WO2021239111A1 - 清洁机器人及其控制方法 - Google Patents

清洁机器人及其控制方法 Download PDF

Info

Publication number
WO2021239111A1
WO2021239111A1 PCT/CN2021/096754 CN2021096754W WO2021239111A1 WO 2021239111 A1 WO2021239111 A1 WO 2021239111A1 CN 2021096754 W CN2021096754 W CN 2021096754W WO 2021239111 A1 WO2021239111 A1 WO 2021239111A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning robot
mopping
state
component
assembly
Prior art date
Application number
PCT/CN2021/096754
Other languages
English (en)
French (fr)
Inventor
谭一云
毋宏兵
张士松
Original Assignee
宝时得科技(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝时得科技(中国)有限公司 filed Critical 宝时得科技(中国)有限公司
Priority to CN202180005856.6A priority Critical patent/CN114554923B/zh
Publication of WO2021239111A1 publication Critical patent/WO2021239111A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/28Floor-scrubbing machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated

Definitions

  • This specification relates to the field of robotics, and in particular to a cleaning robot and its control method.
  • cleaning robots are increasingly used in surface cleaning.
  • some cleaning robots also have a mopping function.
  • cleaning robots In order to improve the efficiency of cleaning operations, cleaning robots generally perform cleaning operations such as mopping the floor while constructing maps.
  • the purpose of the embodiments of this specification is to provide a cleaning robot and a control method thereof, so as to avoid cross-contamination of the cleaning robot during the mapping process.
  • the implementation of this specification provides a method for controlling a cleaning robot, including:
  • mapping instruction is executed to generate a work area map.
  • the confirming whether the cleaning device is in a non-working state includes: when the initial state of the cleaning device is a working state, controlling the cleaning device to switch to a non-working state.
  • the cleaning device includes a mopping component.
  • the cleaning device being in a non-working state includes: the mopping assembly is in a raised state.
  • the cleaning device being in a non-working state includes: the mopping assembly is in a state of being separated from the cleaning robot body.
  • the first supporting member of the cleaning robot is controlled to move from the retracted position to the extended position, so that the mopping assembly is in a raised state.
  • the mopping assembly lifting mechanism of the cleaning robot is controlled to drive the mopping assembly to a raised position, so that the mopping assembly is in a raised state.
  • the method further includes:
  • the second supporting member that controls the cleaning robot is switched from the raised state to the landing state.
  • the method further includes:
  • the cleaning robot is controlled to switch to a state where the mopping assembly and the body are engaged.
  • the method further includes:
  • the ground clearance height reaches the set height value.
  • the embodiment of this specification also provides a cleaning robot, including:
  • a cleaning device for installing on the body and performing cleaning work on the working surface
  • a control device that controls the walking device to drive the cleaning robot to move
  • the positioning device is arranged on the body and is electrically connected to the control device for acquiring position information of the cleaning robot; characterized in that, the control device is configured to, when a mapping instruction is acquired, It is confirmed whether the cleaning device is in a non-working state; and it is also configured to generate a map of the working area based on the position information of the cleaning robot acquired by the positioning device when the cleaning device is in the non-working state.
  • the positioning device includes a lidar sensor or a vision sensor.
  • the cleaning device includes a mopping component.
  • the cleaning device being in a non-working state includes: the mopping assembly is in a raised state.
  • the cleaning device being in a non-working state includes: the mopping assembly is in a state of being separated from the cleaning robot body.
  • the cleaning robot further includes a first support member disposed on the body; the control device controls the first support member to move from the stowed position to the extended position, Thus, the mopping assembly is in a raised state.
  • the cleaning robot further includes a mopping assembly raising mechanism, the mopping module raising mechanism is connected to the mopping assembly, and the control device controls the mopping assembly raising mechanism to drive the mopping assembly Move the raised position so that the mopping assembly is in a raised state.
  • the cleaning robot further includes a second supporting member disposed on the body and configured to provide support for the cleaning robot when the mopping assembly is in a raised state;
  • the control device controls the second support member to move to the working surface when the mopping assembly is in a raised state, so that the second support member is in a landing state.
  • control device controls the mopping assembly lifting mechanism to drive the mopping assembly to move to the working surface, so that the mopping assembly is switched to the landing state.
  • the ground clearance of the positioning device when the mopping assembly is in the raised state is approximately the same as the ground clearance of the positioning device when the mopping assembly is in the landing state.
  • the embodiment of this specification also provides a control method of a cleaning robot, including:
  • mapping instruction is executed to generate a work area map.
  • the confirming whether the mopping component is in a non-working state includes: when the initial state of the mopping component is a working state, controlling the mopping component to switch to a non-working state.
  • the mopping assembly being in a non-working state includes: the mopping assembly being in a raised state.
  • the mopping assembly being in a non-working state includes: the mopping assembly is in a state of being separated from the cleaning robot body.
  • the first supporting member of the cleaning robot is controlled to move from the stowed position to the extended position, so that the The mopping assembly is in a raised state.
  • the mopping assembly lifting mechanism of the cleaning robot is controlled to drive the mopping assembly to the raised position, thereby Make the mopping assembly in a raised state.
  • the method further includes:
  • the second supporting member that controls the cleaning robot is switched from the raised state to the landing state.
  • the method further includes:
  • the mopping component of the cleaning robot is controlled to be in a landing state.
  • the method further includes:
  • the cleaning robot is controlled to switch to the state where the mopping assembly is engaged with the cleaning robot body.
  • the height from the ground when the mopping component is in a raised state is not lower than a set height value.
  • the cleaning robot further includes a sweeping component, and when the mapping instruction is obtained, it is confirmed whether the mopping component of the cleaning robot is in a non-working state; when the mopping component is in a non-working state, Execute the mapping instruction to generate a map of the work area, which specifically includes:
  • the map-building instruction is executed to generate a map of the work area.
  • the confirming whether the working state of the mopping component and the sweeping component of the cleaning robot are in a drawing-available state includes: when the working state of the mopping component and the sweeping component of the cleaning robot is in a non-drawing state When, control the working state of the mopping component and the sweeping component of the cleaning robot to switch to a map-creating state.
  • map-buildable state includes:
  • the mopping component is in a non-working state, and the sweeping component is in a non-working state.
  • map-buildable state includes:
  • the mopping component is in a non-working state, and the sweeping component is in a working state.
  • the implementation of this specification also provides a cleaning robot, including:
  • the mopping module is used to install on the fuselage and perform cleaning work on the working surface
  • a control device that controls the walking device to drive the cleaning robot to move
  • the positioning device is provided on the body and is electrically connected to the control device for obtaining the position information of the cleaning robot; the control device is configured to confirm the dragging instruction when a drawing instruction is obtained. Whether the ground module is in a non-operating state; and it is also configured to generate a map of a working area based on the position information of the cleaning robot acquired by the positioning device when the mopping module is in a non-operating state.
  • the positioning device includes a lidar sensor and/or a vision sensor.
  • the mopping assembly being in a non-working state includes: the mopping assembly being in a raised state.
  • the mopping assembly being in a non-working state includes: the mopping assembly is in a state of being separated from the cleaning robot body.
  • the cleaning robot further includes a first support member disposed on the body; the first support member can move from a first position to a second position to drive the machine The body moves in a direction perpendicular to the ground, thereby driving the mopping assembly to move in a direction perpendicular to the ground.
  • the cleaning robot further includes a mopping assembly raising mechanism, and the mopping module raising mechanism is connected to the mopping assembly to drive the mopping assembly to a raised position.
  • the cleaning robot further includes a second supporting member disposed on the body and configured to provide support for the cleaning robot when the mopping assembly is in a raised state;
  • the control device controls the second support member to move to the working surface when the mopping assembly is in a raised state, so that the second support member is in a landing state.
  • control device controls the mopping assembly lifting mechanism to drive the mopping assembly to move to the working surface, so that the mopping assembly is switched to the landing state.
  • the difference between the ground height value of the positioning device when the mopping assembly is in the raised state and the ground height value of the positioning device when the mopping assembly is in the landing state is less than a preset value .
  • the cleaning robot further includes a sweeping component
  • the control device is configured to confirm whether the working state of the mopping component and the sweeping component of the cleaning robot are in a drawing-available state when a drawing instruction is obtained;
  • the control device is further configured to execute the mapping instruction to generate a work area map when the working states of the mopping component and the sweeping component of the cleaning robot are in a state where a map can be created.
  • control device is further configured to control the switching of the working states of the mopping component and the sweeping component of the cleaning robot when the working states of the mopping component and the sweeping component of the cleaning robot are in a non-drawable state It is in the state of building a picture.
  • the map-buildable state includes: the mopping component is in a non-working state, and the sweeping component is in a non-working state.
  • the map-buildable state includes: the mopping component is in a non-working state, and the sweeping component is in a working state.
  • the cleaning robot first confirms whether the mopping component of the cleaning robot is in a non-working state when it obtains a drawing instruction; when it is confirmed that the mopping component is in a non-working state
  • the mapping instruction is executed only when it is in the working state to generate a map of the working area. In this way, the cleaning robot performs map creation when its mopping component is in a non-working state, which avoids cross-contamination caused by cleaning operations during the map creation process.
  • Figure 1 is a schematic diagram of a cleaning robot in some embodiments of this specification
  • Figure 2 is a schematic diagram of a cleaning robot autonomously moving and building a map in an indoor environment in an embodiment of this specification;
  • Figure 3 is a schematic diagram of the control principle of the electric lifting mechanism of the cleaning robot in some embodiments of this specification
  • Figure 5 is a schematic diagram of the landing state of the mopping component of the cleaning robot in some embodiments of this specification.
