WO2021239154A1 - 防止光纤耦合半导体激光模块壳体产生冷凝水的装置 - Google Patents

防止光纤耦合半导体激光模块壳体产生冷凝水的装置 Download PDF

Info

Publication number
WO2021239154A1
WO2021239154A1 PCT/CN2021/097538 CN2021097538W WO2021239154A1 WO 2021239154 A1 WO2021239154 A1 WO 2021239154A1 CN 2021097538 W CN2021097538 W CN 2021097538W WO 2021239154 A1 WO2021239154 A1 WO 2021239154A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
cold water
fiber
semiconductor laser
laser module
Prior art date
Application number
PCT/CN2021/097538
Other languages
English (en)
French (fr)
Inventor
方强
方笑尘
Original Assignee
方强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 方强 filed Critical 方强
Publication of WO2021239154A1 publication Critical patent/WO2021239154A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/07Arrangements using an air layer or vacuum the air layer being enclosed by one or more layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Definitions

  • the invention relates to a device for preventing condensed water from a housing of a fiber-coupled semiconductor laser module, belonging to the technical field of lasers, and can be widely used in a high-power fiber-coupled semiconductor laser system.
  • the fiber-coupled semiconductor laser module is a laser formed by coupling the light emitted by at least one semiconductor laser chip into an optical fiber through an optical system and encapsulating it in a housing made of a good thermally conductive metal. At least one pair of electrodes are led out through the insulator on the shell of this laser as the energy input channel; there is also at least one optical fiber output on the shell as the output channel of the light beam (light energy).
  • Semiconductor lasers are currently the lasers with the highest luminous efficiency. With the maturity of semiconductor laser technology and the reduction of costs, fiber-coupled semiconductor laser modules have become more and more widely used. Since the semiconductor chip is inevitably accompanied by energy loss during the light-emitting process, this energy is converted into heat energy.
  • the semiconductor laser module housing In order for the semiconductor laser chip to work normally and efficiently, the heat must be conducted out in time and efficiently. This is fiber coupling.
  • the bottom of the housing must be connected to the cold water plate during operation. From the perspective of thermal conductivity, the lower the temperature of the cold water plate, the faster the heat generated during the light-emitting process of the semiconductor chip is dissipated, the higher the luminous efficiency of the semiconductor laser chip, and the longer the chip life.
  • the water temperature of the cold water board is too different from the ambient temperature, the moisture in the air will produce condensed water on the housing of the fiber-coupled semiconductor laser module.
  • the fiber-coupled semiconductor laser module must prevent the generation of condensed water during use.
  • the current solution is to increase the temperature of the cold water plate.
  • the cooling water temperature is controlled within 10-15 degrees below the ambient temperature, while reducing the laser module’s temperature.
  • the maximum use current is to reduce the maximum output optical power.
  • This method is a passive defensive method and cannot give full play to the effectiveness of semiconductor lasers. In use, because the user must frequently adjust the water temperature according to the working environment, slight negligence and misjudgment will cause damage to the optical fiber semiconductor module, which will seriously affect the service life of the laser.
  • the object of the present invention is to provide a device for preventing condensation water from the housing of the fiber-coupled semiconductor laser module, which can reduce the temperature of the cooling water without generating condensation water, so that the fiber-coupled semiconductor laser module The output optical power is increased, and the working life is prolonged.
  • the technical solution adopted by the present invention is a device for preventing condensation water from the housing of a fiber-coupled semiconductor laser module, which includes a closed housing, a cold water plate housing connector, a cold water plate, and at least one fiber coupled semiconductor laser Module, cold water pipe, wire and output optical fiber;
  • the cold water plate is arranged in the closed shell through the cold water plate shell connector;
  • the fiber coupled semiconductor laser module is fixed on the cold water plate;
  • the closed shell is provided with The wire hole, the cold water pipe hole and the optical fiber hole;
  • the wire is connected to the optical fiber coupling semiconductor module through the wire hole on the airtight shell, and is sealed and connected at the wire hole of the airtight shell;
  • the cold water tube passes through The cold water pipe hole on the airtight shell is connected to the cold water plate and is hermetically connected at the cold water hole of the airtight shell;
  • the output fiber of the fiber-coupled semiconductor laser module is led out through the fiber hole on the airtight shell to output The connection between the optical fiber and the
  • the airtight housing includes a rectangular tube, a rectangular electric wire end cover, and a rectangular optical fiber end cover, the rectangular electric wire end cover is hermetically connected to the rectangular tube; the rectangular optical fiber end cover is hermetically connected to the rectangular tube;
  • the rectangular electric wire end cover is provided with a cold water pipe hole and a wire hole; the rectangular optical fiber end cover is provided with a cold water pipe hole and a wire hole.
  • the airtight shell is made of poor thermal conductivity material;
  • the rectangular tube is made of plastic wood tube;
  • the rectangular wire end cover and the rectangular optical fiber end cover are made of plexiglass plate, which can reduce the airtight shell Heat exchange capacity inside and outside the body.
  • one end of the airtight shell is open, and a detachable end cover is arranged on the opening, the airtight shell is a double-layer composite structure, the end cover is a double-layer composite structure, and one end of the airtight shell is open
  • a plurality of screw holes are provided on the end surface of the detachable end surface cover plate, and the screw holes corresponding to the screw holes on the airtight casing are provided on the detachable end surface cover plate.
  • the outer layers of the airtight shell and the detachable end cover are made of stainless steel; the inner layers of the airtight shell and the detachable end cover are made of poor thermal conductivity material, The material is rubber material.
  • the cold water plate housing connecting piece, the closed housing and the cold water plate are glued together.
  • cold water board housing connection piece and the airtight housing are bonded together with glue, and the cold water board housing connection piece and the cold water board are connected by a detachable mechanical part;
  • the cold water plate shell connector adopts a material with poor thermal conductivity;
  • the material with poor thermal conductivity is Bakelite;
  • the cold water pipe adopts a plastic pipe to reduce the heat transfer capacity inside and outside the pipe during the cold water transfer process.
