CN111482890B - 一种磁性研磨装置及磁性研磨控制方法 - Google Patents

一种磁性研磨装置及磁性研磨控制方法 Download PDF

Info

Publication number
CN111482890B
CN111482890B CN202010466450.5A CN202010466450A CN111482890B CN 111482890 B CN111482890 B CN 111482890B CN 202010466450 A CN202010466450 A CN 202010466450A CN 111482890 B CN111482890 B CN 111482890B
Authority
CN
China
Prior art keywords
grinding
workpiece
ground
point
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010466450.5A
Other languages
English (en)
Other versions
CN111482890A (zh
Inventor
鄂世举
贺新升
高春甫
周崇秋
郑岚鹏
王华东
王成武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN202010466450.5A priority Critical patent/CN111482890B/zh
Publication of CN111482890A publication Critical patent/CN111482890A/zh
Priority to PCT/CN2021/095135 priority patent/WO2021238792A1/zh
Priority to US17/602,514 priority patent/US20220305609A1/en
Application granted granted Critical
Publication of CN111482890B publication Critical patent/CN111482890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • B23Q3/1543Stationary devices using electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work
    • B23Q3/154Stationary devices
    • B23Q3/1546Stationary devices using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

本发明公开一种磁性研磨装置及磁性研磨控制方法,涉及机械加工领域。该装置包括:研磨件固定台的磁体平台与电磁铁连接;研磨件固定台用于固定待研磨工件;可编程电源的输出端与电磁铁的线圈连接;永磁体研磨棒位于待研磨工件的上方;磁性研磨控制系统与可编程电源连接;磁性研磨控制系统用于获取永磁体研磨棒在待研磨工件的研磨点,利用待研磨工件的毛坯工件面形的去除量、研磨点和PWM控制方法控制可编程电源的输出电压。本发明通过毛坯工件面形的去除量、研磨点和PWM控制方法调整可编程电源的输出电压,进而调整电磁铁磁场强度,通过实时改变磁场强度,固定研磨速度和永磁体研磨棒的驻留时间,提高了研磨精度。

Description

一种磁性研磨装置及磁性研磨控制方法
技术领域
本发明涉及机械加工领域,特别是涉及一种磁性研磨装置及磁性研磨控制方法。
背景技术
磁性研磨是一种新兴的研磨加工形式,通过改变磁场大小,可以方便的改变研磨头的剪切应力和屈服应力,由于其不破坏下表面层,因此在超精加工中应用广泛。磁性研磨是对平面工件或曲面工件进行表面材料去除的一种加工手段。与材料去除量有关的因素包括:研磨压力、研磨速度、研磨驻留时间、研磨种类、研磨规格和工件材质等。在工件材质、研磨种类和研磨规格一致的情况下,改变研磨压力、研磨速度和驻留时间可以改变材料的去除量。
磁性研磨压力的改变通过改变研磨间隙和磁场强度来实现,由于实际研磨作业时间隙很小,调节研磨间隙的难度很大。因此现有主流研磨方法是研磨之前调节磁场强度,研磨过程中通过改变研磨速度和驻留时间来控制材料的去除量。然而工件表面待去除材料分布不均,有的地方去除多,有的地方去除少,在连续研磨时,只通过实时改变研磨速度和驻留时间,难以做到平滑过渡,得不到光滑表面,导致研磨精度低。因此,现有研磨方法存在研磨精度低的问题。
发明内容
本发明的目的是提供一种磁性研磨装置及磁性研磨控制方法,以解决现有研磨方法研磨精度低的问题。
为实现上述目的,本发明提供了如下方案:
一种磁性研磨装置,包括:电磁铁、底座、研磨件固定台、可编程电源、机床、永磁体研磨棒和磁性研磨控制系统;
