WO2021238792A1 - 一种磁性研磨装置及磁性研磨控制方法 - Google Patents

一种磁性研磨装置及磁性研磨控制方法 Download PDF

Info

Publication number
WO2021238792A1
WO2021238792A1 PCT/CN2021/095135 CN2021095135W WO2021238792A1 WO 2021238792 A1 WO2021238792 A1 WO 2021238792A1 CN 2021095135 W CN2021095135 W CN 2021095135W WO 2021238792 A1 WO2021238792 A1 WO 2021238792A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
workpiece
ground
point
electromagnet
Prior art date
Application number
PCT/CN2021/095135
Other languages
English (en)
French (fr)
Inventor
鄂世举
贺新升
高春甫
周崇秋
郑岚鹏
蒋佳杰
张槐驿
王华东
王成武
Original Assignee
浙江师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江师范大学 filed Critical 浙江师范大学
Priority to US17/602,514 priority Critical patent/US20220305609A1/en
Publication of WO2021238792A1 publication Critical patent/WO2021238792A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • B23Q3/1543Stationary devices using electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • B23Q3/1546Stationary devices using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent

Definitions

  • the invention relates to the field of mechanical processing, in particular to a magnetic grinding device and a magnetic grinding control method.
  • Magnetic grinding is an emerging form of grinding processing. By changing the size of the magnetic field, the shear stress and yield stress of the grinding head can be easily changed. Because it does not damage the lower surface layer, it is widely used in super finishing. Magnetic grinding is a processing method for surface material removal of flat or curved workpieces. Factors related to material removal include: grinding pressure, grinding speed, grinding residence time, grinding type, grinding specifications and workpiece material. When the workpiece material, grinding type and grinding specifications are the same, changing the grinding pressure, grinding speed and residence time can change the amount of material removed.
  • the change of the magnetic grinding pressure is achieved by changing the grinding gap and the intensity of the magnetic field. Since the gap is very small during actual grinding operations, it is very difficult to adjust the grinding gap. Therefore, the existing mainstream grinding method is to adjust the magnetic field intensity before grinding, and control the amount of material removal by changing the grinding speed and residence time during the grinding process. However, the material to be removed on the surface of the workpiece is unevenly distributed. In some places, there is more removal, and some places are less removed. During continuous grinding, it is difficult to achieve a smooth transition and no smooth surface can be achieved by changing the grinding speed and residence time in real time. Lead to low grinding accuracy. Therefore, the existing polishing method has a problem of low polishing accuracy.
  • the purpose of the present invention is to provide a magnetic grinding device and a magnetic grinding control method, so as to solve the problem of low grinding accuracy of the existing grinding method.
  • the present invention provides the following solutions:
  • a magnetic grinding device including: electromagnet, base, grinding piece fixing table, programmable power supply, machine tool, permanent magnet grinding rod and magnetic grinding control system;
  • One end of the electromagnet is installed on the base;
  • the magnet platform of the grinding piece fixing table is connected to the other end of the electromagnet; the grinding piece fixing table is used to fix the workpiece to be ground;
  • the output terminal of the programmable power supply is connected to the coil of the electromagnet; the programmable power supply is used to supply power to the electromagnet;
  • the permanent magnet grinding rod is installed on the machine tool, and the permanent magnet grinding rod is located above the workpiece to be ground;
  • the machine tool is used to control the permanent magnet grinding rod to magnetically grind the surface of the workpiece to be ground;
  • the magnetic grinding control system is respectively connected to the programmable power supply and the machine tool; the magnetic grinding control system is used to obtain the grinding point of the permanent magnet grinding rod on the workpiece to be ground through the machine tool, and use all The removal amount of the rough workpiece surface shape of the workpiece to be ground, the grinding point and the PWM control method control the output voltage of the programmable power supply, and then the workpiece to be ground is magnetically ground.
  • the grinding piece fixing table specifically includes: a magnet platform, a baffle, and screws;
  • the magnetism of the magnet platform is opposite to the magnetism of the grinding head of the permanent magnet grinding rod;
  • the baffle is fixed on the magnet platform, so that the grinding piece fixing table forms a container;
  • the screw penetrates the baffle plate, and the screw is used to fix the workpiece to be ground.
  • the magnetic grinding device further includes: grinding media;
  • the grinding medium covers the workpiece to be ground.
  • the magnetic grinding control system specifically includes:
  • An acquiring module for acquiring the surface shape of the blank workpiece of the workpiece to be ground and the surface shape of the finished workpiece of the workpiece to be ground;
  • a removal amount determination module configured to use the surface shape of the blank workpiece and the surface shape of the finished workpiece to determine the amount of removal of each point on the surface of the workpiece to be ground;
  • Grinding pressure calculation module configured to calculate the grinding pressure of each point on the surface of the workpiece to be ground by using the removal amount
  • a magnetic field strength calculation module which is used to calculate the magnetic field strength of each point on the surface of the workpiece to be ground by using the grinding pressure
  • the electromagnet voltage calculation module is used to calculate the electromagnet voltage at each point on the surface of the workpiece to be polished by using the magnetic field strength and the number of turns of the electromagnet;
  • the magnetic grinding module is used for controlling the output voltage of the programmable power supply by using the electromagnet voltage corresponding to the grinding point of the workpiece to be ground by the permanent magnet grinding rod and the PWM control method, so as to perform magnetic grinding on the workpiece to be ground.
  • a magnetic grinding control method is applied to the above-mentioned magnetic grinding device, and the magnetic grinding control method includes:
  • the permanent magnet grinding rod is used to control the output voltage of the programmable power supply by the electromagnet voltage corresponding to the grinding point of the workpiece to be ground and the PWM control method, so as to perform magnetic grinding on the workpiece to be ground.
  • the use of the surface shape of the blank workpiece and the surface shape of the finished workpiece to determine the amount of removal of each point on the surface of the workpiece to be ground specifically includes:
  • Cartesian coordinate system Taking the projection point of the grinding head of the permanent magnet grinding rod on the surface of the workpiece to be ground as the origin O, a Cartesian coordinate system is established; the Z axis of the Cartesian coordinate system is parallel to the permanent magnet grinding rod, so The XOY plane composed of the X axis and the Y axis of the Cartesian coordinate system is parallel to the surface of the workpiece to be ground;
  • the surface shape of the blank workpiece is compared with the surface shape of the finished workpiece, and the removal amount of each coordinate point on the surface of the workpiece to be ground is determined by using the Cartesian coordinate system.
  • the calculation of the grinding pressure at each point on the surface of the workpiece to be ground using the removal amount specifically includes:
  • P represents the grinding pressure
  • represents the removal amount
  • K represents a constant coefficient
  • v represents the linear velocity of the grinding head
  • t represents the grinding time.
  • the calculation of the magnetic field strength of each point on the surface of the workpiece to be ground by using the grinding pressure specifically includes:
  • P represents the grinding pressure
  • K1 represents a constant
  • H represents the magnetic field strength
  • the calculation of the electromagnet voltage at each point on the surface of the workpiece to be ground using the magnetic field strength and the number of turns of the electromagnet specifically includes:
  • E represents the electromagnet voltage
  • H represents the magnetic field strength
  • Le represents the effective magnetic circuit length of the electromagnet
  • R represents the coil impedance of the electromagnet
  • N represents the number of coil turns of the electromagnet.
  • the method before the calculation of the grinding pressure at each point on the surface of the workpiece to be ground using the removal amount, the method further includes:
  • the present invention discloses the following technical effects:
  • the invention provides a magnetic grinding device and a magnetic grinding control method.
  • the device includes: an electromagnet, a base, a fixed table for grinding parts, a programmable power supply, a machine tool, a permanent magnet grinding rod, and a magnetic grinding control system; one end of the electromagnet is installed on the base; the magnet platform of the fixed table for grinding parts and the electromagnet The other end is connected; the grinding piece fixing table is used to fix the workpiece to be ground; the output end of the programmable power supply is connected to the coil of the electromagnet; the programmable power supply is used to power the electromagnet; the permanent magnet grinding rod is installed on the machine tool, and the permanent magnet is ground The rod is located above the workpiece to be ground; the machine tool is used to control the permanent magnet grinding rod to perform magnetic grinding on the surface of the workpiece to be ground; the magnetic grinding control system is respectively connected to the programmable power supply and the machine tool; the magnetic grinding control system is used to obtain the permanent magnet grinding through the machine tool The rod is at the grinding point
