WO2021239295A1 - Piece d'usure composite - Google Patents

Piece d'usure composite Download PDF

Info

Publication number
WO2021239295A1
WO2021239295A1 PCT/EP2021/057816 EP2021057816W WO2021239295A1 WO 2021239295 A1 WO2021239295 A1 WO 2021239295A1 EP 2021057816 W EP2021057816 W EP 2021057816W WO 2021239295 A1 WO2021239295 A1 WO 2021239295A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
alloy
metal matrix
metal
millimeter
Prior art date
Application number
PCT/EP2021/057816
Other languages
English (en)
Inventor
Guy Berton
Original Assignee
Magotteaux International S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International S.A. filed Critical Magotteaux International S.A.
Priority to CA3185012A priority Critical patent/CA3185012A1/fr
Priority to CN202180038714.XA priority patent/CN115867390A/zh
Priority to BR112022023593A priority patent/BR112022023593A2/pt
Priority to PE2022002695A priority patent/PE20231236A1/es
Priority to AU2021278584A priority patent/AU2021278584A1/en
Priority to US18/000,245 priority patent/US20230201920A1/en
Priority to EP21713434.5A priority patent/EP4157538A1/fr
Publication of WO2021239295A1 publication Critical patent/WO2021239295A1/fr
Priority to ZA2022/12082A priority patent/ZA202212082B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/005Lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/35Molten metal infiltrating a metal preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a wearing part produced in a foundry. It relates more particularly to a hierarchical wear part comprising a reinforced part on its most stressed side.
  • the reinforced part is obtained by placing a reinforcement made of an aggregate of millimeter grains with millimeter interstices in a mold in preparation for the casting of the wear part.
  • the reinforcement also includes centimetric ceramic inserts previously manufactured according to a predefined geometry. The inserts comprise micrometric ceramic particles bound in a first metal matrix and the millimeter interstices of the reinforcement are infiltrated during casting by a second metal matrix. The first metal matrix is independent of the second metal matrix.
  • the present invention also provides a method for obtaining said wearing part with its reinforcing structure.
  • the wearing parts include ejectors and anvils of vertical-axis crushers, hammers and beaters of horizontal-axis crushers, cones for crushers, tables and vertical mill rollers, armor plates and lifters for ball or bar mills.
  • pumps for tar sands or drilling machines we will cite, among others, pumps for tar sands or drilling machines, mining pumps and dredging teeth.
  • the present invention aims to overcome the drawbacks of the state of the art and in particular the difficulty of obtaining reinforcement zones comprising a very high concentration of ceramic particles. It also aims to integrate areas with a high concentration of ceramic particles within a three-dimensional structure of aggregated millimeter grains mainly based on alumina-zirconia comprising millimeter interstices which can be infiltrated by the casting ferrous alloy.
  • the millimetric grain reinforcement structure simultaneously makes it possible to ensure the positioning of prefabricated inserts of defined geometry and concentrated in ceramic particles such as carbides, nitrides, borides or intermetallic elements in the mold of the wearing part.
  • the inserts have a first metal matrix as a binder of the ceramic particles independent of the casting alloy constituting the second metal matrix.
  • the present invention discloses a hierarchical wear part comprising a reinforced part comprising zirconia or an alumina-zirconia alloy, said reinforced part also comprising centimetric inserts of predefined geometry, said inserts comprising micrometric particles of carbides , nitrides, metal borides or intermetallic compounds linked by a first metal matrix, said inserts being inserted into a reinforcing structure infiltrated by a second metal matrix, the reinforcing structure comprising a periodic alternation of millimeter zones with high and low concentration of micrometric particles of zirconia or of an alumina-zirconia alloy, the second metal matrix being different from the first metal matrix.
  • the reinforced part further comprises millimeter zones of ceramic-metal composite comprising micrometric particles of titanium carbides, of titanium nitrides, or titanium carbonitrides in a binder constituting a third metal matrix, the proportion of these zones relative to the millimeter zones with a high concentration of micrometric particles of zirconia or of an alumina-zirconia alloy is less than 50 % by volume, preferably less than 40% by volume and particularly preferably less than 30% by volume, the third metal matrix being independent of the first and the second metal matrix;
  • the insert has a concentration of micrometric particles of carbides, nitrides, metal borides or intermetallic elements between 20 and 95% by volume and at least 30%, preferably at least 40% and particularly preferably at least 50% by volume ;
  • the first metal matrix serving as a binder for the micrometric particles of the insert mainly comprises nickel, a nickel alloy, cobalt, a cobalt alloy or a ferrous alloy other than the
  • the present invention also discloses a method of manufacturing a wearing part according to the invention comprising the following steps: providing a mold comprising the imprint of a wearing part with a predefined geometry an area to be reinforced; introduction and positioning in said zone to be reinforced of a compact mixture of powders in the form of millimeter granules, zirconia or alumina-zirconia at least partially surrounding one or more prefabricated inserts of defined geometry concentrated in micrometric particles of carbides, nitrides, borides of metals or intermetallic compounds bound by a first metal matrix; casting a ferrous alloy into the mold, said liquid ferrous alloy infiltrating the three-dimensional structure comprising grains of zirconia or an alumina-zirconia alloy at least partially surrounding the prefabricated inserts.
  • the inserts of predefined geometry manufactured prior to the casting of said wearing part are produced by powder metallurgy.
  • the present invention also discloses the invention in the form of an impactor, an anvil, a cone or a grinding roller.
  • Figure 1 schematically shows a wear part with a zone reinforced by a reinforcement comprising cylindrical inserts in prefabricated ceramics surrounded by a structure of aggregated millimeter grains based on zirconia or alumina-zirconia infiltrated by the metal casting.
  • FIG. 2 schematically shows the detail of a reinforcement according to the invention consisting of cylindrical inserts in prefabricated ceramics fixed in a structure of millimeter grains based on zirconia or alumina-zirconia.
  • Figure 3 schematically shows a horizontal axis crusher beater with the predefined area reinforced by cylindrical inserts of prefabricated ceramics surrounded by a structure of millimeter grains of zirconia or alumina-zirconia with millimeter interstices and porosity infiltrable.
  • FIG. 4 schematically represents a vertical mill roller with the predefined zone reinforced by cylindrical inserts of prefabricated ceramics surrounded by a structure of millimeter grains of zirconia or alumina-zirconia with millimeter interstices and infiltrable porosity.
  • FIG. 5 schematically represents a crusher anvil with vertical axis with the predefined zone reinforced by cylindrical inserts of prefabricated ceramics surrounded by a structure of millimeter grains of zirconia or alumina-zirconia with millimeter interstices and porosity infiltrable.
  • FIG. 6 schematically represents the method of measuring the Féret diameter (with the minimum and maximum Féret diameters). These Feret diameters are used in the process to obtain the average ceramic-to-metal particle size (as explained below).
  • prefabricated ceramic-metal composite insert comprising as binder ceramic particles based on carbides, nitrides, borides and intermetallic elements, a first metallic matrix different from the casting metal, the insert being integrated into the structure infiltrable, the assembly having been placed in the mold before casting.
  • References 7 and 8 show an alloy of alumina-zirconia particles.
  • prefabricated ceramic particles which can represent up to 90% of the total volume of the insert.
  • These inserts can be made by any technology but are preferably made by powder metallurgy.
  • first metal matrix specific to the ceramic insert This metal matrix which serves as a binder for the particles of carbides, nitrides, borides and intermetallic elements is independent of the second metal matrix resulting from the casting which infiltrates the infiltrable structure based on zirconia and / or alumina-zirconia.
  • beater of a crusher with horizontal axis comprising a reinforced structure according to the invention