所述电磁铁的一端安装于所述底座上;
所述研磨件固定台的磁体平台与所述电磁铁的另一端连接;所述研磨件固定台用于固定待研磨工件;
所述可编程电源的输出端与所述电磁铁的线圈连接;所述可编程电源用于给所述电磁铁供电;
所述永磁体研磨棒安装于所述机床上,所述永磁体研磨棒位于所述待研磨工件的上方;
所述机床用于控制所述永磁体研磨棒对所述待研磨工件的表面进行磁性研磨;
所述磁性研磨控制系统分别与所述可编程电源和所述机床连接;所述磁性研磨控制系统用于通过所述机床获取所述永磁体研磨棒在所述待研磨工件的研磨点,利用所述待研磨工件的毛坯工件面形的去除量、所述研磨点和PWM控制方法控制所述可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
可选的,所述研磨件固定台具体包括:磁体平台、挡板和螺钉;
所述磁体平台的磁性与所述永磁体研磨棒的研磨头的磁性相反;
所述挡板固定于所述磁体平台上,使所述研磨件固定台形成容器;
所述螺钉贯穿所述挡板,所述螺钉用于固定所述待研磨工件。
可选的,所述磁性研磨装置还包括:研磨介质;
所述研磨介质覆盖所述待研磨工件。
可选的,所述磁性研磨控制系统具体包括:
获取模块,用于获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
去除量确定模块,用于利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
研磨压力计算模块,用于利用所述去除量计算所述待研磨工件表面各点的研磨压力;
磁场强度计算模块,用于利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
电磁铁电压计算模块,用于利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
磁性研磨模块,用于利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
一种磁性研磨控制方法,应用于上述的磁性研磨装置,所述磁性研磨控制方法包括:
获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
利用所述去除量计算所述待研磨工件表面各点的研磨压力;
利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
可选的,所述利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量,具体包括:
以所述永磁体研磨棒的研磨头在所述待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;所述笛卡尔坐标系的Z轴与所述永磁体研磨棒平行,所述笛卡尔坐标系的X轴和Y轴组成的XOY平面与所述待研磨工件表面平行;
比较所述毛坯工件面形和所述成品工件面形,利用所述笛卡尔坐标系确定待研磨工件表面各坐标点的去除量。
可选的,所述利用所述去除量计算所述待研磨工件表面各点的研磨压力,具体包括:
根据公式
Figure BDA0002512802750000031
计算所述待研磨工件表面各点的研磨压力;
其中,P表示所述研磨压力;φ表示去除量;K表示常系数;v表示研磨头的线速度;t表示研磨时间。
可选的,所述利用所述研磨压力计算所述待研磨工件表面各点的磁场强度,具体包括:
根据公式P=K1H计算所述待研磨工件表面各点的磁场强度;
其中,P表示所述研磨压力;K1表示常数;H表示所述磁场强度。
可选的,所述利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压,具体包括:
根据公式
Figure BDA0002512802750000041
计算所述待研磨工件表面各点的电磁铁电压;
其中,E表示所述电磁铁电压;H表示所述磁场强度;Le表示所述电磁铁的有效磁路长度;R表示所述电磁铁的线圈阻抗;N表示所述电磁铁的线圈匝数。
可选的,在所述利用所述去除量计算所述待研磨工件表面各点的研磨压力之前,还包括:
调整研磨间隙和研磨速度。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供一种磁性研磨装置及磁性研磨控制方法。该装置包括:电磁铁、底座、研磨件固定台、可编程电源、机床、永磁体研磨棒和磁性研磨控制系统;电磁铁的一端安装于底座上;研磨件固定台的磁体平台与电磁铁的另一端连接;研磨件固定台用于固定待研磨工件;可编程电源的输出端与电磁铁的线圈连接;可编程电源用于给电磁铁供电;永磁体研磨棒安装于机床上,永磁体研磨棒位于待研磨工件的上方;机床用于控制永磁体研磨棒对待研磨工件的表面进行磁性研磨;磁性研磨控制系统分别与可编程电源和机床连接;磁性研磨控制系统用于通过机床获取永磁体研磨棒在待研磨工件的研磨点,利用待研磨工件的毛坯工件面形的去除量、研磨点和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件进行磁性研磨。本发明通过毛坯工件面形的去除量、研磨点和PWM控制方法调整可编程电源的输出电压,进而调整电磁铁磁场强度,通过实时改变磁场强度,固定研磨速度和永磁体研磨棒的驻留时间,大幅提高了研磨精度,降低了工艺复杂程度,方便可靠,适用平面和自由曲面等工件面形的磁性研磨,适用面广;采用永磁体研磨棒和直流电磁铁,双重提供磁场,增加磁场强度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例磁性研磨装置的结构图;