  • the invention adjusts the output voltage of the programmable power supply through the removal amount of the blank workpiece surface shape, the grinding point and the PWM control method, and then adjusts the electromagnetic field strength, by changing the magnetic field strength in real time, fixing the grinding speed and the residence time of the permanent magnet grinding rod , It greatly improves the grinding accuracy and reduces the complexity of the process. It is convenient and reliable. It is suitable for the magnetic grinding of flat and free-form surfaces. It has a wide range of applications. It uses permanent magnet grinding rods and DC electromagnets to provide dual magnetic fields and increase magnetic field strength.
  • Figure 1 is a structural diagram of a magnetic grinding device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a magnetic polishing control method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a magnetic field self-adaptive magnetic grinding method according to an embodiment of the present invention.
  • the purpose of the present invention is to provide a magnetic grinding device and a magnetic grinding control method, so as to solve the problem of low grinding accuracy of the existing grinding method.
  • FIG. 1 is a structural diagram of the magnetic grinding device according to an embodiment of the present invention.
  • the magnetic grinding device includes an electromagnet, a base 9, a grinding piece fixing table, a programmable power supply, a machine tool, a permanent magnet grinding rod 1, a magnetic grinding control system and a grinding medium.
  • the electromagnet adopts a direct current electromagnet 8.
  • the DC electromagnet 8 is used to generate a magnetic field.
  • the magnet platform of the grinding piece fixing table is connected to the other end of the electromagnet; the grinding piece fixing table is used to fix the workpiece 6 to be ground.
  • the magnet platform is used to gather the magnetic field generated by the DC electromagnet 8 and make the magnetic field uniform.
  • the workpiece to be ground includes a flat workpiece and a free-form surface workpiece.
  • the grinding piece fixing table specifically includes: a magnet platform, a baffle 4 and a screw 5.
  • the magnetism of the magnet platform is opposite to the magnetism of the grinding head of the permanent magnet grinding rod 1.
  • the magnet platform is a plate magnetic pole 7, and the other end of the electromagnet is fixedly connected with the plate magnetic pole 7. After the DC electromagnet 8 is energized, a magnetic field is formed.
  • the flat magnetic poles 7 concentrate the magnetic field on the upper surface of the flat magnetic poles 7, and the flat magnetic poles 7 can make the magnetic field uniform.
  • the magnetism of the polishing head of the permanent magnet polishing rod 1 is different from that of the plate magnetic pole 7.
  • the baffle 4 is fixed on the magnet platform so that the grinding piece fixing table forms a container.
  • the baffle 4 includes a plurality of sub-baffles. After the plurality of sub-baffles are connected in sequence to form a closed polygon, the polygon formed by connecting the plurality of sub-baffles is fixed on the magnet platform by welding.
  • the preferred polygon formed by connecting the plurality of sub-baffles is Quadrilaterals, such as squares or rectangles.
  • the screw 5 penetrates the baffle 4, and the screw 5 is used to fix the workpiece 6 to be ground.
  • the output terminal of the programmable power supply is connected with the coil of the electromagnet.
  • the programmable power supply is a programmable DC power supply, preferably a PWM DC power supply 12.
  • the positive pole of the PWM DC power supply 12 is connected to the positive pole of the DC electromagnet 8 coil, and the negative pole of the PWM DC power supply 12 is connected to the negative pole of the DC electromagnet 8 coil.
  • the permanent magnet grinding rod 1 is installed on the machine tool, and the permanent magnet grinding rod 1 is located above the workpiece 6 to be ground.
  • the permanent magnet grinding rod 1 is perpendicular to the surface of the workpiece 6 to be ground.
  • the shape of the grinding head is a sharp cone.
  • the grinding gap between the grinding head of the permanent magnet grinding rod 1 and the surface of the workpiece 6 to be ground is 1 millimeter (mm).
  • the cone-shaped grinding head 10 will adsorb the magnetic grinding powder 3 to form a magnetic grinding head 2 to be ground
  • the surface of the workpiece is ground, so some grinding gaps should be reserved between the sharp cone-shaped grinding head and the surface of the workpiece to be ground to prevent the permanent magnet grinding rod 1 from scratching the workpiece 6 to be ground.
  • the machine tool is used to control the permanent magnet grinding rod 1 to perform magnetic grinding on the surface of the workpiece 6 to be ground.
  • the machine tool adopts a five-axis machine tool11.
  • the magnetic grinding control system is respectively connected with the programmable power supply and the machine tool; the magnetic grinding control system is used to obtain the grinding point of the permanent magnet grinding rod on the workpiece to be ground through the machine tool, and use the removal amount and grinding point of the blank workpiece surface of the workpiece to be ground 6 And the PWM control method controls the output voltage of the programmable power supply, and then magnetically polishes the workpiece 6 to be polished.
  • the grinding medium covers the workpiece 6 to be ground.
  • the grinding medium is a magnetic grinding powder 3, and the magnetic grinding powder 3 is placed in a fixing table of the grinding piece and covers the workpiece 6 to be ground.
  • the workpiece 6 to be ground is placed on the plate electrode, the workpiece 6 to be ground is fixed by the screw 5 on the rotating baffle 4, and the magnetic grinding powder 3 is contained in the grinding member fixing table, and the magnetic grinding powder 3 covers the workpiece 6 to be ground.
  • a magnetic grinding head 2 is formed around the sharp cone-shaped grinding head 10.
  • the magnetic grinding control system specifically includes:
  • the acquiring module is used to acquire the surface shape of the blank workpiece of the workpiece to be ground and the surface shape of the finished workpiece of the workpiece to be ground.
  • the removal amount determination module is used to determine the removal amount of each point on the surface of the workpiece to be ground by using the surface shape of the blank workpiece and the surface shape of the finished workpiece.
  • the removal amount determination module specifically includes:
  • the establishment of a coordinate system unit is used to establish a Cartesian coordinate system with the projection point of the grinding head of the permanent magnet grinding rod on the surface of the workpiece to be ground as the origin O; the Z axis of the Cartesian coordinate system is parallel to the permanent magnet grinding rod, and the Cartesian
  • the XOY plane composed of the X axis and the Y axis of the coordinate system is parallel to the surface of the workpiece to be ground.
  • the Cartesian coordinate system of this embodiment is a spatial Cartesian rectangular coordinate system, and the direction away from the XOY plane is the positive direction of the Z axis.
  • the removal amount determination unit is used to compare the surface shape of the blank workpiece with the surface shape of the finished workpiece, and use the Cartesian coordinate system to determine the removal amount of each coordinate point on the surface of the workpiece to be ground.
  • the magnetic grinding control system also includes:
  • the adjustment module is used to adjust the grinding gap and grinding speed.
  • the grinding speed is the rotational angular speed of the grinding shaft motor.
  • the grinding pressure calculation module is used to calculate the grinding pressure of each point on the surface of the workpiece to be ground by using the removal amount.
  • the grinding pressure calculation module is specifically used to calculate the grinding pressure of the corresponding coordinate point by using the removal amount of each coordinate point on the surface of the workpiece to be ground.
  • the grinding pressure calculation module includes:
  • the grinding pressure calculation unit is used to calculate the grinding pressure of each point on the surface of the workpiece to be ground according to formula (1).
  • the grinding pressure calculation unit is specifically used to calculate the grinding pressure of the coordinate point by using the removal amount of the coordinate point according to formula (1).
  • P represents the grinding pressure
  • K represents a constant coefficient
  • v represents the linear velocity of the grinding head, unit: m/min
  • t represents the grinding time.
  • the magnetic field strength calculation module is used to calculate the magnetic field strength of each point on the surface of the workpiece to be ground by using the grinding pressure.
  • the magnetic field intensity calculation module is specifically used to calculate the magnetic field intensity of the corresponding coordinate point by using the grinding pressure of each coordinate point on the surface of the workpiece to be ground.
  • the magnetic field strength calculation unit is used to calculate the magnetic field strength of each point on the surface of the workpiece to be ground according to formula (2).
  • the magnetic field strength calculation unit is specifically configured to calculate the magnetic field strength of the coordinate point by using the grinding pressure of the coordinate point according to formula (2).
  • P stands for grinding pressure
  • K1 stands for constant
  • H stands for magnetic field strength.
  • the grinding pressure is proportional to the magnetic field strength H.
  • the electromagnet voltage calculation module is used to calculate the electromagnet voltage at each point on the surface of the workpiece to be polished by using the magnetic field strength and the number of turns of the electromagnet.
  • the electromagnet voltage calculation module is specifically used to calculate the electromagnet voltage of the corresponding coordinate point by using the magnetic field strength of each coordinate point on the surface of the workpiece to be polished and the number of turns of the electromagnet.