  • the present invention Compared with the prior art, the present invention has at least the following beneficial effects: the present invention provides a device for preventing condensation water from a fiber-coupled semiconductor laser module, so that the fiber-coupled semiconductor laser module can be fully cooled in all working environments, It can effectively ensure that the fiber-coupled semiconductor laser module can output laser at full power in all use environments; avoid the cumbersome operation of manually adjusting the water temperature during use, avoid the damage caused by human error to the laser, and extend the fiber-coupled semiconductor laser module life.
  • the low-temperature cooling water passes through the cold water pipe to cool the cold water plate and then cools the fiber-coupled semiconductor laser module. Because the airtight housing isolates the inner and outer air, Therefore, no matter how low the water temperature is, no condensed water will be generated on the internal fiber-coupled semiconductor laser module.
  • the cold water plate and the closed housing are connected by the cold water plate housing connector, the cold water plate housing connector is connected as bad heat.
  • the closed casing is also a poor thermal conductor, and no condensation water is generated outside the closed casing. This allows the module to reliably and efficiently cool the semiconductor light-emitting chips inside the closed casing regardless of changes in the external environment temperature. , Thereby improving the luminous efficiency and lifetime of the semiconductor light-emitting chip.
  • the rectangular electric wire end cover and the rectangular optical fiber end cover in the present invention adopt organic glass plates, which is convenient for technicians to observe the working conditions of various components in the sealed casing.
  • a detachable end cover is provided on the airtight housing, and the end cover and the airtight housing are sealed and connected by screws.
  • the screw connection can realize the repeated opening and closing of the end cover, which is convenient for the staff.
  • the components are inspected and replaced; the airtight shell and the end cover adopt a double-layer composite structure, and the outer layer is made of metal materials, which can increase the mechanical strength of the airtight shell and prevent damage to the airtight shell during use; the airtight shell adopts the inner layer
  • the poor thermal conductivity material further prevents the heat and cold exchange between the inside and outside of the closed casing, which can ensure that no condensation water is generated on the fiber-coupled semiconductor laser module and avoid damage to the laser module.
  • the fiber-coupled semiconductor laser module of the present invention can be water-cooled alone, or can be water-cooled in series with other modules, which can save the amount of cooling water and reduce resource consumption.
  • the cold water pipe in the present invention adopts a plastic pipe, which can reduce the energy loss during the cold water transmission process and prevent the generation of condensed water.
  • 1A is a schematic diagram of the internal structure of the first device for preventing condensation from the housing of a fiber-coupled semiconductor laser module designed according to the technical solution of the present invention
  • Fig. 1B is a schematic structural diagram of the wire in and out end surface of the first device for preventing condensation from the housing of the fiber-coupled semiconductor laser module designed according to the technical scheme of the present invention
  • 1C is a schematic structural view of the optical fiber output end surface of the first device for preventing condensation from the housing of a fiber coupled semiconductor laser module designed according to the technical solution of the present invention
  • 2A is a schematic diagram of the internal structure of a second device for preventing condensation from the housing of a fiber-coupled semiconductor laser module designed according to the technical solution of the present invention
  • Fig. 2B is a schematic structural diagram of an end cover of a second device for preventing condensation from the housing of a fiber-coupled semiconductor laser module designed according to the technical solution of the present invention.
  • 1 represents a closed shell
  • 11 represents a rectangular tube
  • 12 represents a rectangular wire end cap
  • 13 represents a rectangular fiber end cap
  • 14 represents an end cover
  • 1-1-1 represents a square tube
  • 1-1-2 represents Square wire end cap
  • 1-1-3 represents the square fiber end cap
  • 1-2-1 is the outer layer of the airtight shell
  • 1-2-2 is the inner layer of the airtight shell
  • 1-4-1 indicates the outside of the end cover
  • Layer 2 represents the cold water board shell connector
  • 3 represents the cold water board
  • 4 represents the fiber-coupled semiconductor laser module
  • 5 represents the cold water pipe represents the cold water pipe
  • 6 represents the electric wire
  • 7 represents the optical fiber.
  • the invention provides a device for preventing condensed water from a fiber-coupled semiconductor laser module housing, which includes a closed housing, a cold water plate housing connector, a cold water plate, at least one fiber-coupled semiconductor laser module, a cold water pipe, an electric wire, and an output optical fiber;
  • the cold water plate is fixedly arranged in a closed shell through a cold water plate shell connector;
  • the optical fiber coupled semiconductor laser module is fixed on the cold water plate;
  • the closed shell is provided with wire holes, cold water pipe holes, and optical fiber holes
  • the wire is connected to the optical fiber coupled semiconductor module through the wire hole on the airtight housing and is connected in a sealed connection at the wire hole of the airtight housing;
  • the cold water pipe passes through the cold water pipe hole on the airtight housing Connected to the cold water plate and hermetically connected at the cold water hole of the airtight housing; the output optical
  • the above-mentioned closed shell should not only block the air, but also prevent the exchange of heat inside and outside the shell as much as possible. This requires the shell to use poor thermal conductivity materials as much as possible.
  • the closed shell can adopt a composite structure of metal and poor thermal conductivity materials, with the metal shell outside.
  • the connection material between the cold water plate and the shell is also made of poor thermal conductivity material.
  • the cold water pipe should also use poor thermal conductivity materials to reduce the heat exchange during the flow of cold water.
  • a cover plate that is convenient to open and close should be used on the shell, and the cover and the shell should be sealed.
  • FIG. 1A is a schematic diagram of the internal structure of the first device for preventing condensation from the housing of a fiber-coupled semiconductor laser module designed according to the technical scheme of the present invention.