图2为本发明实施例磁性研磨控制方法的流程图;
图3为本发明实施例磁场自适应的磁性研磨方法的流程图。
符号说明:1、永磁体研磨棒;2、磁性研磨头;3、磁性研磨粉;4、挡板;5、螺钉;6、待研磨工件;7、平板磁极;8、直流电磁铁;9、底座;10、尖锥状的研磨头;11、五轴机床;12、PWM直流电源;13、控制器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种磁性研磨装置及磁性研磨控制方法,以解决现有研磨方法研磨精度低的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本实施例提供一种磁性研磨装置,图1为本发明实施例磁性研磨装置的结构图。参见图1,该磁性研磨装置,包括:电磁铁、底座9、研磨件固定台、可编程电源、机床、永磁体研磨棒1、磁性研磨控制系统和研磨介质。
电磁铁的一端安装于底座9上。电磁铁采用直流电磁铁8。直流电磁铁8用于产生磁场。
研磨件固定台的磁体平台与电磁铁的另一端连接;研磨件固定台用于固定待研磨工件6。磁体平台用于聚集直流电磁铁8产生的磁场并使磁场分布均匀。待研磨工件包括平面工件和自由曲面工件。
研磨件固定台具体包括:磁体平台、挡板4和螺钉5。
磁体平台的磁性与永磁体研磨棒1的研磨头的磁性相反。磁体平台为平板磁极7,电磁铁的另一端与平板磁极7固定连接。直流电磁铁8通电后形成磁场,平板磁极7将磁场聚集在平板磁极7的上表面,且平板磁极7可以使磁场分布均匀。永磁体研磨棒1的研磨头的磁性与平板磁极7的磁性相异。
挡板4固定于磁体平台上,使研磨件固定台形成容器。挡板4包括多个子挡板,多个子挡板依次连接形成闭合的多边形后,将多个子挡板连接形成的多边形通过焊接手段固定在磁体平台上,优选的多个子挡板连接形成的多边形为四边形,如正方形或长方形。
螺钉5贯穿挡板4,螺钉5用于固定待研磨工件6。
可编程电源的输出端与电磁铁的线圈连接。可编程电源为可编程直流电源,优选为PWM直流电源12,PWM直流电源12的正极与直流电磁铁8线圈的正极相连,PWM直流电源12的负极与直流电磁铁8线圈的负极相连。
永磁体研磨棒1安装于机床上,永磁体研磨棒1位于待研磨工件6的上方。永磁体研磨棒1与待研磨工件6的表面垂直。研磨头的形状为尖锥状。永磁体研磨棒1的研磨头与待研磨工件6的表面之间的研磨间隙为1毫米(mm),研磨时,尖锥状的研磨头10会吸附磁性研磨粉3形成磁性研磨头2对待研磨工件的表面进行研磨,因此尖锥状研磨头和待研磨工件表面之间要保留一些研磨间隙,防止永磁体研磨棒1刮伤待研磨工件6。
机床用于控制永磁体研磨棒1对待研磨工件6的表面进行磁性研磨。机床采用五轴机床11。
磁性研磨控制系统分别与可编程电源和机床连接;磁性研磨控制系统用于通过机床获取永磁体研磨棒在待研磨工件的研磨点,利用待研磨工件6的毛坯工件面形的去除量、研磨点和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件6进行磁性研磨。
研磨介质覆盖待研磨工件6。研磨介质为磁性研磨粉3,磁性研磨粉3放置在研磨件固定台中,且覆盖待研磨工件6。
待研磨工件6放置在平板电极上,通过旋转挡板4上的螺钉5固定待研磨工件6,在研磨件固定台中盛有磁性研磨粉3,磁性研磨粉3覆盖待研磨工件6。在永磁体研磨棒1和平板磁极7的联合作用下,在尖锥状的研磨头10周围形成磁性研磨头2。
磁性研磨控制系统具体包括:
获取模块,用于获取待研磨工件的毛坯工件面形和待研磨工件的成品工件面形。
去除量确定模块,用于利用毛坯工件面形和成品工件面形确定待研磨工件表面各点的去除量。
去除量确定模块具体包括:
建立坐标系单元,用于以永磁体研磨棒的研磨头在待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;笛卡尔坐标系的Z轴与永磁体研磨棒平行,笛卡尔坐标系的X轴和Y轴组成的XOY平面与待研磨工件表面平行。本实施例的笛卡尔坐标系为空间笛卡尔直角坐标系,以远离XOY平面的方向为Z轴的正方向。
去除量确定单元,用于比较毛坯工件面形和成品工件面形,利用笛卡尔坐标系确定待研磨工件表面各坐标点的去除量。
磁性研磨控制系统还包括:
调整模块,用于调整研磨间隙和研磨速度。研磨速度为研磨轴电机的旋转角速度。