  • FIG. 6 is one of the flowcharts of the control method of the cleaning robot in some embodiments of this specification.
  • FIG. 7 is the second flow chart of the control method of the cleaning robot in some embodiments of this specification.
  • the cleaning robot mentioned in this manual generally refers to its body (that is, the cleaning robot body) that comes with various necessary sensors and control devices. During operation, it can complete the cleaning task autonomously without external intervention and control. Intelligent robots, that is, cleaning robots can move autonomously in the work area and perform cleaning tasks. Not only that, but the cleaning robot mentioned in this specification also has the function of mopping the floor (or called wiping the floor). As shown in FIG. 1, this type of cleaning robot 100 with a mopping function may be provided with a cleaning device 11 that can dry and/or wet the surface of the working area to better remove surface stains. In an exemplary embodiment, such a cleaning robot 100 with a mopping function may be, for example, a mopping robot dedicated to mopping, or an integrated sweeping and mopping robot with a mopping function.
  • the inventor of the present application found that in most cases, the working area of the cleaning robot may include multiple parts with different environments. As shown in Figure 2, taking the typical working area of the family indoor floor as an example, since the family indoor floor generally includes different parts such as bedroom floor, kitchen floor, bathroom floor, and living room floor. The types of stains in these different parts are generally different. Generally, people do not want to cause cross-contamination by mopping the floor. For example, people do not want to drag the mop from the bathroom and then to the bedroom. In addition, compared to the sweeping parts of the cleaning robot, the cleaning device of the cleaning robot is more likely to adhere to dirt.
  • mapping refers to the creation or update of a map of its work area by the cleaning robot.
  • the cleaning robot may include a body, a walking device, a cleaning device, a control device, and a positioning device.
  • the walking device supports the body, which can be used to drive the cleaning robot to move on the working surface.
  • the cleaning device may be a mopping component, and the mopping component may be used to install on the fuselage and perform cleaning work on the working surface.
  • the control device can control the walking device to drive the cleaning robot to move.
  • the positioning device is arranged on the body and is electrically connected to the control device, and is used to obtain position information of the cleaning robot.
  • the control device may be configured to confirm whether the mopping component is in a non-operating state when a drawing instruction is acquired; and also configured to acquire based on the positioning device when the mopping component is in a non-operating state
  • the location information of the cleaning robot generates a map of the work area.
  • the cleaning robot when the cleaning robot obtains the mapping instruction, it first confirms whether the mopping component of the cleaning robot is in a non-working state; the mapping instruction is executed when the mopping component is confirmed to be in the non-working state To generate a map of the work area. In this way, the cleaning robot performs map creation when its mopping component is in a non-working state, which avoids cross-contamination caused by cleaning operations during the map creation process. It should be pointed out that when the mopping component is in a non-working state, the mopping component does not perform the mopping action to save power.
  • the confirming whether the mopping component is in a non-working state may also include: when the initial state of the mopping component is a working state, controlling the mopping component to switch to a non-working state .
  • the non-working state of the mopping assembly may be: the mopping assembly is in a raised state. Since the mopping component is not in contact with the working surface when it is in the raised state, the construction of the map in this non-working state can avoid cross-contamination caused by the cleaning operation during the construction of the map.
  • the non-working state of the mopping assembly may also mean that the mopping assembly is separated from the cleaning robot body. Since the mopping component has been separated from the cleaning robot body (that is, there is no mopping component on the body), the cleaning robot builds a map in this state, and there is no cross-contamination problem caused by the mopping operation.
  • the cleaning robot may further include a first support member disposed on the body; the control device may control the first support member from being stowed The position moves to the extended position, so that a part of the cleaning robot body is lifted, and then the mopping assembly is lifted synchronously, that is, the mopping assembly is in a raised state. During this process, the mopping assembly and the fuselage maintain a fixed relative position relationship (that is, the mopping assembly and the fuselage do not move relative to each other).
  • control device can also control the first support member of the cleaning robot to move from the extended position to the retracted position, thereby causing the raised part of the cleaning robot body to fall to the ground, so that The mopping component is synchronously switched to the landing state in order to enter the working state.
  • the second support member is, for example, a landing gear.
  • the cleaning robot further includes a mopping assembly lifting mechanism
  • the mopping module raising mechanism can be connected to the mopping assembly
  • the control device can control the mopping assembly
  • the lifting mechanism drives the mopping assembly to move to a raised position, so that the mopping assembly is in a raised state.
  • the relative positional relationship between the mopping assembly and the fuselage will change (that is, the mopping assembly will move relative to the fuselage).
  • the control device can also control the mopping assembly lifting mechanism of the cleaning robot to drive the mopping assembly to the landing position, thereby switching the mopping assembly to the landing state, In order to enter the working state.
  • the state switching control of the mopping component by the control device is realized, that is, the switching between the landing state and the raised state of the mopping component is realized.
  • the positioning device may be a vision sensor or the like.
  • the positioning device may be a lidar Sensors, or vision sensors, etc.
  • the ground height of the positioning device can reach a set height value when the mopping component is in the raised state.
  • the ground clearance of the positioning device when the mopping assembly is in the raised state may be approximately the same as the ground clearance of the positioning device when the mopping assembly is in the landing state.
  • the ground clearance of the lidar sensor when the mopping assembly is in the raised state may be approximately the same as the ground clearance of the lidar sensor when the mopping assembly is in the landing state.
  • the substantially the same refers to the same or substantially the same; although there is a deviation in the case of being substantially the same, the deviation is within the allowable range.
  • the ground clearance of the positioning device can reach the set height value, which can also help prevent the mopping component from touching the surface due to obstacles or uneven surfaces during the mapping process. In turn, it is beneficial to further improve the anti-cross-contamination ability of the cleaning robot during the map building process.
  • the mopping assembly lifting mechanism may be an electric lifting mechanism.
  • the control device of the cleaning robot can control the motor action of the electric lifting mechanism through the driver, and accordingly control the electric lifting mechanism to perform lifting or lowering actions.
  • the power source of the mopping assembly lifting mechanism can also be hydraulic or pneumatic.
  • the control device of the cleaning robot can control the hydraulic actuator or the pneumatic actuator to correspondingly control the lifting mechanism of the mopping assembly to perform the lifting or lowering action. Therefore, this specification does not limit the power source used by the mopping assembly lifting mechanism.
  • the mopping assembly lifting mechanism can adopt any suitable structure.
  • the structure of the lifting mechanism of the mopping assembly may be a retractable structure, a sleeve type structure, a retractable arm structure, a folding arm structure, or a scissor type structure.
  • executing a map creation instruction means that the control device of the cleaning robot executes a map creation action. That is, the control device controls the cleaning robot to traverse the work area, and obtains the boundary position distribution of the work area and the obstacle position distribution within the boundary through the positioning device carried by itself during the traversal process, and generates a flat map of the work area accordingly.
  • the cleaning robot after the cleaning robot is powered on (ie, powered on), it can be in one of the following states: map creation, cleaning operation, return to charging, abnormal, standby (suspend), and other states.
  • map creation In most cases, after the cleaning robot is powered on, it can automatically create a map by default without manual intervention. Therefore, for the control device of the cleaning robot, when it is confirmed that the cleaning robot has been powered on, it can be deemed that the control device has received a drawing instruction.
  • control device of the cleaning robot can use software (such as reading event notifications, reading status flags, etc.) and/or hardware (such as receiving status indications for indicating the lifting status of the mopping component). Lights, position switches or proximity switches, etc. output state electrical signals) etc. to confirm the lifting status of the mopping component.
  • the drawing instruction may also be input from outside.
  • the cleaning robot after the cleaning robot is powered on, it can automatically enter the standby state by default, waiting for manual intervention instructions to perform corresponding actions.
  • the control device of the cleaning robot may execute the mapping action.
  • the cleaning robot can communicate with other electronic devices of the user, and an application (APP) client can be configured on the electronic device. Based on the user's operation, the client can send a drawing instruction to the cleaning robot.
  • the control device of the cleaning robot can receive the mapping instruction.
  • the above-mentioned electronic device may be a smart phone, a smart wearable device (such as a smart bracelet, a smart watch, etc.), a tablet computer, a notebook computer, a digital assistant, or a desktop computer, etc.
  • the main body may be provided with a control panel (the control panel may be provided with a switch button, a map key, a cleaning button, a pause button, etc.); or the cleaning robot may be equipped with a remote control (remote control)
  • the device can be provided with a switch button, a map button, a clean button, a pause button, etc.). Therefore, based on the user's operation, the control panel or the remote control can also send a mapping instruction to the cleaning robot.
  • a voice interaction interface may also be provided on the cleaning robot.
  • the user can directly issue a mapping instruction (or other instructions) to the cleaning robot by voice through the voice interactive interface.
  • the cleaning robot may further include a second support member, the second support member is provided on the fuselage, and is used to support when the mopping assembly is in a raised state.
  • the cleaning robot provides support.
  • the control device can control the second support member to move to the working surface when the mopping assembly is in a raised state, so that the second support member is in a landing state (that is, when the mopping assembly is When in the raised state, the control device can control the second support member of the cleaning robot to switch from the raised state to the landing state).
  • the control device can also control the second support member to switch from the landing state to the raised state when the mopping assembly is placed in the landing state.
  • the second support member can always be in the opposite state to the mopping assembly, and only one of the second support member and the mopping assembly can always be placed on the ground. That is, when the mopping assembly is in the raised state (for example, as shown in the mop 11 in FIG. 4), the second support member (for example, as shown in the universal wheel 12 in FIG. 4) is in the landing state; at this time, the second support member Play the role of supporting the body and auxiliary body to move; on the contrary, when the mopping assembly is in the landing state (such as the mop 11 shown in Figure 5), the second supporting member is in the raised state (such as the universal wheel in Figure 5).
  • the mopping assembly in the landing state also has the function of supporting the body. In this way, it can help to ensure the obstacle surmounting ability of the cleaning robot and take into account the proximity of mopping the floor.
  • the second supporting member may be, for example, a lifting mechanism that can be provided with a universal wheel, or the like.
  • the state switching of the mopping assembly and the state switching of the second support member may adopt linkage control. In this way, by controlling one power source, the control device of the cleaning robot can synchronously realize the state switching control of the second support member and the mopping assembly, thereby simplifying the structure and reducing the cost.
  • a linkage mechanism (such as a gear transmission mechanism, a chain transmission mechanism, or a belt transmission mechanism, etc.) may be provided between the mopping assembly lifting mechanism and the second support member.
  • the linkage mechanism Under the control device of the cleaning robot, the linkage mechanism is driven by a power source, which can synchronously drive the mopping assembly lifting mechanism and the second supporting member to perform reverse linkage.
  • the power source when the linkage mechanism drives the mopping assembly lifting mechanism to rise, the second supporting member is synchronously driven to descend; correspondingly, when the linkage mechanism drives the mopping assembly lifting mechanism to descend, the second supporting member is synchronously driven to rise.
  • the mopping assembly lifting mechanism and the second support member may not be linked, that is, the state switching of the mopping assembly lifting mechanism and the state switching of the second support member can be independently controlled (for example, Independent power sources can be applied to the two separately).
  • the control device of the cleaning robot also controls the second support member to be raised when the mopping assembly is switched to the raised state. The state is switched to the landing state.
  • the mopping component and the body may be detachably connected (for example, snap connection, etc.).
  • the control device of the cleaning robot can timely control the clutch state of the mopping component and the body.
  • the control device can separate the mopping assembly from the main body (even if the mopping assembly falls off from the main body), so that the mopping assembly is separated from the main body. Since there is no mopping component on the main body, the cleaning robot builds a map in this state, and there is no cross-contamination problem caused by the execution of the mopping operation during the mapping process.
  • control device can also control the mopping component to switch to the state of coupling with the main body (that is, the detachable connection between the mopping component and the main body is restored), In order to facilitate subsequent mopping components to perform cleaning operations.
  • the position where the control device separates the mopping component from the body can be a designated position, so that after the drawing is completed, the cleaning robot can quickly return to this position, and the mopping component can be connected to the body again.
  • this designated position may be the charging station position. Of course, other locations can be selected as needed.
  • the control device may control the mopping component to immediately perform the mopping operation.
  • a cleaning operation is performed by walking according to a planned path
  • the control device can control the mopping component to perform the mopping operation in a timely manner (for example, after a delay of several seconds) to wait for the path planning result.
  • the data processing performance of the control device itself is relatively strong, after the work area map is generated, the mopping component can be switched to the landing state, and the walking path planning can be completed according to the work map in parallel, so there is no need to wait.
  • the control device of the cleaning robot can also partition the work area according to the environmental attributes according to the work area map. Before the mopping operation of a partition, the control device of the cleaning robot can control the cleaning robot to replace or clean the mop parts, so as to prevent the dirt of the previous partition attached to the mop parts from causing cross-contamination to the next partition.
  • the bathroom can be divided into one partition (hereinafter referred to as the first partition), the kitchen and dining room are divided into one partition (hereinafter referred to as the second partition), and the living room, balcony and The aisle is divided into one zone (hereinafter referred to as the third zone), and all bedrooms and study rooms are divided into another zone (hereinafter referred to as the fourth zone).
  • the control device can control the cleaning robot to replace or clean the mopping parts. It should be understood that this is only an exemplary description, and in other embodiments, the division of partitions may be determined according to actual conditions and needs.
  • control device of the cleaning robot controlling the cleaning robot to replace or clean the mop parts may mean that the cleaning robot has an automatic replacement or cleaning function of the mop parts, and the control device can control the cleaning robot to automatically replace or clean the mop parts.
  • the above-mentioned control device of the cleaning robot controls the cleaning robot to replace or clean the mop parts. It may also mean that the cleaning robot does not have the function of automatically replacing or cleaning the mop parts, but has the function of prompting the user to replace or clean the mop parts. Then the control device can control the cleaning robot to promptly issue a mop component replacement or cleaning prompt.
  • the control device of the cleaning robot can control the cleaning robot to perform mopping operations in accordance with the designated partitioning operation sequence, so as to help reduce cross-contamination during the mopping operation.
  • the stains in the first partition and the second partition may be the most serious
  • the stains in the third partition are second
  • the stains in the fourth partition may be the lightest.
  • the cleaning robot can perform mopping operations in accordance with the operation sequence of the fourth partition, the third partition, the second partition, and the first partition.
  • the cleaning robot may not only include a mopping component, but also a sweeping component, and the sweeping component may be a rolling brush mechanism and/or a side brush mechanism.
  • the rolling brush mechanism and the side brush mechanism are generally used to clean up debris and other debris such as dust on the ground and corners.
  • the debris and debris cleaned by the rolling brush mechanism and the side brush mechanism can generally be collected by the dust collector of the sweeper and mopping machine.
  • the dust collection device may include components such as a dust box, a fan, and the suction force generated by the fan can collect dust cleaned by the rolling brush mechanism and the side brush mechanism into the dust box.
  • the control device is configured to confirm whether the working state of the mopping component and the sweeping component of the cleaning robot are in a state capable of drawing when the drawing instruction is acquired; the control device is also configured to act as the cleaning robot When the working state of the floor mopping component and the floor sweeping component are in the map-buildable state, the map-building instruction is executed to generate a map of the working area.
  • control device is also configured to control the working state of the mopping component and the sweeping component of the cleaning robot to switch to when the working state of the mopping component and the sweeping component of the cleaning robot is in a non-drawable state. Can build map status.
  • the map-building state of the cleaning robot includes: the mopping component is in a non-working state, and the sweeping component is in a non-working state. That is, the cleaning robot does not sweep or mop the floor when it executes the mapping instruction.
  • the map-building state of the cleaning robot includes: the mopping component is in a non-working state, and the sweeping component is in a working state. That is, the cleaning robot can sweep the floor but not mopping the floor when it executes the mapping instruction.
  • this manual also provides a control method of the cleaning robot.
  • the control method of the cleaning robot may include the following steps:
  • the confirming whether the mopping assembly is in a non-working state may include: controlling the mopping assembly when the initial state of the mopping assembly is in the working state The component is switched to a non-working state.
  • the mopping assembly being in a non-working state may include: the mopping assembly being in a raised state.
  • the mopping assembly being in a non-working state may include: the mopping assembly being in a separate state from the cleaning robot body.
  • the first supporting member of the cleaning robot is controlled to move from the stowed position to the extended position, so that the mopping assembly is in a raised state.
  • the mopping assembly lifting mechanism of the cleaning robot is controlled to drive the mopping assembly to a raised position, so that the mopping assembly is in a raised state.
  • the cleaning robot control method of this specification may further include:
  • the second supporting member that controls the cleaning robot is switched from the raised state to the landing state.
  • the cleaning robot control method of this specification may further include:
  • the cleaning robot is controlled to switch to a state where the mopping assembly and the body are engaged.
  • the ground height of the mopping component when in the raised state reaches a set height value.
  • the cleaning robot in this application may also include a sweeping component.
  • the control method of the cleaning robot in FIG. 6 may specifically include the following steps:
  • step S701 the confirming whether the working state of the mopping component and the sweeping component of the cleaning robot are in a map-capable state includes: in the working state of the mopping component and the sweeping component of the cleaning robot When it is in the unavailable state, the working state of the mopping component and the sweeping component of the cleaning robot is controlled to be switched to the state capable of mapping.
  • the map-buildable state includes: the mopping component is in a non-working state, and the sweeping component is in a non-working state. That is, the cleaning robot does not sweep or mop the floor when it executes the mapping instruction.
  • the map-buildable state includes: the mopping component is in a non-working state, and the sweeping component is in a working state. That is, when the cleaning robot executes the drawing instruction, it can sweep the floor but not mop the floor.
  • this specification also provides a computer storage medium on which a computer program is stored, and the computer program realizes the control method of the cleaning robot described above when the computer program is executed by a processor.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media includes permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • the implementation of this specification can be provided as a method, a system or a computer program product. Therefore, the implementation of this specification may adopt the form of a complete hardware implementation, a complete software implementation, or an implementation combining software and hardware. Moreover, the implementation of this specification may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the embodiments of this specification can also be practiced in distributed computing environments. In these distributed computing environments, tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种清洁机器人(100)及其控制方法,该清洁机器人(100)的控制方法包括:当获取到建图指令时,确认清洁机器人(100)的拖地组件是否处于非工作状态;当拖地组件处于非工作状态时,执行建图指令,以生成工作区域地图。可以避免清洁机器人(100)在建图过程中的交叉污染。

Description

清洁机器人及其控制方法
本申请要求了申请日为2020年05月29日,申请号为202010482194.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书涉及机器人技术领域,尤其是涉及一种清洁机器人及其控制方法。
背景技术
随着机器人技术的不断发展,清洁机器人越来越多地应用于表面清洁。为了能够有效去除表面上残留的顽固污渍,一些清洁机器人还具有拖地功能。为了提高清洁作业效率,清洁机器人一般是边建图边执行拖地等清洁作业。
然而,在实现本申请的过程中,本申请的发明人发现:现有技术中这种边建图边作业的方式,容易导致清洁机器人的工作区域内不同部分之间的交叉污染。因此,如何避免或减轻清洁机器人在建图过程中的交叉污染,已成为目前亟待解决的技术问题。
发明内容
本说明书实施方案的目的在于提供一种清洁机器人及其控制方法,以避免清洁机器人在建图过程中的交叉污染。
为达到上述目的,一方面,本说明书实施方案提供了一种清洁机器人的控制方法,包括:
当获取到建图指令时,确认所述清洁机器人的清洁装置是否处于非工作状态;
当所述清洁装置处于非工作状态时,执行所述建图指令,以生成工作区域地图。
可选的,所述确认所述清洁装置是否处于非工作状态,包括:在所述清洁装置的初始状态为工作状态时,控制所述清洁装置切换为非工作状态。
可选的,所述清洁装置包括拖地组件。
可选的,所述清洁装置处于非工作状态,包括:所述拖地组件处于升起状态。
可选的,所述清洁装置处于非工作状态,包括:所述拖地组件处于与所述清洁机器人本体分离状态。
可选的,控制所述清洁机器人的第一支撑部件由收起位置运动至伸出位置,从而使所述拖地组件处于升起状态。
可选的,控制所述清洁机器人的拖地组件抬升机构带动所述拖地组件运动至升起位置,从而使所述拖地组件处于升起状态。
可选的,所述方法还包括:
在使所述拖地组件处于升起状态时,控制所述清洁机器人的第二支撑部件由升起状态切换为落地状态。
可选的,所述方法还包括:
当生成所述工作区域地图后,控制所述清洁机器人切换为所述拖地组件与本体接合状态。
可选的,所述方法还包括:
所述拖地组件处于升起状态时的离地高度达到设定的高度值。
本说明书实施方案还提供一种清洁机器人,包括:
机身;
行走装置,支撑所述机身,用于带动所述清洁机器人在工作表面移动;
清洁装置,用于安装在所述机身上,并在工作表面执行清洁工作;
控制装置,控制所述行走装置带动所述清洁机器人移动;
定位装置,设置在所述机身上,与所述控制装置电性连接,用于获取所述清洁机器人的位置信息;其特征在于,所述控制装置被配置为当获取到建图指令时,确认所述清洁装置是否处于非工作状态;还被配置为当所述清洁装置处于非工作状态时,基于所述定位装置获取的所述清洁机器人的位置信息生成工作区域的地图。
可选的,所述定位装置包括激光雷达传感器或视觉传感器。
可选的,所述清洁装置包括拖地组件。
可选的,所述清洁装置处于非工作状态,包括:所述拖地组件处于升起状态。
可选的,所述清洁装置处于非工作状态,包括:所述拖地组件处于与所述清洁机器人本体分离状态。
可选的,所述清洁机器人还包括第一支撑部件,所述第一支撑部件设置在所述机身上;所述控制装置控制所述第一支撑部件从收起位置运动至伸出位置,从而使所述拖地组件处于升起状态。
可选的,所述清洁机器人还包括拖地组件抬升机构,所述拖地模块抬升机构与所述拖地组件相连接,所述控制装置控制所述拖地组件抬升机构带动所述拖地组件运动升起位置,从而使所述拖地组件处于升起状态。
可选的,所述清洁机器人还包括第二支撑部件,所述第二支撑部件设置在所述机身上,用于在所述拖地组件处于升起状态时为所述清洁机器人提供支撑;所述控制装置控制所述第二支撑部件在所述拖地组件处于升起状态时运动至所述工作表面,从而使所述第二支撑部件处于落地状态。
可选的,所述控制装置生成所述工作区域地图后,控制所述拖地组件抬升机构带动所述拖地组件运动至所述工作表面,从而使所述拖地组件切换为落地状态。
可选的,所述拖地组件处于升起状态时所述定位装置的离地高度,与所述拖地组件处于落地状态时所述定位装置的离地高度大致相同。
本说明书实施方案还提供了一种清洁机器人的控制方法,包括:
当获取到建图指令时,确认所述清洁机器人的拖地模块是否处于非工作状态;
当所述拖地模块处于非工作状态时,执行所述建图指令,以生成工作区域地图。
可选的,所述确认所述拖地组件是否处于非工作状态,包括:在所述拖地组件的初始状态为工作状态时,控制所述拖地组件切换为非工作状态。
可选的,所述拖地组件处于非工作状态,包括:所述拖地组件处于升起状态。
可选的,所述拖地组件处于非工作状态,包括:所述拖地组件处于与所述清洁机器人本体分离状态。
可选的,当获取到建图指令时,在所述拖地组件的初始状态为工作状态时,控制所述清洁机 器人的第一支撑部件由收起位置运动至伸出位置,从而使所述拖地组件处于升起状态。
可选的,当获取到建图指令时,在所述拖地组件的初始状态为工作状态时,控制所述清洁机器人的拖地组件抬升机构带动所述拖地组件运动至升起位置,从而使所述拖地组件处于升起状态。
可选的,所述方法还包括:
在使所述拖地组件处于升起状态时,控制所述清洁机器人的第二支撑部件由升起状态切换为落地状态。
可选的,所述方法还包括:
当生成所述工作区域地图后,控制所述清洁机器人的拖地组件处于落地状态。
可选的,所述方法还包括:
当生成所述工作区域地图后,控制所述清洁机器人切换为所述拖地组件处于与所述清洁机器人本体接合状态。
可选的,所述拖地组件处于升起状态时的离地高度不低于设定的高度值。
可选的,所述清洁机器人还包括扫地组件,所述当获取到建图指令时,确认所述清洁机器人的拖地组件是否处于非工作状态;当所述拖地组件处于非工作状态时,执行所述建图指令,以生成工作区域地图,具体包括:
当获取到建图指令时,确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态;
当所述清洁机器人的拖地组件和扫地组件的工作状态处于可建图状态时,执行所述建图指令,以生成工作区域地图。
可选的,所述确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态,包括:在所述清洁机器人的拖地组件和扫地组件的工作状态处于不可建图状态时,控制所述清洁机器人的拖地组件和扫地组件的工作状态切换为可建图状态。
可选的,所述可建图状态包括:
所述拖地组件处于非工作状态,所述扫地组件处于非工作状态。
可选的,所述可建图状态包括:
所述拖地组件处于非工作状态,所述扫地组件处于工作状态。本说明书实施方案还提供了一种清洁机器人,包括:
机身;
行走装置,支撑所述机身,用于带动所述清洁机器人在工作表面移动;
拖地模块,用于安装在所述机身上,并在工作表面执行清洁工作;
控制装置,控制所述行走装置带动所述清洁机器人移动;
定位装置,设置在所述机身上,与所述控制装置电性连接,用于获取所述清洁机器人的位置信息;所述控制装置被配置为当获取到建图指令时,确认所述拖地模块是否处于非工作状态;还被配置为当所述拖地模块处于非工作状态时,基于所述定位装置获取的所述清洁机器人的位置信息生成工作区域的地图。可选的,所述定位装置包括激光雷达传感器和/或视觉传感器。
可选的,所述拖地组件处于非工作状态,包括:所述拖地组件处于升起状态。
可选的,所述拖地组件处于非工作状态,包括:所述拖地组件处于与所述清洁机器人本体分离状态。
可选的,所述清洁机器人还包括第一支撑部件,所述第一支撑部件设置在所述机身上;所述第一支撑部件可从第一位置运动至第二位置以带动所述机身在垂直于地面方向上运动,从而带动所述拖地组件在垂直于地面方向上运动。
可选的,所述清洁机器人还包括拖地组件抬升机构,所述拖地模块抬升机构与所述拖地组件相连接,以带动所述拖地组件运动至升起位置。
可选的,所述清洁机器人还包括第二支撑部件,所述第二支撑部件设置在所述机身上,用于在所述拖地组件处于升起状态时为所述清洁机器人提供支撑;所述控制装置控制所述第二支撑部件在所述拖地组件处于升起状态时运动至所述工作表面,从而使所述第二支撑部件处于落地状态。
可选的,所述控制装置生成所述工作区域地图后,控制所述拖地组件抬升机构带动所述拖地组件运动至所述工作表面,从而使所述拖地组件切换为落地状态。
可选的,所述拖地组件处于升起状态时所述定位装置的离地高度值与所述拖地组件处于落地状态时所述定位装置的离地高度的高度值之差小于预设值。
可选的,所述清洁机器人还包括扫地组件,所述控制装置被配置为当获取到建图指令时,确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态;
所述控制装置还被配置为当所述清洁机器人的拖地组件和扫地组件的工作状态处于可建图状态时,执行所述建图指令,以生成工作区域地图。
可选的,所述控制装置还被配置为在所述清洁机器人的拖地组件和扫地组件的工作状态处于不可建图状态时,控制所述清洁机器人的拖地组件和扫地组件的工作状态切换为可建图状态。
可选的,所述可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于非工作状态。
可选的,所述可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于工作状态。
由以上本说明书实施方案提供的技术方案可见,在本说明书实施方案中,清洁机器人在获取到建图指令时,先确认清洁机器人的拖地组件是否处于非工作状态;当确认拖地组件处于非工作状态时才执行建图指令,以生成工作区域地图。如此,清洁机器人在其拖地组件处于非工作状态下进行建图,也就避免了建图过程中因执行清洁作业而导致的交叉污染。
附图说明
为了更清楚地说明本说明书实施方案或现有技术中的技术方案,下面将对实施方案或现有技术描述中所需要控制用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施方案,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本说明书的一些实施方案中清洁机器人的示意图;
图2为本说明书一实施方案中清洁机器人在室内环境中自主移动建图的示意图;
图3为本说明书的一些实施方案中清洁机器人的电动升降机构的控制原理示意图;
图4为本说明书的一些实施方案中清洁机器人的拖地组件的升起状态示意图;
图5为本说明书的一些实施方案中清洁机器人的拖地组件的落地状态示意图;
图6为本说明书的一些实施方案中清洁机器人的控制方法的流程图之一;
图7为本说明书的一些实施方案中清洁机器人的控制方法的流程图之二。
具体实施方式
为了控制本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施方案中的附图,对本说明书实施方案中的技术方案进行清楚、完整地描述,显然,所描述的实施方案仅仅是本说明书一部分实施方案,而不是全部的实施方案。基于本说明书中的实施方案,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方案,都应当属于本说明书保护的范围。
本说明书中提及的清洁机器人一般指其本体(即清洁机器人本体)自带各种必要的传感器、控制装置,在运行过程中,可以在无外界干预和控制的条件下,自主完成清洁任务的智能机器人,即清洁机器人可以在工作区域内自主移动并执行清洁任务。不仅如此,本说明书中提及清洁机器人还具有拖地(或称为擦地)功能。参考图1所示,这类具有拖地功能的清洁机器人100可设置有清洁装置11,该清洁装置11可以对工作区域的表面进行干拖和/或湿拖,以更好地去除表面污渍。在一示例性实施方案中,这类具有拖地功能的清洁机器人100例如可以为专用于拖地的拖地机器人,或兼具有拖地功能的扫拖一体机器人。
在实现本申请的过程中,本申请的发明人发现:多数情况下,清洁机器人的工作区域可以包括多个环境不同的部分。结合图2所示,以家庭室内地面这一典型工作区域为例,由于家庭室内地面一般包括卧室地面、厨房地面、卫生间地面和客厅地面等不同部分。这些不同部分的污渍种类一般不同。通常人们并不希望因拖地而导致交叉污染,比如,人们不希望拖过卫生间的拖布再去拖卧室。并且,相对于清洁机器人的扫地部件,清洁机器人的清洁装置更容易附着污渍。因此,在建图过程中,如果清洁机器人100边建图边拖地,更容易导致工作区域内不同部分之间的交叉污染。本领域技术人员可以理解,这里的建图是指清洁机器人创建或更新其工作区域地图。
有鉴于此,为了避免清洁机器人在建图过程中的交叉污染,在本说明书的一些实施方案中,清洁机器人可以包括机身、行走装置、清洁装置、控制装置和定位装置。其中,行走装置支撑所述机身,其可以用于带动所述清洁机器人在工作表面移动。清洁装置可以是拖地组件,拖地组件可以用于安装在所述机身上,并在工作表面执行清洁工作。控制装置可以控制所述行走装置带动所述清洁机器人移动。定位装置设置在所述机身上,且与所述控制装置电性连接,用于获取所述清洁机器人的位置信息。所述控制装置可以被配置为当获取到建图指令时,确认所述拖地组件是否处于非工作状态;还被配置为当所述拖地组件处于非工作状态时,基于所述定位装置获取的所述清洁机器人的位置信息生成工作区域的地图。
由此可见,在本说明书实施方案中,清洁机器人在获取到建图指令时,先确认清洁机器人的拖地组件是否处于非工作状态;当确认拖地组件处于非工作状态时才执行建图指令,以生成工作区域地图。如此,清洁机器人在其拖地组件处于非工作状态下进行建图,也就避免了建图过程中因执行清洁作业而导致的交叉污染。需要指出的是,当拖地组件处于非工作状态时,拖地组件不执行拖地动作,以节省电能。
在本说明书的实施方案中,所述确认所述拖地组件是否处于非工作状态还可以包括:在所述拖地组件的初始状态为工作状态时,控制所述拖地组件切换为非工作状态。在本说明书一些实施方案中,所述拖地组件处于非工作状态可以为:所述拖地组件处于升起状态。由于拖地组件处于升起状态下不与工作表面接触,如此,在这种非工作状态下进行建图,则可以避免建图过程中因 执行清洁作业而导致的交叉污染。在本说明书另一些实施方案中,所述拖地组件处于非工作状态也可以为:所述拖地组件处于与所述清洁机器人本体分离状态。由于拖地组件已与清洁机器人本体相分离(即本体上没有了拖地组件),如此,清洁机器人在此状态下进行建图,也就不存因执行拖地作业而导致的交叉污染问题。
在本说明书的一些实施方案中,所述清洁机器人还可以包括第一支撑部件,所述第一支撑部件设置在所述机身上;所述控制装置可以控制所述第一支撑部件从收起位置运动至伸出位置,从而使清洁机器人本体的一部分被抬起,进而使拖地组件被同步抬起,即使得所述拖地组件处于升起状态。在此过程中,拖地组件与机身保持相对位置关系固定(即拖地组件与机身不发生相对运动)。相应的,当完成工作区域的建图后,所述控制装置还可以控制所述清洁机器人的第一支撑部件由伸出位置运动至收起位置,进而使清洁机器人本体被抬升的部分落地,从而使拖地组件同步地切换为落地状态,以便进入工作状态。在一示例性实施方案中,第二支撑部件例如为起落架。
在本说明书的另一些实施方案中,所述清洁机器人还包括拖地组件抬升机构,所述拖地模块抬升机构可与所述拖地组件相连接,所述控制装置可以控制所述拖地组件抬升机构带动所述拖地组件运动升起位置,从而使所述拖地组件处于升起状态。在此过程中,拖地组件与机身保持相对位置关系会发生变化(即拖地组件相对于机身会发生相对运动)。相应的,当完成工作区域的建图后,所述控制装置还可以控制所述清洁机器人的拖地组件抬升机构带动所述拖地组件运动至落地位置,从而使拖地组件切换为落地状态,以便进入工作状态。如此,就实现了控制装置对拖地组件的状态切换控制,即实现了拖地组件在落地状态和升起状态之间切换。
在上述通过控制所述清洁机器人的第一支撑部件由收起位置运动至伸出位置,从而使所述拖地组件处于升起状态的情况下,所述定位装置可以为视觉传感器等。而在上述通过控制所述清洁机器人的拖地组件抬升机构带动所述拖地组件运动至升起位置,从而使所述拖地组件处于升起状态的情况下,所述定位装置可以为激光雷达传感器、或视觉传感器等。
在本说明书的一些实施方案中,拖地组件处于升起状态时定位装置的离地高度可以达到设定的高度值。例如,拖地组件处于升起状态时定位装置的离地高度,可以与拖地组件处于落地状态时定位装置的离地高度大致相同。在本说明书的一实施方案中,对于定位装置采用激光雷达传感器的应用场景,如果建图时激光雷达传感器的离地高度(建图过程中拖地组件处于升起状态),与执行清洁作业时激光雷达传感器的离地高度(清洁作业过程中拖地组件处于落地状态)不一致,则清洁机器人所建的地图平面与其实际工作的平面就会存在偏差,从而容易影响清洁机器人的清洁作业。因此,为了避免出现这种情况,所述拖地组件处于升起状态时激光雷达传感器的离地高度,可以与拖地组件处于落地状态时激光雷达传感器的离地高度大致相同。其中,所述大致相同是指相同或基本相同;基本相同的情况下虽有偏差,但偏差在允许的范围内。
不仅如此,拖地组件处于升起状态时定位装置的离地高度可以达到设定的高度值,还可以有利于防止拖地组件在建图过程中因越障或表面不平而可能碰触表面,进而有利于进一步提升清洁机器人在建图过程中的防交叉污染能力。
如图3所示,在一示例性实施方案中,拖地组件抬升机构可以为电动升降机构。清洁机器人的控制装置可以通过驱动器控制电动升降机构的电动机动作,并据此控制电动升降机构执行升起或降落动作。本领域技术人员可以理解,这里仅是举例说明,在本说明书其他的实施方案中,拖 地组件抬升机构的动力源也可为液动或气动等。相应的,清洁机器人的控制装置可以通过控制液动执行器或气动执行器,对应控制拖地组件抬升机构执行升起或降落动作。因此,本说明书对于拖地组件抬升机构采用何种动力源不作限定。此外,根据需要,拖地组件抬升机构可以采用任何合适的结构。例如,在一示例性实施方案中,拖地组件抬升机构的结构可以为升缩式结构、套筒式结构、升缩臂式结构、折臂式结构或剪叉式结构等。
在本说明书的一些实施方案中,执行建图指令是指清洁机器人的控制装置执行地图创建动作。即控制装置控制清洁机器人遍历工作区域,并在遍历过程中通过自身携带的定位装置等,获取工作区域的边界位置分布及边界内的障碍物位置分布等,并据此生成工作区域的平面地图。
一般情况下,清洁机器人在上电启动(即开机)后,可以处在如下几个状态之一:建图、清洁作业、回归充电、异常、待机(暂停)等状态。多数情况下,清洁机器人在上电启动后,可以默认自动先进行建图,无须人工干预。因此,对于清洁机器人的控制装置而言,当确认清洁机器人已完成上电启动时,可以视为控制装置接收到了建图指令。
在本说明书的一些实施方案中,清洁机器人的控制装置可以通过软件(例如读取事件通知、读取状态标志位等)和/或硬件(例如接收用于指示拖地组件的升降状态的状态指示灯、位置开关或接近开关等输出的状态电信号)等方式,来确认拖地组件的升降状态。
在本说明书的另一些实施方案中,建图指令也可以是由外部输入的。此种情况下,清洁机器人在上电启动后,可以默认先自动进入待机状态,以等待人工干预指令而执行相应动作。例如,在接收到外部输入的建图指令时,清洁机器人的控制装置可以执行建图动作。
在一示例性实施方案中,清洁机器人可以与用户其他的电子设备之间进行通信,电子设备上可以配置有应用(APP)客户端。基于用户的操作,客户端可以向清洁机器人发送建图指令。相应的,清洁机器人的控制装置可以接收到该建图指令。其中,上述电子设备可以为智能手机、智能可穿戴设备(例如智能手环、智能手表等)、平板电脑、笔记本电脑、数字助理或台式电脑等。
在另一示例性实施方案中,本体上可以设置有控制面板(控制面板上可以设置有开关机键、建图键、清洁键、暂停键等);或者,清洁机器人可以配置有遥控器(遥控器上可以设置有开关机键、建图键、清洁键、暂停键等)。由此,基于用户的操作,控制面板或遥控器也可以向清洁机器人发送建图指令。
在另一示例性实施方案中,清洁机器人上还可以设有语音交互接口。用户可直接通过语音交互接口,以语音方式向清洁机器人下达建图指令(或其他指令)。
在本说明书的一些实施方案中,所述清洁机器人还可以包括第二支撑部件,所述第二支撑部件设置在所述机身上,用于在所述拖地组件处于升起状态时为所述清洁机器人提供支撑。所述控制装置可以控制所述第二支撑部件在所述拖地组件处于升起状态时运动至所述工作表面,从而使所述第二支撑部件处于落地状态(即在使所述拖地组件处于升起状态时,所述控制装置可以控制所述清洁机器人的第二支撑部件由升起状态切换为落地状态)。相应的,当生成所述工作区域地图后,在使所述拖地组件处于落地状态时,所述控制装置还可以控制所述第二支撑部件由落地状态切换为升起状态。因此,在所述控制装置的控制下,第二支撑部件可以始终与拖地组件状态相反,且第二支撑部件和拖地组件始终保持只有一个落地。即当拖地组件处于升起状态(例如图4中的拖布11所示)时,第二支撑部件(例如图4中的万向轮12所示)处于落地状态;此时,第二支撑部件起到支撑本体和辅助本体移动的作用;反之,当拖地组件处于落地状态(例如图5中 的拖布11所示)时,第二支撑部件处于升起状态(例如图5中的万向轮12所示);此时,处于落地状态的拖地组件兼具有支撑本体的作用。如此,可以有利于保证清洁机器人的越障能力并兼顾拖地的接近性。在一示例性实施方案中,第二支撑部件例如可以为可设置有万向轮的升降机构等。
在本说明书的一些实施方案中,拖地组件的状态切换和第二支撑部件的状态切换可以采用联动控制。如此,使得通过控制一个动力源,清洁机器人的控制装置即可以同步实现对第二支撑部件及拖地组件的状态切换控制,从而可以简化结构、降低成本。
例如,在一示例性实施方案中,可以在拖地组件抬升机构与第二支撑部件之间设置联动机构(例如齿轮传动机构、链传动机构或带传动机构等)。在清洁机器人的控制装置下,通过一个动力源驱动联动机构,即可以同步带动拖地组件抬升机构与第二支撑部件进行反向联动。在动力源的驱动下,当联动机构带动拖地组件抬升机构上升时,同步带动第二支撑部件下降;相应地,当联动机构带动拖地组件抬升机构下降时,同步带动第二支撑部件上升。
在本说明书的另一些实施方案中,拖地组件抬升机构和第二支撑部件之间也可以不联动,即拖地组件抬升机构的状态切换和第二支撑部件的状态切换可以各自独立控制(例如可以为二者分别施加独立动力源)。当然,为了和拖地组件始终保持只有一个落地,在拖地组件处于落地状态时,清洁机器人的控制装置在控制拖地组件切换为升起状态时,也一并控制第二支撑部件由升起状态切换为落地状态。
在本说明书的一些实施方案中,拖地组件与本体之间可以为可拆卸连接(例如卡接等)。清洁机器人的控制装置可以适时控制拖地组件与本体的离合状态。当获取到建图指令时,控制装置可以使拖地组件与本体相分离(即使拖地组件从本体上脱落),从而使拖地组件处于与本体分离状态。由于本体上没有了拖地组件,清洁机器人在此状态下进行建图也就不存在建图过程中因执行拖地作业而导致的交叉污染问题。相应地,在使拖地组件处于与本体分离状态后,当生成工作区域地图时,控制装置还可以控制拖地组件切换为与本体接合状态(即恢复拖地组件与本体的可拆卸连接),以便于后续拖地组件执行清洁作业。
在本说明书的实施方案中,控制装置使拖地组件与本体分离时的位置可以为指定位置,以便于完成建图后,清洁机器人可以快速返回该位置,并使拖地组件与重新本体连接配合。在一示例性实施方案中,由于清洁机器人的启动位置通常为充电站位置,因此,这个指定位置可以为充电站位置。当然,根据需要也可以选择其他位置。
在一示例性实施方案中,对于采用随机行走方式执行清洁作业的应用场景,在生成工作区域地图并使拖地组件切换为落地状态后,控制装置可以控制拖地组件立即执行拖地作业。在另一示例性实施方案中,对于按照规划路径行走执行清洁作业的应用场景,由于在生成工作区域地图后,清洁机器人的控制装置根据工作地图规划行走路径可能需要时间。此情况下,在生成工作区域地图并使拖地组件切换为落地状态后,控制装置可以控制拖地组件适时(例如在延时若干秒后)执行拖地作业,以等待路径规划结果。当然,如果控制装置本身的数据处理性能比较强,在生成工作区域地图后,可以在使拖地组件切换为落地状态同时,并行地根据工作地图完成行走路径规划,则可以无需等待。
为了进一步防止交叉污染,在生成工作区域地图后,清洁机器人的控制装置还可以根据工作区域地图,对工作区域按照环境属性进行分区,当清洁机器人完成一个分区的拖地作业后,在跨 入下一个分区进行拖地作业之前,清洁机器人的控制装置可以控制清洁机器人进行拖布部件更换或清洗,以免拖布部件上所附着的上一个分区的污渍对下一个分区造成交叉污染。例如,以图2所示的家庭室内表面为例,可以将卫生间分为一个分区(以下简称第一分区),将厨房和餐厅分为一个分区(以下简称第二分区),将客厅、阳台和过道分为一个分区(以下简称第三分区),将所有卧室和书房分为另一个分区(以下简称第四分区)。当清洁机器人完成任意一个分区的拖地作业,跨入下一个分区进行拖地作业之前,控制装置可以控制清洁机器人进行拖布部件更换或清洗。应当理解,这里仅是示例性说明,在其他的实施方案中,分区的划分可以视实际情况和需要而定。
在一些场景下,上述清洁机器人的控制装置控制清洁机器人进行拖布部件更换或清洗可以是指:清洁机器人具有拖布部件自动更换或清洗功能,控制装置可以控制清洁机器人自动进行拖布部件更换或清洗。在另一些场景下,上述清洁机器人的控制装置控制清洁机器人进行拖布部件更换或清洗也可以是指:清洁机器人不具有拖布部件自动更换或清洗功能,但具有提示用户更换或清洗拖布部件的功能,则控制装置可以控制清洁机器人适时发出拖布部件更换或清洗提示。
在另一示例性实施方案中,如果清洁机器人既不具备拖布部件更换或清洗功能,也不具备更换或清洗拖布部件的提示功能。则在对工作区域按照功能属性进行分区后,清洁机器人的控制装置可以控制清洁机器人按照指定的分区作业顺序进行拖地作业,以利于降低拖地作业过程中的交叉污染。例如,以上述图2所示的分区场景为例,一般而言,第一分区和第二分区的污渍可能最严重,第三分区的污渍次之,第四分区的污渍可能最轻。如此,可以使清洁机器人按照:第四分区第三分区第二分区第一分区的作业顺序进行拖地作业。
在本说明书另一些实施方案中,对于扫拖一体机而言,所述清洁机器人不仅可以包括拖地组件,还可以包括扫地组件,扫地组件可以是滚刷机构和/或边刷机构。其中,滚刷机构和边刷机构一般用于清理地面、墙角等处的尘屑等碎屑杂物。滚刷机构和边刷机构所清理的碎屑杂物一般可以由扫拖一体机的集尘装置进行收集。其中,集尘装置可以包括集尘盒、风扇等组件,利用风扇产生的吸力,可以将滚刷机构和边刷机构等清理的尘屑收集至集尘盒。
所述控制装置被配置为当获取到建图指令时,确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态;所述控制装置还被配置为当所述清洁机器人的拖地组件和扫地组件的工作状态处于可建图状态时,执行所述建图指令,以生成工作区域地图。
应理解,所述控制装置还被配置为在所述清洁机器人的拖地组件和扫地组件的工作状态处于不可建图状态时,控制所述清洁机器人的拖地组件和扫地组件的工作状态切换为可建图状态。
具体的,在一些实施方案中,所述清洁机器人可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于非工作状态。即清洁机器人在执行建图指令时,不扫地也不拖地。
在另一些实施方案中,所述清洁机器人可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于工作状态。即清洁机器人在执行建图指令时,可以扫地但不拖地。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
与上述的清洁机器人对应,本说明书还提供了清洁机器人的控制方法。如图6所示,在本说明书的一些实施方案中,清洁机器人的控制方法可以包括如下步骤:
S601、当获取到建图指令时,确认所述清洁机器人的拖地组件是否处于非工作状态;
S602、当所述拖地组件处于非工作状态时,执行所述建图指令,以生成工作区域地图。
在本说明书一些实施方案的清洁机器人的控制方法中,所述确认所述拖地组件是否处于非工作状态,可以包括:在所述拖地组件的初始状态为工作状态时,控制所述拖地组件切换为非工作状态。
在本说明书一些实施方案的清洁机器人的控制方法中,所述拖地组件处于非工作状态,可以包括:所述拖地组件处于升起状态。
在本说明书一些实施方案的清洁机器人的控制方法中,所述拖地组件处于非工作状态,可以包括:所述拖地组件处于与所述清洁机器人本体分离状态。
在本说明书一些实施方案的清洁机器人的控制方法中,控制所述清洁机器人的第一支撑部件由收起位置运动至伸出位置,从而使所述拖地组件处于升起状态。
在本说明书一些实施方案的清洁机器人的控制方法中,控制所述清洁机器人的拖地组件抬升机构带动所述拖地组件运动至升起位置,从而使所述拖地组件处于升起状态。
在本说明书一些实施方案的清洁机器人的控制方法中,还可以包括:
在使所述拖地组件处于升起状态时,控制所述清洁机器人的第二支撑部件由升起状态切换为落地状态。
在本说明书一些实施方案的清洁机器人的控制方法中,还可以包括:
当生成所述工作区域地图后,控制所述清洁机器人切换为所述拖地组件与本体接合状态。
在本说明书一些实施方案的清洁机器人的控制方法中,所述拖地组件处于升起状态时的离地高度达到设定的高度值。
应当理解的是,本申请中的清洁机器人还可以包括扫地组件。如图7所示,在本说明书的一些实施方案中,清洁机器人在图6中的控制方法具体可以包括如下步骤:
S701、当获取到建图指令时,确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态;
S702、当所述清洁机器人的拖地组件和扫地组件的工作状态处于可建图状态时,执行所述建图指令,以生成工作区域地图。
应当理解的是,步骤S701中,所述确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态,包括:在所述清洁机器人的拖地组件和扫地组件的工作状态处于不可建图状态时,控制所述清洁机器人的拖地组件和扫地组件的工作状态切换为可建图状态。
在一种实施方式中,可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于非工作状态。即清洁机器人执行建图指令时,不扫地也不拖地。
在另一种实施方式中,可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于工作状态。即清洁机器人执行建图指令时,可以扫地但不拖地。
与上述清洁机器人的控制方法对应,本说明书还提供了一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的清洁机器人的控制方法。
虽然上文描述的过程流程包括以特定顺序出现的多个操作,但是,应当清楚了解,这些过程可以包括更多或更少的操作,这些操作可以顺序执行或并行执行(例如控制用并行处理器或多线程环境)。
本申请是参照根据本说明书实施方案的方法、设备(系统)、和计算机程序产品的流程图和 /或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书的实施方案可提供为方法、系统或计算机程序产品。因此,本说明书实施方案可采用完全硬件实施方案、完全软件实施方案或结合软件和硬件方面的实施方案的形式。而且,本说明书实施方案可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书实施方案可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书实施方案,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施方案均采用递进的方式描述,各个实施方案之间相同相似的部分互相参见即可,每个实施方案重点说明的都是与其他实施方案的不同之处。尤其,对于方法实施方案而言,由于其基本相似于设备实施方案,所以描述的比较简单,相关之处参见设备实施方案的部分说明即可。在本说明书的描述中,参考术语“一个实施方案”、“一些实施方案”、“示例”、“具 体示例”、或“一些示例”等的描述意指结合该实施方案或示例描述的具体特征、结构、材料或者特点包含于本说明书实施方案的至少一个实施方案或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施方案或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施方案或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施方案或示例以及不同实施方案或示例的特征进行结合和组合。
以上所述仅为本申请的实施方案而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (27)

  1. 一种清洁机器人的控制方法,其特征在于,包括:
    当获取到建图指令时,确认所述清洁机器人的拖地组件是否处于非工作状态;
    当所述拖地组件处于非工作状态时,执行所述建图指令,以生成工作区域地图。
  2. 如权利要求1所述的清洁机器人的控制方法,其特征在于,所述确认所述拖地组件是否处于非工作状态,包括:在所述拖地组件的初始状态为工作状态时,控制所述拖地组件切换为非工作状态。
  3. 如权利要求2所述的清洁机器人的控制方法,其特征在于,所述拖地组件处于非工作状态,包括:所述拖地组件处于升起状态。
  4. 如权利要求2所述的清洁机器人的控制方法,其特征在于,所述拖地组件处于非工作状态,包括:所述拖地组件处于与所述清洁机器人本体分离状态。
  5. 如权利要求3所述的清洁机器人的控制方法,其特征在于,当获取到建图指令时,在所述拖地组件的初始状态为工作状态时,控制所述清洁机器人的第一支撑部件由收起位置运动至伸出位置,从而使所述拖地组件处于升起状态。
  6. 如权利要求3所述的清洁机器人的控制方法,其特征在于,当获取到建图指令时,在所述拖地组件的初始状态为工作状态时,控制所述清洁机器人的拖地组件抬升机构带动所述拖地组件运动至升起位置,从而使所述拖地组件处于升起状态。
  7. 如权利要求6所述的清洁机器人的控制方法,其特征在于,还包括:
    在使所述拖地组件处于升起状态时,控制所述清洁机器人的第二支撑部件由升起状态切换为落地状态。
  8. 如权利要求3所述的清洁机器人的控制方法,其特征在于,还包括:
    当生成所述工作区域地图后,控制所述清洁机器人的拖地组件处于落地状态。
  9. 如权利要求4所述的清洁机器人的控制方法,其特征在于,还包括:
    当生成所述工作区域地图后,控制所述清洁机器人切换为所述拖地组件处于与所述清洁机器人本体接合状态。
  10. 如权利要求3所述的清洁机器人的控制方法,其特征在于,所述拖地组件处于升起状态时的离地高度不低于设定的高度值。
  11. 如权利要求1所述的清洁机器人的控制方法,其特征在于,所述清洁机器人还包括扫地组件,所述当获取到建图指令时,确认所述清洁机器人的拖地组件是否处于非工作状态;当所述拖地组件处于非工作状态时,执行所述建图指令,以生成工作区域地图,具体包括:
    当获取到建图指令时,确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态;
    当所述清洁机器人的拖地组件和扫地组件的工作状态处于可建图状态时,执行所述建图指令,以生成工作区域地图。
  12. 如权利要求11所述的清洁机器人的控制方法,其特征在于,所述确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态,包括:在所述清洁机器人的拖地组件和扫地组件的工作状态处于不可建图状态时,控制所述清洁机器人的拖地组件和扫地组件的工作状态 切换为可建图状态。
  13. 如权利要求11所述的清洁机器人的控制方法,其特征在于,所述可建图状态包括:
    所述拖地组件处于非工作状态,所述扫地组件处于非工作状态。
  14. 如权利要求11所述的清洁机器人的控制方法,其特征在于,所述可建图状态包括:
    所述拖地组件处于非工作状态,所述扫地组件处于工作状态。
  15. 一种清洁机器人,包括:
    机身;
    行走装置,支撑所述机身,用于带动所述清洁机器人在工作表面移动;
    拖地组件,用于安装在所述机身上,并在工作表面执行清洁工作;
    控制装置,控制所述行走装置带动所述清洁机器人移动;
    定位装置,设置在所述机身上,与所述控制装置电性连接,用于获取所述清洁机器人的位置信息;其特征在于,所述控制装置被配置为当获取到建图指令时,确认所述拖地组件是否处于非工作状态;还被配置为当所述拖地组件处于非工作状态时,基于所述定位装置获取的所述清洁机器人的位置信息生成工作区域的地图。
  16. 如权利要求15所述的清洁机器人,其特征在于,所述定位装置包括激光雷达传感器和/或视觉传感器。
  17. 如权利要求15所述的清洁机器人,其特征在于,所述拖地组件处于非工作状态,包括:所述拖地组件处于升起状态。
  18. 如权利要求15所述的清洁机器人,其特征在于,所述拖地组件处于非工作状态,包括:所述拖地组件处于与所述清洁机器人本体分离状态。
  19. 如权利要求15所述的清洁机器人,其特征在于,所述清洁机器人还包括第一支撑部件,所述第一支撑部件设置在所述机身上;所述第一支撑部件可从第一位置运动至第二位置以带动所述机身在垂直于地面方向上运动,从而带动所述拖地组件在垂直于地面方向上运动。
  20. 如权利要求15所述的清洁机器人,其特征在于,所述清洁机器人还包括拖地组件抬升机构,所述拖地模块抬升机构与所述拖地组件相连接,以带动所述拖地组件运动至升起位置。
  21. 如权利要求20所述的清洁机器人,其特征在于,所述清洁机器人还包括第二支撑部件,所述第二支撑部件设置在所述机身上,用于在所述拖地组件处于升起状态时为所述清洁机器人提供支撑;所述控制装置控制所述第二支撑部件在所述拖地组件处于升起状态时运动至所述工作表面,从而使所述第二支撑部件处于落地状态。
  22. 如权利要求20所述的清洁机器人,其特征在于,所述控制装置生成所述工作区域地图后,控制所述拖地组件抬升机构带动所述拖地组件运动至所述工作表面,从而使所述拖地组件切换为落地状态。
  23. 如权利要求22所述的清洁机器人,其特征在于,所述拖地组件处于升起状态时所述定位装置的离地高度值与所述拖地组件处于落地状态时所述定位装置的离地高度的高度值之差小于预设值。
  24. 如权利要求15所述的清洁机器人,其特征在于,所述清洁机器人还包括扫地组件,所述控制装置被配置为当获取到建图指令时,确认所述清洁机器人的拖地组件和扫地组件的工作状态是否处于可建图状态;
    所述控制装置还被配置为当所述清洁机器人的拖地组件和扫地组件的工作状态处于可建图状态时,执行所述建图指令,以生成工作区域地图。
  25. 如权利要求24所述的清洁机器人,其特征在于,所述控制装置还被配置为在所述清洁机器人的拖地组件和扫地组件的工作状态处于不可建图状态时,控制所述清洁机器人的拖地组件和扫地组件的工作状态切换为可建图状态。
  26. 如权利要求24所述的清洁机器人,其特征在于,所述可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于非工作状态。
  27. 如权利要求24所述的清洁机器人,其特征在于,所述可建图状态包括:所述拖地组件处于非工作状态,所述扫地组件处于工作状态。
PCT/CN2021/096754 2020-05-29 2021-05-28 清洁机器人及其控制方法 WO2021239111A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180005856.6A CN114554923B (zh) 2020-05-29 2021-05-28 清洁机器人及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010482194.9A CN113729572B (zh) 2020-05-29 2020-05-29 清洁机器人及其控制方法
CN202010482194.9 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021239111A1 true WO2021239111A1 (zh) 2021-12-02

Family

ID=78727910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096754 WO2021239111A1 (zh) 2020-05-29 2021-05-28 清洁机器人及其控制方法

Country Status (2)

Country Link
CN (2) CN113729572B (zh)
WO (1) WO2021239111A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116300972B (zh) * 2023-05-17 2023-12-12 汇智机器人科技(深圳)有限公司 一种机器人作业规划方法、系统及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109602338A (zh) * 2018-11-26 2019-04-12 深圳乐动机器人有限公司 一种清洁地面的方法、扫地机器人及拖地机器人
CN109953701A (zh) * 2019-03-18 2019-07-02 宁波富佳实业股份有限公司 一种地面清洁设备
CN110477821A (zh) * 2018-09-26 2019-11-22 霸州市金锚嘉园工具有限公司 一种拖地机器人
CN110584547A (zh) * 2019-10-18 2019-12-20 尚科宁家(中国)科技有限公司 一种扫地机器人的清洁方法及清洁系统
US20200000302A1 (en) * 2018-06-28 2020-01-02 Irobot Corporation Mobile cleaning robots systems and methods
CN111035328A (zh) * 2018-10-12 2020-04-21 科沃斯机器人股份有限公司 机器人清洁方法及机器人

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138769B (zh) * 2010-01-28 2014-12-24 深圳先进技术研究院 清洁机器人及其清扫方法
US8965696B2 (en) * 2012-06-05 2015-02-24 Apple Inc. Providing navigation instructions while operating navigation application in background
CN103054522B (zh) * 2012-12-31 2015-07-29 河海大学 一种清洁机器人系统及其测控方法
JP2014240785A (ja) * 2013-06-11 2014-12-25 パイオニア株式会社 情報生成装置、情報生成方法及びプログラム
CN103439973B (zh) * 2013-08-12 2016-06-29 桂林电子科技大学 自建地图家用清洁机器人及清洁方法
EP3144765B1 (en) * 2015-09-18 2020-01-08 Samsung Electronics Co., Ltd. Apparatus for localizing cleaning robot, cleaning robot, and controlling method of cleaning robot
CN205433581U (zh) * 2015-12-19 2016-08-10 天津蓝莓信息技术有限责任公司 一种自动更换清洁机器人抹布的装置及具有该装置的清洁机器人
AU2017101247A6 (en) * 2016-09-16 2017-11-02 Bissell Inc. Autonomous vacuum cleaner
CN107328419A (zh) * 2017-06-21 2017-11-07 上海斐讯数据通信技术有限公司 一种清扫机器人的清扫路径的规划方法及清扫机器人
KR102024092B1 (ko) * 2017-07-12 2019-09-23 엘지전자 주식회사 이동 로봇 시스템 및 그 제어방법
KR102014142B1 (ko) * 2017-08-07 2019-08-26 엘지전자 주식회사 로봇 청소기
CN107368079B (zh) * 2017-08-31 2019-09-06 珠海市一微半导体有限公司 机器人清扫路径的规划方法及芯片
CN108030447B (zh) * 2017-12-29 2023-10-31 美的集团电子商务有限公司 扫地机器人及其建立地图的方法和控制方法
JP6356368B2 (ja) * 2018-03-02 2018-07-11 オリンパス株式会社 移動撮影装置、撮影方法及び撮影プログラム
CN109758038B (zh) * 2018-04-27 2021-11-02 曲阜信多达智能科技有限公司 清洁机器人及其控制方法
CN111565613A (zh) * 2018-06-08 2020-08-21 苏州宝时得电动工具有限公司 清洁机器人及其控制方法、清洁机器人系统
CN110710932A (zh) * 2018-07-13 2020-01-21 上海楠木机器人科技有限公司 升降机构、具备该升降机构的清洁机器人及其工作方法
CN109846427A (zh) * 2019-01-16 2019-06-07 深圳乐动机器人有限公司 一种清洁机器人的控制方法及清洁机器人
CN110376934A (zh) * 2019-06-12 2019-10-25 深圳飞科机器人有限公司 清洁机器人、清洁机器人控制方法及终端控制方法
CN110811448A (zh) * 2019-11-04 2020-02-21 段属光 扫地机器人拖地模块自动拆装方法、扫地机器人和基座

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200000302A1 (en) * 2018-06-28 2020-01-02 Irobot Corporation Mobile cleaning robots systems and methods
CN110477821A (zh) * 2018-09-26 2019-11-22 霸州市金锚嘉园工具有限公司 一种拖地机器人
CN111035328A (zh) * 2018-10-12 2020-04-21 科沃斯机器人股份有限公司 机器人清洁方法及机器人
CN109602338A (zh) * 2018-11-26 2019-04-12 深圳乐动机器人有限公司 一种清洁地面的方法、扫地机器人及拖地机器人
CN109953701A (zh) * 2019-03-18 2019-07-02 宁波富佳实业股份有限公司 一种地面清洁设备
CN110584547A (zh) * 2019-10-18 2019-12-20 尚科宁家(中国)科技有限公司 一种扫地机器人的清洁方法及清洁系统

Also Published As

Publication number Publication date
CN113729572B (zh) 2022-12-06
CN114554923B (zh) 2024-04-30
CN113729572A (zh) 2021-12-03
CN114554923A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2020125492A1 (zh) 一种清洁机器人、清洁方法及自动充电系统
US10328573B2 (en) Robotic platform with teach-repeat mode
JP6736831B2 (ja) ロボット清掃デバイスのシステム、清掃デバイスを制御する方法、コンピュータプログラム及びコンピュータプログラム製品
TWI821992B (zh) 一種清潔機器人及其控制方法
CN110809745A (zh) 用于机器人导航的方法
TW201826993A (zh) 具有基於環境之操作速度變化的機器人清潔裝置
EP3853684A1 (en) Systems and methods for rerouting robots to avoid no-go zones
WO2021239111A1 (zh) 清洁机器人及其控制方法
WO2022171144A1 (zh) 自动清洁设备控制方法及装置、介质及电子设备
JP2019053507A (ja) 走行経路計画装置、方法、プログラム及び移動体
US20240053762A1 (en) Regional map drawing method and apparatus, medium, and electronic device
KR20230125812A (ko) 자동 청소 장치
WO2022170724A1 (zh) 一种自动清洁设备
Yatmono et al. Development of intelligent floor cleaning robot
WO2022117107A1 (zh) 清洁机器人、清洁系统及清洁方法
CN217429887U (zh) 一种清洁机器人
WO2023116604A1 (zh) 一种清洁机器人
WO2022170713A1 (zh) 自动清洁设备控制方法及装置、介质及电子设备
WO2019128442A1 (zh) 清洁机器人及其控制方法
Vijayalakshmi et al. Smart vacuum robot
JP2019114153A (ja) 操作装置、情報作成方法、プログラムおよび自律走行作業装置
TW202305534A (zh) 機器人避障方法及其相關裝置、機器人、儲存介質及電子設備
WO2022171090A1 (zh) 地图显示方法及装置、介质及电子设备
CN113706655A (zh) 地图显示方法及装置、介质及电子设备
Kumar et al. Real Time Surveillance and Cleaning Bot-Vacurity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814152

Country of ref document: EP

Kind code of ref document: A1