  • the electromagnet voltage calculation module specifically includes:
  • the electromagnet voltage calculation unit is used to calculate the electromagnet voltage at each point on the surface of the workpiece to be ground according to formula (3).
  • the electromagnet voltage calculation unit is specifically used to calculate the electromagnet voltage at the coordinate point using the magnetic field strength of the coordinate point and the number of turns of the electromagnet according to formula (3).
  • E represents the electromagnet voltage
  • H represents the magnetic field strength
  • Le represents the effective magnetic circuit length of the electromagnet
  • R represents the coil impedance of the electromagnet
  • N represents the number of turns of the electromagnet.
  • the magnetic grinding module is used to control the output voltage of the programmable power supply by using the electromagnet voltage corresponding to the grinding point of the permanent magnet grinding rod at the grinding point of the workpiece to be ground and the PWM control method to control the output voltage of the programmable power supply, and then perform magnetic grinding on the workpiece to be ground.
  • the electromagnet voltage of each coordinate point use the PWM control method (PWM technology) to adjust the DC voltage value output by the programmable DC power supply at each coordinate point on the surface of the workpiece to be polished, the DC voltage value output by the programmable DC power supply and the electromagnet The voltage values are equal.
  • the magnetic grinding control system can be implemented by the controller 13.
  • the magnetic grinding control system can obtain the grinding point of the permanent magnet grinding rod on the workpiece to be ground through the machine tool, and control the output voltage of the programmable power supply according to the electromagnet voltage corresponding to the grinding point and the PWM control method, so that the electromagnet generates the corresponding magnetic field strength to be ground
  • the workpiece is magnetically ground; you can also obtain or plan the path of the grinding head, control the machine tool to move the permanent magnet grinding rod according to the path of the grinding head, and at the same time according to the electromagnet voltage and PWM corresponding to the grinding point after the permanent magnet grinding rod is moved
  • the control method controls the output voltage of the programmable power supply, so that the electromagnet generates a corresponding magnetic field intensity for magnetic grinding of the workpiece to be ground.
  • Electromagnets and permanent magnet grinding rods provide dual magnetic fields, which can increase the strength of the magnetic field.
  • FIG. 2 is a flowchart of the magnetic grinding control method according to an embodiment of the present invention. Referring to Fig. 2, the magnetic grinding control method includes:
  • Step 101 Obtain the surface shape of the blank workpiece of the workpiece to be ground and the surface shape of the finished workpiece of the workpiece to be ground.
  • Step 102 using the surface shape of the blank workpiece and the surface shape of the finished workpiece to determine the amount of removal of each point on the surface of the workpiece to be ground.
  • Step 102 specifically includes:
  • step 103 it also includes: adjusting the grinding gap and the grinding speed.
  • the grinding speed is the rotational angular speed of the grinding shaft motor.
  • Step 103 Calculate the grinding pressure at each point on the surface of the workpiece to be ground by using the removal amount.
  • the grinding pressure of the corresponding coordinate point is calculated by using the removal amount of each coordinate point on the surface of the workpiece to be ground.
  • Step 103 specifically includes:
  • P represents the grinding pressure
  • represents the removal amount of the coordinate point
  • K represents the constant coefficient
  • v represents the linear velocity of the grinding head, unit: m/min
  • t represents the grinding time.
  • Step 104 using the grinding pressure to calculate the magnetic field intensity at each point on the surface of the workpiece to be ground. Using the grinding pressure of each coordinate point on the surface of the workpiece to be ground, the magnetic field intensity of the corresponding coordinate point is calculated.
  • Step 104 specifically includes:
  • formula (2) calculate the magnetic field strength of each point on the surface of the workpiece to be ground. According to formula (2), the grinding pressure of the coordinate point is used to calculate the magnetic field intensity of the coordinate point.
  • P stands for grinding pressure
  • K1 stands for constant
  • H stands for magnetic field strength.
  • the grinding pressure is proportional to the magnetic field strength H.
  • Step 105 Calculate the electromagnet voltage at each point on the surface of the workpiece to be polished using the magnetic field strength and the number of turns of the electromagnet. Calculate the electromagnet voltage corresponding to the coordinate point by using the magnetic field strength of each coordinate point on the surface of the workpiece to be polished and the number of turns of the electromagnet.
  • Step 105 specifically includes:
  • the electromagnet voltage at each point on the surface of the workpiece to be ground is calculated using the magnetic field strength of the coordinate point and the number of turns of the electromagnet.
  • E represents the electromagnet voltage
  • H represents the magnetic field strength
  • Le represents the effective magnetic circuit length of the electromagnet
  • R represents the coil impedance of the electromagnet
  • N represents the number of turns of the electromagnet.
  • Step 106 Use the electromagnet voltage corresponding to the grinding point of the workpiece to be ground by the permanent magnet grinding rod and the PWM control method to control the output voltage of the programmable power supply, and then perform magnetic grinding on the workpiece to be ground.
  • the electromagnet voltage of each coordinate point use the PWM control method (PWM technology) to adjust the DC voltage value output by the programmable DC power supply at each coordinate point on the surface of the workpiece to be polished, the DC voltage value output by the programmable DC power supply and the electromagnet The voltage values are equal.
  • Step 106 specifically includes: starting the five-axis machine tool, obtaining the grinding point of the current permanent magnet grinding rod on the surface of the blank workpiece and the electromagnet voltage of the grinding point, using the electromagnet voltage of the grinding point and the PWM control method to control the programmable power supply at the grinding point
  • the output voltage of the electromagnet is energized to form a magnetic field, and the grinding head absorbs the magnetic grinding powder to form the magnetic grinding head to grind the surface of the workpiece to be ground.
  • the magnetic grinding control method first calculates the removal amount of all coordinate points on the surface of the workpiece to be polished by using the surface shape of the blank workpiece and the surface shape of the finished workpiece; and then calculates the electromagnet voltage of each coordinate point by using the removal amount of the coordinate points , Store the electromagnet voltage of all coordinate points at the same time; finally, obtain the stored electromagnet voltage corresponding to the coordinate point of the grinding point according to the specific grinding point during grinding, and use the electromagnet voltage of the grinding point and the PWM control method to adjust the programmable DC
  • the DC voltage value output by the power supply causes the electromagnet to be energized to form a magnetic field, and the surface of the workpiece to be polished is polished.
  • This embodiment also provides a magnetic field self-adaptive magnetic grinding method, which is applied to the above-mentioned magnetic grinding device. Referring to FIG. 3, when grinding a flat workpiece:
  • Clamping the work piece Place the flat work piece on the grinding piece fixing table composed of the flat magnetic pole and the baffle plate, and use the surrounding screws to clamp and fix the flat work piece.
  • Install the grinding rod Install the permanent magnet grinding rod on the five-axis machine tool.
  • Positioning the origin Make the sharp cone-shaped grinding head vertical and close to a point 1mm on the surface of the flat workpiece, and determine this point as the origin.
  • the origin determined in the previous step is the positive direction of the Z axis
  • the plane perpendicular to the Z axis and containing the origin is the XY plane.
  • XY plane selects the XY axis to establish a Cartesian coordinate system.
  • the surface shape data of the known ideal finished workpiece that is, the surface shape of the planar workpiece after magnetic grinding
  • compare the surface shape data of the blank workpiece with the ideal surface shape data of the finished workpiece and calculate each coordinate point (each Point)
  • the amount of removal ⁇ that needs to be removed is a common technique in CNC machining programming.
  • the interval of the coordinate points can be 1mm or more.
  • the grinding gap is the distance between the sharp cone-shaped grinding head and the surface of the flat workpiece.
  • the grinding speed is the rotational angular speed of the grinding shaft motor.
  • Calculate the magnetic field strength of each point on the tool path including: according to the formula Calculate the grinding pressure value of each point on the tool path.
  • is the removal amount at any point
  • K is a constant coefficient
  • P is the grinding pressure
  • v is the linear velocity of the grinding head
  • t is the grinding time
  • K1 is a fixed value, then the grinding pressure is proportional to the magnetic field strength H.
  • E is the electromagnet voltage value
  • H is the magnetic field strength
  • N is the number of turns of the electromagnet's excitation coil
  • Le is the effective magnetic circuit length of the electromagnet
  • R is the coil impedance.
  • the voltage value of the solenoid can be adjusted in real time by adjusting the output voltage of the PWM DC power supply.

Abstract

本发明公开一种磁性研磨装置及磁性研磨控制方法,涉及机械加工领域。该装置包括:研磨件固定台的磁体平台与电磁铁连接;研磨件固定台用于固定待研磨工件;可编程电源的输出端与电磁铁的线圈连接;永磁体研磨棒位于待研磨工件的上方;磁性研磨控制系统与可编程电源连接;磁性研磨控制系统用于获取永磁体研磨棒在待研磨工件的研磨点,利用待研磨工件的毛坯工件面形的去除量、研磨点和PWM控制方法控制可编程电源的输出电压。本发明通过毛坯工件面形的去除量、研磨点和PWM控制方法调整可编程电源的输出电压,进而调整电磁铁磁场强度,通过实时改变磁场强度,固定研磨速度和永磁体研磨棒的驻留时间,提高了研磨精度。

Description

一种磁性研磨装置及磁性研磨控制方法
本申请要求于2020年05月28日提交中国专利局、申请号为202010466450.5、发明名称为“一种磁性研磨装置及磁性研磨控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及机械加工领域,特别是涉及一种磁性研磨装置及磁性研磨控制方法。
背景技术
磁性研磨是一种新兴的研磨加工形式,通过改变磁场大小,可以方便的改变研磨头的剪切应力和屈服应力,由于其不破坏下表面层,因此在超精加工中应用广泛。磁性研磨是对平面工件或曲面工件进行表面材料去除的一种加工手段。与材料去除量有关的因素包括:研磨压力、研磨速度、研磨驻留时间、研磨种类、研磨规格和工件材质等。在工件材质、研磨种类和研磨规格一致的情况下,改变研磨压力、研磨速度和驻留时间可以改变材料的去除量。
磁性研磨压力的改变通过改变研磨间隙和磁场强度来实现,由于实际研磨作业时间隙很小,调节研磨间隙的难度很大。因此现有主流研磨方法是研磨之前调节磁场强度,研磨过程中通过改变研磨速度和驻留时间来控制材料的去除量。然而工件表面待去除材料分布不均,有的地方去除多,有的地方去除少,在连续研磨时,只通过实时改变研磨速度和驻留时间,难以做到平滑过渡,得不到光滑表面,导致研磨精度低。因此,现有研磨方法存在研磨精度低的问题。
发明内容
本发明的目的是提供一种磁性研磨装置及磁性研磨控制方法,以解决现有研磨方法研磨精度低的问题。
为实现上述目的,本发明提供了如下方案:
一种磁性研磨装置,包括:电磁铁、底座、研磨件固定台、可编程电源、机床、永磁体研磨棒和磁性研磨控制系统;
所述电磁铁的一端安装于所述底座上;
所述研磨件固定台的磁体平台与所述电磁铁的另一端连接;所述研磨件固定台用于固定待研磨工件;
所述可编程电源的输出端与所述电磁铁的线圈连接;所述可编程电源用于给所述电磁铁供电;
所述永磁体研磨棒安装于所述机床上,所述永磁体研磨棒位于所述待研磨工件的上方;
所述机床用于控制所述永磁体研磨棒对所述待研磨工件的表面进行磁性研磨;
所述磁性研磨控制系统分别与所述可编程电源和所述机床连接;所述磁性研磨控制系统用于通过所述机床获取所述永磁体研磨棒在所述待研磨工件的研磨点,利用所述待研磨工件的毛坯工件面形的去除量、所述研磨点和PWM控制方法控制所述可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
可选的,所述研磨件固定台具体包括:磁体平台、挡板和螺钉;
所述磁体平台的磁性与所述永磁体研磨棒的研磨头的磁性相反;
所述挡板固定于所述磁体平台上,使所述研磨件固定台形成容器;
所述螺钉贯穿所述挡板,所述螺钉用于固定所述待研磨工件。
可选的,所述磁性研磨装置还包括:研磨介质;
所述研磨介质覆盖所述待研磨工件。
可选的,所述磁性研磨控制系统具体包括:
获取模块,用于获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
去除量确定模块,用于利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
研磨压力计算模块,用于利用所述去除量计算所述待研磨工件表面各点的研磨压力;
磁场强度计算模块,用于利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
电磁铁电压计算模块,用于利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
磁性研磨模块,用于利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
一种磁性研磨控制方法,应用于上述的磁性研磨装置,所述磁性研磨控制方法包括:
获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
利用所述去除量计算所述待研磨工件表面各点的研磨压力;
利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
可选的,所述利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量,具体包括:
以所述永磁体研磨棒的研磨头在所述待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;所述笛卡尔坐标系的Z轴与所述永磁体研磨棒平行,所述笛卡尔坐标系的X轴和Y轴组成的XOY平面与所述待研磨工件表面平行;
比较所述毛坯工件面形和所述成品工件面形,利用所述笛卡尔坐标系确定待研磨工件表面各坐标点的去除量。
可选的,所述利用所述去除量计算所述待研磨工件表面各点的研磨压力,具体包括:
根据公式
Figure PCTCN2021095135-appb-000001
计算所述待研磨工件表面各点的研磨压力;
其中,P表示所述研磨压力;φ表示去除量;K表示常系数;v表示研磨头的线速度;t表示研磨时间。
可选的,所述利用所述研磨压力计算所述待研磨工件表面各点的磁场强度,具体包括:
根据公式P=K1H计算所述待研磨工件表面各点的磁场强度;
其中,P表示所述研磨压力;K1表示常数;H表示所述磁场强度。
可选的,所述利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压,具体包括:
根据公式
Figure PCTCN2021095135-appb-000002
计算所述待研磨工件表面各点的电磁铁电压;
其中,E表示所述电磁铁电压;H表示所述磁场强度;Le表示所述电磁铁的有效磁路长度;R表示所述电磁铁的线圈阻抗;N表示所述电磁铁的线圈匝数。
可选的,在所述利用所述去除量计算所述待研磨工件表面各点的研磨压力之前,还包括:
调整研磨间隙和研磨速度。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供一种磁性研磨装置及磁性研磨控制方法。该装置包括:电磁铁、底座、研磨件固定台、可编程电源、机床、永磁体研磨棒和磁性研磨控制系统;电磁铁的一端安装于底座上;研磨件固定台的磁体平台与电磁铁的另一端连接;研磨件固定台用于固定待研磨工件;可编程电源的输出端与电磁铁的线圈连接;可编程电源用于给电磁铁供电;永磁体研磨棒安装于机床上,永磁体研磨棒位于待研磨工件的上方;机床用于控制永磁体研磨棒对待研磨工件的表面进行磁性研磨;磁性研磨控制系统分别与可编程电源和机床连接;磁性研磨控制系统用于通过机床获取永磁体研磨棒在待研磨工件的研磨点,利用待研磨工件的毛坯工件面形的去除量、研磨点和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件进行磁性研磨。本发明通过毛坯工件面形的去除量、研磨点和PWM控制方法调整可编程电源的输出电压,进而调整电磁铁磁场强度,通过实时改变磁 场强度,固定研磨速度和永磁体研磨棒的驻留时间,大幅提高了研磨精度,降低了工艺复杂程度,方便可靠,适用平面和自由曲面等工件面形的磁性研磨,适用面广;采用永磁体研磨棒和直流电磁铁,双重提供磁场,增加磁场强度。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例磁性研磨装置的结构图;
图2为本发明实施例磁性研磨控制方法的流程图;
图3为本发明实施例磁场自适应的磁性研磨方法的流程图。
符号说明:1、永磁体研磨棒;2、磁性研磨头;3、磁性研磨粉;4、挡板;5、螺钉;6、待研磨工件;7、平板磁极;8、直流电磁铁;9、底座;10、尖锥状的研磨头;11、五轴机床;12、PWM直流电源;13、控制器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种磁性研磨装置及磁性研磨控制方法,以解决现有研磨方法研磨精度低的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例提供一种磁性研磨装置,图1为本发明实施例磁性研磨装置的结构图。参见图1,该磁性研磨装置,包括:电磁铁、底座9、研磨件固定台、可编程电源、机床、永磁体研磨棒1、磁性研磨控制系统和研磨 介质。
电磁铁的一端安装于底座9上。电磁铁采用直流电磁铁8。直流电磁铁8用于产生磁场。
研磨件固定台的磁体平台与电磁铁的另一端连接;研磨件固定台用于固定待研磨工件6。磁体平台用于聚集直流电磁铁8产生的磁场并使磁场分布均匀。待研磨工件包括平面工件和自由曲面工件。
研磨件固定台具体包括:磁体平台、挡板4和螺钉5。
磁体平台的磁性与永磁体研磨棒1的研磨头的磁性相反。磁体平台为平板磁极7,电磁铁的另一端与平板磁极7固定连接。直流电磁铁8通电后形成磁场,平板磁极7将磁场聚集在平板磁极7的上表面,且平板磁极7可以使磁场分布均匀。永磁体研磨棒1的研磨头的磁性与平板磁极7的磁性相异。
挡板4固定于磁体平台上,使研磨件固定台形成容器。挡板4包括多个子挡板,多个子挡板依次连接形成闭合的多边形后,将多个子挡板连接形成的多边形通过焊接手段固定在磁体平台上,优选的多个子挡板连接形成的多边形为四边形,如正方形或长方形。
螺钉5贯穿挡板4,螺钉5用于固定待研磨工件6。
可编程电源的输出端与电磁铁的线圈连接。可编程电源为可编程直流电源,优选为PWM直流电源12,PWM直流电源12的正极与直流电磁铁8线圈的正极相连,PWM直流电源12的负极与直流电磁铁8线圈的负极相连。
永磁体研磨棒1安装于机床上,永磁体研磨棒1位于待研磨工件6的上方。永磁体研磨棒1与待研磨工件6的表面垂直。研磨头的形状为尖锥状。永磁体研磨棒1的研磨头与待研磨工件6的表面之间的研磨间隙为1毫米(mm),研磨时,尖锥状的研磨头10会吸附磁性研磨粉3形成磁性研磨头2对待研磨工件的表面进行研磨,因此尖锥状研磨头和待研磨工件表面之间要保留一些研磨间隙,防止永磁体研磨棒1刮伤待研磨工件6。
机床用于控制永磁体研磨棒1对待研磨工件6的表面进行磁性研磨。机床采用五轴机床11。
磁性研磨控制系统分别与可编程电源和机床连接;磁性研磨控制系统用于通过机床获取永磁体研磨棒在待研磨工件的研磨点,利用待研磨工件6的毛坯工件面形的去除量、研磨点和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件6进行磁性研磨。
研磨介质覆盖待研磨工件6。研磨介质为磁性研磨粉3,磁性研磨粉3放置在研磨件固定台中,且覆盖待研磨工件6。
待研磨工件6放置在平板电极上,通过旋转挡板4上的螺钉5固定待研磨工件6,在研磨件固定台中盛有磁性研磨粉3,磁性研磨粉3覆盖待研磨工件6。在永磁体研磨棒1和平板磁极7的联合作用下,在尖锥状的研磨头10周围形成磁性研磨头2。
磁性研磨控制系统具体包括:
获取模块,用于获取待研磨工件的毛坯工件面形和待研磨工件的成品工件面形。
去除量确定模块,用于利用毛坯工件面形和成品工件面形确定待研磨工件表面各点的去除量。
去除量确定模块具体包括:
建立坐标系单元,用于以永磁体研磨棒的研磨头在待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;笛卡尔坐标系的Z轴与永磁体研磨棒平行,笛卡尔坐标系的X轴和Y轴组成的XOY平面与待研磨工件表面平行。本实施例的笛卡尔坐标系为空间笛卡尔直角坐标系,以远离XOY平面的方向为Z轴的正方向。
去除量确定单元,用于比较毛坯工件面形和成品工件面形,利用笛卡尔坐标系确定待研磨工件表面各坐标点的去除量。
磁性研磨控制系统还包括:
调整模块,用于调整研磨间隙和研磨速度。研磨速度为研磨轴电机的旋转角速度。
研磨压力计算模块,用于利用去除量计算待研磨工件表面各点的研磨压力。研磨压力计算模块具体用于利用待研磨工件表面各坐标点的去除量 计算对应坐标点的研磨压力。
研磨压力计算模块具体包括:
研磨压力计算单元,用于根据公式(1)计算待研磨工件表面各点的研磨压力。研磨压力计算单元具体用于根据公式(1)利用坐标点的去除量计算该坐标点的研磨压力。
Figure PCTCN2021095135-appb-000003
其中,P表示研磨压力;
Figure PCTCN2021095135-appb-000004
表示坐标点的去除量;K表示常系数;v表示研磨头的线速度,单位:米/分钟;t表示研磨时间。
磁场强度计算模块,用于利用研磨压力计算待研磨工件表面各点的磁场强度。磁场强度计算模块具体用于利用待研磨工件表面各坐标点的研磨压力计算对应坐标点的磁场强度。
磁场强度计算模块具体包括:
磁场强度计算单元,用于根据公式(2)计算待研磨工件表面各点的磁场强度。磁场强度计算单元具体用于根据公式(2)利用坐标点的研磨压力计算该坐标点的磁场强度。
P=K1H      (2)
其中,P表示研磨压力;K1表示常数;H表示磁场强度。研磨压力与磁场强度H成正比。
电磁铁电压计算模块,用于利用磁场强度和电磁铁的线圈匝数计算待研磨工件表面各点的电磁铁电压。电磁铁电压计算模块具体用于利用待研磨工件表面各坐标点的磁场强度和电磁铁的线圈匝数计算对应坐标点的电磁铁电压。
电磁铁电压计算模块具体包括:
电磁铁电压计算单元,用于根据公式(3)计算待研磨工件表面各点的电磁铁电压。电磁铁电压计算单元具体用于根据公式(3)利用坐标点的磁场强度和电磁铁的线圈匝数计算该坐标点的电磁铁电压。
Figure PCTCN2021095135-appb-000005
其中,E表示电磁铁电压;H表示磁场强度;Le表示电磁铁的有效磁路长度;R表示电磁铁的线圈阻抗;N表示电磁铁的线圈匝数。
磁性研磨模块,用于利用永磁体研磨棒在待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件进行磁性研磨。根据各坐标点的电磁铁电压,使用PWM控制方法(PWM技术),调整可编程直流电源在待研磨工件表面各坐标点输出的直流电压值,可编程直流电源输出的直流电压值和电磁铁的电压值相等。
实际应用中,磁性研磨控制系统可以通过控制器13实现。磁性研磨控制系统可以通过机床获取永磁体研磨棒在待研磨工件的研磨点,根据研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,使电磁铁产生对应的磁场强度对待研磨工件进行磁性研磨;还可以获取或规划研磨头的走刀轨迹,根据研磨头的走刀轨迹控制机床移动永磁体研磨棒,同时根据永磁体研磨棒移动后的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,使电磁铁产生对应的磁场强度对待研磨工件进行磁性研磨。
本发明的磁性研磨装置的电磁铁通电后形成磁场,通过毛坯工件面形的去除量、研磨点和PWM控制方法调整可编程电源的输出电压,进而调整电磁铁产生的磁场强度,通过实时改变磁场强度,固定研磨速度和驻留时间,大幅提高了研磨精度,降低了工艺复杂程度,方便可靠,适用平面和自由曲面等工件面形的研磨,适用面广。电磁铁与永磁体研磨棒提供双重磁场,可以增加磁场强度。
本实施例还提供一种磁性研磨控制方法,应用于上述的磁性研磨装置,该磁性研磨控制方法的执行主体为磁性研磨控制系统,图2为本发明实施例磁性研磨控制方法的流程图。参见图2,该磁性研磨控制方法,包括:
步骤101,获取待研磨工件的毛坯工件面形和待研磨工件的成品工件面形。
步骤102,利用毛坯工件面形和成品工件面形确定待研磨工件表面各点的去除量。
步骤102具体包括:
以永磁体研磨棒的研磨头在待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;笛卡尔坐标系的Z轴与永磁体研磨棒平行,笛卡尔坐标系的X轴和Y轴组成的XOY平面与待研磨工件表面平行。
比较毛坯工件面形和成品工件面形,利用笛卡尔坐标系确定待研磨工件表面各坐标点的去除量。
步骤103之前,还包括:调整研磨间隙和研磨速度。研磨速度为研磨轴电机的旋转角速度。
步骤103,利用去除量计算待研磨工件表面各点的研磨压力。利用待研磨工件表面各坐标点的去除量计算对应坐标点的研磨压力。
步骤103具体包括:
根据公式(1)计算待研磨工件表面各点的研磨压力。根据公式(1)利用坐标点的去除量计算该坐标点的研磨压力。
Figure PCTCN2021095135-appb-000006
其中,P表示研磨压力;φ表示坐标点的去除量;K表示常系数;v表示研磨头的线速度,单位:米/分钟;t表示研磨时间。
步骤104,利用研磨压力计算待研磨工件表面各点的磁场强度。利用待研磨工件表面各坐标点的研磨压力计算对应坐标点的磁场强度。
步骤104具体包括:
根据公式(2)计算待研磨工件表面各点的磁场强度。根据公式(2)利用坐标点的研磨压力计算该坐标点的磁场强度。
P=K1H      (2)
其中,P表示研磨压力;K1表示常数;H表示磁场强度。研磨压力与磁场强度H成正比。
步骤105,利用磁场强度和电磁铁的线圈匝数计算待研磨工件表面各 点的电磁铁电压。利用待研磨工件表面各坐标点的磁场强度和电磁铁的线圈匝数计算对应坐标点的电磁铁电压。
步骤105具体包括:
根据公式(3)计算待研磨工件表面各点的电磁铁电压。根据公式(3)利用坐标点的磁场强度和电磁铁的线圈匝数计算该坐标点的电磁铁电压。
Figure PCTCN2021095135-appb-000007
其中,E表示电磁铁电压;H表示磁场强度;Le表示电磁铁的有效磁路长度;R表示电磁铁的线圈阻抗;N表示电磁铁的线圈匝数。
步骤106,利用永磁体研磨棒在待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件进行磁性研磨。根据各坐标点的电磁铁电压,使用PWM控制方法(PWM技术),调整可编程直流电源在待研磨工件表面各坐标点输出的直流电压值,可编程直流电源输出的直流电压值和电磁铁的电压值相等。
步骤106具体包括:启动五轴机床,获取当前永磁体研磨棒在毛坯工件面形的研磨点和研磨点的电磁铁电压,利用研磨点的电磁铁电压和PWM控制方法控制可编程电源在研磨点的输出电压,使电磁铁通电形成磁场,研磨头吸附磁性研磨粉形成磁性研磨头对待研磨工件的表面进行研磨。
该磁性研磨控制方法首先利用待研磨工件的毛坯工件面形和成品工件面形计算得到待研磨工件表面所有坐标点的去除量;然后利用坐标点的去除量计算得到每个坐标点的电磁铁电压,同时存储所有坐标点的电磁铁电压;最后,在研磨时根据具体的研磨点获取存储的对应研磨点的坐标点的电磁铁电压,利用研磨点的电磁铁电压和PWM控制方法调整可编程直流电源输出的直流电压值,使电磁铁通电形成磁场,对待研磨工件的表面进行研磨。
在实际应用中,可以获取或规划研磨头的走刀轨迹,根据研磨头的走刀轨迹计算走刀轨迹上各坐标点的电磁铁电压,然后在研磨过程中根据走刀轨迹使用PWM控制方法实时调整可编程直流电源输出的直流电压值 对待研磨工件进行研磨;或计算得到待研磨工件表面所有坐标点的电磁铁电压后,在研磨过程中根据走刀轨迹使用PWM控制方法实时调整可编程直流电源输出的直流电压值对待研磨工件进行研磨。
本实施例还提供一种磁场自适应的磁性研磨方法,应用于上述的磁性研磨装置,参见图3,研磨平面工件时:
装夹工件:将平面工件放置在平板磁极与挡板构成的研磨件固定台上,使用四周的螺钉装夹固定平面工件。
安装研磨棒:将永磁体研磨棒安装在五轴机床上。
定位原点:使尖锥状的研磨头垂直并靠近平面工件表面1mm处的某一点,并将该点确定为原点。
建立坐标系:通过上一步骤确定的原点,以平行于永磁体研磨棒并远离永磁体研磨棒的方向为Z轴正方向,垂直Z轴并包含原点的平面为XY平面,以加工方便原则在XY平面选择XY轴建立笛卡尔坐标系。
测量或获取平面工件的已知毛坯工件面形的数据,将毛坯工件面形的数据代入上一步骤建立的坐标系,计算得到平面工件表面各点的坐标。
获取已知理想的成品工件面形数据,即磁性研磨加工后的平面工件面形,将毛坯工件面形的数据与理想的成品工件面形数据相比较,计算平面工件表面每一个坐标点(各点)需要去除的去除量φ。本步骤是数控加工编程中通用的技术。坐标点的间隔可选1mm以上。
获取或规划研磨头的走刀轨迹。
调整研磨间隙为1mm,研磨速度为300r/min。研磨间隙为尖锥状的研磨头与平面工件表面的距离。研磨速度为研磨轴电机的旋转角速度。
计算走刀轨迹上各点的磁场强度,包括:根据公式
Figure PCTCN2021095135-appb-000008
计算走刀轨迹上各点的研磨压力值。
其中φ为任一点的去除量,K为常系数,P为研磨压力,v为研磨头的线速度,t为研磨时间。
根据公式P=K1H,计算走刀轨迹上各点的磁场强度值H。
式中,K1为定值,则研磨压力与磁场强度H成正比。
根据公式E=H*Le*R/N,计算走刀轨迹上各点的电磁铁电压值。
式中,E为电磁铁电压值;H为磁场强度,N为电磁铁的励磁线圈的匝数;Le为电磁铁的有效磁路长度;R为线圈阻抗。
启动五轴机床开始研磨,获取走刀轨迹上各点的电磁铁电压值,根据走刀轨迹,使用PWM技术,实时调整可编程直流电源(直流电压源)输出的直流电压值。可编程直流电源输出的直流电压值和电磁铁电压值相等。
对平面工件表面的所有坐标点进行研磨后,研磨结束。
在平面工件表面的不同坐标点,根据计算的各坐标点需要的去除量,和计算的各坐标点对应的电磁铁电压值,通过调节PWM直流电源的输出电压,实时调整电磁铁的电压值,通过实时改变磁场强度,固定研磨速度和永磁体研磨棒的驻留时间,大幅提高了研磨精度,降低了工艺复杂程度,方便可靠,适用平面和自由曲面等工件面形的磁性研磨,适用面广。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

  1. 一种磁性研磨装置,其特征在于,包括:电磁铁、底座、研磨件固定台、可编程电源、机床、永磁体研磨棒和磁性研磨控制系统;
    所述电磁铁的一端安装于所述底座上;
    所述研磨件固定台的磁体平台与所述电磁铁的另一端连接;所述研磨件固定台用于固定待研磨工件;
    所述磁性研磨装置还包括:研磨介质;所述研磨介质覆盖所述待研磨工件;
    所述磁体平台为平板磁极,所述平板磁极用于将所述电磁铁通电后形成的磁场聚集在所述平板磁极的上表面,并使磁场分布均匀;
    所述可编程电源的输出端与所述电磁铁的线圈连接;所述可编程电源用于给所述电磁铁供电;
    所述永磁体研磨棒安装于所述机床上,所述永磁体研磨棒位于所述待研磨工件的上方;
    所述机床用于控制所述永磁体研磨棒对所述待研磨工件的表面进行磁性研磨;
    所述磁性研磨控制系统分别与所述可编程电源和所述机床连接;所述磁性研磨控制系统用于通过所述机床获取所述永磁体研磨棒在所述待研磨工件的研磨点,利用所述待研磨工件的毛坯工件面形的去除量、所述研磨点和PWM控制方法控制所述可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨;
    所述磁性研磨控制系统用于通过所述机床获取所述永磁体研磨棒在所述待研磨工件的研磨点,利用所述待研磨工件的毛坯工件面形的去除量、所述研磨点和PWM控制方法控制所述可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨,具体包括:
    以永磁体研磨棒的研磨头在待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;笛卡尔坐标系的Z轴与永磁体研磨棒平行,笛卡尔坐标系的X轴和Y轴组成的XOY平面与待研磨工件表面平行;比较毛坯工件面形和成品工件面形,利用笛卡尔坐标系确定待研磨工件表面各坐标点的去除量;
    根据公式
    Figure PCTCN2021095135-appb-100001
    利用坐标点的去除量计算该坐标点的研磨压力;其中,P表示所述研磨压力;
    Figure PCTCN2021095135-appb-100002
    表示去除量;K表示常系数;v表示研磨头的线速度;t表示研磨时间;
    根据公式P=K1H利用坐标点的研磨压力计算该坐标点的磁场强度;其中,P表示所述研磨压力;K1表示常数;H表示所述磁场强度;
    根据公式
    Figure PCTCN2021095135-appb-100003
    计算所述待研磨工件表面各点的电磁铁电压;其中,E表示所述电磁铁电压;H表示所述磁场强度;Le表示所述电磁铁的有效磁路长度;R表示所述电磁铁的线圈阻抗;N表示所述电磁铁的线圈匝数;
    启动所述机床,获取当前所述永磁体研磨棒在毛坯工件面形的研磨点和研磨点的电磁铁电压,利用研磨点的电磁铁电压和PWM控制方法控制可编程电源在研磨点的输出电压,使电磁铁通电形成磁场,所述永磁体研磨棒的研磨头吸附所述研磨介质形成磁性研磨头对待研磨工件的表面进行研磨。
  2. 根据权利要求1所述的磁性研磨装置,其特征在于,所述研磨件固定台具体包括:磁体平台、挡板和螺钉;
    所述磁体平台的磁性与所述永磁体研磨棒的研磨头的磁性相反;
    所述挡板固定于所述磁体平台上,使所述研磨件固定台形成容器;
    所述螺钉贯穿所述挡板,所述螺钉用于固定所述待研磨工件。
  3. 根据权利要求1所述的磁性研磨装置,其特征在于,所述磁性研磨控制系统具体包括:
    获取模块,用于获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
    去除量确定模块,用于利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
    研磨压力计算模块,用于利用所述去除量计算所述待研磨工件表面各点的研磨压力;
    磁场强度计算模块,用于利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
    电磁铁电压计算模块,用于利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
    磁性研磨模块,用于利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
  4. 一种磁性研磨控制方法,其特征在于,应用于如权利要求1-3任意一项所述的磁性研磨装置,所述磁性研磨控制方法包括:
    获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
    利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
    所述利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量,具体包括:
    以所述永磁体研磨棒的研磨头在所述待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;所述笛卡尔坐标系的Z轴与所述永磁体研磨棒平行,所述笛卡尔坐标系的X轴和Y轴组成的XOY平面与所述待研磨工件表面平行;
    比较所述毛坯工件面形和所述成品工件面形,利用所述笛卡尔坐标系确定待研磨工件表面各坐标点的去除量;
    利用所述去除量计算所述待研磨工件表面各点的研磨压力;
    所述利用所述去除量计算所述待研磨工件表面各点的研磨压力,具体包括:
    根据公式
    Figure PCTCN2021095135-appb-100004
    计算所述待研磨工件表面各点的研磨压力;
    其中,P表示所述研磨压力;
    Figure PCTCN2021095135-appb-100005
    表示去除量;K表示常系数;v表示研磨头的线速度;t表示研磨时间;
    利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
    所述利用所述研磨压力计算所述待研磨工件表面各点的磁场强度,具体包括:
    根据公式P=K1H计算所述待研磨工件表面各点的磁场强度;
    其中,P表示所述研磨压力;K1表示常数;H表示所述磁场强度;
    利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
    所述利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压,具体包括:
    根据公式
    Figure PCTCN2021095135-appb-100006
    计算所述待研磨工件表面各点的电磁铁电压;
    其中,E表示所述电磁铁电压;H表示所述磁场强度;Le表示所述电磁铁的有效磁路长度;R表示所述电磁铁的线圈阻抗;N表示所述电磁铁的线圈匝数;
    利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨;
    利用平板磁极将所述电磁铁通电后形成的磁场聚集在所述平板磁极的上表面,并使磁场分布均匀。
  5. 根据权利要求4所述的磁性研磨控制方法,其特征在于,在所述利用所述去除量计算所述待研磨工件表面各点的研磨压力之前,还包括:
    调整研磨间隙和研磨速度。
PCT/CN2021/095135 2020-05-28 2021-05-21 一种磁性研磨装置及磁性研磨控制方法 WO2021238792A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/602,514 US20220305609A1 (en) 2020-05-28 2021-05-21 Magnetic grinding device and magnetic grinding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010466450.5 2020-05-28
CN202010466450.5A CN111482890B (zh) 2020-05-28 2020-05-28 一种磁性研磨装置及磁性研磨控制方法

Publications (1)

Publication Number Publication Date
WO2021238792A1 true WO2021238792A1 (zh) 2021-12-02

Family

ID=71790707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095135 WO2021238792A1 (zh) 2020-05-28 2021-05-21 一种磁性研磨装置及磁性研磨控制方法

Country Status (3)

Country Link
US (1) US20220305609A1 (zh)
CN (1) CN111482890B (zh)
WO (1) WO2021238792A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482890B (zh) * 2020-05-28 2021-05-25 浙江师范大学 一种磁性研磨装置及磁性研磨控制方法
CN114055258B (zh) * 2021-11-19 2023-04-18 浙江师范大学 一种磁性抛光装置及磁性抛光控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190815A (ja) * 1997-09-25 1999-04-06 Fujitsu Ltd 研磨装置
CN101352826A (zh) * 2008-09-28 2009-01-28 清华大学 光学元件内凹面抛光方法及装置
CN102079066A (zh) * 2010-11-11 2011-06-01 广东工业大学 一种电化学与磁性研磨复合的复合加工系统
CN104191318A (zh) * 2014-09-01 2014-12-10 浙江师范大学 一种磁流变抛光方法及抛光工具
US20170043448A1 (en) * 2015-08-14 2017-02-16 The Texas A&M University System Method and apparatus for performing targeted polishing via manipulation of magnetic-abrasive fluid
CN110394693A (zh) * 2019-07-10 2019-11-01 中国工程物理研究院激光聚变研究中心 一种基于磁流变加工的连续型螺旋相位板制备方法
CN111482890A (zh) * 2020-05-28 2020-08-04 浙江师范大学 一种磁性研磨装置及磁性研磨控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161262A (ja) * 1983-03-04 1984-09-12 Masanori Kunieda 磁気吸引式研摩方法
US6503414B1 (en) * 1992-04-14 2003-01-07 Byelocorp Scientific, Inc. Magnetorheological polishing devices and methods
US11440156B2 (en) * 2018-06-19 2022-09-13 Islamic Azad University of Najafabad Magnetic abrasive finishing of curved surfaces

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190815A (ja) * 1997-09-25 1999-04-06 Fujitsu Ltd 研磨装置
CN101352826A (zh) * 2008-09-28 2009-01-28 清华大学 光学元件内凹面抛光方法及装置
CN102079066A (zh) * 2010-11-11 2011-06-01 广东工业大学 一种电化学与磁性研磨复合的复合加工系统
CN104191318A (zh) * 2014-09-01 2014-12-10 浙江师范大学 一种磁流变抛光方法及抛光工具
US20170043448A1 (en) * 2015-08-14 2017-02-16 The Texas A&M University System Method and apparatus for performing targeted polishing via manipulation of magnetic-abrasive fluid
CN110394693A (zh) * 2019-07-10 2019-11-01 中国工程物理研究院激光聚变研究中心 一种基于磁流变加工的连续型螺旋相位板制备方法
CN111482890A (zh) * 2020-05-28 2020-08-04 浙江师范大学 一种磁性研磨装置及磁性研磨控制方法

Also Published As

Publication number Publication date
CN111482890A (zh) 2020-08-04
CN111482890B (zh) 2021-05-25
US20220305609A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021238792A1 (zh) 一种磁性研磨装置及磁性研磨控制方法
CN108857598B (zh) 基于电磁超声振动复合能场的内孔加工系统及方法
CN108161052B (zh) 磁场辅助外圆车削设备
CN106271968B (zh) 一种磁流变弹性抛光轮、小口径非球面加工装置及方法
CN112692716B (zh) 一种基于可控磁场的内表面磁场辅助光整装置及方法
WO2017028824A1 (zh) 磁流变抛光设备的磁场发生装置
CN212885717U (zh) 一种稳态磁场辅助的激光微抛光设备
JPH04336954A (ja) 微小研磨方法及び微小研磨工具
JP2007136637A (ja) 磁気援用微細研磨装置及び磁気援用微細研磨方法
JP2000107996A (ja) 磁気異方性工具を用いた表面処理方法およびその装置
CN107984306B (zh) 一种磁场遥操纵涡旋流定向抛光装置及抛光方法
CN110773868A (zh) 稳态磁场耦合激光填丝窄槽修复方法
JP3761791B2 (ja) 曲がり管内面の磁気援用研磨方法およびその装置
JP2007098541A (ja) 研磨工具及び研磨方法
Meng et al. Influence of magnets’ phyllotactic arrangement in cluster magnetorheological effect finishing process
CN211638677U (zh) 稳态磁场耦合激光填丝窄槽修复设备
CN110773869A (zh) 稳态磁场耦合激光填丝窄槽修复装置
JP3846052B2 (ja) 磁気研磨装置および磁気研磨方法
CN211305210U (zh) 稳态磁场耦合激光填丝窄槽修复装置
CN108161603B (zh) 磁场辅助平面磨削设备
CN208099972U (zh) 一种磁场辅助平面磨削设备
WO2021109257A1 (zh) 稳态磁场耦合激光填丝窄槽修复方法及其装置
CN207771560U (zh) 一种磁场遥操纵工具定向抛光装置
Zhang et al. Experimental study on polishing characteristics of ultrasonic-magnetorheological compound finishing
JPS62102969A (ja) 磁気研摩装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814123

Country of ref document: EP

Kind code of ref document: A1