研磨压力计算模块,用于利用去除量计算待研磨工件表面各点的研磨压力。研磨压力计算模块具体用于利用待研磨工件表面各坐标点的去除量计算对应坐标点的研磨压力。
研磨压力计算模块具体包括:
研磨压力计算单元,用于根据公式(1)计算待研磨工件表面各点的研磨压力。研磨压力计算单元具体用于根据公式(1)利用坐标点的去除量计算该坐标点的研磨压力。
Figure BDA0002512802750000081
其中,P表示研磨压力;φ表示坐标点的去除量;K表示常系数;v表示研磨头的线速度,单位:米/分钟;t表示研磨时间。
磁场强度计算模块,用于利用研磨压力计算待研磨工件表面各点的磁场强度。磁场强度计算模块具体用于利用待研磨工件表面各坐标点的研磨压力计算对应坐标点的磁场强度。
磁场强度计算模块具体包括:
磁场强度计算单元,用于根据公式(2)计算待研磨工件表面各点的磁场强度。磁场强度计算单元具体用于根据公式(2)利用坐标点的研磨压力计算该坐标点的磁场强度。
P=K1H (2)
其中,P表示研磨压力;K1表示常数;H表示磁场强度。研磨压力与磁场强度H成正比。
电磁铁电压计算模块,用于利用磁场强度和电磁铁的线圈匝数计算待研磨工件表面各点的电磁铁电压。电磁铁电压计算模块具体用于利用待研磨工件表面各坐标点的磁场强度和电磁铁的线圈匝数计算对应坐标点的电磁铁电压。
电磁铁电压计算模块具体包括:
电磁铁电压计算单元,用于根据公式(3)计算待研磨工件表面各点的电磁铁电压。电磁铁电压计算单元具体用于根据公式(3)利用坐标点的磁场强度和电磁铁的线圈匝数计算该坐标点的电磁铁电压。
Figure BDA0002512802750000082
其中,E表示电磁铁电压;H表示磁场强度;Le表示电磁铁的有效磁路长度;R表示电磁铁的线圈阻抗;N表示电磁铁的线圈匝数。
磁性研磨模块,用于利用永磁体研磨棒在待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件进行磁性研磨。根据各坐标点的电磁铁电压,使用PWM控制方法(PWM技术),调整可编程直流电源在待研磨工件表面各坐标点输出的直流电压值,可编程直流电源输出的直流电压值和电磁铁的电压值相等。
实际应用中,磁性研磨控制系统可以通过控制器13实现。磁性研磨控制系统可以通过机床获取永磁体研磨棒在待研磨工件的研磨点,根据研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,使电磁铁产生对应的磁场强度对待研磨工件进行磁性研磨;还可以获取或规划研磨头的走刀轨迹,根据研磨头的走刀轨迹控制机床移动永磁体研磨棒,同时根据永磁体研磨棒移动后的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,使电磁铁产生对应的磁场强度对待研磨工件进行磁性研磨。
本发明的磁性研磨装置的电磁铁通电后形成磁场,通过毛坯工件面形的去除量、研磨点和PWM控制方法调整可编程电源的输出电压,进而调整电磁铁产生的磁场强度,通过实时改变磁场强度,固定研磨速度和驻留时间,大幅提高了研磨精度,降低了工艺复杂程度,方便可靠,适用平面和自由曲面等工件面形的研磨,适用面广。电磁铁与永磁体研磨棒提供双重磁场,可以增加磁场强度。
本实施例还提供一种磁性研磨控制方法,应用于上述的磁性研磨装置,该磁性研磨控制方法的执行主体为磁性研磨控制系统,图2为本发明实施例磁性研磨控制方法的流程图。参见图2,该磁性研磨控制方法,包括:
步骤101,获取待研磨工件的毛坯工件面形和待研磨工件的成品工件面形。
步骤102,利用毛坯工件面形和成品工件面形确定待研磨工件表面各点的去除量。
步骤102具体包括:
以永磁体研磨棒的研磨头在待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;笛卡尔坐标系的Z轴与永磁体研磨棒平行,笛卡尔坐标系的X轴和Y轴组成的XOY平面与待研磨工件表面平行。
比较毛坯工件面形和成品工件面形,利用笛卡尔坐标系确定待研磨工件表面各坐标点的去除量。
步骤103之前,还包括:调整研磨间隙和研磨速度。研磨速度为研磨轴电机的旋转角速度。
步骤103,利用去除量计算待研磨工件表面各点的研磨压力。利用待研磨工件表面各坐标点的去除量计算对应坐标点的研磨压力。
步骤103具体包括:
根据公式(1)计算待研磨工件表面各点的研磨压力。根据公式(1)利用坐标点的去除量计算该坐标点的研磨压力。
Figure BDA0002512802750000101
其中,P表示研磨压力;φ表示坐标点的去除量;K表示常系数;v表示研磨头的线速度,单位:米/分钟;t表示研磨时间。
步骤104,利用研磨压力计算待研磨工件表面各点的磁场强度。利用待研磨工件表面各坐标点的研磨压力计算对应坐标点的磁场强度。
步骤104具体包括:
根据公式(2)计算待研磨工件表面各点的磁场强度。根据公式(2)利用坐标点的研磨压力计算该坐标点的磁场强度。
P=K1H (2)
其中,P表示研磨压力;K1表示常数;H表示磁场强度。研磨压力与磁场强度H成正比。