  • FIG. 1B is a schematic diagram of the structure of the wire in and out of the end surface of the first device for preventing condensation from the housing of the fiber-coupled semiconductor laser module designed according to the technical solution of the present invention.
  • FIG. 1C is a schematic diagram of the structure of the optical fiber output end surface of the first device for preventing condensation from the housing of the fiber coupled semiconductor laser module designed according to the technical solution of the present invention.
  • the airtight housing of the device for preventing condensation from the housing of the fiber-coupled semiconductor laser module is composed of a square tube 1-1-1, a square wire end cap 1-1-2, and a square fiber end cap 1-1 -3 composition.
  • the cold water plate 3 is fixed in the airtight housing 1 by two cold water plate housing connectors 2; two fiber-coupled semiconductor laser modules 4 are fixed on the cold water plate 3; the square wire end cover 1-1-2 is opened with Two cold water pipe holes and four wire holes, the cold water pipe 5 is connected to the cold water plate 3 after passing through the cold water hole, the cold water pipe 5 is connected to the square wire end cover 1-1-2, the wires 6 are respectively connected to the optical fiber after passing through the wire holes
  • the coupling semiconductor module 4 is connected, and the wire 6 is sealed and connected to the square wire end cover 1-1-2; there are two cold water pipe holes and two wire holes on the square fiber end cover 1-1-3, cold water pipe 5 After passing through the cold water hole, it is connected to the cold water plate 3, and the cold water pipe 5 is hermetically
  • the airtight shell adopts poor thermal conductivity materials to reduce the heat exchange between the inside and outside of the airtight shell.
  • Plastic wood, plastic and other materials can be used; in order to reduce the heat exchange between the cold water board and the airtight shell, the cold water board shell is connected
  • the parts should be made of poor thermal conductivity materials, such as plastic, bakelite and other materials.
  • the square tube 1-1-1 is made of plastic wood tube, the square wire end cap 1-1-2 and the square fiber end cap 1 -1-3 uses plexiglass board;
  • the cold water board shell connector 2 is made of bakelite, which is glued together with the airtight shell 1 and the cold water board 3.
  • the cold water pipe 5 adopts a plastic pipe.
  • the low-temperature cooling water passes through the cold water pipe to cool the cold water plate and then cools the fiber-coupled semiconductor laser module.
  • the airtight housing isolates the internal and external air, no matter how low the water temperature is. ,
  • the internal fiber-coupled semiconductor laser module will not produce condensed water.
  • the closed shell is also a poor thermal conductor, and it will not generate outside the closed shell. Condensate. This enables the module to reliably and efficiently cool the internal semiconductor light-emitting chip no matter how the ambient temperature changes, thereby improving the luminous efficiency and lifespan.
  • Fig. 2A is a schematic diagram of the internal structure of a second device for preventing condensation from the housing of a fiber-coupled semiconductor laser module designed according to the technical solution of the present invention.
  • 2B is a schematic structural diagram of a detachable end cover of a second device for preventing condensation from the housing of a fiber-coupled semiconductor laser module designed according to the technical solution of the present invention.
  • the sealed housing adopts a double-layer composite material and a repeatable opening and closing structure. It is composed of the end cover plate shown.
  • 1-2-1 is the outer layer of the airtight shell
  • 1-2-2 is the inner layer of the airtight shell
  • the cold water plate 3 is fixed in the airtight housing 1 by four cold water plate housing connectors 2; a total of 2N
  • a fiber-coupled semiconductor laser module 4 is fixed on the cold water board 3.
  • the end cover shown in Fig. 2B is also a double-layer composite structure
  • 1-4-1 is the outer layer of the end cover, and the inner layer of the end cover is not shown.
  • the airtight housing 1 shown in Fig. 2A A plurality of screw holes are provided.
  • the end cover 14 shown in FIG. 2B is correspondingly provided with screw holes, and a rubber pad is provided between the end cover 14 and the airtight housing 1, and the screw realizes a sealed connection that can be opened and closed repeatedly.
  • the outer layer 1-2-1 of the airtight shell and the outer layer 1-4-1 of the end cover are made of metal materials to increase the mechanical strength of the airtight shell; the inner layer 1-2-2 of the airtight shell and the end cover
  • the inner layer of the plate is made of poor thermal conductivity material to reduce the heat exchange capacity inside and outside the closed shell.
  • the cold water plate shell connector 2 In order to reduce the heat exchange between the cold water plate and the closed shell, the cold water plate shell connector 2 should be used Poor thermal conductivity materials can be plastic, bakelite and other materials; in this embodiment, the outer layer 1-2-1 of the closed shell and the outer layer 1-4-1 of the end cover are made of stainless steel; the inner layer of the closed shell 1-2-2 The inner layer of the end cover and the end cover is made of rubber; the cold water board shell connector 2 is made of bakelite, which is glued together with the airtight shell 1, and it is connected with the cold water board 3 by a detachable mechanical part; In order to reduce the energy loss in the cold water transmission process and prevent the generation of condensate, the cold water pipe uses plastic pipes.
  • the low-temperature cooling water passes through the cold water pipe to cool the cold water plate and then cools the internal fiber-coupled semiconductor laser module.
  • the airtight housing isolates the internal and external air, regardless of the water temperature. No matter how low it is, there will be no condensed water on the internal fiber-coupled semiconductor laser mold.
  • the cold water plate and the closed shell are connected through the cold water plate housing connector, the cold water plate housing connector is made of poor thermal conductivity materials.
  • the airtight shell is also a poor heat conductor, and no condensation water is generated outside the airtight shell.
  • This kind of fiber-coupled semiconductor laser module that prevents condensation water from being produced in a closed shell can be water-cooled alone or in series with other modules.
  • the device for preventing condensed water from the housing of the fiber-coupled semiconductor laser module ensures that the fiber-coupled output laser can be reliably cooled in any working environment, prevents human misoperation, and can effectively ensure that the fiber-coupled semiconductor laser module is at full power It can be used under the following conditions, and extend the life of the fiber-coupled semiconductor laser module.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明公开了一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置,包括密闭壳体、冷水板壳体连接件、冷水板、至少一个光纤耦合半导体激光模块、冷水管、电线及输出光纤;本发明提出的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,保证光纤耦合输出激光器在任何工作环境下都能得到可靠冷却,防止人为误操作,可有效保证光纤耦合半导体激光模块在满功率下使用,并延长光纤耦合半导体激光模块的寿命。