  • the present invention discloses a wear part with increased resistance to wear performed in conventional foundry. It relates more particularly to a wear part comprising a reinforced part according to a predefined geometry with ceramic inserts (cylinders, polygons, cones, etc.) at the scale of a few centimeters previously manufactured and inserted into an infiltrated three-dimensional structure. made up of agglomerated millimeter grains and forming a periodic alternation of millimeter grains and interstices.
  • the grains used to manufacture the three-dimensional structure mainly comprise zirconia ZrC> 2 or alumina-zirconia, the composition range of which can vary from 5 to 95% by weight of alumina and from 95 to 5% of zirconia, preferably 10 to 90% and 90 to 10%, and particularly preferably 20 to 80% and 80 to 20%.
  • the grains may include stabilizers such as rare earth oxides, in particular yttrium oxide or cerium oxide as a zirconia stabilizer.
  • the millimeter grains used to manufacture the three-dimensional reinforcing structure may also comprise, in a proportion of less than 50%, preferably less than 40% and particularly preferably less than 30% by volume, titanium carbides, titanium nitrides or titanium carbonitrides in a third metal matrix which is also independent of the first two (not shown in the figures).
  • the third metal matrix serving as a binder for these millimeter grains is preferably based on an iron alloy, a nickel alloy or a molybdenum alloy.
  • the volumetric proportion of the metal binder (third metal matrix) is generally between 5 and 60%, preferably between 7 and 45% and particularly preferably between 10 and 35%.
  • the size of the titanium carbides, nitrides or carbonitrides are from 0.05 to 75 ⁇ m, preferably from 0.2 to 40 ⁇ m, more preferably from 0.5 to 15 ⁇ m.
  • the infiltrable structure therefore consists of a three-dimensional structure of an aggregate of millimeter grains of average size between 0.5 and 10 mm, preferably 0.7 to 6 mm and particularly preferably between 1 and 4 mm .
  • Grain interstices depend on the level of compaction and grain size, but are on the order of a millimeter or a fraction of a millimeter. There is thus a "periodic" alternation of grains and interstices and not a "random" alternation.
  • the millimeter grains comprise a homogeneous mixture based on zirconia or alumina-zirconia and can be agglomerated / compacted between them by the use of a binder (glue) or else kept in a metal container in order to define geometrically the reinforced area of the wear part.
  • binder with setting via the addition of a catalyst allows the realization of the infiltrable structure without cooking, which may be preferred in certain cases where adequate cooking means are not available.
  • the nature of the binder is then either of organic type or of mineral type, preferably organic, more preferably of phenolic type.
  • binder with a baking setting allows the use of a binder that is more resistant to high temperature.
  • the nature of the binder is then of mineral type, preferably of silicate type, more preferably of sodium silicate type.
  • the amount of binder (glue) used for producing the infiltrable structure is between 0.5% and 10% by weight, preferably between 1% and 8%, more preferably between 1.5% and 7%.
  • the amount of binder is adapted so as to ensure sufficient cohesion of the grains and to limit the production of gas during infiltration by the liquid casting metal and to limit the residual thickness of binder around each grain constituting the three-dimensional structure porous.
  • Ceramic inserts intended to be held by the three-dimensional structure of agglomerated grains have for their part any shape, the cylindrical, polygonal or conical shapes being however favorite.
  • the diameter of these ceramic inserts, in the case of a cylindrical shape is of the order of 3 to 50 mm, preferably 6 to 30 mm, more particularly 8 to 20 mm and the length of 5 to 300 mm, preferably 10 to 200 mm, in particular 10 to 150 mm.
  • the present invention therefore describes a reinforced wear part on its most stressed side or sides obtained by the infiltration of a three-dimensional ceramic structure of agglomerated millimeter grains periodically alternating with millimeter interstices which already incorporates geometric inserts in Prefabricated ceramics of the ceramic-metal composite type generally obtained by powder metallurgy, where the ceramic particles are embedded in a first metal matrix completely independent of the second metal casting matrix, mainly made of steel or liquid iron.
  • This technique allows the convenient and robust positioning of inserts of defined geometry and concentrated in carbides, nitrides, metal borides or intermetallic alloys comprising a metal matrix independent of that generated by the casting.
  • This first metal matrix existing prior to the casting of said wear part is present from the start in the ceramic-metal composite inserts.
  • the pre-existing inserts are integrated into an infiltrable structure comprising agglomerated millimeter grains (padding) of zirconia, alumina-zirconia or ceramic-metallic composite and which will be infiltrated during the casting of the wear part.
  • the infiltrable three-dimensional structure can also include a certain proportion of millimeter grains of titanium carbides, titanium nitrides or titanium carbonitrides in a third metal matrix independent of the first two.
  • Ceramic-metal composite inserts such as a cylindrical or frustoconical insert.
  • This insert can be composed for example of titanium carbides, titanium nitrides or chromium carbides with a minimum concentration of 40% by volume in a first metal matrix based on iron, manganese, nickel or cobalt, for example, that l 'it is “packaged” in an infiltrable structure composed for example of an agglomerate of millimeter grains based on zirconia or alumina-zirconia.
  • this infiltrable structure can also include millimeter grains of carbides, nitrides, metal borides or intermetallic elements, preferably titanium carbide, titanium nitride or titanium carbonitride.
  • Alumina is known for its low load abrasion resistance properties thanks to its high hardness compared to the hardness of the main natural minerals. Alumina also takes advantage of its low density and its low cost of implementation, whether by melting or by powder sintering. Pure zirconia, for its part, is generally used in the presence of stabilizers. Zirconia in its tetragonal crystallographic form exhibits advantageous mechanical properties for the reinforcement of parts subjected to wear. The addition of between 0.3 to 8% of rare earth oxide such as, for example, yttrium oxide or cerium oxide allows the stabilization of the zirconia in its tetragonal phase.
  • Zirconia has greater flexural strength and toughness than alumina.
  • the wear resistance of zirconia is particularly good in the case where the surface stresses induced by the abrasive particles are high.
  • its lower hardness compared to certain natural minerals, including quartz or free silica limits its use when it is called upon by ores which contain it.
  • the production of alumina-zirconia composites makes it possible to improve the properties of the two compounds taken separately, in particular the mechanical strength and the toughness. The evolution of these properties is illustrated in the following figures.
  • the choice of the proportion of zirconia in the alumina makes it possible to optimize the hardness / mechanical properties-toughness pair as a function of the wear stresses to which the material is subjected in order to obtain the best performance from the part thus reinforced.
  • the present invention therefore makes it possible to achieve not only very high ceramic concentrations, generally greater than 40% by volume but up to 95% by volume in prefabricated geometric inserts or millimeter grains of ceramic composite.
  • existing metal but also to choose the specific metal matrix (first and third metal matrix) to these elements and therefore to be independent of the casting metal (second metal matrix) of the wear part which is generally cast iron or chrome steel.
  • the present invention allows better performance of wear parts made in reinforced foundry compared to those of the prior art thanks to the localized increase in the wear resistance of the reinforced area by the presence of more particles resistant to wear and / or particles of a different nature by a more suitable metal matrix. It also allows better performance of wear parts produced by adding areas of defined geometry concentrated in carbides, nitrides, metal borides or intermetallic alloys and a metal matrix existing prior to the casting of said wear part.
  • the calculation of the average size dso of the particles of carbides, nitrides, metal borides or particles of intermetallic alloys is carried out by means of the following steps.
  • a photomicrographic panorama of the polished cross section of a sample is made, so that there are at least 250 complete particles across the field of view.
  • This panorama is made by stitching (the process of combining a series of digital images of different parts of a subject into a panoramic view of the whole subject in order to maintain good definition) using a program computer and an optical microscope (for example, a general image field panorama obtained by an Alicona Infinity Focus).
  • an appropriate thresholding is carried out in order to segment the image into characteristics of interest (the particles) and in the background, in different levels of gray.
  • a manual step of drawing the particles, the scale bar if present and the border of the image on tracing paper is added, as well. than a step of digitizing the tracing paper.
  • the Féret diameter (which corresponds to the distance between two parallel tangents, placed perpendicular to the direction of measurement so that the whole of the projection of the particle is between these two tangents) is measured in all the directions for each particle by image analysis software (ImageJ for example). An example is given in figure 6.
  • the minimum and maximum Feret diameters of each particle of the image are determined.
  • the minimum Feret diameter is the smallest diameter among the set of Feret diameters measured for a particle.
  • the maximum Feret diameter is the largest diameter among the set of Feret diameters measured for a particle. Particles touching the edges of the image are ignored in the calculation.
  • the average value of the minimum and maximum Feret diameters of each particle is taken as equivalent diameter x.
  • the volume distribution of the particle size q3 (x) is then calculated on the basis of spheres of diameter x.
  • the average particle size dso is the volume-weighted average size xi , 3 according to the ISO 9276-2: 2014 standard.
  • the volume of the wearing part is 10.27 dm 3 . Its mass is 74.16 kg.
  • the weight loss of the entire vertical axis impactor part is measured. This is the only way to determine the wear in practice, which depends on a series of factors including the positioning geometry in the impactor. Although mostly worn on the side of the reinforcement, the impactor is also partially worn outside this reinforcement depending on this positioning.
  • This infiltrable structure comprises an aggregate of millimeter grains of average size of about 2.5 mm. These grains are agglomerated in a three-dimensional structure using sodium silicate with a predefined shape in a resin mold. In this three-dimensional structure, there is an alternation between grains and millimeter interstices.
  • This comparative example therefore presents reinforced parts based on alumina-zirconia, on the most stressed side of the wear part without initially containing centimetric ceramic-metal composite inserts, of cylinder type for example, previously positioned. in a metal matrix different from the ferrous alloy used for the casting. At the end of these steps, a shape of a total volume reinforced with 0.857 dm 3 is manufactured. The weight loss observed during a wear test is 6.795 kg per 100 hours of operation (kg / 100h) on the wear part of the vertical axis impactor. Examples according to the invention Example 1:
  • the reinforced part according to the invention comprises a reinforced zone of predefined geometry with cylindrical ceramic inserts previously manufactured to the scale of a few centimeters and previously inserted into an infiltrable structure comprising grains based on electrofused alumina-zirconia with the composition described below. It should be noted that these grains have the same characteristics as those of the comparative example.
  • This infiltrable structure comprises an aggregate of millimeter grains of average size of about 2.5 mm. These grains are agglomerated in a three-dimensional structure using a sodium silicate-based glue with a predefined shape in a resin mold. In this three-dimensional structure, there is a periodic alternation between grains and millimeter interstices.
  • the ceramic inserts previously manufactured have a cylindrical geometric shape and consist on average of 70 to 80% of micrometric particles of titanium carbides bound by a first metal matrix of the austenitic steel type.
  • the diameter of these previously manufactured ceramic inserts is 20 mm.
  • the height is 30 mm.
  • the 25 ceramic inserts previously manufactured are positioned vertically relative to the filling face in a predefined manner in the resin mold which defines the reinforcement zone by means of notches made in the resin mold and prior to the addition of millimeter grains of alumina-zirconia.
  • a three-dimensional structure with a total volume of 0.857 dm 3 is manufactured by casting a AFNOR Z 270 C 27 - M type cast iron.
  • This type of cast iron, which constitutes the second metal matrix, is used for all the examples.
  • Example 2 Example 1 is repeated but this time, 25 ceramic inserts manufactured beforehand are positioned identically to Example 1, but consist on average of 70 to 80% of micrometric particles of titanium carbides and a first metal matrix in nickel alloy.
  • Example 3 Example 3:
  • Example 1 is repeated with 25 inserts but this time, the previously manufactured ceramic-metal composite inserts comprise on average from 75 to 85% of micrometric particles of titanium carbonitrides and a first metal matrix based on an alloy of molybdenum.
  • Example 4 is repeated with 25 inserts but this time, the previously manufactured ceramic-metal composite inserts comprise on average from 75 to 85% of micrometric particles of titanium carbonitrides and a first metal matrix based on an alloy of molybdenum.
  • Example 4 is repeated with 25 inserts but this time, the previously manufactured ceramic-metal composite inserts comprise on average from 75 to 85% of micrometric particles of titanium carbonitrides and a first metal matrix based on an alloy of molybdenum.
  • Example 1 is repeated with again 25 inserts of the same size, but the ceramic inserts produced beforehand comprise on average from 80 to 90% of micrometric particles of chromium carbides bound in a first metal matrix based on nickel.
  • Example 5 [0059] Example 4 is repeated with again 25 inserts of the same size, where the ceramic inserts previously produced comprise on average from 80 to 90% of micrometric particles of chromium carbides bound in a first metal matrix based on nickel.
  • the three-dimensional structure which surrounds the centimetric inserts comprises 25% by volume of millimeter grains comprising on average 80 to 85% of micrometric particles of titanium carbonitrides in a third metal matrix based on a molybdenum alloy.
  • the table below shows the weight losses of a wear part of a 74.16 kg vertical axis impactor in new condition, the reinforced volume of which represents approximately 0.857 dm 3 .
  • the weight loss is measured after 438 hours of operation and is reduced over 100 hours of operation.
  • the wear mechanisms of the wear parts of vertical axis impactors are a complex mixture of material removal by abrasion, micro-chipping by microcrack propagation and impact erosion of the treated particles.
  • the wear behavior of a material will depend on a large number of parameters which are themselves interdependent. Among the most significant, we can cite hardness, toughness, modulus of elasticity, mean free path between the different particles, and at different scales (micrometric, millimeter, centimeter) depending on the size and shape of the particles. processed particles, elastic limit, fatigue resistance and ductility.
  • Optimizing the geometric distribution of the materials constituting the composite coupled with their nature and therefore their intrinsic properties therefore makes it possible to further increase the overall hardness of the material while maintaining sufficient toughness leading to better performance at the wear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Crushing And Grinding (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention se rapporte à une pièce d'usure hiérarchique comportant une partie renforcée comprenant de la zircone ou un alliage d'alumine-zircone, ladite partie renforcée comprenant également des inserts centimétriques de géométrie prédéfinie, lesdits inserts comportant des particules micrométriques de carbures, nitrures, borures métalliques ou en composés intermétalliques liées par une première matrice métallique, lesdits inserts étant insérés dans une structure de renfort infiltrée par une seconde matrice métallique, la structure de renfort comportant une alternance périodique de zones millimétriques à forte et à faible concentration de particules micrométriques de zircone ou d'un alliage d'alumine- zircone, la seconde matrice métallique étant différente de la première matrice métallique.

Description

PIECE D’USURE COMPOSITE
Objet de l'invention
[0001] La présente invention se rapporte à une pièce d’usure réalisée en fonderie. Elle se rapporte plus particulièrement à une pièce d’usure hiérarchique comportant une partie renforcée sur son côté le plus sollicité. La partie renforcée est obtenue en plaçant un renfort constitué d’un agrégat de grains millimétriques avec des interstices millimétriques dans un moule en préparation de la coulée de la pièce d’usure. Le renfort comporte également des inserts centimétriques en céramiques préalablement fabriqués selon une géométrie prédéfinie. Les inserts comportent des particules de céramiques micrométriques liées dans une première matrice métallique et les interstices millimétriques du renfort sont infiltrés lors de la coulée par une seconde matrice métallique. La première matrice métallique est indépendante de la seconde matrice métallique.
[0002] La présente invention propose également un procédé pour l’obtention de ladite pièce d’usure avec sa structure de renforcement.
Etat de la technique
[0003] Les installations d’extraction et de fragmentation des minerais et en particulier le matériel de broyage et de concassage sont soumis à de nombreuses contraintes de résistance au choc et à la résistance à l’abrasion.
[0004] Dans le domaine du traitement des agrégats, du ciment et des minerais, les pièces d’usure comportent les éjecteurs et enclumes de concasseurs à axe vertical, les marteaux et battoirs de concasseurs à axe horizontal, les cônes pour concasseurs, les tables et galets de broyeurs verticaux, les plaques de blindage et releveurs de broyeurs à boulets ou à barres. Concernant les installations d’extraction minières, nous citerons, entre autres, les pompes pour sables bitumeux ou machines de forage, les pompes de mines et les dents de dragage.
[0005] Les pièces d’usure composites réalisées par coulée en fonderie comportant des parties renforcées par des céramiques et infiltrés lors de la coulée sont connues de l’état de la technique. [0006] Le document EP0575685A1 (Sulzer, 1996) décrit une pièce moulée avec des surfaces d'usure renforcées par des corps céramiques poreux intégrés dans une phase métallique, chaque corps céramique présentant une structure ayant la forme d'un réseau tridimensionnel poreux.
[0007] Le document W09815373A1 (Magotteaux, 1997) divulgue une pièce d'usure composite réalisée en fonderie. Elle comporte une matrice métallique avec des renforts réalisés par une structure tridimensionnelle de grains agglomérés comportant une phase homogène de 20 à 80% de AI2O3 et 80 à 20% de ZrC>2.
[0008] Le document W02016008967A1 (Magotteaux, 2015) divulgue des grains de céramique frittés comprenant de 3 à 55 % en poids d’alumine et 40 à 95 % en poids de zircone associés à des composants inorganiques du type oxydes de métaux rares ou oxydes de métaux alcalino-terreux.
[0009] Les documents selon l’art antérieur ne permettent cependant pas l’obtention de concentrations élevées de céramiques dans les parties les plus sollicitées de la pièce car les structures tridimensionnelles d’agrégats de grains millimétriques lors de la coulée nécessitent des proportions d’interstices suffisants pour permettre l’infiltration complète de cette structure de renfort par l’alliage ferreux lors de la coulée, ce qui limite la concentration en céramiques disponibles aux endroits renforcés.
Buts de l'invention
[0010] La présente invention vise à surmonter les inconvénients de l’état de la technique et notamment la difficulté d’obtention de zones de renfort comportant une très forte concentration en particules céramiques. Elle vise également à intégrer des zones à forte concentration en particules céramiques au sein d’une structure tridimensionnelle de grains millimétriques agrégés principalement à base d’alumine- zircone comportant des interstices millimétriques infiltrables par l’alliage ferreux de coulée. La structure de renfort de grains millimétriques permet en même temps d’assurer le positionnement d’inserts préfabriqués de géométrie définie et concentrés en particules céramiques de type carbures, nitrures, borures ou éléments intermétalliques dans le moule de la pièce d’usure. Les inserts comportent une première matrice métallique en tant que liant des particules céramiques indépendante de l’alliage de coulée constituant la seconde matrice métallique. Résumé de l'invention
[0011] La présente invention divulgue une pièce d’usure hiérarchique comportant une partie renforcée comprenant de la zircone ou un alliage d’alumine- zircone, ladite partie renforcée comprenant également des inserts centimétriques de géométrie prédéfinie, lesdits inserts comportant des particules micrométriques de carbures, nitrures, borures métalliques ou de composés intermétalliques liées par une première matrice métallique, lesdits inserts étant insérés dans une structure de renfort infiltrée par une seconde matrice métallique, la structure de renfort comportant une alternance périodique de zones millimétriques à forte et à faible concentration en particules micrométriques de zircone ou d’un alliage d’alumine-zircone, la seconde matrice métallique étant différente de la première matrice métallique.
[0012] Les modes d’exécution préférés de l’invention comportent au moins une ou une combinaison quelconque appropriée des caractéristiques suivantes : la partie renforcée comporte en outre des zones millimétriques de composite céramique-métal comportant des particules micrométriques de carbures de titane, de nitrures de titane, ou de carbonitrures de titane dans un liant constituant une troisième matrice métallique, la proportion de ces zones par rapport aux zones millimétriques à forte concentration de particules micrométriques de zircone ou d’un alliage d’alumine-zircone est inférieure à 50% en volume, de préférence inférieure à 40% en volume et de manière particulièrement préférée inférieure à 30% en volume, la troisième matrice métallique étant indépendante de la première et de la seconde matrice métallique ; l’insert comporte une concentration en particules micrométriques de carbures, nitrures, borures métalliques ou en éléments intermétalliques entre 20 et 95 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume ; la première matrice métallique servant de liant aux particules micrométriques de l’insert comporte majoritairement du nickel, de l’alliage de nickel, du cobalt, de l’alliage de cobalt ou un alliage ferreux différent de l’alliage de coulée ; la troisième matrice métallique servant de liant aux particules micrométriques de carbures de titane, de nitrures de titane, ou des carbonitrures de titane dans les zones millimétriques faisant partie du renfort comporte majoritairement du nickel, de l’alliage de nickel, du cobalt, de l’alliage de cobalt ou un alliage ferreux différent de l’alliage de coulée ; l’insert ou les zones millimétriques du renfort lorsqu’ils comportent des composites céramique-métal comportent des particules micrométriques de carbures, nitrures, borures métalliques ou des particules d’alliages intermétalliques de taille moyenne D50 inférieure à 80 pm, de préférence inférieure à 60 pm et de manière particulièrement préférée inférieure à 40 pm ; l’insert et les zones renforcées à la zircone ou à l’alliage alumine- zircone comportent des interstices micrométriques comportant des matrices métalliques différentes.
[0013] La présente invention divulgue également une méthode de fabrication d’une pièce d’usure selon l’invention comprenant les étapes suivantes : mise à disposition d’un moule comprenant l’empreinte d’une pièce d’usure avec une géométrie prédéfinie d’une zone à renforcer ; introduction et positionnement dans ladite zone à renforcer d’un mélange compact de poudres sous forme de granulés millimétriques, de zircone ou d’alumine-zircone entourant au moins partiellement un ou plusieurs inserts de géométrie définie préfabriqués concentrés en particules micrométriques de carbures, nitrures, borures métalliques ou en composés intermétalliques liées par une première matrice métallique ; coulée d’un alliage ferreux dans le moule, ledit alliage ferreux liquide infiltrant la structure tridimensionnelle comportant des grains de zircone ou d’un alliage d’alumine-zircone entourant au moins partiellement les inserts préfabriqués.
[0014] Selon un mode d’exécution préféré, la méthode selon l’invention les inserts de géométrie prédéfinie fabriqués préalablement à la coulée de ladite pièce d’usure, le sont par métallurgie des poudres.
[0015] Le présente invention divulgue également l’invention sous forme d’un impacteur, une enclume, un cône ou un galet de broyage.
Brève description des figures
[0016] La figure 1 représente schématiquement une pièce d’usure avec une zone renforcée par un renfort comportant des inserts cylindriques en céramiques préfabriqués entourés d’une structure de grains millimétriques agrégés à base de zircone ou d’alumine-zircone infiltrés par le métal de coulée.
[0017] La figure 2 représente schématiquement le détail d’un renfort selon l’invention constitué d’inserts cylindriques en céramiques préfabriqués fixés dans une structure de grains millimétriques à base de zircone ou d’alumine-zircone. [0018] La figure 3 représente schématiquement un battoir de concasseur à axe horizontal avec la zone prédéfinie renforcée par des inserts cylindriques en céramiques préfabriqués entourés d’une structure de grains millimétriques de zircone ou d’alumine-zircone avec des interstices millimétriques et une porosité infiltrables. [0019] La figure 4 représente schématiquement un galet de broyeur vertical avec la zone prédéfinie renforcée par des inserts cylindriques en céramiques préfabriqués entourés d’une structure de grains millimétriques de zircone ou d’alumine-zircone avec des interstices millimétriques et une porosité infiltrables.
[0020] La figure 5 représente schématiquement une enclume de concasseur à axe vertical avec la zone prédéfinie renforcée par des inserts cylindriques en céramiques préfabriqués entourés d’une structure de grains millimétriques de zircone ou d’alumine-zircone avec des interstices millimétriques et une porosité infiltrables.
[0021] La figure 6 représente schématiquement la méthode de mesure du diamètre de Féret (avec les diamètres de Féret minimum et maximum). Ces diamètres de Féret sont utilisés dans le procédé afin d’obtenir la taille moyenne des particules céramique-métal (comme expliqué ci-dessous).
Liste des symboles de référence
1 : pièce d’usure composite renforcée par une composition en céramique aux endroits les plus exposés à l’usure.
2 : structure de renfort de géométrie prédéfinie infiltrée par le métal de coulée (seconde matrice métallique), la structure comportant des grains millimétriques d’alumine-zircone avec des interstices millimétriques et une porosité infiltrables.
3 : insert en composite céramique-métal préfabriqué comportant en tant que liant des particules de céramiques à base de carbures, nitrures, borures et d’éléments intermétalliques, une première matrice métallique différente du métal de coulée, l’insert étant intégré à la structure infiltrable, l’ensemble ayant été placé dans le moule avant la coulée.
4 : détail de structure de renfort montrant un interstice millimétrique avec une zone à faible concentration en particules de céramiques. L’interstice est occupé principalement par la seconde matrice métallique, le métal de coulée
5 : détail de structure de renfort montrant schématiquement une zone millimétrique à forte concentration en particules de céramiques issue de l’agrégat de grains millimétriques infiltré par la seconde matrice métallique, le métal de coulée
6 : métal de coulée (seconde matrice métallique). 7 : alumine dans un grain millimétrique composant la structure poreuse infiltrable.
8 : zircone dans un grain millimétrique composant la structure poreuse infiltrable.
Les références 7 et 8 montrent un alliage de particules d’alumine-zircone.
9 : particules de céramiques préfabriquées pouvant représenter jusqu’à 90 % du volume total de l’insert. Ces inserts peuvent être fabriqués par n’importe quelle technologie mais le sont de préférence par métallurgie des poudres.
10 : première matrice métallique propre à l’insert en céramiques. Cette matrice métallique qui sert de liant aux particules de carbures, nitrures, borures et éléments intermétalliques est indépendante de la seconde matrice métallique issue de la coulée qui infiltre la structure infiltrable à base de zircone et/ou d’alumine-zircone.
13: battoir d’un concasseur à axe horizontal comportant une structure renforcée selon l’invention
14: galet de broyeur vertical comportant une structure renforcée selon l’invention
15: enclume d’un concasseur à axe vertical comportant une structure renforcée selon l’invention.
Description détaillée de l'invention
[0022] La présente invention divulgue une pièce d’usure avec une résistance accrue à l’usure réalisée en fonderie conventionnelle. Elle se rapporte plus particulièrement à une pièce d’usure comportant une partie renforcée selon une géométrie prédéfinie avec des inserts en céramiques (cylindres, polygones, cônes...) à l’échelle de quelques centimètres préalablement fabriqués et insérés dans une structure tridimensionnelle infiltrée constituée de grains millimétriques agglomérés et formant une alternance périodique de grains et d’interstices millimétriques.
[0023] Les grains utilisés pour fabriquer la structure tridimensionnelle comportent principalement de la zircone ZrC>2 ou de l’alumine-zircone dont la plage de composition peut varier de 5 à 95 % en poids d’alumine et de 95 à 5 % de zircone, de préférence 10 à 90% et 90 à 10%, et de manière particulièrement préférée 20 à 80% et 80 à 20%. En supplément de ces ingrédients, les grains peuvent comporter des stabilisants comme des oxydes de terres rares, en particulier l’oxyde d’yttrium ou l’oxyde de cérium en tant que stabilisant de la zircone.
[0024] Les grains millimétriques utilisés pour fabriquer la structure de renfort tridimensionnelle peuvent également comporter, dans une proportion inférieure à 50%, de préférence inférieure à 40% et de manière particulièrement préférée inférieure à 30% en volume, des carbures de titane, des nitrures de titane ou des carbonitrures de titane dans une troisième matrice métallique également indépendante des deux premières (non représentée dans les figures). La troisième matrice métallique servant de liant à ces grains millimétriques est de préférence à base d’alliage de fer, d’alliage de nickel, ou d’alliage de molybdène. La proportion volumétrique du liant métallique (troisième matrice métallique) est généralement entre 5 et 60%, de préférence entre 7 et 45% et de manière particulièrement préférée entre 10 et 35%. La taille des carbures, nitrures ou carbonitrures de titane sont de 0,05 à 75 pm, préférentiellement de 0,2 à 40 pm, plus préférentiellement de 0,5 à 15 pm.
[0025] La structure infiltrable est donc constituée d’une structure tridimensionnelle d’un agrégat de grains millimétriques de taille moyenne entre 0,5 et 10 mm, de préférence 0,7 à 6 mm et de manière particulièrement préférée entre 1 et 4 mm. Les interstices entre les grains dépendent du niveau de compactage et de la taille des grains mais sont de l’ordre du millimètre ou d’une fraction de millimètre. Il y a ainsi une alternance « périodique » de grains et d’interstices et non pas une alternance « aléatoire ».
[0026] Les grains millimétriques comportent un mélange homogène à base de zircone ou d’alumine-zircone et peuvent être agglomérés/compactés entre eux par l’utilisation d’un liant (colle) ou bien maintenus dans un conteneur métallique afin de définir géométriquement la zone renforcée de la pièce d’usure.
[0027] L’utilisation d’un liant avec prise via l’ajout d’un catalyseur permet la réalisation de la structure infiltrable sans cuisson, ce qui peut être préféré dans certains cas où on ne dispose pas de moyens de cuisson adéquats. La nature du liant est alors soit de type organique ou de type minéral, préférentiellement organique, plus préférentiellement de type phénolique.
[0028] L’utilisation d’un liant avec une prise par cuisson permet l’utilisation de liant plus résistant à haute température. La nature du liant est alors de type minéral, préférentiellement de type silicate, plus préférentiellement de type silicate de sodium.
[0029] La quantité de liant (colle) utilisée pour la réalisation de la structure infiltrable est comprise entre 0,5% et 10% en poids, préférentiellement entre 1% et 8%, plus préférentiellement entre 1,5% et 7%. La quantité de liant est adaptée de façon à assurer une cohésion suffisante des grains et de limiter la production de gaz lors de l’infiltration par le métal liquide de coulée et de limiter l’épaisseur résiduelle de liant autour de chaque grain constituant la structure tridimensionnelle poreuse.
[0030] Les inserts en céramiques destinés à être maintenus par la structure tridimensionnelle de grains agglomérés ont quant à eux une forme quelconque, les formes cylindriques, polygonales ou coniques étant cependant préférées. Le diamètre de ces inserts en céramiques, dans le cas d’une forme cylindrique, est de l’ordre de 3 à 50 mm, de préférence de 6 à 30 mm, plus particulièrement de 8 à 20 mm et la longueur de 5 à 300 mm, de préférence de 10 à 200 mm, en particulier de 10 à 150 mm.
[0031] La présente invention décrit donc une pièce d’usure renforcée sur son ou ses côtés les plus sollicités obtenue par l’infiltration d’une structure céramique tridimensionnelle de grains millimétriques agglomérés alternant périodiquement avec des interstices millimétriques qui intègre déjà des inserts géométriques en céramiques préfabriqués de type composite céramique-métal généralement obtenus par métallurgie des poudres, où les particules de céramiques sont noyées dans une première matrice métallique complètement indépendante de la seconde matrice métallique de coulée, principalement constituée d’acier ou de fonte liquide.
[0032] Cette technique permet le positionnement commode et robuste d’inserts de géométrie définie et concentrés en carbures, nitrures, borures métalliques ou en alliages intermétalliques comportant une matrice métallique indépendante de celle générée par la coulée. Cette première matrice métallique existant antérieurement à la coulée de ladite pièce d’usure est présente dès le départ dans les inserts composites céramique-métal. Les inserts préexistants sont intégrés dans une structure infiltrable comportant des grains millimétriques agglomérés (padding) de zircone, d’alumine-zircone ou de composite céramique-métallique et qui seront infiltrés lors de la coulée de la pièce d’usure. La structure tridimensionnelle infiltrable peut également comporter une certaine proportion de grains millimétriques de carbures de titane, des nitrures de titane ou des carbonitrures de titane dans une troisième matrice métallique indépendante des deux premières.
[0033] Contrairement à ce qui est pratiqué dans l’art antérieur, on utilise ici partiellement des inserts en composite céramique-métal, comme un insert cylindrique ou tronconique. Cet insert peut être composé par exemple de carbures de titane, de nitrures de titane ou de carbures de chrome avec une concentration minimum de 40 % en volume dans une première matrice métallique à base de fer, manganèse, nickel ou cobalt par exemple, que l’on « emballe » dans une structure infiltrable composée par exemple d’un agglomérat de grains millimétriques à base de zircone ou d’alumine-zircone. Pour certaines condition d’utilisation, cette structure infiltrable peut également comporter des grains millimétriques de carbures, nitrures, borures métalliques ou d’éléments intermétalliques, de préférence du carbure de titane, du nitrure de titane ou du carbonitrure de titane. [0034] L’alumine est connue pour ses propriétés de résistance à l’abrasion à faible charge grâce à sa haute dureté par rapport à la dureté des principaux minéraux naturels. L’alumine tire également avantage de sa faible densité et son faible coût de mise en œuvre que ce soit par fusion ou par frittage de poudre. [0035] La zircone pure, quant à elle, est généralement utilisée en présence de stabilisateurs. La zircone dans sa forme cristallographique tétragonale présente des propriétés mécaniques intéressantes pour le renforcement de pièces sollicitées à l’usure. L’ajout entre 0,3 à 8% d’oxyde de terre rare comme par exemple l’oxyde d’yttrium ou l’oxyde de cérium permet la stabilisation de la zircone dans sa phase tétragonale.
[0036] La zircone a une plus grande résistance à la flexion et une plus grande ténacité que l’alumine. La capacité de la zircone tétragonale de se transformer en une forme cristallographique monoclinique moins dense et donc de refermer le front de fissuration le cas échéant, donne au matériau sa haute ténacité et résistance mécanique. La résistance à l’usure de la zircone est particulièrement bonne dans le cas où les contraintes de surface induites par les particules abrasives sont importantes. Par contre, sa plus faible dureté par rapport à certains minéraux naturels, dont le quartz ou la silice libre, limite son utilisation lorsqu’elle est sollicitée par des minerais qui en contiennent. [0037] La réalisation de composites alumine-zircone permet d’améliorer les propriétés des deux composés pris séparément, notamment la résistance mécanique et la ténacité. L’évolution de ces propriétés est illustrée sur les figures suivantes. Le choix de la proportion de zircone dans l’alumine permet d’optimiser le couple dureté/propriétés mécaniques-ténacité en fonction des sollicitations à l’usure que subit le matériau afin d’obtenir les meilleures performances de la pièce ainsi renforcée.
Figure imgf000011_0001
% de zircone dans alumine Ténacité K^C (MPam1^2)
Figure imgf000012_0001
0% 20% 40% 60% 80% 100%
% de zircone dans alumine
[0038] La présente invention permet donc d’atteindre non seulement des très hautes concentrations en céramiques, généralement supérieures à 40 % en volume mais pouvant aller jusqu’à 95 % en volume dans les inserts géométriques préfabriqués ou des grains millimétriques de composite céramique-métal préexistants, mais également de choisir la matrice métallique propre (première et troisième matrice métallique) à ces éléments et donc d’être indépendant du métal de coulée (seconde matrice métallique) de la pièce d’usure qui est généralement de la fonte ou de l’acier au chrome.
[0039] La présente invention permet une meilleure performance des pièces d’usure réalisées en fonderie renforcées par rapport à celles de l’art antérieur grâce à l’augmentation localisée de la résistance à l’usure de la zone renforcée par la présence de davantage de particules résistant à l’usure et/ou de particules de nature différente par une matrice métallique plus adaptée. Elle permet également une meilleure performance des pièces d’usure réalisées par l’ajout de zones de géométrie définie concentrées en carbures, nitrures, borures métalliques ou en alliages intermétalliques et d’une matrice métallique existant antérieurement à la coulée de ladite pièce d’usure en évitant l’usure préférentielle de l’alliage ferreux de la pièce d’usure autour de ces zones grâce à la structure faisant alterner à l'échelle millimétrique des zones denses en fines particules de céramique avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de la pièce au voisinage de la structure « d’emballage » des inserts céramiques préexistants tout en en améliorant l’union de ces inserts avec l’alliage ferreux de la pièce d’usure renforcée. Méthode de mesure
Taille moyenne des particules de carbures, nitrures, borures métalliques ou des particules d’alliages intermétalliques
[0040] Le calcul de la taille moyenne dso des particules de carbures, nitrures, borures métalliques ou des particules d’alliages intermétalliques se fait grâce aux étapes suivantes.
[0041] Premièrement, un panorama photomicrographique de la section transversale polie d’un échantillon est réalisé, de sorte qu'il y ait au moins 250 particules complètes à travers le champ de vision. Ce panorama est réalisé par couture (processus de combinaison d'une série d'images numériques de différentes parties d'un sujet en une vue panoramique de l'ensemble du sujet afin de conserver une bonne définition) à l'aide d'un programme informatique et d'un microscope optique (par exemple, un panorama de champ d'image général obtenu par une Alicona Infinité Focus). [0042] Ensuite, un seuillage approprié est réalisé afin de segmenter l'image en caractéristiques d'intérêt (les particules) et en arrière-plan, en différents niveaux de gris.
Si le seuillage est incohérent en raison d'une mauvaise qualité d'image, on ajoute une étape manuelle de dessin des particules, de la barre d'échelle si elle est présente et de la bordure de l'image sur un papier calque, ainsi qu’une étape de numérisation du papier calque.
[0043] Le diamètre de Féret (qui correspond à la distance entre deux tangentes parallèles, placées perpendiculairement à la direction de mesure de telle sorte que l’ensemble de la projection de la particule soit comprise entre ces deux tangentes) est mesuré dans toutes les directions pour chaque particule par un logiciel d'analyse d'image (ImageJ par exemple). Un exemple est donné dans la figure 6.
[0044] Ensuite, les diamètres minimum et maximum de Féret de chaque particule de l'image sont déterminés. Le diamètre minimum de Féret est le diamètre le plus petit parmi l'ensemble des diamètres de Féret mesurés pour une particule. Le diamètre maximum de Féret est le diamètre le plus grand parmi l'ensemble des diamètres de Féret mesurés pour une particule. Les particules touchant les bords de l'image sont ignorées du calcul.
[0045] La valeur moyenne des diamètres de Féret minimum et maximum de chaque particule est prise comme diamètre équivalent x. La distribution volumique des taille de particules q3 (x) est ensuite calculée sur la base de sphères de diamètre x. La taille moyenne dso des particules est la taille moyenne pondérée en volume x i,3 selon la norme ISO 9276-2: 2014.
Exemples Exemple comparatif
[0046] Dans cet exemple la résistance d’une pièce d’usure renforcée selon l’état de la technique est mesurée. Elle est fabriquée de manière analogue au procédé divulgué dans l’art antérieur W09815373A1 (Magotteaux, 1997).
Il s’agit d’une pièce d’impacteur à axe vertical renforcée par une structure tridimensionnelle de grains millimétriques agglomérés poreuse et infiltrable. Le volume de la pièce d’usure est de 10,27 dm3. Sa masse est de 74,16 kg.
[0047] Pour évaluer l’usure, on mesure la perte de poids de la pièce d’impacteur à axe vertical dans son intégralité. C’est le seul moyen de déterminer en pratique l’usure, qui dépend d’une série de facteurs et notamment de la géométrie de positionnement dans l’impacteur. Bien qu’étant majoritairement usé du côté du renfort, l’impacteur est également partiellement usé en dehors de ce renfort en fonction de ce positionnement.
[0048] Dans la structure tridimensionnelle selon l’art antérieur, il y a une alternance entre des grains et des interstices millimétriques. Ces grains sont constitués d’alumine-zircone électrofondue agglomérée avec 3,5% en poids de liant minéral de type silicate de sodium. La composition de ces grains d’alumine-zircone électrofondue est décrite ci-dessous.
Figure imgf000014_0001
[0049] Cette structure infiltrable comporte un agrégat de grains millimétriques de taille moyenne d’environ 2,5 mm. Ces grains sont agglomérés dans une structure tridimensionnelle à l’aide de silicate de sodium avec une forme prédéfinie dans un moule en résine. Dans cette structure tridimensionnelle, il y a une alternance entre des grains et des interstices millimétriques.
[0050] Cet exemple comparatif présente donc des parties renforcées à base d’alumine-zircone, du côté le plus sollicité de la pièce d’usure sans contenir au départ des inserts centimétriques composites céramique-métal, de type cylindre par exemple, préalablement positionnés dans une matrice métallique différente de l’alliage ferreux utilisé pour la coulée. Au terme de ces étapes, une forme d’un volume total renforcé de 0,857 dm3 est fabriquée. La perte en poids constatée lors d’un test d’usure est de 6,795 kg par 100 heures de fonctionnement (kg/100h) sur la pièce d’usure de l’impacteur à axe vertical. Exemples selon l’invention Exemple 1 :
[0051] La pièce renforcée selon l’invention comporte une zone renforcée de géométrie prédéfinie avec des inserts en céramiques cylindriques préalablement fabriqués à l’échelle de quelques centimètres et préalablement insérés dans une structure infiltrable comportant des grains à base d’alumine-zircone électrofondue avec la composition décrite ci-dessous. Il est à noter que ces grains ont les mêmes caractéristiques que ceux de l’exemple comparatif.
Figure imgf000015_0001
[0052] Cette structure infiltrable comporte un agrégat de grains millimétriques de taille moyenne d’environ 2,5 mm. Ces grains sont agglomérés dans une structure tridimensionnelle à l’aide d’une colle à base de silicate de sodium avec une forme prédéfinie dans un moule en résine. Dans cette structure tridimensionnelle, il y a une alternance périodique entre des grains et des interstices millimétriques. [0053] Les inserts en céramiques préalablement fabriqués ont une forme géométrique cylindrique et sont constitués en moyenne de 70 à 80% de particules micrométriques de carbures de titane liées par une première matrice métallique de type acier austénitique.
Le diamètre de ces inserts céramiques préalablement fabriqués est de 20 mm. La hauteur est de 30 mm.
[0054] Les 25 inserts céramiques préalablement fabriqués sont positionnés verticalement par rapport à la face de remplissage de façon prédéfinie dans le moule en résine qui définit la zone de renforcement grâce à des encoches pratiquées dans le moule en résine et préalablement à l’ajout des grains millimétriques d’alumine-zircone.
[0055] Au terme de ces étapes, une structure tridimensionnelle d’un volume total de 0,857 dm3, semblable à la figure 2, est fabriquée par coulée d’une fonte de type AFNOR Z 270 C 27 - M. Ce type de fonte, qui constitue la seconde matrice métallique, est utilisé pour tous les exemples.
Figure imgf000016_0001
Exemple 2 : [0056] L’exemple 1 est répété mais cette fois, 25 inserts céramiques préalablement fabriqués sont positionnés de façon identique à l’exemple 1, mais sont constitués en moyenne de 70 à 80% de particules micrométriques de carbures de titane et d’une première matrice métallique en alliage de nickel.
Figure imgf000016_0002
Exemple 3 :
[0057] On répète l’exemple 1 avec 25 inserts mais cette fois, les inserts en composite céramique-métal préalablement fabriqués comportent en moyenne de 75 à 85% de particules micrométriques de carbonitrures de titane et une première matrice métallique à base d’alliage de molybdène.
Figure imgf000016_0003
Exemple 4 :
[0058] L’exemple 1 est répété avec à nouveau 25 inserts de même taille, mais les inserts céramiques préalablement fabriqués comportent en moyenne de 80 à 90% de particules micrométriques de carbures de chrome liées dans une première matrice métallique à base de nickel.
Figure imgf000017_0001
Exemple 5 : [0059] L’exemple 4 est répété avec à nouveau 25 inserts de même taille, où les inserts céramiques préalablement fabriqués comportent en moyenne de 80 à 90% de particules micrométriques de carbures de chrome liées dans une première matrice métallique à base de nickel.
[0060] Cette fois, la structure tridimensionnelle qui entoure les inserts centimétriques comporte 25 % en volume de grains millimétriques comportant en moyenne 80 à 85% de particules micrométriques de carbonitrures de titane dans une troisième matrice métallique à base d’alliage de molybdène.
Figure imgf000017_0002
Tableau récapitulatif et interprétation des résultats
[0061] Le tableau ci-dessous reprend les pertes de poids d’une pièce d’usure d’un impacteur à axe vertical de 74,16 kg à l’état neuf, dont le volume renforcé représente environ 0,857 dm3. La perte de poids est mesurée après 438 heures de fonctionnement et est ramenée sur 100 heures de fonctionnement.
Figure imgf000018_0001
Interprétation des résultats
[0062] Les exemples présentés montrent que la performance à l’usure de la pièce d’usure d’un impacteur à axe vertical est améliorée par rapport à l’état de l’art par l’ajout d’inserts centimétriques de géométrie prédéfinie dans une structure tridimensionnelle poreuse composée de grains millimétriques.
[0063] Les mécanismes d’usure des pièces d’usure des impacteurs à axe vertical sont un mélange complexe d’arrachement de matière par abrasion, de microécaillage par propagation de microfissure et d’érosion par impact des particules traitées. [0064] Dans ces conditions complexes de fonctionnement, le comportement à l’usure d’un matériau dépendra d’un grand nombre de paramètres qui sont eux-mêmes interdépendants. On peut citer parmi les plus significatifs la dureté, la ténacité, le module d’élasticité, le libre parcours moyen entre les différentes particules, et ce à différentes échelles (micrométrique, millimétrique, centimétrique) en fonction de la taille et de la forme des particules traitées, la limite élastique, la résistance à la fatigue et la ductilité.
[0065] Dans une approche simplifiée, un matériau résistera d’autant mieux à l’usure que son produit dureté*ténacité est élevé. Or, ces deux propriétés sont intimement liées pour une même famille de matériaux comme illustré sur la figure suivante.
Figure imgf000019_0001
Hardness
[0066] Le développement de matériaux composites permet de déplacer avantageusement cette courbe vers des duretés plus importantes à ténacité équivalente.
Figure imgf000020_0001
Hardness
[0067] L’optimisation de la répartition géométrique des matériaux constituant le composite couplée à leur nature et donc à leurs propriétés intrinsèques permet donc d’augmenter davantage la dureté globale du matériau tout en maintenant une ténacité suffisante conduisant à une meilleure performance à l’usure.

Claims

REVENDICATIONS
1. Pièce d’usure (1) hiérarchique comportant une partie renforcée (2) comprenant de la zircone ou un alliage d’alumine-zircone, ladite partie renforcée comprenant également des inserts (3) centimétriques de géométrie prédéfinie, lesdits inserts (3) comportant des particules micrométriques (9) de carbures, nitrures, borures métalliques ou de composés intermétalliques liées par une première matrice métallique (10), lesdits inserts (3) étant insérés dans une structure de renfort (2) infiltrée par une seconde matrice métallique (6), la structure de renfort comportant une alternance périodique de zones millimétriques à forte et à faible concentration (4,5) en particules micrométriques de zircone ou d’un alliage d’alumine- zircone (7,8), la seconde matrice métallique (6) étant différente de la première matrice métallique (10).
2 . Pièce d’usure (1) selon la revendication 1 dans laquelle la partie renforcée (2) comporte en outre des zones millimétriques de composite céramique-métal comportant des particules micrométriques de carbures de titane, de nitrures de titane, ou de carbonitrures de titane dans un liant constituant une troisième matrice métallique, la proportion de ces zones par rapport aux zones millimétriques à forte concentration (5) de particules micrométriques de zircone ou d’un alliage d’alumine-zircone (7,8) étant inférieure à 50% en volume, de préférence inférieure à 40% en volume et de manière particulièrement préférée inférieure à 30% en volume, la troisième matrice métallique étant indépendante de la première (10) et de la seconde matrice métallique (6).
3 . Pièce d’usure (1) selon l’une quelconque des revendications précédentes dans laquelle l’insert (3) comporte une concentration en particules micrométriques (9) de carbures, nitrures, borures métalliques ou en éléments intermétalliques entre 20 et 95 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume.
4 . Pièce d’usure (1) selon l’une quelconque des revendications précédentes dans laquelle la première matrice métallique (10) servant de liant aux particules micrométriques (9) de l’insert (3) comporte majoritairement du nickel, de l’alliage de nickel, du cobalt, de l’alliage de cobalt ou un alliage ferreux différent de l’alliage de coulée (6).
5 . Pièce d’usure (1) selon l’une quelconque des revendications précédentes dans laquelle la troisième matrice métallique servant de liant aux particules micrométriques de carbures de titane, de nitrures de titane, ou des carbonitrures de titane dans les zones millimétriques faisant partie du renfort (2), comporte majoritairement du nickel, de l’alliage de nickel, du cobalt, de l’alliage de cobalt ou un alliage ferreux différent de l’alliage de coulée (6).
6 . Pièce d’usure (1) selon l’une quelconque des revendications précédentes dans laquelle l’insert (3), ou les zones millimétriques du renfort (2) lorsqu’ils comportent des composites céramique métal, comportent des particules (9) de carbures, nitrures, borures métalliques ou des particules d’alliages intermétalliques de taille moyenne D50 inférieure à 80 pm, de préférence inférieure à 60 pm et de manière particulièrement préférée inférieure à 40 pm.
7 . Pièce d’usure (1) selon l’une quelconque des revendications précédentes dans laquelle l’insert (3) et les zones renforcées à la zircone ou à l’alliage alumine zircone (5) comportent des interstices micrométriques comportant des matrices métalliques différentes (6,10).
8 . Pièce d’usure (1) selon l’une quelconque des revendications 1 à 7 réalisée sous forme d’un impacteur, une enclume, un cône ou un galet de broyage.
9. Méthode de fabrication d’une pièce d’usure (1) selon l’une quelconque des revendications précédentes comprenant les étapes suivantes : mise à disposition d’un moule comprenant l’empreinte d’une pièce d’usure (1) avec une géométrie prédéfinie d’une zone à renforcer (2) ; introduction et positionnement dans ladite zone à renforcer (2) d’un mélange compact de poudres sous forme de granulés millimétriques de zircone ou d’alumine-zircone entourant au moins partiellement un ou plusieurs inserts (3) de géométrie définie préfabriqués concentrés en particules micrométriques de carbures, nitrures, borures métalliques ou en composés intermétalliques liées par une première matrice métallique (10),
- coulée d’un alliage ferreux (6) dans le moule, ledit alliage ferreux liquide infiltrant la structure tridimensionnelle comportant des grains de zircone ou d’un alliage d’alumine-zircone entourant au moins partiellement les inserts (3) préfabriqués.
10. Méthode de fabrication d’une pièce d’usure (1) selon la revendication 9 dans laquelle les inserts de géométrie prédéfinie (3) fabriqués préalablement à la coulée de ladite pièce d’usure, le sont par métallurgie des poudres.
PCT/EP2021/057816 2020-05-29 2021-03-25 Piece d'usure composite WO2021239295A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3185012A CA3185012A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite
CN202180038714.XA CN115867390A (zh) 2020-05-29 2021-03-25 复合磨损部件
BR112022023593A BR112022023593A2 (pt) 2020-05-29 2021-03-25 Peça de desgaste hierárquica e método para fabricar uma peça de desgaste
PE2022002695A PE20231236A1 (es) 2020-05-29 2021-03-25 Pieza de desgaste compuesta
AU2021278584A AU2021278584A1 (en) 2020-05-29 2021-03-25 Composite wear part
US18/000,245 US20230201920A1 (en) 2020-05-29 2021-03-25 Composite wear part
EP21713434.5A EP4157538A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite
ZA2022/12082A ZA202212082B (en) 2020-05-29 2022-11-04 Composite wear part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20177458.5 2020-05-29
EP20177458.5A EP3915684A1 (fr) 2020-05-29 2020-05-29 Pièce d'usure composite

Publications (1)

Publication Number Publication Date
WO2021239295A1 true WO2021239295A1 (fr) 2021-12-02

Family

ID=70968769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/057816 WO2021239295A1 (fr) 2020-05-29 2021-03-25 Piece d'usure composite

Country Status (10)

Country Link
US (1) US20230201920A1 (fr)
EP (2) EP3915684A1 (fr)
CN (1) CN115867390A (fr)
AU (1) AU2021278584A1 (fr)
BR (1) BR112022023593A2 (fr)
CA (1) CA3185012A1 (fr)
CL (1) CL2022003167A1 (fr)
PE (1) PE20231236A1 (fr)
WO (1) WO2021239295A1 (fr)
ZA (1) ZA202212082B (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575685A1 (fr) 1992-06-23 1993-12-29 Sulzer Innotec Ag Moulage de précision ayant des surfaces d'usure
WO1998015373A1 (fr) 1996-10-01 1998-04-16 Hubert Francois Piece d'usure composite
US20030213861A1 (en) * 2002-05-15 2003-11-20 Condon Gary J. Crusher wear components
WO2011008439A2 (fr) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Rouleau renforcé et procédé de fabrication associé
US20110287238A1 (en) * 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2014125034A1 (fr) * 2013-02-18 2014-08-21 Amincem S.A. Composite à matrice métallique utile comme pièces d'usure dans les industries du ciment et de l'extraction minière
WO2016008967A1 (fr) 2014-07-16 2016-01-21 Magotteaux International S.A. Grains de céramique et leur procédé de fabrication
CN108348995A (zh) * 2015-11-12 2018-07-31 伊诺科有限责任公司 用于制造铸造嵌件的粉末组合物、铸造嵌件以及在铸件中获得局部复合区的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575685A1 (fr) 1992-06-23 1993-12-29 Sulzer Innotec Ag Moulage de précision ayant des surfaces d'usure
WO1998015373A1 (fr) 1996-10-01 1998-04-16 Hubert Francois Piece d'usure composite
US20030213861A1 (en) * 2002-05-15 2003-11-20 Condon Gary J. Crusher wear components
WO2011008439A2 (fr) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Rouleau renforcé et procédé de fabrication associé
US20110287238A1 (en) * 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2014125034A1 (fr) * 2013-02-18 2014-08-21 Amincem S.A. Composite à matrice métallique utile comme pièces d'usure dans les industries du ciment et de l'extraction minière
WO2016008967A1 (fr) 2014-07-16 2016-01-21 Magotteaux International S.A. Grains de céramique et leur procédé de fabrication
CN108348995A (zh) * 2015-11-12 2018-07-31 伊诺科有限责任公司 用于制造铸造嵌件的粉末组合物、铸造嵌件以及在铸件中获得局部复合区的方法

Also Published As

Publication number Publication date
PE20231236A1 (es) 2023-08-21
CN115867390A (zh) 2023-03-28
ZA202212082B (en) 2024-04-24
US20230201920A1 (en) 2023-06-29
CL2022003167A1 (es) 2023-01-13
AU2021278584A1 (en) 2022-12-08
EP4157538A1 (fr) 2023-04-05
CA3185012A1 (fr) 2021-12-02
BR112022023593A2 (pt) 2022-12-20
EP3915684A1 (fr) 2021-12-01

Similar Documents

Publication Publication Date Title
EP2323770B1 (fr) Impacteur composite pour concasseurs à percussion
BE1018127A3 (fr) Dent composite pour le travail du sol ou des roches.
EP1450973B1 (fr) Pieces de fonderie avec une resistance accrue a l'usure
BE1018128A3 (fr) Cone de broyage pour concasseur a compression.
BE1018130A3 (fr) Materiau composite hierarchique.
US20210131076A1 (en) Composite tooth with frustoconical insert
EP3134212B1 (fr) Galet de broyage comportant des inserts a massivite elevee
EP4157569A1 (fr) Piece d'usure composite ceramique-metal
EP4157538A1 (fr) Piece d'usure composite
CN112292223B (zh) 金刚石接合体和金刚石接合体的制造方法
Guo et al. Al–7Si–5Cu/Al2O3–ZrO2 Laminated Composites with Excellent and Anisotropic Wear Resistance
EP3969206B1 (fr) Piece d'usure composite
JP2024518385A (ja) 結合相が強化された焼結炭化物材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21713434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3185012

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023593

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021278584

Country of ref document: AU

Date of ref document: 20210325

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022023593

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221121

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021713434

Country of ref document: EP

Effective date: 20230102