步骤105,利用磁场强度和电磁铁的线圈匝数计算待研磨工件表面各点的电磁铁电压。利用待研磨工件表面各坐标点的磁场强度和电磁铁的线圈匝数计算对应坐标点的电磁铁电压。
步骤105具体包括:
根据公式(3)计算待研磨工件表面各点的电磁铁电压。根据公式(3)利用坐标点的磁场强度和电磁铁的线圈匝数计算该坐标点的电磁铁电压。
Figure BDA0002512802750000111
其中,E表示电磁铁电压;H表示磁场强度;Le表示电磁铁的有效磁路长度;R表示电磁铁的线圈阻抗;N表示电磁铁的线圈匝数。
步骤106,利用永磁体研磨棒在待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对待研磨工件进行磁性研磨。根据各坐标点的电磁铁电压,使用PWM控制方法(PWM技术),调整可编程直流电源在待研磨工件表面各坐标点输出的直流电压值,可编程直流电源输出的直流电压值和电磁铁的电压值相等。
步骤106具体包括:启动五轴机床,获取当前永磁体研磨棒在毛坯工件面形的研磨点和研磨点的电磁铁电压,利用研磨点的电磁铁电压和PWM控制方法控制可编程电源在研磨点的输出电压,使电磁铁通电形成磁场,研磨头吸附磁性研磨粉形成磁性研磨头对待研磨工件的表面进行研磨。
该磁性研磨控制方法首先利用待研磨工件的毛坯工件面形和成品工件面形计算得到待研磨工件表面所有坐标点的去除量;然后利用坐标点的去除量计算得到每个坐标点的电磁铁电压,同时存储所有坐标点的电磁铁电压;最后,在研磨时根据具体的研磨点获取存储的对应研磨点的坐标点的电磁铁电压,利用研磨点的电磁铁电压和PWM控制方法调整可编程直流电源输出的直流电压值,使电磁铁通电形成磁场,对待研磨工件的表面进行研磨。
在实际应用中,可以获取或规划研磨头的走刀轨迹,根据研磨头的走刀轨迹计算走刀轨迹上各坐标点的电磁铁电压,然后在研磨过程中根据走刀轨迹使用PWM控制方法实时调整可编程直流电源输出的直流电压值对待研磨工件进行研磨;或计算得到待研磨工件表面所有坐标点的电磁铁电压后,在研磨过程中根据走刀轨迹使用PWM控制方法实时调整可编程直流电源输出的直流电压值对待研磨工件进行研磨。
本实施例还提供一种磁场自适应的磁性研磨方法,应用于上述的磁性研磨装置,参见图3,研磨平面工件时:
装夹工件:将平面工件放置在平板磁极与挡板构成的研磨件固定台上,使用四周的螺钉装夹固定平面工件。
安装研磨棒:将永磁体研磨棒安装在五轴机床上。
定位原点:使尖锥状的研磨头垂直并靠近平面工件表面1mm处的某一点,并将该点确定为原点。
建立坐标系:通过上一步骤确定的原点,以平行于永磁体研磨棒并远离永磁体研磨棒的方向为Z轴正方向,垂直Z轴并包含原点的平面为XY平面,以加工方便原则在XY平面选择XY轴建立笛卡尔坐标系。
测量或获取平面工件的已知毛坯工件面形的数据,将毛坯工件面形的数据代入上一步骤建立的坐标系,计算得到平面工件表面各点的坐标。
获取已知理想的成品工件面形数据,即磁性研磨加工后的平面工件面形,将毛坯工件面形的数据与理想的成品工件面形数据相比较,计算平面工件表面每一个坐标点(各点)需要去除的去除量φ。本步骤是数控加工编程中通用的技术。坐标点的间隔可选1mm以上。
获取或规划研磨头的走刀轨迹。
调整研磨间隙为1mm,研磨速度为300r/min。研磨间隙为尖锥状的研磨头与平面工件表面的距离。研磨速度为研磨轴电机的旋转角速度。
计算走刀轨迹上各点的磁场强度,包括:根据公式
Figure BDA0002512802750000121
计算走刀轨迹上各点的研磨压力值。
其中φ为任一点的去除量,K为常系数,P为研磨压力,v为研磨头的线速度,t为研磨时间。
根据公式P=K1H,计算走刀轨迹上各点的磁场强度值H。
式中,K1为定值,则研磨压力与磁场强度H成正比。
根据公式E=H*Le*R/N,计算走刀轨迹上各点的电磁铁电压值。
式中,E为电磁铁电压值;H为磁场强度,N为电磁铁的励磁线圈的匝数;Le为电磁铁的有效磁路长度;R为线圈阻抗。
启动五轴机床开始研磨,获取走刀轨迹上各点的电磁铁电压值,根据走刀轨迹,使用PWM技术,实时调整可编程直流电源(直流电压源)输出的直流电压值。可编程直流电源输出的直流电压值和电磁铁电压值相等。
对平面工件表面的所有坐标点进行研磨后,研磨结束。
在平面工件表面的不同坐标点,根据计算的各坐标点需要的去除量,和计算的各坐标点对应的电磁铁电压值,通过调节PWM直流电源的输出电压,实时调整电磁铁的电压值,通过实时改变磁场强度,固定研磨速度和永磁体研磨棒的驻留时间,大幅提高了研磨精度,降低了工艺复杂程度,方便可靠,适用平面和自由曲面等工件面形的磁性研磨,适用面广。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种磁性研磨装置,其特征在于,包括:电磁铁、底座、研磨件固定台、可编程电源、机床、永磁体研磨棒和磁性研磨控制系统;
所述电磁铁的一端安装于所述底座上;
所述研磨件固定台的磁体平台与所述电磁铁的另一端连接;所述研磨件固定台用于固定待研磨工件;
