the analysis control unit 40.
  • the sample is introduced into the column 13 on the mobile phase, and while passing through the column 13, the components in the sample are separated in time.
  • the eluate from the outlet of the column 13 is introduced into the ESI probe 21, and the ESI probe 21 sprays the eluate as charged droplets into the ionization chamber 201.
  • the sample component in the droplet becomes a gas ion.
  • the generated ions are sent to the first intermediate vacuum chamber 202 via the desolvation tube 22, pass through the ion guide 23, the skimmer 24, and the ion guide 25 in this order, and pass through the ion guide 23, and the quadrupole mass filter in the first high vacuum chamber 204. Introduced in 26.
  • the ions pass substantially through the quadrupole mass filter 26 and the collision cell 27 and are transported to the orthogonal acceleration unit 30.
  • a predetermined voltage is applied to each of a plurality of rod electrodes constituting the quadrupole mass filter 26, and an ion species having a specific mass-to-charge ratio according to the voltage, or an ion species thereof.
  • Ion species included in a specific mass-to-charge ratio range depending on the voltage are selected as precursor ions and pass through the quadrupole mass filter 26.
  • a collision gas such as Ar gas is introduced into the collision cell 27, and the precursor ions come into contact with the collision gas and are dissociated by CID to generate various product ions.
  • the generated product ions are transported to the orthogonal acceleration unit 30 via the ion guide 29.
  • the mode of dissociation of the precursor ion differs depending on the kinetic energy (collision energy) of the precursor ion when it is incident on the collision cell 27. Therefore, even if the precursor ions are the same, the type of product ions produced can be changed by appropriately adjusting the collision energy. Also, instead of dissociating all the precursor ions, some precursor ions can be left undissociated.
  • the collision energy is generally a DC bias voltage applied to the quadrupole mass filter 26 and a DC voltage applied to the lens electrode arranged at the ion inlet of the collision cell 27. Determined by the voltage difference.
  • the ions are accelerated substantially simultaneously in the direction (Z-axis direction) substantially orthogonal to the incident direction (X-axis direction).
  • the accelerated ions fly at a speed corresponding to the mass-to-charge ratio, and fly back at the ion flight unit 31 as shown by the two-dot chain line in FIG. 1 to reach the ion detector 32.
  • Various ions starting from the orthogonal accelerator 30 at substantially the same time reach the ion detector 32 in ascending order of mass-to-charge ratio and are detected, and the ion detector 32 controls the detection signal (ion intensity signal) according to the number of ions.
  • the data storage unit 41 digitizes the detection signal and further converts the flight time from the time point when the ion is emitted from the orthogonal acceleration unit 30 into the mass-to-charge ratio to obtain mass spectrum data (profile). Data) is acquired and saved.
  • the orthogonal acceleration unit 30 repeatedly ejects ions toward the ion flight unit 31 at a predetermined cycle. As a result, the data storage unit 41 can repeatedly acquire mass spectrum data over a predetermined mass-to-charge ratio range at a predetermined cycle.
  • FIG. 2 is a schematic diagram illustrating the flow of analysis in the DDA mode.
  • DDA typically repeats MS analysis over a predetermined mass-to-charge ratio range at regular intervals (time ⁇ t intervals in FIG. 2).
  • the control / processing unit 4 immediately creates an MS spectrum each time the MS analysis is executed, and checks whether or not the ion peak observed in the MS spectrum meets a specific preset condition. Then, when there is a peak that meets the specific conditions, MS / MS analysis using an ion having a mass-to-charge ratio corresponding to the peak as a precursor ion is performed following the MS analysis. This makes it possible to acquire MS / MS spectra in which various product ions generated from the precursor ions are observed.
  • the above specific condition can be, for example, one having the maximum ionic strength.
  • only one MS / MS analysis is performed following the MS analysis, but if there is time to spare, one MS analysis is followed by different precursor ions.
  • Multiple MS / MS analyzes can be performed on. In that case, for example, a predetermined number of peaks can be selected from the peaks observed in the MS spectrum in descending order of ionic strength, and ions having a mass-to-charge ratio corresponding to the peaks can be designated as precursor ions.
  • the MS / MS spectrum corresponding to the MS spectrum obtained at a certain holding time does not always exist.
  • the MS spectrum data obtained by MS analysis and the MS / MS spectrum data obtained by MS / MS analysis can be stored in different data files for each analysis. In that case, information such as the retention time at which the data was collected (tn, tn + 1, 7) And the mass-to-charge ratio value of precursor ions (in the case of MS / MS spectrum) is also recorded in each data file. NS. Further, the MS spectrum data and the MS / MS spectrum data acquired at the same holding time (tn, tn + 1, ...) may be stored in the same data file.
  • FIG. 3 and 4 are schematic views for explaining the flow of analysis in the DIA mode.
  • FIG. 3 is an example in which MS analysis is performed periodically
  • FIG. 4 is an example in which MS analysis is not performed.
  • DIA the entire mass-to-charge ratio range to be measured is divided into a plurality of parts, a mass window is set for each, and ions having a mass-to-charge ratio contained in each mass window are collectively selected as precursor ions for MS. / Perform MS analysis.
  • the mass-to-charge ratio range M1 to M6 is divided into five, and MS / MS analysis is performed targeting ions having a mass-to-charge ratio contained in each of the five mass windows. .. Since one MS / MS spectrum is obtained for each mass window, five MS / MS spectra are obtained in one cycle in the examples of FIGS. 3 and 4, and the five MS / MS spectra are included in the five MS / MS spectra. At that time, product ions derived from all the components introduced into the mass spectrometer 2 appear. That is, comprehensive product ion information for all components can be obtained.
  • MS analysis is not performed, but by adjusting the collision energy as described above, it is possible to obtain an MS / MS spectrum in which the peak of the precursor ion itself is substantially observed. .. In this case, since it is not necessary to perform MS analysis, the time for one cycle can be shortened accordingly.
  • the MS analysis over a predetermined mass-to-charge ratio range is performed once in one cycle, the MS spectrum can be acquired separately from the MS / MS spectrum. Therefore, it is not necessary to acquire information on precursor ions during MS / MS analysis, and for example, all precursor ions may be dissociated by CID during MS / MS analysis. Therefore, the signal intensity of the product ion in the MS / MS spectrum is increased, and the sensitivity can be improved.
  • FIGS. 3 and 4 are simplified views for the sake of explanation.
  • the number of mass windows is larger, and the mass-to-charge ratio width of one mass window is in the range of about 10 to 100 Da. For example, 20 Da.
  • the MS spectrum data obtained by MS analysis and the MS / MS spectrum data obtained by MS / MS analysis shall be stored in different data files for each analysis. Can be done. Further, the MS spectrum data acquired at the same holding time (tn, tun + 1, ...) And a plurality of MS / MS spectrum data, or a plurality of MS / MS spectrum data are stored in the same data file. You may do so.
  • the data storage unit 41 contains MS spectrum data and / or MS / corresponding to the LC / MS analysis. A data file containing MS spectrum data is saved. The data processing centered on the display processing, which is executed in the LC-MS analysis system of the present embodiment under the state where such data is stored, will be described below.
  • FIG. 5 is a diagram showing an example of a graph displayed on the screen of the display unit 6 in the LC-MS analysis system of the present embodiment.
  • the display shown in FIG. 5 is a display of the entire screen or a part thereof.
  • the user instructs the mass-to-charge ratio value of interest in the input unit 5.
  • the compound name may be specified instead of the mass-to-charge ratio value. If the compound to be confirmed or quantified to be contained in the sample is determined, the compound or the corresponding mass-to-charge ratio value may be indicated. In addition, if analysis processing such as identification and quantification based on the collected data has been completed once and you want to confirm the result or perform reanalysis, for example, display a list of identified compounds. , The compound of interest and the corresponding mass-to-charge ratio value can be specified from the list. Alternatively, instead of the user instructing the compound or the mass-to-charge ratio value, for example, the compound or the mass-to-charge ratio value most suitable for the preset conditions may be automatically selected and set. For example, a method can be considered in which the compound having the highest content among the compounds having a mass in a certain range is automatically selected based on the quantitative analysis result.
  • the chromatogram creating unit 42 Upon receiving an instruction by the user as described above or an automatic selection instruction through the input receiving unit 46, the chromatogram creating unit 42 gives an instruction at each holding time from the MS spectrum data stored in the data storage unit 41. The signal strength corresponding to the mass-to-charge ratio value is extracted. Then, an extracted ion chromatogram with the mass-to-charge ratio value is created. The display processing unit 45 draws the created extracted ion chromatogram in a predetermined area on the screen of the display unit 6. In the graph display screen 100 shown in FIG. 5, the uppermost stage is the chromatogram display area 110, and the extracted ion chromatogram in the designated m / z 337 is drawn in this area 110.
  • a pointer 111 including a vertical line is superimposed and displayed on the extracted ion chromatogram displayed in the chromatogram display area 110. As shown by the arrows at both ends of the thick line in the figure, the pointer 111 is on the time axis (on the horizontal axis in FIG. 5) in response to a pointing device such as a mouse included in the input unit 5 or a scroll operation by a keyboard or the like. It is mobile.
  • the pointer 111 indicates one time (holding time) on the time axis, and the spectrum creation unit 43 is based on the data stored in the data storage unit 41, and the MS corresponding to the holding time in which the pointer 111 is located. Create a spectrum.
  • the display processing unit 45 draws the created MS spectrum in a predetermined area on the screen of the display unit 6. In FIG. 5, the middle row is the MS spectrum display area 120, and the MS spectrum at the holding time RT 6.7 min is drawn in this area 120.
  • the spectrum creation unit 43 corresponds to the holding time at which the pointer 111 is located (holding time RT 6.7 min in the example of FIG. 5) from the data stored in the data storage unit 41, and the extracted ion chromatogram
  • the mass-to-charge ratio (m / z 337 in the example of FIG. 5) which is the target of Create an MS / MS spectrum.
  • the display processing unit 45 draws the created MS / MS spectrum in a predetermined area on the screen of the display unit 6. In FIG. 5, the lower part is the MS / MS spectrum display region 130, and the MS / MS spectrum having a holding time of RT 6.7 min and a precursor ion of m / z 337 is drawn in this region 130.
  • MS / in which all the ions included in the predetermined mass-to-charge ratio range are precursor ions for each cycle as described above.
  • MS spectral data There is MS spectral data. Therefore, the MS / MS spectrum data corresponding to the mass window including the target mass-to-charge ratio (m / z 337 in the example of FIG. 5) can be extracted, and the MS / MS spectrum can be created and displayed.
  • the MS / MS spectrum data exists but the MS spectrum data does not exist. Therefore, in this case, one of the following two methods can be adopted. The first is to display only the MS / MS spectrum corresponding to the mass window containing the mass-to-charge ratio that is the target of the extracted ion chromatogram without displaying the MS spectrum, and do not display the MS spectrum. be. Second, a pseudo MS spectrum is created by using the MS / MS spectra corresponding to a plurality of mass windows obtained at the same holding time, and the pseudo MS spectrum is created in the MS spectrum display area 120. It is a method to display in.
  • the spectrum creation unit 43 extracts the ion peak included in the mass window for each MS / MS spectrum having a different mass window, and estimates that the peak having the highest signal intensity is the precursor ion peak. For example, in the example of FIG. 4, five peaks presumed to be precursor ions are obtained from the MS / MS spectra corresponding to the five mass windows, and the peaks are collected to create a pseudo MS spectrum.
  • the peak with the highest signal strength among the multiple ion peaks contained in a certain mass window is not the peak of precursor ions, the peak with the next highest signal strength is selected.
  • the algorithm can be changed as appropriate, such as by selecting.
  • a pseudo MS spectrum may be created by any other method.
  • the spectrum creation unit 43 holds the spectrum accompanying the operation.
  • the displayed MS spectrum and MS / MS spectrum are updated in substantially real time according to the change of time. That is, when the pointer 111 is moved by the user's operation, the spectrum creation unit 43 uses only the information of the movement of the pointer 111, that is, the operation by other users (mouse click or determination on the keyboard (ENTER).
  • the holding time at which the moving and post-moving pointer 111 is located is calculated without the need for key input) input operation, etc., and the MS spectrum and MS / MS spectrum corresponding to the holding time are automatically created.
  • the user can see the temporal variation of the MS spectrum in the time around the retention time at which the chromatopeak is observed, and the MS / MS spectrum for a specific precursor ion having a parent-child relationship with the MS spectrum. Temporal fluctuations can be visually and quickly (without delay) confirmed.
  • the variation of the MS spectrum and the variation of the MS / MS spectrum over the retention time range from the specified start time to the end time are as moving images. It may be possible to display it automatically.
  • the averaging process and the subtraction process of the MS spectrum and / or the MS / MS spectrum having a parent-child relationship can be performed as follows.
  • the user specifies a desired retention time range on the extracted ion chromatogram displayed on the graph display screen 100.
  • the holding time range is specified so that the entire chromatographic peak is included.
  • the spectrum calculation unit 44 which has received the designation of the holding time range via the input receiving unit 46, acquires all the MS spectrum data corresponding to all the holding times included in the holding time range, and then adds all of them. Normalize. As a result, an average MS spectrum obtained by averaging the signal intensities for each mass-to-charge ratio value in the holding time range is obtained. Further, an MS having a mass-to-charge ratio of the extracted ion chromatogram or a plurality of ions contained in the mass window to which the mass-to-charge ratio belongs, which correspond to all the retention times included in the same retention time range, is used as precursor ions. / Acquire all MS spectrum data.
  • the display processing unit 45 displays the average MS spectrum and the average MS / MS spectrum thus obtained, respectively.
  • the displayed average MS spectrum and the average MS / MS spectrum may be updated in accordance with the change.
  • the spectrum calculation unit 44 displays the average MS spectrum and the average corresponding to the two retention time ranges, respectively.
  • the MS / MS spectra are obtained, and the difference in signal intensity for each mass-to-charge ratio between the average MS spectra and between the average MS / MS spectra is calculated. Then, a difference MS spectrum and a difference MS / MS spectrum are created based on the calculation result and displayed on the screen.
  • the mass spectrometer is a Q-TOF type mass spectrometer, but another type of tandem mass spectrometer capable of MS / MS analysis may be used. Triple quadrupole mass spectrometers, ion trap mass spectrometers, ion trap time-of-flight mass spectrometers, etc. are examples of such devices.
  • the data of the processing target that is, the graph creation target is stored in the data storage unit 41, but as shown in FIG. 1, the data collected by the analysis device is stored.
  • It may be stored in another data management computer 7 connected via a communication line such as the Internet. Even in such a case, it is natural that the display process as described above can be executed if the system can access such another computer.
  • One aspect of the chromatograph mass analysis data processing method according to the present invention includes a mass analysis unit capable of MS n analysis (n is an integer of 2 or more), and the components in the sample are plotted on the chromatograph. It is a chromatograph mass analysis data processing method that processes the data collected by the measuring unit, which separates in time and repeatedly mass-analyzes the separated sample. A chromatogram display processing step of creating a chromatogram at a specific mass-to-charge ratio based on the data collected by the measuring unit and displaying it on the screen of the display unit.
  • a time specification step that specifies the retention time according to the user's operation on the displayed chromatogram, and Based on the data collected by the measuring unit, the MS spectrum corresponding to the specified retention time, the ion having the mass-to-charge ratio of the peak appearing in the MS spectrum, or the mass charge to which the mass-to-charge ratio belongs.
  • An MS n spectrum which is the result of MS n analysis corresponding to the specified retention time, is created using the ions included in the ratio range as precursor ions, and the MS spectrum and the MS n spectrum are displayed on the same screen as the chromatogram.
  • the display of the MS spectrum and the MS n spectrum is updated corresponding to each retention time during movement.
  • a measurement unit that includes a mass spectrometer capable of MS n analysis (n is an integer of 2 or more), temporally separates the components in the sample with a chromatograph, and repeatedly performs mass spectrometry on the separated sample.
  • a chromatogram display processing unit that creates a chromatogram at a specific mass-to-charge ratio based on the data collected by the measurement unit and displays it on the screen of the display unit.
  • a time specification unit that specifies the retention time according to the user's operation on the displayed chromatogram, Based on the data collected by the measuring unit, the MS spectrum corresponding to the specified retention time, the ion having the mass-to-charge ratio of the peak appearing in the MS spectrum, or the mass charge to which the mass-to-charge ratio belongs.
  • An MS n spectrum which is the result of MS n analysis corresponding to the specified retention time, is created using the ions included in the ratio range as precursor ions, and the MS spectrum and the MS n spectrum are displayed on the same screen as the chromatogram.
  • the spectrum display processing unit to be displayed on the The time designation unit specifies the holding time by causing the user to perform an operation of moving the pointer displayed on the chromatogram, and the spectrum display processing unit specifies the holding time as the pointer is moved. , The display of the MS spectrum and the MS n spectrum is updated corresponding to each holding time during the movement.
  • one aspect of the chromatograph mass analysis data processing program includes a mass analysis unit capable of MS n analysis (n is an integer of 2 or more), and chromatographs the components in the sample.
  • a chromatograph mass analysis data processing program that processes the data collected by the measuring unit, which separates the sample in time with a graph and repeatedly mass-analyzes the separated sample, using a computer.
  • a chromatogram display processing function unit that creates a chromatogram at a specific mass-to-charge ratio based on the data collected by the measurement unit and displays it on the screen of the display unit.
  • a time specification function unit that specifies the retention time according to the user's operation on the displayed chromatogram, Based on the data collected by the measuring unit, the MS spectrum corresponding to the specified retention time, the ion having the mass-to-charge ratio of the peak appearing in the MS spectrum, or the mass charge to which the mass-to-charge ratio belongs.
  • An MS n spectrum which is the result of MS n analysis corresponding to the specified retention time, is created using the ions included in the ratio range as precursor ions, and the MS spectrum and the MS n spectrum are displayed on the same screen as the chromatogram.
  • the user can easily visually grasp the MS spectrum and the MS / MS spectrum having a parent-child relationship for each holding time. Further, for example, the retention time corresponding to the peak top on the extracted ion chromatogram and an arbitrary retention time in the vicinity thereof can be easily specified, and the MS spectrum and the MS n spectrum at the retention time can be immediately confirmed. .. Thereby, useful and accurate information for identification and quantification of compounds can be quickly obtained.
  • the user can link the temporal fluctuations of the MS spectrum and the MS n spectrum, which are in a parent-child relationship, on the screen by simply moving the pointer near the retention time of interest on the extracted ion chromatogram, for example. Can be confirmed quickly.
  • the collected data can be analyzed in a more multifaceted manner, and useful and accurate information can be obtained for identification and quantification of compounds.
  • the time designation unit can specify a holding time range to the user on the displayed chromatogram according to an operation.
  • a spectrum calculation unit is further provided, which obtains an average spectrum by averaging a plurality of MS spectra and a plurality of MS n spectra corresponding to a specified retention time range based on the data collected by the measurement unit. Can be.
  • the time designation function unit allows the user to specify a range of holding time according to an operation on the displayed chromatogram. Further, the computer obtains the average spectrum by averaging the plurality of MS spectra and the plurality of MS n spectra corresponding to the specified retention time range based on the data collected by the measuring unit. It can be operated as a spectrum calculation function unit.
  • the user can appropriately use the method.
  • the average MS spectrum and the average MS n spectrum corresponding to the retention time range of can be confirmed simultaneously on the screen. Thereby, the collected data can be analyzed in a more multifaceted manner, and useful and accurate information can be obtained for identification and quantification of compounds.
  • a plurality of holding time ranges can be specified in the time designation step, and a plurality of designated holding times are specified in the spectrum calculation step. Subtraction may be performed between multiple MS spectra and / or between multiple MS n spectra obtained by averaging each in the range.
  • the time designation unit enables designation of a plurality of holding time ranges
  • the spectrum calculation unit allows designation of a plurality of holding time ranges. Subtraction may be performed between the plurality of MS spectra obtained by averaging and / or between the plurality of MS n spectra.
  • the time designation function unit enables designation of a plurality of holding time ranges
  • the spectrum calculation function unit enables a plurality of designated holding time ranges. It is possible to perform subtraction between multiple MS spectra and / or between multiple MS n spectra obtained by averaging, respectively, in the retention time range of.
  • the chromatograph mass spectrometric data processing device According to the chromatograph mass spectrometric data processing method according to the third item, the chromatograph mass spectrometric data processing device according to the eighth item, or the chromatograph mass spectrometric data processing program according to the thirteenth item, for example, the user. , The influence of the non-target compound can be removed, and the highly pure average MS spectrum and average MS n spectrum of the target compound can be confirmed simultaneously on the screen.
  • the chromatograph mass spectrometric apparatus According to the chromatograph mass spectrometric data processing method according to the fourth item, the chromatograph mass spectrometric apparatus according to the ninth item, or the chromatograph mass spectrometric data processing program according to the fourteenth item, the MS spectrum and the MS spectrum.
  • the MS n spectrum targeting one precursor ion observed in the MS spectrum can be confirmed simultaneously on the screen.
  • the mass spectrometry unit performs data-independent analysis, and the data collected by the measurement unit is data in the mass spectrometry unit. It can be obtained by independent analysis.
  • the data collected by the measuring unit may be obtained by data-independent analysis in the mass spectrometric unit. can.
  • the chromatographic mass spectrometric apparatus According to the chromatographic mass spectrometric data processing method according to the fifth item, the chromatographic mass spectrometric apparatus according to the tenth item, or the chromatographic mass spectrometric data processing program according to the fifteenth item, the MS spectrum and the MS spectrum.
  • the MS n spectrum corresponding to a predetermined mass window containing the target ion of the extracted ion chromatogram and the MS spectrum in which the target ion is observed can be confirmed simultaneously on the screen.
  • Liquid chromatograph unit 10 ... Mobile phase container 11 ... Liquid feed pump 12 ... Injector 13 ... Column 2 ... Mass spectrometry unit 20 ... Vacuum chamber 201 ... Ionization chamber 202 ... First intermediate vacuum chamber 203 ... Second intermediate vacuum chamber 204 ... First high vacuum chamber 205... Second high vacuum chamber 21... ESI probe 22... Desolving tube 23, 25, 28, 29... Ion guide 24... Skimmer 26... Quadrupole mass filter 27... Collision cell 30... Orthogonal acceleration Unit 31 ... Ion flight unit 32 ... Ion detector 4 ... Control / processing unit 40 ... Analysis control unit 41 ... Data storage unit 42 ... Chromatogram creation unit 43 ... Spectrum creation unit 44 ... Spectrum calculation unit 45 ...
  • Display processing unit 46 ... Input reception unit 5 ... Input unit 6 ... Display unit 7 ... Data management computer 100 ... Graph display screen 100 110 ... Chromatogram display area 111 ... Pointer 120 ... MS spectrum display area 130 ... MS / MS spectrum display area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明に係るクロマトグラフ質量分析装置の一態様は、MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部(1,2)と、測定部により収集されたデータに基いて、特定のm/zにおけるクロマトグラムを作成し、表示画面上に表示するクロマトグラム表示処理部(42,45)と、表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定部(46)と、測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークのm/z、又は該m/zを含むm/z範囲をターゲットとする、指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、MSスペクトル及びMSnスペクトルをクロマトグラムと同じ表示画面上に表示するスペクトル表示処理部(43,45)と、を備え、時間指定部は、クロマトグラム上に表示されたポインタを移動させる操作をユーザに行わせることで保持時間を指定し、スペクトル表示処理部は、ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。

Description

クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
 本発明は、液体クロマトグラフ質量分析装置やガスクロマトグラフ質量分析装置などのクロマトグラフ質量分析装置、クロマトグラフ質量分析により得られたデータを処理する方法、及びそのためのコンピュータプログラムに関する。
 試料に含まれる複数の成分(化合物)の定性や定量のために、液体クロマトグラフ質量分析装置(LC-MS)やガスクロマトグラフ質量分析装置(GC-MS)が広く利用されている。これら装置では、前段のクロマトグラフにより時間的に分離された様々な成分を含む試料に対し、後段の質量分析部で質量分析を繰り返し行い、例えば、所定の質量電荷比(m/z)範囲に亘るマススペクトルをそれぞれ取得することができる。また、その質量分析の結果に基いて、全ての成分の含有量の時間経過を示すトータルイオンクロマトグラムや特定の質量電荷比を持つイオンの信号強度の時間経過を示す抽出イオンクロマトグラム(慣用的にマスクロマトグラムともいう)を作成することができる。
 そのため、上記装置により得られた分析結果をユーザが解析したり解析結果を確認したりする際には、クロマトグラムやマススペクトルを適宜、表示画面上に表示して目的とする箇所(時間や質量電荷比など)付近の波形を子細に観察したり複数の波形形状の比較を行ったりする作業が必要である。こうした作業を効率的に行うことを目的とした表示を行う装置として、特許文献1に記載の装置がある。この装置では、画面上に表示されたトータルイオンクロマトグラム上でユーザが任意の保持時間をクリック操作等により指定すると、その保持時間におけるマススペクトルが表示されるようになっている。これにより、ユーザは、簡単な操作によって、クロマトピークとこれに対応するマススペクトルとを容易に把握することができる。
特開2014-219317号公報 国際公開第2019/012589号 米国特許第8809770号明細書
 近年、食品中の残留農薬検査や環境水中の汚染物質検査など、多検体多成分の定性・定量分析が必要な分野において、タンデム型質量分析装置を検出器としたLC-MSやGC-MSの利用が進んでいる。特に後段の質量分離器として飛行時間型質量分離器を用いた四重極-飛行時間型質量分析装置(Q-TOF型質量分析装置)は、一般的なトリプル四重極型質量分析装置に比べて、高い質量精度及び質量分解能の測定が可能であることから、複雑な試料中の成分の同定や定量に威力を発揮している。
 こうしたLC-MSやGC-MSでは、データ依存型解析(DDA:Data Dependent Analysis、又は、Data Dependent Acquisition)、データ非依存型解析(DIA:Data Independent Analysis、又は、Data Independent Acquisition)などの様々な分析手法が採用されている(特許文献2、3等参照)。
 DDAは、まず通常の質量分析(MS分析)によりマススペクトル(MSスペクトル)を取得し、そのMSスペクトルにおいて観測されるピークの強度等に基いて選択した特定の質量電荷比を持つイオンをプリカーサイオンとしてMS/MS分析を行い、多様なプロダクトイオンが観測されるMS/MSスペクトルを取得する手法である。DDAでは、MSスペクトルにおいて適当な条件を満たすピークが存在しない場合にはMS/MS分析が実行されない。一方、DIAは、測定対象とする質量電荷比範囲を複数に分割してそれぞれに質量窓を設定し、各質量窓に含まれる質量電荷比を有するイオンを一括してプリカーサイオンとして、それらプリカーサイオンから生成されるプロダクトイオンを網羅的にスキャン測定して質量窓毎にMS/MSスペクトルを得る手法である。
 このようにタンデム型質量分析装置を検出器としたLC-MSやGC-MSでは、使用される分析手法によって取得されるMSスペクトルとMS/MSスペクトルとの関係が複雑であり、ユーザがその関係を把握するには面倒で煩雑な操作が必要であった。
 本発明はこうした課題に鑑みて成されたものであり、決められた設定や条件に従って自動的にMS/MS分析が実行されるクロマトグラフ質量分析装置において、取得されたMSスペクトルとMSnスペクトルとの関係をユーザが容易に把握することができるようにすることをその主たる目的としている。
 上記課題を解決するためになされた本発明に係るクロマトグラフ質量分析データ処理方法の一態様は、MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部、により収集されたデータを処理するクロマトグラフ質量分析データ処理方法であって、
 前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理ステップと、
 表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定ステップと、
 前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理ステップと、
 を有し、
 前記時間指定ステップでは、前記クロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間を指定し、
 前記スペクトル表示処理ステップでは、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。
 また上記課題を解決するためになされた本発明に係るクロマトグラフ質量分析装置の一態様は、
 MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部と、
 前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理部と、
 表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定部と、
 前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理部と、
 を備え、
 前記時間指定部は、前記クロマトグラム上に表示されたポインタを移動させる操作をユーザに行わせることで保持時間を指定し、
 前記スペクトル表示処理部は、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。
 また上記課題を解決するためになされた本発明に係るクロマトグラフ質量分析データ処理用プログラムの一態様は、MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部、により収集されたデータをコンピュータを用いて処理するクロマトグラフ質量分析データ処理用プログラムであって、コンピュータを、
 前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理機能部と、
 表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定機能部と、
 前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理機能部と、
 して動作させ、
 前記時間指定機能部では、前記クロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間を指定し、
 前記スペクトル表示処理機能部では、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。
 ここで、クロマトグラフは、液体クロマトグラフ又はガスクロマトグラフである。
 また、本発明に係るクロマトグラフ質量分析データ処理用プログラムは、例えば、CD-ROM、DVD-ROM、メモリカード、USBメモリ(ドングル)などの、コンピュータ読み取り可能である非一時的な記録媒体に格納されてユーザに提供されるようにすることができる。或いは、インターネットなどの通信回線を介したデータ転送の形式で、ユーザに提供されるようにすることもできる。もちろん、ユーザがシステムを新規に購入する場合、該システムに含まれるコンピュータに上記データ処理用プログラムを予め組み込んでおくこともできる。
 本発明に係るクロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラムの一態様では、表示画面上に表示された特定の質量電荷比におけるクロマトグラムつまりは抽出イオンクロマトグラム上で、ユーザは、所定の操作により着目する保持時間を指定する。すると、指定された保持時間に対応する、つまりはその保持時間において取得されたデータに基くMSスペクトルと、その保持時間に対応する、つまりはそのMSスペクトルにおいて観測され、抽出イオンクロマトグラムの対象である質量電荷比を持つイオンをプリカーサイオンとするMSnスペクトルとが、抽出イオンクロマトグラムと同じ画面上に表示される。それにより、ユーザは、保持時間毎のMSスペクトルとMS/MSスペクトルとの関係を視覚的に容易に把握することができる。また、例えば抽出イオンクロマトグラム上でピークトップに対応する保持時間等の、着目する保持時間の付近における、MSスペクトル及びMSnスペクトルの時間的な変動を画面上で確認することができる。それによって、収集されたデータをより多面的に解析し、化合物の同定や定量に有用で正確な情報を引き出すことができる。
 また、本発明に係るクロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラムの一態様では、ユーザが、例えば抽出イオンクロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間の指定を変更すると、そのポインタの移動に伴って、その移動中の各保持時間に対応するMSスペクトル及びMSnスペクトルが次々に表示される。このため、ユーザは、ポインタの移動中及び移動後の保持時間におけるMSスペクトルとMS/MSスペクトルとを略リアルタイムで以て確認することができる。それにより、MSスペクトルの時間的な変動と、そのMSスペクトルと親子関係にある特定のプリカーサイオンについてのMS/MSスペクトルの時間的な変動との両方を、同時に視覚的に、且つ迅速に把握することができ、例えば親子関係にあるMSスペクトルとMS/MSスペクトルの時間的変動が特徴的である或いは着目に値する保持時間を容易に且つ効率良く見つけることができる。
本発明の一実施形態であるLC-MS分析システムの概略構成図。 本実施形態のLC-MS分析システムにおけるDDA分析を説明するための模式図。 本実施形態のLC-MS分析システムにおけるDIA分析を説明するための模式図。 本実施形態のLC-MS分析システムにおけるDIA分析を説明するための模式図。 本実施形態のLC-MS分析システムにおける表示画面の一例を示す図。 本実施形態のLC-MS分析システムにおけるスペクトル処理の説明図。
 以下、本発明に係るクロマトグラフ質量分析装置の一実施形態であるLC-MS分析システムについて、添付図面を参照して説明する。
 図1は、本実施形態のLC-MS分析システムの概略構成図である。
 このLC-MS分析システムは、図1に示すように、液体クロマトグラフ部1及び質量分析部2を含む測定部と、制御・処理部4と、入力部5と、表示部6と、を含む。図1中に記載のデータ管理用コンピュータ7は、基本的には本システムに不要な構成要素であるが、後述するように本システムに含むこともできる。
 液体クロマトグラフ部1は、移動相が貯留される移動相容器10と、移動相を吸引して略一定流量で送給する送液ポンプ11と、移動相中に試料液を注入するインジェクタ12と、試料液に含まれる各種成分を時間的に分離するカラム13と、を含む。
 質量分析部2は四重極-飛行時間型(Q-TOF型)質量分析装置であり、略大気圧雰囲気であるイオン化室201と、内部が四つに区画された真空チャンバ20と、を含む。真空チャンバ20内には、第1中間真空室202、第2中間真空室203、第1高真空室204、第2高真空室205が設けられ、この順に真空度が高くなるように各室は真空ポンプにより真空排気されている。即ち、この質量分析部2には多段差動排気系の構成が採用されている。
 イオン化室201には、カラム13の出口から溶出液が供給されるエレクトロスプレーイオン化(ESI:Electrospray ionization)プローブ21が配置され、イオン化室201と第1中間真空室202とは細径の脱溶媒管22を通して連通している。第1中間真空室202と第2中間真空室203とはスキマー24の頂部に形成されたオリフィスを通して連通しており、第1中間真空室202内と第2中間真空室203内にはそれぞれ、イオンガイド23、25が配置されている。第1高真空室204内には、四重極マスフィルタ26と、内部にイオンガイド28が配置されたコリジョンセル27が設けられている。また、第1高真空室204と第2高真空室205とに跨って配置された複数の電極はイオンガイド29を構成する。さらに、第2高真空室205内には、直交加速部30、及びリフレクトロンを有するイオン飛行部31、を含む直交加速方式の飛行時間型質量分離器と、イオン検出器32とが設けられている。
 制御・処理部4は、機能ブロックとして、分析制御部40、データ格納部41、クロマトグラム作成部42、スペクトル作成部43、スペクトル演算部44、表示処理部45、入力受付部46、を含む。
 一般に、制御・処理部4の実体はパーソナルコンピュータやワークステーションなどであり、そうしたコンピュータにインストールされた専用の一又は複数のソフトウェア(コンピュータプログラム)を該コンピュータにおいて実行することにより、上記各機能ブロックが具現化される構成とすることができる。こうしたコンピュータプログラムは、CD-ROM、DVD-ROM、メモリカード、USBメモリ(ドングル)などの、コンピュータ読み取り可能である非一時的な記録媒体に格納されてユーザに提供されるものとすることができる。或いは、インターネットなどの通信回線を介したデータ転送の形式で、ユーザに提供されるようにすることもできる。或いは、ユーザがシステムを購入する時点で予めシステムの一部であるコンピュータにプリインストールしておくこともできる。
 分析制御部40は測定部を制御することで、用意された試料に対するLC/MS分析を実行する。次に、この分析制御部40による制御の下で実行される典型的な測定動作について、概略的に説明する。このLC-MS分析システムでは、イオン解離を伴わない通常の質量分析(MS分析)と、衝突誘起解離(CID:Collision-Induced Dissociation)によってイオンを解離させるMS/MS(=MS2)分析とを選択的に行うことが可能である。
 液体クロマトグラフ部1において、送液ポンプ11は移動相容器10から移動相を吸引し略一定流量でカラム13に送る。分析制御部40からの指示に応じてインジェクタ12は試料を移動相中に注入する。試料は移動相に乗ってカラム13に導入され、カラム13を通過する間に、試料中の成分は時間的に分離される。カラム13の出口からの溶出液はESIプローブ21に導入され、ESIプローブ21は溶出液を帯電液滴としてイオン化室201内に噴霧する。帯電液滴が微細化され、該液滴中の溶媒が気化する過程で、該液滴中の試料成分は気体イオンとなる。
 生成されたイオンは脱溶媒管22を経て第1中間真空室202内へと送られ、イオンガイド23、スキマー24、イオンガイド25を順に経て、第1高真空室204内の四重極マスフィルタ26に導入される。MS分析の場合、イオンは、四重極マスフィルタ26及びコリジョンセル27をほぼ素通りし、直交加速部30まで輸送される。一方、MS/MS分析の場合には、四重極マスフィルタ26を構成する複数のロッド電極にそれぞれ所定の電圧が印加され、その電圧に応じた特定の質量電荷比を有するイオン種、又はその電圧に応じた特定の質量電荷比範囲に含まれるイオン種が、プリカーサイオンとして選択されて四重極マスフィルタ26を通過する。コリジョンセル27内には、Arガス等のコリジョンガスが導入されており、プリカーサイオンはコリジョンガスに接触してCIDにより解離され、各種のプロダクトイオンが生成される。生成されたプロダクトイオンはイオンガイド29を経て直交加速部30まで輸送される。
 プリカーサイオンがコリジョンセル27に入射するときに該イオンが有する運動エネルギ(コリジョンエネルギ)によって、そのイオンの解離の態様は異なる。そのため、プリカーサイオンは同じであっても、コリジョンエネルギを適宜調整することによって、生成されるプロダクトイオンの種類を変化させることができる。また、全てのプリカーサイオンを解離させるのではなく、一部のプリカーサイオンを解離させずに残すこともできる。なお、よく知られているように、一般にコリジョンエネルギは、四重極マスフィルタ26に印加される直流バイアス電圧と、コリジョンセル27のイオン入口に配置されたレンズ電極に印加される直流電圧との電圧差で決まる。
 直交加速部30において、イオンはその入射方向(X軸方向)に略直交する方向(Z軸方向)に略一斉に加速される。加速されたイオンはその質量電荷比に応じた速度で飛行し、イオン飛行部31において図1中に2点鎖線で示すように折り返し飛行し、イオン検出器32に到達する。直交加速部30から略同時に出発した各種イオンは、質量電荷比が小さい順にイオン検出器32に到達して検出され、イオン検出器32はイオン数に応じた検出信号(イオン強度信号)を制御・処理部4へ出力する。
 制御・処理部4においてデータ格納部41は、検出信号をデジタル化し、さらにイオンが直交加速部30から射出された時点を基点とする飛行時間を質量電荷比に換算することでマススペクトルデータ(プロファイルデータ)を取得して保存する。直交加速部30では、所定の周期で繰り返しイオンをイオン飛行部31へ向けて射出する。これにより、データ格納部41は、所定の質量電荷比範囲に亘るマススペクトルデータを所定の周期で繰り返し取得することができる。
 LC/MS分析では、一つの試料に対して複数回の測定を行うことが困難であることが多い。そのため、1回の測定(1回の試料の注入)によって、該試料に含まれる多数の成分についての情報をできるだけ多く収集する必要がある。これに対応して、本実施形態のLC-MS分析システムでは、上述したDDA、及びDIAを含む複数の解析モードでの測定が可能である。
 図2は、DDAモードにおける分析の流れを説明する模式図である。DDAでは、典型的には一定の周期(図2では時間Δt間隔)で所定の質量電荷比範囲に亘るMS分析を繰り返す。制御・処理部4では、MS分析が実行される毎に即座にMSスペクトルを作成し、MSスペクトルにおいて観測されるイオンピークが予め設定された特定の条件に適合するか否かをチェックする。そして、特定条件に適合するピークが存在する場合には、そのピークに対応する質量電荷比を持つイオンをプリカーサイオンとしたMS/MS分析を、MS分析に引き続いて実行する。これにより、そのプリカーサイオンから生成される各種のプロダクトイオンが観測されるMS/MSスペクトルを取得することができる。
 上記特定条件とは例えば、イオン強度が最大であるものなどとすることができる。また、図2に示した例では、MS分析に引き続いて1回のMS/MS分析しか実施していないが、時間的な余裕があれば、1回のMS分析に引き続いて、互いに異なるプリカーサイオンについての複数回のMS/MS分析を実施することができる。その場合、例えばMSスペクトルで観測されるピークの中でイオン強度が大きい順に所定個数のピークを選択し、そのピークに対応する質量電荷比のイオンをプリカーサイオンとすることができる。また、図2からも分かるように、DDAでは、或る保持時間において得られるMSスペクトルに対応するMS/MSスペクトルが必ずしも存在するとは限らない。
 DDAでは、MS分析により得られたMSスペクトルデータ、及び、MS/MS分析により得られたMS/MSスペクトルデータは、その分析毎にそれぞれ異なるデータファイルに格納されるものとすることができる。その場合、各データファイルには、そのデータが収集された保持時間(tn、tn+1、…)やプリカーサイオンの質量電荷比値(MS/MSスペクトルの場合)などの情報が併せて記録される。また、同じ保持時間(tn、tn+1、…)に取得されたMSスペクトルデータとMS/MSスペクトルデータとが、同じデータファイルに格納されるようにしてもよい。
 図3及び図4は、DIAモードにおける分析の流れを説明するための模式図である。図3はMS分析を周期的に実施する場合、図4はMS分析を実施しない場合の例である。
 DIAでは、測定対象とする質量電荷比範囲の全体を複数に分割してそれぞれに質量窓を設定し、各質量窓に含まれる質量電荷比を有するイオンを一括してプリカーサイオンとして選択してMS/MS分析を実行する。
 図3、図4の例では、質量電荷比範囲M1~M6を五つに分割し、その5個の質量窓にそれぞれ含まれる質量電荷比を有するイオンをターゲットとするMS/MS分析を実施する。その質量窓毎に一つのMS/MSスペクトルが得られるから、図3、図4の例では1サイクル中に5個のMS/MSスペクトルが得られ、その5個のMS/MSスペクトルには、その時点で質量分析部2に導入された全ての成分に由来するプロダクトイオンが現れる。即ち、全ての成分についての網羅的なプロダクトイオン情報が得られる。また、上述したように、CIDの際のコリジョンエネルギを調整すると、MS/MSスペクトルにはプリカーサイオン自体のピークも観測される。したがって、1サイクル中に得られた複数のMS/MSスペクトルを加算したり或いは平均化したりして一つのMS/MSスペクトルを作成すると、その保持時間において測定対象である成分全てのプロダクトイオン、或いはプロダクトイオンとプリカーサイオンの情報を得ることができる。
 図4に示したDIAでは、MS分析を実施していないが、上述したようにコリジョンエネルギを調整することで、実質的にプリカーサイオン自体のピークが観測されるMS/MSスペクトルを得ることができる。この場合、MS分析を実行する必要がないので、その分だけ1サイクルの時間を短くすることができる。一方、図3に示したDIAでは、所定の質量電荷比範囲に亘るMS分析を1サイクルに1回実施するので、MS/MSスペクトルとは別にMSスペクトルを取得することができる。そのため、MS/MS分析時にプリカーサイオンの情報を取得する必要がなく、例えばMS/MS分析時にプリカーサイオンの全てをCIDにより解離させてもよい。それ故に、MS/MSスペクトルにおけるプロダクトイオンの信号強度が高くなり、感度を向上させることができる。
 なお、図3、図4は説明のために簡略化した図であり、一般的には、質量窓の数はより多数であり、一つの質量窓の質量電荷比幅は10~100Da程度の範囲、例えば20Daなどである。
 DIAでもDDAと同様に、MS分析により得られたMSスペクトルデータ、及び、MS/MS分析により得られたMS/MSスペクトルデータは、その分析毎にそれぞれ異なるデータファイルに格納されるものとすることができる。また、同じ保持時間(tn、tn+1、…)に取得されたMSスペクトルデータと複数のMS/MSスペクトルデータとが、又は、複数のMS/MSスペクトルデータが、同じデータファイルに格納されるようにしてもよい。
 一つの試料に対して、上述したようなDDA又はDIAを利用したLC/MS分析が実行された場合、データ格納部41には、そのLC/MS分析に対応したMSスペクトルデータ及び/又はMS/MSスペクトルデータが格納されたデータファイルが保存される。こうしたデータが保存されている状態の下で、本実施形態のLC-MS分析システムにおいて実行される、表示処理を中心とするデータ処理について次に説明する。
 図5は、本実施形態のLC-MS分析システムにおいて表示部6の画面上に表示されるグラフの一例を示す図である。但し、表示部6の画面上には図5に示したもののみが表示されるとは限らず、これは別のグラフや表などとともに表示されるようにすることができる。即ち、図5に示した表示は、画面全体又はその一部の表示である。
 ユーザは入力部5で、着目する質量電荷比値を指示する。質量電荷比値の代わりに化合物名称を指示するようにしてもよい。試料中に含まれるかどうかを確認したい又は定量したい化合物が決まっている場合には、その化合物又はそれに対応する質量電荷比値を指示すればよい。また、収集されたデータに基いた同定や定量などの解析処理が一旦終了しており、その結果を確認したい場合や再解析を行いたいような場合には、例えば同定された化合物の一覧を表示させ、その一覧の中から着目する化合物やそれに対応する質量電荷比値を指示することができる。或いは、ユーザが化合物や質量電荷比値を指示する代わりに、例えば予め設定された条件に最も適合する化合物や質量電荷比値が自動的に選択され、それが設定されるようにしてもよい。例えば、定量解析結果に基いて、質量が或る範囲にある化合物の中で含有量が最も多かった化合物が自動的に選択されるなどの方法が考えられる。
 入力受付部46を通して上述したようなユーザによる指示、又は自動的な選択指示を受けると、クロマトグラム作成部42は、データ格納部41に格納されているMSスペクトルデータから、各保持時間における、指示された質量電荷比値に対応した信号強度を抽出する。そして、その質量電荷比値における抽出イオンクロマトグラムを作成する。表示処理部45は作成された抽出イオンクロマトグラムを、表示部6の画面上の所定の領域に描画する。図5に示したグラフ表示画面100では、最上段がクロマトグラム表示領域110であり、この領域110に、指示されたm/z 337における抽出イオンクロマトグラムが描画されている。
 クロマトグラム表示領域110に表示される抽出イオンクロマトグラムには、垂直ラインを含むポインタ111が重ねて表示される。ポインタ111は、図中に太線両端矢印で示すように、入力部5に含まれるマウス等のポインティングデバイス、又はキーボードなどによるスクロール操作等に応じて、時間軸上(図5では水平軸上)で移動自在である。ポインタ111は時間軸上の一つの時間(保持時間)を示しており、スペクトル作成部43は、データ格納部41に保存されているデータに基いて、ポインタ111が位置する保持時間に対応するMSスペクトルを作成する。表示処理部45は作成されたMSスペクトルを、表示部6の画面上の所定の領域に描画する。図5では、中段がMSスペクトル表示領域120であり、この領域120に、保持時間RT 6.7minにおけるMSスペクトルが描画されている。
 さらに、スペクトル作成部43は、データ格納部41に保存されているデータから、ポインタ111が位置する保持時間(図5の例では保持時間RT 6.7min)に対応し、且つ上記抽出イオンクロマトグラムのターゲットである質量電荷比(図5の例ではm/z 337)をプリカーサイオンとする、つまりは上記MSスペクトルと親子関係にあるMS/MSスペクトルデータを探し、該データがあればそれに基いてMS/MSスペクトルを作成する。表示処理部45は作成されたMS/MSスペクトルを、表示部6の画面上の所定の領域に描画する。図5では、下段がMS/MSスペクトル表示領域130であり、この領域130に、保持時間がRT 6.7min、プリカーサイオンがm/z 337であるMS/MSスペクトルが描画されている。
 図2に示したようなDDAモードで分析が行われた場合、必ずしも指定された質量電荷比をプリカーサイオンとするMS/MSスペクトルデータが存在するとは限らない。したがって、対応するMS/MSスペクトルデータが存在すればMS/MSスペクトルが表示されるし、対応するMS/MSスペクトルデータが存在しなければMS/MSスペクトルは表示されずに例えばMS/MSスペクトルがないことを示す表示がなされる。
 図3に示したようなMS分析ありのDIAモードで分析が行われた場合には、上述したようにサイクル毎に、所定の質量電荷比範囲に含まれる全てのイオンをプリカーサイオンとするMS/MSスペクトルデータが存在する。したがって、ターゲットである質量電荷比(図5の例ではm/z 337)が含まれる質量窓に対応するMS/MSスペクトルデータを抽出し、MS/MSスペクトルを作成して表示することができる。
 これに対し、図4に示したようなMS分析なしのDIAモードで分析が行われた場合には、MS/MSスペクトルデータは存在するものの、MSスペクトルデータは存在しない。そこで、この場合には、次の二つのいずれかの方法を採ることができる。
 一つ目は、MSスペクトルを表示せずに、抽出イオンクロマトグラムのターゲットである質量電荷比が含まれる質量窓に対応するMS/MSスペクトルのみを表示し、MSスペクトルを表示なしとする方法である。
 二つ目は、同じ保持時間において得られた複数の質量窓に対応するMS/MSスペクトルを利用して、疑似的なMSスペクトルを作成し、これをMSスペクトル表示領域120
に表示する方法である。
 上述したように、通常、MS分析なしのDIAモードでは、MS/MSスペクトルにおいてプリカーサイオンのピークが十分に観測されるように、MS/MS分析の際にコリジョンエネルギが適切に調整される。そこで、例えば、スペクトル作成部43は、質量窓の異なるMS/MSスペクトル毎に、その質量窓に含まれるイオンピークを抽出し、信号強度が最も大きいピークがプリカーサイオンのピークであると推定する。例えば図4の例では、5個の質量窓にそれぞれ対応するMS/MSスペクトルからプリカーサイオンと推定されるピークが5個得られるから、それを集めて疑似的なMSスペクトルを作成する。もちろん、或る質量窓に含まれる複数のイオンピークの中で信号強度が最も大きいピークがプリカーサイオンのピークでないことが事前情報等により判明している場合には、次に信号強度の大きなピークを選択する等、適宜にアルゴリズムを変更することができる。また、それ以外の方法により、疑似的なMSスペクトルを作成してもよい。
 上述したようにグラフ表示画面100上にクロマトグラム及びスペクトルが表示された状態で、ユーザが入力部5によりポインタ111を左右に移動させる操作を行うと、スペクトル作成部43は、その操作に伴う保持時間の変更に応じて、表示されているMSスペクトル及びMS/MSスペクトルをそれぞれ略リアルタイムで更新する。即ち、スペクトル作成部43は、ユーザの操作によってポインタ111が移動した場合、そのポインタ111の移動の情報のみから、つまりは、それ以外のユーザによる操作(マウスのクリックやキーボード上での決定(ENTERキー入力)入力操作等)を要することなく、移動中の及び移動後のポインタ111が位置している保持時間を算出し、その保持時間に対応するMSスペクトル及びMS/MSスペクトルを自動的に作成して表示を更新する。これにより、例えば、ユーザは、クロマトピークが観測される保持時間の周辺の時間における、MSスペクトルの時間的な変動と、そのMSスペクトルと親子関係にある特定のプリカーサイオンについてのMS/MSスペクトルの時間的な変動と、を視覚的に且つ迅速に(遅滞なく)確認することができる。
 もちろん、ユーザにより指定された保持時間におけるMSスペクトル及びMS/MSスペクトルでなく、指定された開始時点から終了時点までの保持時間範囲に亘るMSスペクトルの変動とMS/MSスペクトルの変動とを動画として自動的に表示できるようにしてもよい。
 また、次のようにして、親子関係にあるMSスペクトル及び/又はMS/MSスペクトルの平均処理や減算処理を行うこともできる。
 ユーザは、グラフ表示画面100上に表示された抽出イオンクロマトグラム上で所望の保持時間範囲を指定する。図6の例では、一つのクロマトピークの全体が入るように保持時間範囲が指定されている。
 入力受付部46を介して保持時間範囲の指定を受けたスペクトル演算部44は、その保持時間範囲に含まれる全ての保持時間に対応するMSスペクトルデータを全て取得し、それを全て加算してから正規化する。これにより、上記保持時間範囲について質量電荷比値毎の信号強度が平均化された平均MSスペクトルが得られる。また、同じ保持時間範囲に含まれる全ての保持時間に対応し、且つ抽出イオンクロマトグラムの質量電荷比を有するイオン又はその質量電荷比が属する質量窓に含まれる複数のイオンをプリカーサイオンとしたMS/MSスペクトルデータを全て取得する。そして、それを全て加算してから正規化することにより、上記保持時間範囲について質量電荷比値毎の信号強度が平均化された平均MS/MSスペクトルが得られる。表示処理部45は、こうして求まった平均MSスペクトル及び平均MS/MSスペクトルをそれぞれ表示する。
 このとき、ユーザが例えばポインタ111の移動と同様にして保持時間範囲を変更すると、その変更に追従して、表示される平均MSスペクトル及び平均MS/MSスペクトルが更新されるようにしてもよい。
 さらにまた、ユーザが、抽出イオンクロマトグラム上で二つの保持時間範囲を指定したうえで減算の実行を指示すると、スペクトル演算部44は、その二つの保持時間範囲にそれぞれ対応する平均MSスペクトル及び平均MS/MSスペクトルを求め、平均MSスペクトル同士、及び、平均MS/MSスペクトル同士の質量電荷比毎の信号強度の差分を計算する。そして、その計算結果に基き差分MSスペクトル及び差分MS/MSスペクトルを作成し、画面上に表示する。
 以上のようにして、親子関係にあるMSスペクトルやMS/MSスペクトルの平均や減算した結果を視覚的に確認することができる。
 なお、上記実施形態は本発明をLC-MS分析システムに適用したものであるが、本発明はGC-MS分析システムにも適用することができる。また、上記実施形態では質量分析部はQ-TOF型質量分析装置であるが、MS/MS分析が可能である他の方式のタンデム型質量分析装置でもよい。トリプル四重極型質量分析装置、イオントラップ型質量分析装置、イオントラップ飛行時間型質量分析装置などがそうした装置の一例である。
 また、上記実施形態のLC-MS分析システムでは、処理対象つまりはグラフの作成対象のデータはデータ格納部41に保存されていたが、図1に示すように、分析装置で収集されたデータが、インターネットなどの通信線を介して接続されている別のデータ管理用コンピュータ7に保存されている場合もある。こうした場合でも、そうした別のコンピュータにアクセス可能なシステムであれば、上述したような表示処理を実行することができることは当然である。
 また、上記実施形態及び変形例は本発明の一例にすぎず、本発明の趣旨に沿った範囲で適宜変形や修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。
 [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本発明に係るクロマトグラフ質量分析データ処理方法の一態様は、MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部、により収集されたデータを処理するクロマトグラフ質量分析データ処理方法であって、
 前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理ステップと、
 表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定ステップと、
 前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理ステップと、
 を有し、前記時間指定ステップでは、前記クロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間を指定し、前記スペクトル表示処理ステップでは、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。
 (第6項)また本発明に係るクロマトグラフ質量分析装置の一態様は、
 MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部と、
 前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理部と、
 表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定部と、
 前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理部と、
 を備え、前記時間指定部は、前記クロマトグラム上に表示されたポインタを移動させる操作をユーザに行わせることで保持時間を指定し、前記スペクトル表示処理部は、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。
 (第11項)また本発明に係るクロマトグラフ質量分析データ処理用プログラムの一態様は、MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部、により収集されたデータをコンピュータを用いて処理するクロマトグラフ質量分析データ処理用プログラムであって、コンピュータを、
 前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理機能部と、
 表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定機能部と、
 前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理機能部と、
 して動作させ、前記時間指定機能部では、前記クロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間を指定し、前記スペクトル表示処理機能部では、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新する。
 第1項に記載のクロマトグラフ質量分析データ処理方法、第6項に記載のクロマトグラフ質量分析装置、及び、第11項に記載のクロマトグラフ質量分析データ処理用プログラムの一態様によれば、ユーザは、保持時間毎に、親子関係にあるMSスペクトルとMS/MSスペクトルを視覚的に容易に把握することができる。また、例えば抽出イオンクロマトグラム上でピークトップに対応する保持時間や、その付近の任意の保持時間を簡単に指定して、その保持時間におけるMSスペクトルとMSnスペクトルとを直ぐに確認することができる。それによって、化合物の同定や定量に有用で正確な情報を迅速に取得することができる。また、ユーザは、例えば抽出イオンクロマトグラム上で着目する保持時間の付近におけいてポインタを移動させるだけで、親子関係にあるMSスペクトルとMSnスペクトルとの時間的な変動を画面上で連動して迅速に確認することができる。それによって、収集されたデータをより多面的に解析し、化合物の同定や定量に有用で正確な情報を引き出すことができる。
 (第2項)第1項に記載のクロマトグラフ質量分析データ処理方法において、前記時間指定ステップでは、表示されたクロマトグラム上でのユーザに操作に応じて保持時間の範囲の指定を可能とし、前記測定部により収集されたデータに基いて、指定された保持時間範囲に対応する複数のMSスペクトル及び複数のMSnスペクトルについて、それぞれ平均化を行って平均スペクトルを取得するスペクトル演算ステップ、をさらに有するものとすることができる。
 (第7項)第6項に記載のクロマトグラフ質量分析装置において、前記時間指定部は、表示されたクロマトグラム上でのユーザに操作に応じて保持時間の範囲の指定が可能であり、前記測定部により収集されたデータに基いて、指定された保持時間範囲に対応する複数のMSスペクトル及び複数のMSnスペクトルについて、それぞれ平均化を行って平均スペクトルを取得するスペクトル演算部、をさらに備えるものとすることができる。
 (第12項)第11項に記載のクロマトグラフ質量分析データ処理用プログラムにおいて、前記時間指定機能部では、表示されたクロマトグラム上でのユーザに操作に応じて保持時間の範囲の指定を可能とし、さらにコンピュータを、前記測定部により収集されたデータに基いて、指定された保持時間範囲に対応する複数のMSスペクトル及び複数のMSnスペクトルについて、それぞれ平均化を行って平均スペクトルを取得するスペクトル演算機能部、として動作させるものとすることができる。
 第2項に記載のクロマトグラフ質量分析データ処理方法、第7項に記載のクロマトグラフ質量分析装置、又は、第12項に記載のクロマトグラフ質量分析データ処理用プログラムによれば、ユーザは、適宜の保持時間範囲に対応する平均MSスペクトルと平均MSnスペクトルを画面上で同時に確認することができる。それによって、収集されたデータをより多面的に解析し、化合物の同定や定量に有用で正確な情報を引き出すことができる。
 (第3項)第2項に記載のクロマトグラフ質量分析データ処理方法において、前記時間指定ステップでは、複数の保持時間範囲の指定を可能とし、前記スペクトル演算ステップでは、指定された複数の保持時間範囲においてそれぞれ平均化により得られた複数のMSスペクトルの間での及び/又は複数のMSnスペクトルの間での減算を行うものとすることができる。
(第8項)第7項に記載のクロマトグラフ質量分析装置において、前記時間指定部は、複数の保持時間範囲の指定を可能とし、前記スペクトル演算部は、指定された複数の保持時間範囲においてそれぞれ平均化により得られた複数のMSスペクトルの間での及び/又は複数のMSnスペクトルの間での減算を行うものとすることができる。
(第13項)第12項に記載のクロマトグラフ質量分析データ処理用プログラムにおいて、前記時間指定機能部では、複数の保持時間範囲の指定を可能とし、前記スペクトル演算機能部では、指定された複数の保持時間範囲においてそれぞれ平均化により得られた複数のMSスペクトルの間での及び/又は複数のMSnスペクトルの間での減算を行うものとすることができる。
 第3項に記載のクロマトグラフ質量分析データ処理方法、第8項に記載のクロマトグラフ質量分析装置、又は、第13項に記載のクロマトグラフ質量分析データ処理用プログラムによれば、例えば、ユーザは、目的以外の化合物の影響を除去して、目的化合物についての純粋性の高い平均MSスペクトル及び平均MSnスペクトルを画面上で同時に確認することができる。
 (第4項)第1項に記載のクロマトグラフ質量分析データ処理方法において、前記測定部により収集されたデータは、前記質量分析部においてデータ依存型解析によって得られたものとすることができる。
 (第9項)第6項に記載のクロマトグラフ質量分析装置において、前記質量分析部はデータ依存型解析を行うものであり、前記測定部により収集されたデータは、前記質量分析部においてデータ依存型解析によって得られたものとすることができる。
 (第14項)第11項に記載のクロマトグラフ質量分析データ処理用プログラムにおいて、前記測定部により収集されたデータは、前記質量分析部においてデータ依存型解析によって得られたものとすることができる。
 第4項に記載のクロマトグラフ質量分析データ処理方法、第9項に記載のクロマトグラフ質量分析装置、又は、第14項に記載のクロマトグラフ質量分析データ処理用プログラムによれば、MSスペクトルと、そのMSスペクトルにおいて観測される一つのプリカーサイオンをターゲットとするMSnスペクトルとを画面上で同時に確認することができる。
 (第5項)第1項に記載のクロマトグラフ質量分析データ処理方法において、前記測定部により収集されたデータは、前記質量分析部においてデータ非依存型解析によって得られたものであるものとすることができる。
 (第10項)第6項に記載のクロマトグラフ質量分析装置において、前記質量分析部はデータ非依存型解析を行うものであり、前記測定部により収集されたデータは、前記質量分析部においてデータ非依存型解析によって得られたものとすることができる。
 (第15項)第11項に記載のクロマトグラフ質量分析データ処理用プログラムにおいて、前記測定部により収集されたデータは、前記質量分析部においてデータ非依存型解析によって得られたものとすることができる。
 第5項に記載のクロマトグラフ質量分析データ処理方法、第10項に記載のクロマトグラフ質量分析装置、又は、第15項に記載のクロマトグラフ質量分析データ処理用プログラムによれば、MSスペクトルと、抽出イオンクロマトグラムのターゲットであるイオンを含む所定の質量窓に対応するMSnスペクトルと、そのターゲットであるイオンが観測されるMSスペクトルとを画面上で同時に確認することができる。
1…液体クロマトグラフ部
 10…移動相容器
 11…送液ポンプ
 12…インジェクタ
 13…カラム
2…質量分析部
 20…真空チャンバ
 201…イオン化室
 202…第1中間真空室
 203…第2中間真空室
 204…第1高真空室
 205…第2高真空室
 21…ESIプローブ
 22…脱溶媒管
 23、25、28、29…イオンガイド
 24…スキマー
 26…四重極マスフィルタ
 27…コリジョンセル
 30…直交加速部
 31…イオン飛行部
 32…イオン検出器
4…制御・処理部
 40…分析制御部
 41…データ格納部
 42…クロマトグラム作成部
 43…スペクトル作成部
 44…スペクトル演算部
 45…表示処理部
 46…入力受付部
5…入力部
6…表示部
7…データ管理用コンピュータ
100…グラフ表示画面100
110…クロマトグラム表示領域
 111…ポインタ
120…MSスペクトル表示領域
130…MS/MSスペクトル表示領域

Claims (15)

  1.  MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部、により収集されたデータを処理するクロマトグラフ質量分析データ処理方法であって、
     前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示部の画面上に表示するクロマトグラム表示処理ステップと、
     表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定ステップと、
     前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比を持つイオン、又は該質量電荷比が属する質量電荷比範囲に含まれるイオンをプリカーサイオンとした、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ画面上に表示するスペクトル表示処理ステップと、
     を有し、
     前記時間指定ステップでは、前記クロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間を指定し、
     前記スペクトル表示処理ステップでは、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新するクロマトグラフ質量分析データ処理方法。
  2.  前記時間指定ステップでは、表示されたクロマトグラム上でのユーザに操作に応じて保持時間の範囲の指定を可能とし、
     前記測定部により収集されたデータに基いて、指定された保持時間範囲に対応する複数のMSスペクトル及び複数のMSnスペクトルについて、それぞれ平均化を行って平均スペクトルを取得するスペクトル演算ステップ、をさらに有する、請求項1に記載のクロマトグラフ質量分析データ処理方法。
  3.  前記時間指定ステップでは、複数の保持時間範囲の指定を可能とし、
     前記スペクトル演算ステップでは、指定された複数の保持時間範囲においてそれぞれ平均化により得られた複数のMSスペクトルの間での及び/又は複数のMSnスペクトルの間での減算を行う、請求項2に記載のクロマトグラフ質量分析データ処理方法。
  4.  前記測定部により収集されたデータは、前記質量分析部においてデータ依存型解析によって得られたものである、請求項1に記載のクロマトグラフ質量分析データ処理方法。
  5.  前記測定部により収集されたデータは、前記質量分析部においてデータ非依存型解析によって得られたものである、請求項1に記載のクロマトグラフ質量分析データ処理方法。
  6.  MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部と、
     前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示画面上に表示するクロマトグラム表示処理部と、
     表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定部と、
     前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比、又は該質量電荷比を含む質量電荷比範囲をターゲットとする、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ表示画面上に表示するスペクトル表示処理部と、
     を備え、
     前記時間指定部は、前記クロマトグラム上に表示されたポインタを移動させる操作をユーザに行わせることで保持時間を指定し、
     前記スペクトル表示処理部は、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新するクロマトグラフ質量分析装置。
  7.  前記時間指定部は、表示されたクロマトグラム上でのユーザに操作に応じて保持時間の範囲の指定が可能であり、
     前記測定部により収集されたデータに基いて、指定された保持時間範囲に対応する複数のMSスペクトル及び複数のMSnスペクトルについて、それぞれ平均化を行って平均スペクトルを取得するスペクトル演算部、をさらに備える、請求項6に記載のクロマトグラフ質量分析装置。
  8.  前記時間指定部は、複数の保持時間範囲の指定を可能とし、
     前記スペクトル演算部は、指定された複数の保持時間範囲においてそれぞれ平均化により得られた複数のMSスペクトルの間での及び/又は複数のMSnスペクトルの間での減算を行う、請求項7に記載のクロマトグラフ質量分析装置。
  9.  前記質量分析部はデータ依存型解析を行うものであり、前記測定部により収集されたデータは、前記質量分析部においてデータ依存型解析によって得られたものである、請求項6に記載のクロマトグラフ質量分析装置。
  10.  前記質量分析部はデータ非依存型解析を行うものであり、前記測定部により収集されたデータは、前記質量分析部においてデータ非依存型解析によって得られたものである、請求項6に記載のクロマトグラフ質量分析装置。
  11.  MSn分析(nは2以上の整数)が可能である質量分析部を含み、試料中の成分をクロマトグラフで時間的に分離し、その分離後の試料を繰り返し質量分析する測定部、により収集されたデータをコンピュータを用いて処理するクロマトグラフ質量分析データ処理用プログラムであって、コンピュータを、
     前記測定部により収集されたデータに基いて、特定の質量電荷比におけるクロマトグラムを作成し、表示画面上に表示するクロマトグラム表示処理機能部と、
     表示されたクロマトグラム上でのユーザの操作に応じて保持時間を指定する時間指定機能部と、
     前記測定部により収集されたデータに基いて、指定された保持時間に対応するMSスペクトル、及び、該MSスペクトルに現れているピークの質量電荷比、又は該質量電荷比を含む質量電荷比範囲をターゲットとする、前記指定された保持時間に対応するMSn分析結果であるMSnスペクトルを作成し、前記MSスペクトル及び前記MSnスペクトルを前記クロマトグラムと同じ表示画面上に表示するスペクトル表示処理機能部と、
     して動作させ、
     前記時間指定機能部では、前記クロマトグラム上に表示されたポインタを移動させる操作を行うことで保持時間を指定し、
     前記スペクトル表示処理機能部では、前記ポインタが移動されるに伴い、その移動中の各保持時間に対応してMSスペクトル及びMSnスペクトルの表示を更新するクロマトグラフ質量分析データ処理用プログラム。
  12.  前記時間指定機能部では、表示されたクロマトグラム上でのユーザに操作に応じて保持時間の範囲の指定を可能とし、
     さらにコンピュータを、前記測定部により収集されたデータに基いて、指定された保持時間範囲に対応する複数のMSスペクトル及び複数のMSnスペクトルについて、それぞれ平均化を行って平均スペクトルを取得するスペクトル演算機能部、として動作させる、請求項11に記載のクロマトグラフ質量分析データ処理用プログラム。
  13.  前記時間指定機能部では、複数の保持時間範囲の指定を可能とし、
     前記スペクトル演算機能部では、指定された複数の保持時間範囲においてそれぞれ平均化により得られた複数のMSスペクトルの間での及び/又は複数のMSnスペクトルの間での減算を行う、請求項12に記載のクロマトグラフ質量分析データ処理用プログラム。
  14.  前記測定部により収集されたデータは、前記質量分析部においてデータ依存型解析によって得られたものである、請求項11に記載のクロマトグラフ質量分析データ処理用プログラム。
  15.  前記測定部により収集されたデータは、前記質量分析部においてデータ非依存型解析によって得られたものである、請求項11に記載のクロマトグラフ質量分析データ処理用プログラム。
PCT/JP2020/020569 2020-05-25 2020-05-25 クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム WO2021240609A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/020569 WO2021240609A1 (ja) 2020-05-25 2020-05-25 クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
JP2022527286A JP7416232B2 (ja) 2020-05-25 2020-05-25 クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
CN202080100625.9A CN115516302B (zh) 2020-05-25 2020-05-25 色谱质量分析数据处理方法、色谱质量分析装置以及色谱质量分析数据处理用程序
US17/926,319 US20230236159A1 (en) 2020-05-25 2020-05-25 Chromatograph Mass Spectrometry Data Processing Method, Chromatograph Mass Spectrometer, and Chromatograph Mass Spectrometry Data Processing Program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020569 WO2021240609A1 (ja) 2020-05-25 2020-05-25 クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム

Publications (1)

Publication Number Publication Date
WO2021240609A1 true WO2021240609A1 (ja) 2021-12-02

Family

ID=78723242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020569 WO2021240609A1 (ja) 2020-05-25 2020-05-25 クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム

Country Status (4)

Country Link
US (1) US20230236159A1 (ja)
JP (1) JP7416232B2 (ja)
CN (1) CN115516302B (ja)
WO (1) WO2021240609A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008570A (ja) * 2007-06-29 2009-01-15 Shimadzu Corp クロマトグラフ質量分析データ処理装置
JP2009539092A (ja) * 2006-06-01 2009-11-12 マイクロマス ユーケー リミテッド 質量分析計
JP2013234859A (ja) * 2012-05-07 2013-11-21 Shimadzu Corp クロマトグラフ質量分析用データ処理装置
WO2017158770A1 (ja) * 2016-03-16 2017-09-21 株式会社島津製作所 質量分析装置
US20180224406A1 (en) * 2017-02-03 2018-08-09 Thermo Fisher Scientific (Bremen) Gmbh High resolution ms1 based quantification
WO2019012589A1 (ja) * 2017-07-10 2019-01-17 株式会社島津製作所 質量分析装置、質量分析方法、及び質量分析用プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381207B2 (en) * 2013-09-04 2019-08-13 Shimadzu Corporation Data processing system for chromatographic mass spectrometry
JP5757357B2 (ja) * 2014-06-09 2015-07-29 株式会社島津製作所 質量分析データ処理装置
JP6548596B2 (ja) 2016-03-09 2019-07-24 株式会社ユニバーサルエンターテインメント 遊技機
CN110506205B (zh) * 2017-03-23 2022-05-17 株式会社岛津制作所 质谱分析装置和色谱质谱联用仪
JP7035348B6 (ja) 2017-06-29 2022-04-01 三洋電機株式会社 角形二次電池及びその製造方法
US11295833B2 (en) * 2018-03-29 2022-04-05 Dh Technologies Development Pte. Ltd. Analysis method for glycoproteins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539092A (ja) * 2006-06-01 2009-11-12 マイクロマス ユーケー リミテッド 質量分析計
JP2009008570A (ja) * 2007-06-29 2009-01-15 Shimadzu Corp クロマトグラフ質量分析データ処理装置
JP2013234859A (ja) * 2012-05-07 2013-11-21 Shimadzu Corp クロマトグラフ質量分析用データ処理装置
WO2017158770A1 (ja) * 2016-03-16 2017-09-21 株式会社島津製作所 質量分析装置
US20180224406A1 (en) * 2017-02-03 2018-08-09 Thermo Fisher Scientific (Bremen) Gmbh High resolution ms1 based quantification
WO2019012589A1 (ja) * 2017-07-10 2019-01-17 株式会社島津製作所 質量分析装置、質量分析方法、及び質量分析用プログラム

Also Published As

Publication number Publication date
CN115516302B (zh) 2024-10-11
US20230236159A1 (en) 2023-07-27
JPWO2021240609A1 (ja) 2021-12-02
JP7416232B2 (ja) 2024-01-17
CN115516302A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US8198585B2 (en) Chromatograph mass spectrometer
WO2009147699A1 (ja) 質量分析データ解析方法及び質量分析データ解析装置
US20160329203A1 (en) Mass spectrometer and mass spectrometry method
EP3916756A1 (en) Absolute quantitation of a target analyte using a mass spectrometer
WO2020194582A1 (ja) クロマトグラフ質量分析装置
JP6519661B2 (ja) 質量分析装置
JP6702501B2 (ja) タンデム型質量分析装置及び該装置用プログラム
WO2021240609A1 (ja) クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
JP6303896B2 (ja) 質量分析データ処理装置及び質量分析データ処理方法
WO2021240710A1 (ja) クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
Cajka et al. 10Mass Spectrometry and Hyphenated Instruments in Food Analysis
Harvey Mass spectrometric detectors for gas chromatography
WO2021240576A1 (ja) クロマトグラフ質量分析データ処理方法、クロマトグラフ質量分析装置、及びクロマトグラフ質量分析データ処理用プログラム
JP2016031323A5 (ja)
US11694886B2 (en) Analysis method, adsorption prevention agent, and analysis kit
JP7400698B2 (ja) クロマトグラフ質量分析装置
JP6521041B2 (ja) 質量分析データ処理装置及び質量分析データ処理方法
US20240177981A1 (en) Method and device for processing mass spectrometry data
Politi et al. Ionisation, ion separation and ion detection in LC-MS
Doig Fundamental aspects of mass spectrometry: overview of terminology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937390

Country of ref document: EP

Kind code of ref document: A1