Description

防止光纤耦合半导体激光模块壳体产生冷凝水的装置 技术领域
本发明涉及一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置,属于激光技术领域,可广泛应用于大功率光纤耦合半导体激光系统中。
背景技术
光纤耦合半导体激光模块是将至少一个半导体激光芯片发出的光通过光学系统耦合到光纤中并封装在良导热金属制成的壳体中形成的激光器。在这种激光器的壳体上至少有一对电极通过绝缘体引出,作为能量的输入通道;在壳体上还至少有一根光纤输出,作为光束(光能量)的输出通道。半导体激光器是目前发光效率最高的激光器,随着半导体激光技术的成熟和成本的降低,光纤耦合半导体激光模块的应用越来越广泛。由于半导体芯片在发光的过程中不可避免地伴有能量的损耗,这些能量被转化为热能,为了使半导体激光芯片正常且高效的工作,必须要将这些热量及时高效的传导出去,这就是光纤耦合半导体激光模块壳体需采用良导热金属材料的原因。对一些功率较大光纤耦合半导体激光模块,工作时其壳体底部必须连接在冷水板上。从导热效果上看,冷水板的温度越低,半导体芯片发光过程中产生的热导出的越快,半导体激光芯片发光效率越高,芯片寿命也越长。但在实际应用中,冷水板水温与环境温度相差太大时,空气中的水分会在光纤耦合半导体激光模块的壳体上产生冷凝水。这种冷凝水会进入壳体内,造成激光模块的两种损伤,一是光学器件的损伤,另一个是电气线路的损坏。因此,光纤耦合半导体激光模块在使用中必须防止冷凝水的产生,目前解决的办法是提高冷水板的温度,通常冷却水温控制在低于环境温度10-15度的范围内,同时降低激光模块的最大使用电流,即降低最大输出光功率。这种方法是一种消极防御的办法,不能充分发挥半导体激光器的效能。在使用中,由于用户对此必须根据工作环境频繁进行水温调整,稍有疏忽和误判,就会对光纤半导体模块造成损伤,严重影响到激光器的使用寿命。
技术解决方案
为了解决现有技术中存在的问题,本发明的目的是提供一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置,可以降低冷却水的温度且不产生冷凝水,使光纤耦合半导体激光模块的输出光功率提高、工作寿命延长。
为了实现上述目的,本发明采用的技术方案是,一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置,包括密闭壳体,冷水板壳体连接件、冷水板、至少一个光纤耦合半导体激光模块、冷水管、电线及输出光纤;所述冷水板通过冷水板壳体连接件设置在密闭壳体内;所述光纤耦合半导体激光模块固定在所述冷水板上;所述密闭壳体上设置有电线孔、冷水管孔和光纤孔;所述电线通过所述密闭壳体上的电线孔与所述光纤耦合半导体模块连接,并在所述密闭壳体电线孔处密封连接;所述冷水管通过所述密闭壳体上的冷水管孔与所述冷水板连接并在所述密闭壳体冷水孔处密封连接;所述光纤耦合半导体激光模块的输出光纤通过密闭壳体上的光纤孔引出,输出光纤与光纤孔的连接处密封;该装置将光纤耦合半导体激光器密闭在一个封闭空间内,阻断了内外空气交流的通道,进而阻断了产生冷凝水的可能。
进一步的,所述密闭壳体包括矩形管、矩形电线端端盖和矩形光纤端端盖,所述矩形电线端端盖与矩形管密封连接;所述矩形光纤端端盖与矩形管密封连接;所述矩形电线端端盖上设置冷水管孔和电线孔;所述矩形光纤端端盖上设置冷水管孔和电线孔。
进一步的,所述密闭壳体采用不良导热材料制成;所述矩形管采用塑木管;所述矩形电线端端盖和所述矩形光纤端端盖采用有机玻璃板,有机玻璃板可以降低密闭壳体内外的热交换能力。
进一步的,所述密闭壳体的一端开口,开口上设置可拆卸的端面盖板,所述密闭壳体为双层复合结构,所述端面盖为双层复合结构,所述密闭壳体开口一端的端面上设置有多个螺孔,所述可拆卸的端面盖板上设置有与所述密闭壳体上的螺孔一一对应的螺孔,所述端面盖板与所述密闭壳体开口处设置有橡胶垫。
进一步的,所述密闭壳体和所述可拆卸的端面盖板的外层为不锈钢材料;所述密闭壳体和所述可拆卸的端面盖板的内层为不良导热材料,所述不良导热材料为橡胶材料。
进一步的,所述冷水板壳体连接件与所述密闭壳体和冷水板间用胶粘接在一起。
进一步的,所述冷水板壳体连接件与所述密闭壳体间用胶粘接在一起,所述冷水板壳体连接件与冷水板之间为可拆卸的机械件连接;
进一步的,所述冷水板壳体连接件采用不良导热材料;不良导热材料为电木;
进一步的,所述冷水管采用塑料管,以降低冷水传递过程中管内外的热量传递能力。
有益效果
与现有技术相比,本发明至少具有以下有益效果:本发明提供一种防止光纤耦合半导体激光模块产生冷凝水的装置,使光纤耦合半导体激光模块在所有的工作环境下都可以得到充分冷却,可有效保证光纤耦合半导体激光模块能够在所有的使用环境中满功率输出激光;避免在使用中需要人为调整水温的繁琐操作,避免了人为错误对激光器造成的损伤,延长了光纤耦合半导体激光模块的寿命。
进一步的,本发明提供的防止光纤耦合半导体激光模块壳体产生冷凝水的装置在工作时,低温冷却水通过冷水管冷却冷水板进而冷却光纤耦合半导体激光模块,由于密闭壳体将内外空气隔绝,所以无论用于水温多低,内部光纤耦合半导体激光模块上都不会产生冷凝水,同时,由于冷水板与密闭壳体由冷水板壳体连接件连接,冷水板壳体连接件连接为不良热导材料,同时密闭壳体也是不良热导体,密闭壳体外部也不会产生冷凝水,这就使得该模块无论外界环境温度如何变化,密闭壳体内部的半导体发光芯片都能得到可靠高效的冷却,进而提高半导体发光芯片的发光效率和寿命。
进一步的,本发明中的矩形电线端端盖和所述矩形光纤端端盖采用有机玻璃板,便于技术人员观察密闭壳体内的各个部件的工作情况。
进一步的,本发明在密闭壳体上设置有可拆卸的端面盖板,端面盖板与密闭壳体之间通过螺钉密封连接,采用螺钉连接可以实现端面盖板的重复开合,便于工作人员对部件进行检查和更换;密闭壳体和端面盖板采用双层复合结构,外层采用金属材料,可以增加密闭壳体的机械强度,防止使用中密闭壳体的损伤;密闭壳体在内层采用不良导热材料,进一步阻止密闭壳体内外的冷热交换,可以保证光纤耦合半导体激光模块上不会产生冷凝水,避免了激光模块的损伤。
进一步的,本发明中的光纤耦合半导体激光模块可以单独水冷,也可以与其它模块串联水冷,可以节省冷却水的用量,降低资源消耗。
进一步的,本发明中冷水管采用塑料管,可以降低冷水传输过程中的能量损失,并防止冷凝水的产生。
附图说明
图1A为根据本发明的技术方案设计的第一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的内部结构示意图;
图1B为根据本发明的技术方案设计的第一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的电线出入端面的结构示意图;
图1C为根据本发明的技术方案设计的第一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的光纤输出端面的结构示意图;
图2A为根据本发明的技术方案设计的第二种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的内部结构示意图;
图2B为根据本发明的技术方案设计的第二种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的端面盖板的结构示意图。
其中:1表示密闭壳体,11表示矩形管、12表示矩形电线端端盖,13表示矩形光纤端端盖,14表示端面盖板,1-1-1表示方形管、1-1-2表示方形电线端端盖、1-1-3表示方形光纤端端盖、1-2-1为密闭壳体外层,1-2-2为密闭壳体内层,1-4-1表示端面盖板外层2表示冷水板壳体连接件;3表示冷水板;4表示光纤耦合半导体激光模块;5表示冷水管表示冷水管;6表示电线;7表示光纤。
本发明的实施方式
下面结合附图和实施例详细说明本发明提出的防止光纤耦合半导体激光模块壳体产生冷凝水的装置。
从原理上,为了防止光纤耦合半导体激光模块壳体产生冷凝水,需将光纤耦合半导体激光模块壳体产与周围空气隔绝。本发明提供一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置,包括密闭壳体、冷水板壳体连接件、冷水板、至少一个光纤耦合半导体激光模块、冷水管、电线及输出光纤;所述冷水板通过冷水板壳体连接件固定设置在密闭壳体内;所述光纤耦合半导体激光模块固定在所述冷水板上;所述密闭壳体上设置有电线孔、冷水管孔、光纤孔;所述电线通过所述密闭壳体上的电线孔与所述光纤耦合半导体模块连接并在所述密闭壳体电线孔处密封连接;所述冷水管通过所述密闭壳体上的冷水管孔与所述冷水板连接并在所述密闭壳体冷水孔处密封连接;所述光纤耦合模块的输出光纤通过密闭壳体上的光纤孔引出,并在光纤孔处密封连接;该装置将光纤耦合半导体激光器密闭在一个封闭空间内,阻断了内外空气交流的通道,进而阻断了产生冷凝水的可能。
从原理上,要使水冷效果好,上述密闭壳体除隔断空气外,还应该尽可能阻止热量在壳体内外的交换。这就要求壳体尽可能用不良导热材料,为了增加强度,密闭壳体可采用金属与不良导热材料的复合结构,金属壳体在外。为了进一步阻止热量交换,冷水板与壳体的连接材料也采用不良导热材料。此外,冷水管也应该采用不良导热材料以减少冷水流动过程中的热量交换。
为了设备维修方便,壳体上还要使用方便开合的盖板,盖板与壳体间要保持密封。
图1A为根据本发明的技术方案设计的第一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的内部结构示意图。图1B为根据本发明的技术方案设计的第一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的电线出入端面的结构示意图。图1C为根据本发明的技术方案设计的第一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的光纤输出端面的结构示意图。
该实施例中,防止光纤耦合半导体激光模块壳体产生冷凝水的装置的密闭外壳由方管1-1-1、方形电线端端盖1-1-2和和方形光纤端端盖1-1-3组成。冷水板3由两个冷水板壳体连接件2固定在密闭壳体1内;两个光纤耦合半导体激光模块4固定在冷水板3上;在方形电线端端盖1-1-2上开有两个冷水管孔和四个电线孔,冷水管5通过冷水孔后与冷水板3相连,冷水管5与方形电线端端盖1-1-2密封连接,电线6分别通过电线孔后与光纤耦合半导体模块4连接,电线6与方形电线端端盖1-1-2密封连接;在方形光纤端端盖1-1-3上开有两个冷水管孔和两个电线孔,冷水管5通过冷水孔后与冷水板3相连,冷水管5与方形光纤端端盖1-1-3密封连接;光纤耦合半导体模块4上的光纤7通过光纤孔与方形光纤端端盖1-1-3密封连接。方形电线端端盖1-1-2与方管1-1-1密封连接;方形光纤端端盖1-1-3与方管1-1-1密封连接。
在本发明中,密闭壳体采用不良导热材料,以降低密闭壳体内外的热交换,可采用塑木、塑料等材料;为了降低冷水板与密闭壳体间的热量交换,冷水板壳体连接件应采用不良导热材料,可采用塑料、电木等材料,在该实施例中,方形管1-1-1采用塑木管,方形电线端端盖1-1-2及方形光纤端端盖1-1-3采用有机玻璃板;冷水板壳体连接件2采用电木,它与密闭壳体1和冷水板3间用胶粘接在一起。为了降低冷水传输过程中的能量损失,并防止产生冷凝水,冷水管5采用塑料管。
本设计的防止光纤耦合半导体激光模块壳体产生冷凝水的装置在工作时,低温冷却水通过冷水管冷却冷水板进而冷却光纤耦合半导体激光模块,由于密闭壳体将内外空气隔绝,无论水温多低,内部光纤耦合半导体激光模块上都不会产生冷凝水,同时,由于冷水板通道与密闭壳体间由不良热导材料隔离,同时密闭壳体也是不良热导体,密闭壳体外部也不会产生冷凝水。这就使得该模块无论环境温度如何变化,内部的半导体发光芯片都能得到可靠高效的冷却,进而提高发光效率和寿命。
图2A为根据本发明的技术方案设计的第二种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的内部结构示意图。图2B为根据本发明的技术方案设计的第二种防止光纤耦合半导体激光模块壳体产生冷凝水的装置的可拆卸端面盖板的结构示意图。
该实施例中,防止光纤耦合半导体激光模块壳体产生冷凝水的装置中,密闭外壳采用双层复合材料及可重复开合结构,它由图2A所示的一端开口的腔体和图2B 所示的端面盖板组成。在图2A中, 1-2-1为密闭壳体外层,1-2-2为密闭壳体内层,冷水板3由四个冷水板壳体连接件2固定在密闭壳体1内;共2N个光纤耦合半导体激光模块4固定在冷水板3上。图2B所示的端面盖板也是双层复合结构,1-4-1为端面盖板外层,端面盖板内层没有显示出来,在本设计中,图2A所示的密闭外壳1上,设置有多个螺孔,图2B所示端面盖板14上对应设置有螺孔,端面盖板14与密闭外壳1间设置有橡胶垫,螺钉实现可重复开合的密封连接。
在本发明中,密闭壳体外层1-2-1和端面盖板外层1-4-1采用金属材料,以增加密闭壳体的机械强度;密闭壳体内层1-2-2和端面盖板内层为不良热导材料,以降低密闭壳体内外的热交换能力,通常采用塑料、橡胶等材料;为了降低冷水板与密闭壳体间的热量交换,冷水板壳体连接件2应采用不良导热材料,可采用塑料、电木等材料;该实施例中密闭壳体外层1-2-1和端面盖板外层1-4-1采用不锈钢材料;密闭壳体内层1-2-2和端面盖板内层采用橡胶材料;冷水板壳体连接件2采用电木,它与密闭壳体1间用胶粘接在一起,它与冷水板3之间为可拆卸的机械件连接;为了降低冷水传输过程中的能量损失,并防止产生冷凝水,冷水管采用塑料管。
本设计的防止光纤耦合半导体激光模块壳体产生冷凝水的装置在工作时,低温冷却水通过冷水管冷却冷水板进而冷却内部的光纤耦合半导体激光模块,由于密闭壳体将内外空气隔绝,无论水温多低,内部光纤耦合半导体激光模上都不会产生冷凝水,同时,由于冷水板与密闭壳体间通过冷水板壳体连接件连接,冷水板壳体连接件由不良热导材料制成,同时密闭壳体也是不良热导体,密闭壳体外部也不会产生冷凝水。这就使得该模块无论环境温度如何变化,内部半导体发光芯片都能得到可靠高效的冷却,进而提高发光效率和寿命。这种防止密闭壳体产生冷凝水的光纤耦合半导体激光模块可以单独水冷,也可以与其它模块串联水冷。
本发明提出的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,保证光纤耦合输出激光器在任何工作环境下都能得到可靠冷却,防止人为误操作,可有效保证光纤耦合半导体激光模块在满功率下使用,并延长光纤耦合半导体激光模块的寿命。

Claims (10)

  1. 一种防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:包括密闭壳体(1),冷水板壳体连接件(2)、冷水板(3)、至少一个光纤耦合半导体激光模块(4)、冷水管(5)、电线(6)及输出光纤(7);所述冷水板(3)通过冷水板壳体连接件(2)设置在密闭壳体(1)内;所述光纤耦合半导体激光模块(4)固定在所述冷水板(3)上;所述密闭壳体(1)上设置有电线孔、冷水管孔、光纤孔;所述电线(6)通过所述密闭壳体(1)上的电线孔与所述光纤耦合半导体模块连接,并在所述密闭壳体(1)电线孔处密封连接;所述冷水管(5)通过所述密闭壳体(1)上的冷水管孔与所述冷水板(3)连接并在所述密闭壳体(1)冷水孔处密封连接;所述光纤耦合半导体激光模块(4)的输出光纤(7)通过密闭壳体(1)上的光纤孔引出,输出光纤(7)与光纤孔的连接处密封。
  2. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述密闭壳体(1)包括矩形管(11)、矩形电线端端盖(12)和矩形光纤端端盖(13),所述矩形电线端端盖(12)与矩形管(11)密封连接;所述矩形光纤端端盖(13)与矩形管(11)密封连接;所述矩形电线端端盖(12)上设置冷水管孔和电线孔;所述矩形光纤端端盖(13)上设置冷水管孔和电线孔。
  3. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述密闭壳体(1)采用不良导热材料制成;所述矩形管(11)采用塑木管;所述矩形电线端端盖(12)和所述矩形光纤端端盖(13)采用有机玻璃板。
  4. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述密闭壳体(1)的一端开口,开口上设置可拆卸的端面盖板(14),所述密闭壳体(1)为双层复合结构,所述端面盖板(14)为双层复合结构,所述密闭壳体(1)开口一端的端面上设置有多个螺孔,所述可拆卸的端面盖板(14)上设置有与所述密闭壳体(1)上的螺孔一一对应的螺孔,所述端面盖板(14)与所述密闭壳体(1)开口处设置有橡胶垫。
  5. 根据权利要求4所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述密闭壳体(1)和所述可拆卸的端面盖板(14)的外层为不锈钢材料;所述密闭壳体(1)和所述可拆卸的端面盖板(14)的内层为不良导热材料,所述不良导热材料为橡胶材料。
  6. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述冷水板壳体连接件(2)与所述密闭壳体(1)和冷水板(3)间用胶粘接在一起。
  7. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述冷水板壳体连接件(2)与所述密闭壳体(1)间用胶粘接在一起,所述冷水板(3)壳体连接件(2)与冷水板(3)之间为可拆卸的机械件连接。
  8. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述冷水板壳体连接件(2)采用不良导热材料。
  9. 根据权利要求8所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述不良导热材料为电木。
  10. 根据权利要求1所述的防止光纤耦合半导体激光模块壳体产生冷凝水的装置,其特征是:所述冷水管(5)采用塑料管。
PCT/CN2021/097538 2020-05-29 2021-05-31 防止光纤耦合半导体激光模块壳体产生冷凝水的装置 WO2021239154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010478722.3 2020-05-29
CN202010478722.3A CN113745963A (zh) 2020-05-29 2020-05-29 防止光纤耦合半导体激光模块壳体产生冷凝水的装置

Publications (1)

Publication Number Publication Date
WO2021239154A1 true WO2021239154A1 (zh) 2021-12-02

Family

ID=78722990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097538 WO2021239154A1 (zh) 2020-05-29 2021-05-31 防止光纤耦合半导体激光模块壳体产生冷凝水的装置

Country Status (2)

Country Link
CN (1) CN113745963A (zh)
WO (1) WO2021239154A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083592A (ja) * 2012-10-26 2014-05-12 Komatsu Sanki Kk レーザ加工機及びレーザ加工機の冷却方法
CN107946885A (zh) * 2017-12-08 2018-04-20 光惠(上海)激光科技有限公司 一种防水稳定型高功率光纤激光器系统
CN207801146U (zh) * 2017-12-08 2018-08-31 光惠(上海)激光科技有限公司 一种防水稳定型高功率光纤激光器系统
CN109638619A (zh) * 2019-01-21 2019-04-16 中国人民解放军国防科技大学 一种相变制冷高功率激光器热管理装置
CN212011597U (zh) * 2020-05-29 2020-11-24 方强 防止光纤耦合半导体激光模块壳体产生冷凝水的装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083592A (ja) * 2012-10-26 2014-05-12 Komatsu Sanki Kk レーザ加工機及びレーザ加工機の冷却方法
CN107946885A (zh) * 2017-12-08 2018-04-20 光惠(上海)激光科技有限公司 一种防水稳定型高功率光纤激光器系统
CN207801146U (zh) * 2017-12-08 2018-08-31 光惠(上海)激光科技有限公司 一种防水稳定型高功率光纤激光器系统
CN109638619A (zh) * 2019-01-21 2019-04-16 中国人民解放军国防科技大学 一种相变制冷高功率激光器热管理装置
CN212011597U (zh) * 2020-05-29 2020-11-24 方强 防止光纤耦合半导体激光模块壳体产生冷凝水的装置

Also Published As

Publication number Publication date
CN113745963A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
US20120279944A1 (en) Annealing apparatus
WO2020034862A1 (zh) 一种相机
US20140063740A1 (en) Communication module-cooling structure and communication device
WO2017167316A1 (zh) 一种直接以金属散热器作为正负极电路的led光源模块
CN201467613U (zh) 一种密闭壳体电子设备的组合散热装置
CN211125696U (zh) 新型cob封装工艺led线路板
CN212011597U (zh) 防止光纤耦合半导体激光模块壳体产生冷凝水的装置
WO2021239154A1 (zh) 防止光纤耦合半导体激光模块壳体产生冷凝水的装置
CN116387688B (zh) 一种可快速降温的储能电池管理系统
TW201541565A (zh) 一種整合散熱器和智慧功率半導體模組的整機結構
CN210579825U (zh) 太阳能离网逆变器
WO2014146437A1 (zh) 大功率液体散热led灯
CN103162183A (zh) 一种发光器件、背光源模组及显示装置
KR20160100712A (ko) 직접 냉각식 발광다이오드 조명기기
CN218570729U (zh) 散热装置及设备
WO2018218801A1 (zh) 换热器及投影设备
CN112310798A (zh) 一种半导体激光器散热装置
CN219800832U (zh) 一种散热好的ipm模块
CN217464345U (zh) 一种高功率led复合铝基板
WO2023024925A1 (zh) 光源模块和网络设备
CN219875756U (zh) 一种无风扇工业光纤收发器
CN219366763U (zh) 一种减速机的冷却降温结构
CN220254747U (zh) 一种散热型多层印刷电路板
CN216413045U (zh) 一种通讯电子器件用双列直插封装管壳
CN219775666U (zh) 一种一体化led模组散热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813403

Country of ref document: EP

Kind code of ref document: A1