所述磁性研磨装置还包括:研磨介质;所述研磨介质覆盖所述待研磨工件;
所述磁体平台为平板磁极,所述平板磁极用于将所述电磁铁通电后形成的磁场聚集在所述平板磁极的上表面,并使磁场分布均匀;
所述可编程电源的输出端与所述电磁铁的线圈连接;所述可编程电源用于给所述电磁铁供电;
所述永磁体研磨棒安装于所述机床上,所述永磁体研磨棒位于所述待研磨工件的上方;
所述机床用于控制所述永磁体研磨棒对所述待研磨工件的表面进行磁性研磨;
所述磁性研磨控制系统分别与所述可编程电源和所述机床连接;所述磁性研磨控制系统用于通过所述机床获取所述永磁体研磨棒在所述待研磨工件的研磨点,利用所述待研磨工件的毛坯工件面形的去除量、所述研磨点和PWM控制方法控制所述可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨;
所述磁性研磨控制系统用于通过所述机床获取所述永磁体研磨棒在所述待研磨工件的研磨点,利用所述待研磨工件的毛坯工件面形的去除量、所述研磨点和PWM控制方法控制所述可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨,具体包括:
以永磁体研磨棒的研磨头在待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;笛卡尔坐标系的Z轴与永磁体研磨棒平行,笛卡尔坐标系的X轴和Y轴组成的XOY平面与待研磨工件表面平行;比较毛坯工件面形和成品工件面形,利用笛卡尔坐标系确定待研磨工件表面各坐标点的去除量;
根据公式
Figure FDA0003003845340000011
利用坐标点的去除量计算该坐标点的研磨压力;其中,P表示所述研磨压力;
Figure FDA0003003845340000021
表示去除量;K表示常系数;v表示研磨头的线速度;t表示研磨时间;
根据公式P=K1H利用坐标点的研磨压力计算该坐标点的磁场强度;其中,P表示所述研磨压力;K1表示常数;H表示所述磁场强度;
根据公式
Figure FDA0003003845340000022
计算所述待研磨工件表面各点的电磁铁电压;其中,E表示所述电磁铁电压;H表示所述磁场强度;Le表示所述电磁铁的有效磁路长度;R表示所述电磁铁的线圈阻抗;N表示所述电磁铁的线圈匝数;
启动所述机床,获取当前所述永磁体研磨棒在毛坯工件面形的研磨点和研磨点的电磁铁电压,利用研磨点的电磁铁电压和PWM控制方法控制可编程电源在研磨点的输出电压,使电磁铁通电形成磁场,所述永磁体研磨棒的研磨头吸附所述研磨介质形成磁性研磨头对待研磨工件的表面进行研磨。
2.根据权利要求1所述的磁性研磨装置,其特征在于,所述研磨件固定台具体包括:磁体平台、挡板和螺钉;
所述磁体平台的磁性与所述永磁体研磨棒的研磨头的磁性相反;
所述挡板固定于所述磁体平台上,使所述研磨件固定台形成容器;
所述螺钉贯穿所述挡板,所述螺钉用于固定所述待研磨工件。
3.根据权利要求1所述的磁性研磨装置,其特征在于,所述磁性研磨控制系统具体包括:
获取模块,用于获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
去除量确定模块,用于利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
研磨压力计算模块,用于利用所述去除量计算所述待研磨工件表面各点的研磨压力;
磁场强度计算模块,用于利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
电磁铁电压计算模块,用于利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
磁性研磨模块,用于利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨。
4.一种磁性研磨控制方法,其特征在于,应用于如权利要求1-3任意一项所述的磁性研磨装置,所述磁性研磨控制方法包括:
获取待研磨工件的毛坯工件面形和所述待研磨工件的成品工件面形;
利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量;
所述利用所述毛坯工件面形和所述成品工件面形确定待研磨工件表面各点的去除量,具体包括:
以所述永磁体研磨棒的研磨头在所述待研磨工件的表面的投影点为原点O,建立笛卡尔坐标系;所述笛卡尔坐标系的Z轴与所述永磁体研磨棒平行,所述笛卡尔坐标系的X轴和Y轴组成的XOY平面与所述待研磨工件表面平行;
比较所述毛坯工件面形和所述成品工件面形,利用所述笛卡尔坐标系确定待研磨工件表面各坐标点的去除量;
利用所述去除量计算所述待研磨工件表面各点的研磨压力;
所述利用所述去除量计算所述待研磨工件表面各点的研磨压力,具体包括:
根据公式
Figure FDA0003003845340000031
计算所述待研磨工件表面各点的研磨压力;
其中,P表示所述研磨压力;
Figure FDA0003003845340000032
表示去除量;K表示常系数;v表示研磨头的线速度;t表示研磨时间;
利用所述研磨压力计算所述待研磨工件表面各点的磁场强度;
所述利用所述研磨压力计算所述待研磨工件表面各点的磁场强度,具体包括:
根据公式P=K1H计算所述待研磨工件表面各点的磁场强度;
其中,P表示所述研磨压力;K1表示常数;H表示所述磁场强度;
利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压;
所述利用所述磁场强度和电磁铁的线圈匝数计算所述待研磨工件表面各点的电磁铁电压,具体包括:
根据公式
Figure FDA0003003845340000041
计算所述待研磨工件表面各点的电磁铁电压;
其中,E表示所述电磁铁电压;H表示所述磁场强度;Le表示所述电磁铁的有效磁路长度;R表示所述电磁铁的线圈阻抗;N表示所述电磁铁的线圈匝数;
利用永磁体研磨棒在所述待研磨工件的研磨点对应的电磁铁电压和PWM控制方法控制可编程电源的输出电压,进而对所述待研磨工件进行磁性研磨;
利用平板磁极将所述电磁铁通电后形成的磁场聚集在所述平板磁极的上表面,并使磁场分布均匀。
5.根据权利要求4所述的磁性研磨控制方法,其特征在于,在所述利用所述去除量计算所述待研磨工件表面各点的研磨压力之前,还包括:
调整研磨间隙和研磨速度。
CN202010466450.5A 2020-05-28 2020-05-28 一种磁性研磨装置及磁性研磨控制方法 Active CN111482890B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010466450.5A CN111482890B (zh) 2020-05-28 2020-05-28 一种磁性研磨装置及磁性研磨控制方法
PCT/CN2021/095135 WO2021238792A1 (zh) 2020-05-28 2021-05-21 一种磁性研磨装置及磁性研磨控制方法
US17/602,514 US20220305609A1 (en) 2020-05-28 2021-05-21 Magnetic grinding device and magnetic grinding control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010466450.5A CN111482890B (zh) 2020-05-28 2020-05-28 一种磁性研磨装置及磁性研磨控制方法

Publications (2)

Publication Number Publication Date
CN111482890A CN111482890A (zh) 2020-08-04
CN111482890B true CN111482890B (zh) 2021-05-25

Family

ID=71790707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010466450.5A Active CN111482890B (zh) 2020-05-28 2020-05-28 一种磁性研磨装置及磁性研磨控制方法

Country Status (3)

Country Link
US (1) US20220305609A1 (zh)
CN (1) CN111482890B (zh)
WO (1) WO2021238792A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111482890B (zh) * 2020-05-28 2021-05-25 浙江师范大学 一种磁性研磨装置及磁性研磨控制方法
CN114055258B (zh) * 2021-11-19 2023-04-18 浙江师范大学 一种磁性抛光装置及磁性抛光控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190815A (ja) * 1997-09-25 1999-04-06 Fujitsu Ltd 研磨装置
CN101352826B (zh) * 2008-09-28 2011-01-26 清华大学 光学元件内凹面抛光方法及装置
CN104191318A (zh) * 2014-09-01 2014-12-10 浙江师范大学 一种磁流变抛光方法及抛光工具
CN110394693A (zh) * 2019-07-10 2019-11-01 中国工程物理研究院激光聚变研究中心 一种基于磁流变加工的连续型螺旋相位板制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161262A (ja) * 1983-03-04 1984-09-12 Masanori Kunieda 磁気吸引式研摩方法
US6503414B1 (en) * 1992-04-14 2003-01-07 Byelocorp Scientific, Inc. Magnetorheological polishing devices and methods
CN102079066B (zh) * 2010-11-11 2013-06-12 广东工业大学 一种电化学与磁性研磨复合的复合加工系统
WO2017030979A1 (en) * 2015-08-14 2017-02-23 The Texas A&M University System Method and apparatus for performing targeted polishing via manipulation of magnetic-abrasive fluid
US11440156B2 (en) * 2018-06-19 2022-09-13 Islamic Azad University of Najafabad Magnetic abrasive finishing of curved surfaces
CN111482890B (zh) * 2020-05-28 2021-05-25 浙江师范大学 一种磁性研磨装置及磁性研磨控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190815A (ja) * 1997-09-25 1999-04-06 Fujitsu Ltd 研磨装置
CN101352826B (zh) * 2008-09-28 2011-01-26 清华大学 光学元件内凹面抛光方法及装置
CN104191318A (zh) * 2014-09-01 2014-12-10 浙江师范大学 一种磁流变抛光方法及抛光工具
CN110394693A (zh) * 2019-07-10 2019-11-01 中国工程物理研究院激光聚变研究中心 一种基于磁流变加工的连续型螺旋相位板制备方法

Also Published As

Publication number Publication date
CN111482890A (zh) 2020-08-04
WO2021238792A1 (zh) 2021-12-02
US20220305609A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
CN111482890B (zh) 一种磁性研磨装置及磁性研磨控制方法
US20050013926A1 (en) Robotic pen
CN108161052B (zh) 磁场辅助外圆车削设备
CN104191318A (zh) 一种磁流变抛光方法及抛光工具
Tang et al. Experiment and simulation study on concentrated magnetic field-assisted ECM S-03 special stainless steel complex cavity
US20220119982A1 (en) Methods and apparatuses of oscillatory pulsed electrochemical machining
CN110142407B (zh) 一种增材制造的控制方法、装置、系统及存储介质
CN114055257B (zh) 一种受控磁场复杂曲面化学机械抛光装备
CN208357838U (zh) 一种磁场辅助外圆车削设备
JP2007098541A (ja) 研磨工具及び研磨方法
CN109848744B (zh) 一种针对于薄壁件的磁力支撑装置及方法
CN103612162A (zh) 磁流变液曲面抛光系统
KR100561291B1 (ko) 탁상용 전해 인프로세스 드레싱 가공장치
CN202943344U (zh) 一种电化学加工窄槽的ecm装置
CN108161603B (zh) 磁场辅助平面磨削设备
CN203527153U (zh) 磁流变液曲面抛光系统
CN208099972U (zh) 一种磁场辅助平面磨削设备
CN208214378U (zh) 一种磁场辅助平面钻削设备
CN206493001U (zh) 一种星轮磨床结构
US20230132024A1 (en) Magnetic abrasive finishing using stationary electromagnets
CN106601430A (zh) 单磁极可编程充磁设备
CN204913537U (zh) 压力臂成型数控磨床
CN205967697U (zh) 一种用于铝模45度平面加工的治具
CN211073274U (zh) 一种旋转吸盘组件
JP2000052218A (ja) 磁気研磨装置および磁気研磨方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant