WO2021238662A1 - 薄型均温板元件结构及其制造方法 - Google Patents

薄型均温板元件结构及其制造方法 Download PDF

Info

Publication number
WO2021238662A1
WO2021238662A1 PCT/CN2021/093490 CN2021093490W WO2021238662A1 WO 2021238662 A1 WO2021238662 A1 WO 2021238662A1 CN 2021093490 W CN2021093490 W CN 2021093490W WO 2021238662 A1 WO2021238662 A1 WO 2021238662A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
sheet
capillary
thin
uniform temperature
Prior art date
Application number
PCT/CN2021/093490
Other languages
English (en)
French (fr)
Inventor
陈振贤
黄振权
Original Assignee
广州力及热管理科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州力及热管理科技有限公司 filed Critical 广州力及热管理科技有限公司
Publication of WO2021238662A1 publication Critical patent/WO2021238662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps

Definitions

  • the present invention relates to a thin-type uniform temperature plate element structure and a manufacturing method thereof, in particular to a uniform temperature plate element structure with a capillary structure placed in a special position, so that the overall thin-type uniform temperature plate element structure has a uniform thickness.
  • Microprocessors are the core components of electronic and communication products. They are prone to generate heat under high-speed operations and become the main heating components of electronic devices. If the heat cannot be dissipated immediately, local processing hot spots (Hot Spot) will occur. If there is no good thermal management solution and heat dissipation system, the microprocessor will often overheat and fail to perform its due function, and even affect the life and reliability of the entire electronic device system.
  • the temperature equalizing plate is basically a closed cavity containing working fluid.
  • the conventional method for manufacturing a uniform temperature plate is to etch a groove from a sheet copper substrate, and then lay a copper screen mesh or a woven mesh (Copper Woven Mesh) in the groove.
  • the copper mesh must be cut according to the shape and size of the groove before it can be laid in the groove.
  • the copper mesh is pressed by a graphite jig and sintered at a high temperature to form a capillary structure on the surface of the groove.
  • the sheet-shaped copper substrate is welded with the groove inside to form the air passage cavity.
  • the sheet-shaped copper substrate is further sealed, injected with water, evacuated, etc., to form a uniform temperature plate or plate-type heat pipe with a capillary structure, as shown in Figure 1A.
  • Copper Screen Mesh is only cross-woven and has a simple capillary structure. Due to the limitation of the airway space, the thickness of the ultra-thin uniform temperature plate element with a thickness of less than 0.3 millimeters (mm) can only have a space of tens of micrometers (um) in the thickness of the capillary structure. Therefore, in the case of anti-gravity, the capillary force of copper mesh as a capillary structure is often insufficient. In addition, the shape of the uniform temperature plate element is not square, and it is light and thin.
  • a uniform temperature plate with a component thickness of 0.3 mm is made of two copper alloy sheets with etched grooves of 0.2 mm and 0.1 mm.
  • the brazing process is hermetically sealed; the uniform temperature plate with a component thickness of 0.25mm is hermetically sealed by a brazing process of two copper alloy sheets with etched grooves of 0.15mm and 0.1mm, as shown in the figure Shown in 1B.
  • the thickness of the welding layer structure is about 20um-30um, compared with the thickness of the lower uniform temperature plate component, there will be 6%-10% pad height at the edge of the component, which affects the flatness.
  • the thickness of the brazing paste material is relatively more non-negligible.
  • the brazing paste material on the edge is raised by the distance of the sheet copper substrate, the height of the support in the middle is insufficient, as shown in A1 of Figure 1C.
  • the pressure difference between the inside and outside of the element will cause the center of the temperature equalizing plate to collapse inward, destroying the better flat structure of the element, as shown in FIG. 1D.
  • the purpose of the present invention is to provide a thin uniform temperature plate element structure and its manufacturing method, which can avoid capillary structure pollution, maintain capillary structure capillary force, achieve high-quality mass production and can effectively solve the welding layer structure and Problems arising from the production of hard solder paste materials in the manufacture of thin uniform temperature plates.
  • the present invention discloses a thin-type uniform temperature plate element structure, which is characterized in that it includes:
  • a welding layer structure arranged around the periphery of the groove structure and between the first sheet and the second sheet, so that the first sheet and the second sheet are airtightly joined;
  • a first capillary structure formed in the groove structure, and a vacuum channel space is formed between the first capillary structure and the second surface;
  • a second capillary structure is formed between the supporting structure and the second surface.
  • the first surface has a first ring structure
  • the first ring structure is ringed on the outside of the groove structure
  • the second surface has a second ring structure
  • the second ring structure matches And fit the first ring structure
  • the first ring structure is a ring-shaped convex structure
  • the second ring structure is a ring-shaped concave structure
  • the first ring structure is a ring concave structure
  • the second ring structure is a ring convex structure
  • the first annular structure is a first annular concave structure
  • the second annular structure is a second annular concave structure
  • the first annular concave structure and the second annular concave structure are formed between An annular space.
  • the thin-type uniform temperature plate element structure further includes an airtight ring, which is arranged in the annular space and closely fits the first annular concave structure and the second annular concave structure.
  • first ring structure and the second ring structure are both a ring-shaped convex structure.
  • the first capillary structure and the second capillary structure are formed by a slurry through a sintering process, the average pore size of the first capillary structure and the second capillary structure is less than 10um, and the thin-type uniform temperature plate element structure
  • the thickness is not greater than 1.0mm, and further has a working fluid placed in the enclosed accommodating space, and the enclosed accommodating space is in a vacuum negative pressure state.
  • the thickness of the second capillary structure is between 80% and 120% of the thickness of the welding layer structure.
  • the material of the first sheet and the second sheet is copper, copper alloy, titanium, titanium alloy or stainless steel.
  • a method for manufacturing a thin uniform temperature plate element structure which is characterized in that it comprises:
  • a first sheet having a first surface is provided, the first surface has a groove structure and a first ring structure, the groove structure has a supporting structure, and the first ring structure is arranged around The outer side of the groove structure;
  • first sheet and the second sheet Cover the first sheet and the second sheet, buckle the first ring structure and the second ring structure, and isolate the first capillary structure and the second capillary structure from the brazing paste material; as well as
  • the brazing paste material is heated to form a welding layer structure to seal the first sheet and the second sheet.
  • the present invention uses the second capillary structure on the support structure of the vacuum chamber of the thin-type uniform temperature plate element as an extension of the support structure height to compensate for the thickness of the welding layer around the element after the upper and lower two sheets are sealed.
  • the ultra-thin temperature equalizing plate of the present invention uses the second capillary structure thickness on the supporting structure to supplement the thickness of the welded layer structure increased after the brazing and sealing, so that the thickness of the element is uniform and consistent.
  • the second capillary structure squeezed between the support structure and the second sheet can also be used as a reinforcement for the function of the first capillary structure in the groove structure.
  • the ring structure on the surface of the sheet insulates the brazing paste material from diffusing into the capillary structure during the sealing process, avoiding the contamination of the capillary structure, and then maintaining the capillary force of the porous capillary structure.
  • Figure 1A shows a temperature equalizing plate made of copper mesh in the prior art.
  • Fig. 1B, Fig. 1C, Fig. 1D shows the temperature equalizing plate and its problems in the current development technology.
  • 2A is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in a specific embodiment of the present invention.
  • 2B is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • 2C is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • 2D is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • Fig. 3 is a schematic diagram showing the structure of the first sheet and the second sheet in a specific embodiment of the present invention.
  • 4A is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • 4B is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • 4C is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • Fig. 5 is a schematic diagram showing the method for manufacturing the thin-type uniform temperature plate element structure of the present invention.
  • FIG. 6 is a flowchart showing the steps of the method for manufacturing the thin-type uniform temperature plate element structure of the present invention.
  • FIG. 2A is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in a specific embodiment of the present invention.
  • the thin-type uniform temperature plate element structure provided by the present invention includes a first sheet 1, a second sheet 2, a welding layer structure 3, a first capillary structure 41 and a second capillary structure 42.
  • the first sheet 1 has a first surface 10
  • the first surface 10 has a groove structure 100
  • the groove structure 100 has a supporting structure 101.
  • the second sheet 2 has a second surface 20 corresponding to the first surface 10, and a sealed accommodating space is formed between the groove structure 100 of the first surface 10 and the second surface 20.
  • the welding layer structure 3 is arranged around the periphery of the groove structure 100 and is arranged between the first sheet 1 and the second sheet 2 to make the first sheet 1 and the second sheet 2 airtightly join.
  • the first capillary structure 41 is formed in the trench structure 100, and a vacuum vacuum duct space 5 is formed between the first capillary structure 41 and the second surface 20.
  • the second capillary structure 42 is formed between the supporting structure 101 and the second surface 20.
  • the supporting structure 101 of the thin-type uniform temperature plate element structure of the present invention has a second capillary structure 42, and the height of the second capillary structure 42 is approximately equal to the thickness of the welding layer structure 3. Therefore, when the height of the outer edge of the first surface 10 and the supporting structure 101 are equal, the height of the outer edge of the first surface 10 plus the welding layer structure 3 is approximately equal to the height of the supporting structure 101 plus the second capillary structure 42. Thereby, without adding other processes to adjust the height of the outer edge of the first surface 10 and the support structure 101, the outer side and the center height of the thin-type uniform temperature plate element structure can be made equal, without the occurrence as shown in FIG. 1D. The unequal height of the structure leads to the collapse of the central part and the uneven thickness of the component.
  • the thickness of the welding layer structure 3 is about 20-30um. This will cause a 6.6% and 10% difference in thickness between the middle and the periphery of the ultra-thin uniform temperature plate element whose element thickness is only 0.3mm. If the uniform temperature plate element is only 0.2mm, the thickness difference is as high as 10%-15%.
  • the second capillary structure 42 and the welding layer structure 3 tend to be the same, and both can be controlled between 20um and 30um.
  • the thickness of the second capillary structure is 70%, 80%, 90%, 100%, 110%, 120%, 130%, or any ratio between 70% and 130% of the thickness of the welding layer structure .
  • FIG. 2B is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • Fig. 3 is a schematic diagram showing the structure of the first sheet and the second sheet in a specific embodiment of the present invention.
  • the thin-type uniform temperature plate element structure of the present invention includes a first sheet 1, a second sheet 2, a welding layer structure 3, a first capillary structure 41, and a second capillary structure 42.
  • the first sheet 1 has a first surface 10.
  • the first surface 10 has a trench structure 100 and a first ring structure 109.
  • the trench structure 100 has a supporting structure 101.
  • the first ring structure 109 is arranged around the outer side of the trench structure 100.
  • the second sheet 2 has a second surface 20 corresponding to the first surface 10.
  • the second surface 20 has a second ring structure 209 that matches and fits the first ring structure 109, so that a sealed accommodating space is formed between the groove structure 100 on the first surface 10 and the second surface 20.
  • the welding layer structure 3 is ringed on the outside of the first ring structure 109, and is ringed between the first sheet 1 and the second sheet 2, so that the first sheet 1 and the second sheet 2 are airtightly joined .
  • the first capillary structure 41 is laid in the trench structure 100.
  • a vacuum channel space 5 is formed between the first capillary structure 41 and the second surface 20.
  • the second capillary structure 42 is laid between the supporting structure 101 and the second surface 20.
  • the ring shape does not only mean a circular ring, but generally refers to a geometric figure that is convex or concave along the periphery of the size and shape of the thin-type uniform temperature plate element.
  • the ring shape may also be various ring-shaped polygons or ring-shaped geometric figures with arc angles.
  • the first surface 10 and the second surface 20 of the thin uniform temperature plate element structure of the present invention each have a concave or convex ring structure, and a physical transition is formed between the capillary structure and the welding layer structure 3, blocking the first surface and The second surface joins the spatial continuity of the plane.
  • the rheological brazing paste material or the chemical solvent or the polymer material that evaporates when the brazing paste material is heated will not be contaminated along the continuous plane as shown in A2 in Figure 1C. Porous capillary structure. Therefore, the annular structure design of the present invention can effectively maintain the capillary force of the capillary structure.
  • first capillary structure 41 and the second capillary structure 42 are simultaneously formed from a slurry through a sintering process.
  • the first capillary structure 41 and the second capillary structure 42 are both porous capillary structures, and the average pore size is less than 10um.
  • the capillary structure of this pore size level has better capillary force, but it is also easy to be contaminated by brazing paste, brazing paste solvent, or incompletely cracked polymer that leaks during sealing, which affects the capillary structure and the working fluid.
  • the conveying capacity The design of the first ring structure 109 and the second ring structure 209 in the present invention can effectively prevent the first capillary structure 41 in the trench structure 100 from being polluted during the brazing process.
  • the thin-type uniform temperature plate element structure further has a working fluid placed in the first capillary structure 41 or the second capillary structure 42 of the enclosed accommodating space, and the enclosed accommodating space is in a vacuum negative pressure state.
  • the working fluid flows and circulates in the capillary structure and vacuum channel space in the form of liquid and gas phase to perform the function of rapid heat conduction.
  • the thickness of the thin-type uniform temperature plate component structure is not greater than 1.0mm, which can be effectively applied to mobile communication devices, such as 5G smart phones, tablet computers, or various electronic products that require lightness and thinness.
  • the increased thickness of the brazing layer structure approximately 20um-30um
  • the pressure difference between the inside and outside of the uniform temperature plate component caused the difference between the thickness of the surrounding and the middle area of the component Become a part that cannot be ignored. Therefore, the design of the present invention uses the second capillary structure 42 as an extension of the height of the support structure 101 to make the overall thickness of the uniform temperature plate element more uniform and smooth.
  • the second capillary structure 42 of the present invention is sintered to form a porous capillary structure, and then squeezed by the second sheet 2 to form a capillary structure with better structural strength.
  • the function of the second capillary structure 42 can be used as an auxiliary capillary structure of the uniform temperature plate, and can also increase the space of the vacuum channel and improve the heat conduction function of the thin uniform temperature plate
  • the first ring structure 109 is a ring-shaped convex structure; the second ring structure 209 is a ring-shaped concave structure.
  • the ring-shaped convex structure 109 and the ring-shaped concave structure 209 can be nested with each other. If the ring-shaped convex portion structure is divided into the outer side, the inner side, and the top side, at least one of them should be closely attached to the ring-shaped concave portion structure.
  • the first ring structure 109 is a ring-shaped concave structure; the second ring structure 209 is a ring-shaped convex structure.
  • the ring-shaped convex structure 109 and the ring-shaped concave structure 209 can be nested with each other. If the ring-shaped convex portion structure is divided into the outer side, the inner side, and the top side, at least one of them should be closely attached to the ring-shaped concave portion structure.
  • FIG. 2D is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • the second surface 20 also has a groove 200, and the position of the groove 200 corresponds to the groove 100.
  • the second surface 20 has a groove 200, the enclosed accommodating space and the vacuum channel space 5 will become larger, or the thickness of the first capillary structure 41 can be made thicker, thereby increasing the capillary force.
  • FIG. 4A is a schematic cross-sectional view showing the structure of a thin-type uniform temperature plate element in another specific embodiment of the present invention.
  • the first annular structure 109 is a first annular concave structure
  • the second annular structure 209 is a second annular concave structure.
  • An annular space is formed between the first annular recess structure 109 and the second annular recess structure 209.
  • the thin-type uniform temperature plate element structure further includes an airtight ring 6 arranged in the annular space; and the airtight ring 6 closely fits the first annular concave structure 109 and the second annular concave structure 209.
  • the airtight ring 6 can be closely attached to at least one side of the first annular recess structure 109 and one side of the second annular recess structure 209.
  • the airtight ring 6 can be made of various materials whose melting point is higher than the brazing temperature.
  • Both the first ring structure 109 and the second ring structure 109 are ring-shaped convex structures. If the ring-shaped convex structure is divided into the outer side, the inner side, and the top side, the first ring structure 109 is closely attached to the second surface 20, or the second ring structure 209 is closely attached to the first surface 10, or the first surface. The inner side of the ring structure 109 is closely attached to the outer side of the second ring structure 209 or the outer side of the first ring structure 109 is closely attached to the inner side of the second ring structure 209.
  • the purpose of the dual structure of the first ring structure 109 and the second ring structure 209 is to cut off the continuity of the space between the first sheet 1 and the second sheet 2 so that the first During the process of forming the soldering layer structure 3 with the brazing paste on the outer side of the ring structure 109 and the second ring structure 209, the capillary structure inside the first ring structure 109 and the second ring structure 209 will not be contaminated.
  • the first sheet 1 may have three grooves 100.
  • the number of grooves 100 can be one, two, three, or more depending on the specific design, and the present invention is not limited thereto.
  • the material of the first sheet and the second sheet is copper, copper alloy, titanium or titanium alloy.
  • Copper and copper alloys are excellent thermally conductive materials and have low production costs. Titanium and titanium alloys have the characteristics of high strength, low weight, and excellent corrosion resistance, fatigue resistance, and crack resistance. Therefore, copper, copper alloys, titanium and titanium alloys are preferred for the present invention.
  • the material of the first sheet and the second sheet is stainless steel, which has a higher hardness than copper.
  • the first surface and the second surface are respectively electroplated with a thin copper layer, and the thin copper layer on the surface of the sheet material facilitates the hard soldering and effectively increases the heat conduction efficiency.
  • FIG. 5 is a schematic diagram showing the method for manufacturing the thin-type uniform temperature plate element structure of the present invention.
  • FIG. 6 is a flowchart showing the steps of the method for manufacturing the thin-type uniform temperature plate element structure of the present invention.
  • the present invention provides a method for manufacturing a thin uniform temperature plate element structure.
  • FIG. 5 takes a thin uniform temperature plate element structure similar to the embodiment of FIG. 2C as an example, but the manufacturing method of each embodiment does not deviate from the following steps S1-S7.
  • S1 Provide a first sheet 1 with a first surface 10.
  • the first surface 10 has a trench structure 100 and a first ring structure 109.
  • the trench structure 100 has a supporting structure 101.
  • the first ring structure 109 is arranged around the outer side of the groove structure 100.
  • S2 Provide a second sheet 2 having a second surface 20 corresponding to the first surface 10.
  • the second surface 20 has a second ring structure 209 opposite to the first ring structure 109.
  • a slurry 40 is laid to cover the trench structure 100 and the support structure 101.
  • the slurry 40 includes a metal powder, a solvent, and a polymer.
  • S6 Cover the first sheet 1 and the second sheet 2, so that the first ring structure 109 and the second ring structure 209 are matched and sleeved, and the capillary structure is isolated from the brazing paste material 30. That is to say, the first capillary structure 41 and the second capillary structure 42 are inside the first ring structure 109 and the second ring structure 209, and the brazing paste material 30 is in the first ring structure 109 and the second ring structure 209. Outside.
  • a steel plate 70 can be used to cover the first sheet 1 and the holes on the steel plate 70 correspond to the groove structure 100 of the first sheet 1.
  • the slurry 40 is placed on one end of the steel plate 70.
  • a scraper 71 is used to scrape the slurry 40 through the hole to the other end of the steel plate 70.
  • Part of the slurry 40 falls into the trench structure 100 and fills and covers the trench structure 100 and the support structure 101.
  • the steel plate 70 shields the first ring structure 109 and the outer side of the first ring structure 109, so the slurry 40 is not adhered to the first ring structure 109 and the outer side of the first ring structure 109.
  • the placement can be a stencil printing process (Stencil Printing Process), a screen printing process (Screen Printing Process), or a dispensing process (Dispensing Process).
  • step S4 firstly, heating at a low temperature to volatilize the solvent, and the size of the slurry 40 is reduced and converged into a solidified slurry. Then the temperature is increased and heated to crack and remove the polymer, and the polymer evenly dispersed between the metal powders is cracked and burned. Finally, the temperature is increased to the sintering temperature of the metal powder to form the porous first capillary structure 41 and the second capillary structure 42.
  • the porous capillary structure formed in the trench structure 100 is the first capillary structure 41; the porous capillary structure formed on the support structure 101 is the second capillary structure 42, and both are formed at the same time.
  • the brazing paste material 30 is first laid on the first surface 10 in step S5, and then the first sheet 1 and the second sheet 2 are covered in step S6.
  • the brazing paste material 30 is introduced between the first sheet 1 and the second sheet 2 by capillary effect.
  • the above steps can prevent the hard solder paste material 30 from contaminating the internal capillary structure during the process of manufacturing the thin uniform temperature plate component structure. Moreover, by adjusting the step of printing and laying the paste, the capillary structure can fill the height difference caused by the welding layer structure.
  • the present invention uses a capillary structure formed on the support structure in the cavity of the uniform temperature plate element as an extension of the height of the support structure to compensate for the intermediate area caused by the thickness of the welding layer around the element after the upper and lower two sheets are sealed. Thickness difference. For ultra-thin uniform temperature plates with a component thickness of less than 0.3mm, even a solder layer structure with a thickness of only about 20um-30um will cause a height difference of 6.7%-10% due to the pressure difference between the inside and outside of the component. Once the element thickness is only 0.2mm, the height difference between the periphery and the middle area will reach 10%-15%.
  • the ultra-thin temperature equalizing plate of the present invention uses the second capillary structure thickness on the supporting structure to supplement the thickness of the welded layer structure increased after the brazing and sealing, so that the thickness of the element is uniform and consistent.
  • the second capillary structure squeezed between the support structure and the second sheet can also be used as a reinforcement for the function of the first capillary structure in the groove structure.
  • the present invention uses the ring structure of the sheet surface of the uniform temperature plate element to isolate the brazing paste material from diffusing into the capillary structure during the sealing process, avoiding the capillary structure pollution, and then maintaining the capillary force of the porous capillary structure .
  • the present invention solves the problems encountered in the manufacturing process of the ultra-thin uniform temperature plate and the high-efficiency capillary structure, and realizes the high-quality mass production manufacturing of the uniform temperature plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种薄型均温板元件结构,包含一第一片材、一第二片材、一焊接层结构、一第一毛细结构和一第二毛细结构,第一片材具有一沟槽结构,沟槽结构具有一支撑结构并容置第一毛细结构,焊接层结构环设于沟槽结构的外侧,并使第一片材与第二片材气密接合,第二毛细结构铺置于支撑结构与第二片材之间,本发明的第二毛细结构作为支撑结构高度的延伸,且厚度与焊接层结构的厚度趋于一致,以使薄型均温板元件结构具有较均匀的厚度。

Description

薄型均温板元件结构及其制造方法 技术领域
本发明系关于一种薄型均温板元件结构及其制作方法,尤其是指一种具有置于特殊位置的毛细结构的均温板元件结构,以使整体薄型均温板元件结构具有均匀厚度。
背景技术
电子及手持通讯装置产品的发展趋势不断地朝向薄型化与高功能化,人们对装置内微处理器(Microprocessor)运算速度及功能的要求也越来越高。微处理器是电子及通讯产品的核心元件,在高速运算下容易产生热而成为电子装置的主要发热元件。如果没能即时将热散去,将产生局部性的处理热点(Hot Spot)。倘若没有良好热管理方案及散热系统,往往造成微处理器过热而无法发挥出应有的功能,甚至影响到整个电子装置系统的寿命及可靠度。因此,电子产品需要优良的散热能力,尤其像智能手机(Smartphone)及平板电脑(Tablet PC)这种超薄的电子装置更需要有优良的散热能力。目前,电子及通讯产品处理热点(Hot Spot)的解热及导热的有效方式,是将薄型均温板(Vapor Chamber)的吸热端(Evaporator)接触该电子装置的微处理器。微处理器所产生的高热被传导并分布至机壳,藉此将热辐射至空气中。均温板基本上是一内含工作流体的封闭腔体,藉由腔体内工作流体持续循环的液气二相变化,及气体及液体于吸热端及冷凝端间气往液返的对流,而达到快速导热或散热的目的。
习知均温板的制作方法系将片状铜基板蚀刻出沟槽后,在沟槽中铺置铜网(Copper Screen Mesh)或编织网(Copper Woven Mesh)。在实际应用时,必需先将铜网依沟槽的形状及尺寸裁切,方能铺置在沟槽中。铜网经石墨治具压合并在高温下烧结,形成毛细结构于沟槽表面。接着将片状铜基板以沟槽在内的的方式焊接,形成气道空腔。片状铜基板进一步封合、注水、抽真空等,制成具有毛细结构的均温板或板型热导管,如图1A所示。
然而,铜网(Copper Screen Mesh)仅交叉编织,毛细结构简单。厚度小于0.3公厘(mm)的超薄均温板元件由于气道空间的限制,毛细结构厚度往往仅能有几十微米(um)的空间。因此,在反重力的情况下一般铜网做为毛细结构毛细力往往不足。此外,均温板元件的形状并非方方正正,而且又轻又薄,量产时铜网的编织、裁切、手工铺置以及石墨治具的压合等制程,使得超薄均温板元件以铜网制作毛细结构的过程变得复杂且不利于高良率量产。
再者,由于超薄均温板的厚度规格需求越来越薄,比如说元件厚度为0.3mm的均温板是由0.2mm及0.1mm的两片具有蚀刻沟槽的铜合金片材经硬焊(Brazing)工艺气密封合;元件厚度为0.25mm的均温板是由0.15mm及0.1mm的两片具有蚀刻沟槽的铜合金片材经硬焊(Brazing)工艺气密封合,如图1B所示。其中,焊接层结构的厚度大约在20um-30um左右,相较的下均温板元件的厚度在元件边缘会有6%-10%的垫高,而影响了平整性。因此硬焊膏材料的厚度也相对更不可忽略。当边缘的硬焊膏材料垫高了片状铜基板的距离,中间的支撑体却高度不足,如图1C的A1所示。抽真空后,元件内外的压力差将导致均温板中心向内塌陷,破坏元件较佳的平整结构,如图1D所示。
再者,如果使用更高孔隙度的材料取代铜网作为毛细结构。然而当毛细结构效果逐渐提升后,却衍生出新的问题。在将两个片状铜基板硬焊接合时,硬焊膏材料会渗入毛细结构区域中而造成毛细结构的污染,大幅度降低毛细力,如图1C的A2所示。
发明内容
有鉴于此,本发明的目的在于提供一种薄型均温板元件结构及其制作方法,其能避免毛细结构污染,维持毛细结构毛细力,实现高品质量产制造,能有效解决焊接层结构及硬焊膏材料在薄型均温板的制作中所衍生的问题。
为实现上述目的,本发明公开了一种薄型均温板元件结构,其特征在于包含:
一第一片材,具有一第一表面,该第一表面具有一沟槽结构,该沟槽结构中具有一支撑结构;
一第二片材,具有相对应该第一表面的一第二表面,该第一表面的沟槽结构与该第二表面之间形成一密闭容置空间;
一焊接层结构,环设于该沟槽结构的外围且设于该第一片材与该第二片材之间,以使该第一片材与该第二片材气密接合;
一第一毛细结构,形成于该沟槽结构内,且该第一毛细结构与该第二表面间形成一真空气道空间;以及
一第二毛细结构,形成于该支撑结构与该第二表面之间。
其中,该第一表面具有一第一环状结构,该第一环状结构环设于该沟槽结构的外侧,该第二表面具有一第二环状结构,且该第二环状结构匹配并套合该第一环状结构。
其中,该第一环状结构为一环状凸部结构,以及该第二环状结构为一环状凹部结构。
其中,该第一环状结构为一环状凹部结构,以及该第二环状结构为一环状凸 部结构。
其中,该第一环状结构为一第一环状凹部结构,该第二环状结构为一第二环状凹部结构,该第一环状凹部结构和该第二环状凹部结构之间形成一环状空间,该薄型均温板元件结构进一步包含有一气密环,设置于该环状空间中,且紧密贴合该第一环状凹部结构和该第二环状凹部结构。
其中,该第一环状结构和该第二环状结构皆为一环状凸部结构。
其中,该第一毛细结构与该第二毛细结构系由一浆料经一烧结过程而形成,该第一毛细结构与该第二毛细结构的平均孔隙尺寸小于10um,该薄型均温板元件结构的厚度不大于1.0mm,并进一步具有一工作流体置于该密闭容置空间,且该密闭容置空间为真空负压状态。
其中,该第二毛细结构的厚度介于该焊接层结构的厚度的80%至120%之间。
其中,该第一片材及第二片材的材质为铜、铜合金、钛、钛合金或不锈钢。
还公开了一种薄型均温板元件结构的制造方法,其特征在于包含:
提供具有一第一表面的一第一片材,该第一表面具有一沟槽结构及一第一环状结构,该沟槽结构内具有一支撑结构,且该第一环状结构环设于该沟槽结构的外侧;
铺置一浆料于该沟槽结构并且覆盖过该支撑结构,该浆料包含有一金属粉末;
加热该浆料以烧结该金属粉末,而产生一第一毛细结构形成于该沟槽结构的内和一第二毛细结构形成于该支撑结构之上;
铺设一硬焊膏材料于该第一表面的该第一环状结构的外侧;
提供一第二片材,具有相对应该第一表面的一第二表面,该第二表面具有一第二环状结构相对于该第一环状结构;
盖合该第一片材和该第二片材,使该第一环状结构和该第二环状结构扣合并将该第一毛细结构及该第二毛细结构与该硬焊膏材料隔绝;以及
加热该硬焊膏材料形成一焊接层结构而密封该第一片材和该第二片材。
综上所述,本发明藉由薄型均温板元件真空腔体的支撑结构上的第二毛细结构做为支撑结构高度的延伸,以弥补因上下两片材封合后元件周围焊接层结构厚度所造成的中间区域厚度断差。本发明超薄均温板利用支撑结构上的第二毛细结构厚度来补足硬焊封合后所增加的焊接层结构厚度,使元件厚度达到均匀及一致。介于支撑结构及第二片材之间被挤压的第二毛细结构亦可做为沟槽结构中第一毛细结构功能的补强。同时,片材表面的环状结构,在封合过程中隔绝硬焊膏材料扩散至毛细结构中,避免毛细结构污染,进而维持了多孔隙毛细结构的毛细力。
附图说明
图1A:是绘示习知技术中利用铜网制成的均温板。
图1B、图1C、图1D:是绘示现开发技术中的均温板及其问题。
图2A:是绘示本发明一具体实施例中薄型均温板元件结构的剖面示意图。
图2B:是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。
图2C:是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。
图2D:是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。
图3:是绘示本发明一具体实施例中第一片材和第二片材的结构的示意图。
图4A:是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。
图4B:是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。
图4C:是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。
图5是绘示本发明薄型均温板元件结构的制作方法的示意图。
图6是绘示本发明薄型均温板元件结构的制作方法的步骤流程图。
具体实施方式
为了让本发明的优点,精神与特征可以更容易且明确地了解,后续将以具体实施例并参照所附图式进行详述与讨论。需注意的是,这些具体实施例仅为本发明代表性的具体实施例,其中所举例的特定方法、装置、条件、材质等并非用以限定本发明或对应的具体实施例。又,图中各元件仅系用于表达其相对位置且未按其实际比例绘述,本发明的步骤编号仅为区隔不同步骤,并非代表其步骤顺序,合先叙明。
请参阅图2A。图2A是绘示本发明一具体实施例中薄型均温板元件结构的剖面示意图。本发明提供的薄型均温板元件结构包含有一第一片材1、一第二片材2、一焊接层结构3、一第一毛细结构41和一第二毛细结构42。第一片材1具有一第一表面10,第一表面10具有一沟槽结构100,沟槽结构100中具有一支撑结构101。第二片材2具有相对应第一表面10的一第二表面20,第一表面10的沟槽结构100与第二表面20之间形成一密闭容置空间。焊接层结构3环设于沟槽结构100的外围且设于第一片材1与该第二片材2之间,以使第一片材1与第二片材2气密接合。第一毛细结构41形成于沟槽结构100内,且第一毛细结构41与第二表面20间形成真空的一真空气道空间5。第二毛细结构42形成于支撑结构101与第二表面20之间。
本发明薄型均温板元件结构的支撑结构101上有第二毛细结构42,第二毛细结构42的高度约略等于焊接层结构3的厚度。因此第一表面10外缘和支撑结构101高度相当时,第一表面10外缘加上焊接层结构3后的高度约等于支撑结构101加上第二毛细结构42的高度。藉此,不须增加其他工序来调整第一表面10外缘和支撑结构101的高度,即可使薄型均温板元件结构的外侧和中心高度相当,而不会发生如 图1D中所示的结构不等高导致中心部位塌陷而造成元件的厚度不均匀。
实务上,上下两金属片材透过硬焊膏焊接工艺气密接合后,焊接层结构3的厚度大概是20-30um。这对元件厚度仅有0.3mm的超薄均温板元件而言就会造成中间与周边6.6%及10%的厚度差。若均温板元件只有0.2mm,则厚度差高达10%-15%。在本发明的具体实施例中,第二毛细结构42和焊接层结构3趋于一致,皆可控制在20um到30um之间。例如说,第二毛细结构的厚度为焊接层结构的厚度的70%、80%、90%、100%、110%、120%、130%,或70%-130%之间的任一比例值。
请参阅图2B和图3。图2B是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。图3是绘示本发明一具体实施例中第一片材和第二片材的结构的示意图。本发明的薄型均温板元件结构包含一第一片材1、一第二片材2、一焊接层结构3、一第一毛细结构41、和一第二毛细结构42。第一片材1具有一第一表面10。第一表面10具有一沟槽结构100及一第一环状结构109。沟槽结构100具有一支撑结构101。第一环状结构109环设于沟槽结构100的外侧。第二片材2具有相对应第一表面10的一第二表面20。第二表面20具有一第二环状结构209匹配并套合第一环状结构109,使第一表面10的沟槽结构100与第二表面20之间形成一密闭容置空间。焊接层结构3环设于第一环状结构109的外侧,且环设于第一片材1与第二片材2之间,以使第一片材1与第二片材2气密接合。第一毛细结构41铺置于沟槽结构100内。第一毛细结构41与第二表面20间形成一真空气道空间5。第二毛细结构42铺置于支撑结构101与第二表面20之间。
本发明中,环状并非仅意指圆环,而是泛指沿着薄型均温板元件尺寸形状的外围而形成凸出或凹陷的几何图形。在不同的实施例中,环状亦可能为各种环状多边形或具有弧角的环状几何图形。
本发明薄型均温板元件结构的第一表面10和第二表面20各自有凹或凸环状结构,而在毛细结构和焊接层结构3之间形成物理上的转折,阻断第一表面和第二表面接合平面的空间连续性。相较于图1C的技术,具流变性的硬焊膏材料或是加热硬焊膏材料时挥发的化学溶剂或裂解的聚合物材料,不会像图1C中A2所示沿着连续平面而污染多孔隙的毛细结构。是以,本发明的环状结构设计可有效维持毛细结构的毛细力。
其中,第一毛细结构41与第二毛细结构42系由一浆料经一烧结过程而同时形成。
第一毛细结构41与第二毛细结构42皆是多孔隙毛细结构,且平均孔隙尺寸小于10um。此孔隙尺寸等级的毛细结构具有较佳的毛细力,但也容易被封合时渗漏的硬焊膏、硬焊膏溶剂、或未完全裂解的聚合物所污染,而影响毛细结构对工作流体的输送能力。本发明中的第一环状结构109及第二环状结构209的设计可有效 避免沟槽结构100中的第一毛细结构41在硬焊工艺时遭受污染。此外,薄型均温板元件结构进一步具有一工作流体(Working Fluid)置于密闭容置空间的第一毛细结构41或第二毛细结构42中,且密闭容置空间为真空负压状态。工作流体以液相及气相的形式在毛细结构及真空气道空间中流动及循环以发挥快速导热的功能。
其中薄型均温板元件结构的厚度不大于1.0mm,能有效适用于移动通讯设备,例如5G智慧型手机、平板电脑或各种讲求轻薄化的电子产品中。在元件结构限制为如此扁薄的情况下,硬焊接层结构增加的厚度(约为20um-30um)以及均温板元件内部及外部的压力差所造成的元件周围与中间区域厚度不一的情况成为不可忽视的一部份。是以本发明设计利用第二毛细结构42做为支撑结构101高度的延伸而使均温板元件整体厚度更加均匀平整益加重要。在一具体实施例中,本发明的第二毛细结构42是经烧结形成一多孔隙毛细结构后,被第二片材2挤压而形成结构强度较佳的毛细结构。第二毛细结构42功能可做为该均温板的辅助毛细结构,亦可增加真空气道空间,提升薄型均温板的导热功能
于图2B的具体实施例中,第一环状结构109为一环状凸部结构;第二环状结构209为一环状凹部结构。环状凸部结构109和环状凹部结构209可相互套合。若将环状凸部结构分成外侧、内侧、顶侧,则至少其中一侧紧密贴合于环状凹部结构即可。
请参阅图2C。图2C是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。于此具体实施例中,多数元件与先前实施例相同,不相同的部分如下所述。第一环状结构109为一环状凹部结构;第二环状结构209为一环状凸部结构。环状凸部结构109和环状凹部结构209可相互套合。若将环状凸部结构分成外侧、内侧、顶侧,则至少其中一侧紧密贴合于环状凹部结构即可。
请参阅图2D。图2D是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。于此具体实施例中,多数元件与先前实施例相同,不相同的部分如下所述。第二表面20亦有沟槽200,且沟槽200的位置对应沟槽100。当第二表面20有沟槽200时,密闭容置空间和真空气道空间5会变得较大,或是可让第一毛细结构41的厚度更厚,藉以提升毛细力。
请参阅图4A。图4A是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。于此具体实施例中,多数元件与先前实施例相同,不相同的部分如下所述。第一环状结构109为一第一环状凹部结构,第二环状结构209为一第二环状凹部结构。第一环状凹部结构109和第二环状凹部结构209之间形成一环状空间。薄型均温板元件结构进一步包含有一气密环6设置于环状空间中;且气密环6紧密贴合第一环状凹部结构109和第二环状凹部结构209。若将环状凹部结构分成外侧、内侧、顶侧,则气密环6至少紧密贴合于第一环状凹部结构109的其中一侧和第二 环状凹部结构209的其中一侧即可。气密环6可为熔点高于硬焊温度的各种材质。
请参阅图4B。图4B是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。于此具体实施例中,多数元件与先前实施例相同,不相同的部分如下所述。第一环状结构109和该第二环状结构109皆为环状凸部结构。若将环状凸部结构分成外侧、内侧、顶侧,则第一环状结构109紧密贴合于第二表面20、或第二环状结构209紧密贴合于第一表面10、或第一环状结构109的内侧紧密贴合于第二环状结构209的外侧、或第一环状结构109的外侧紧密贴合于第二环状结构209的内侧。
以上数个具体实施例中,第一环状结构109和第二环状结构209的双重结构的目的为截断第一片材1和第二片材2之间的空间连续性,藉以使第一环状结构109和第二环状结构209外侧硬焊膏形成焊接层结构3的过程中,不会污染到第一环状结构109和第二环状结构209内侧的毛细结构。
请参阅图4C。图4C是绘示本发明另一具体实施例中薄型均温板元件结构的剖面示意图。于此具体实施例中,多数元件与先前实施例相同,不相同的部分如下所述。第一片材1可以有三个沟槽100。实务上,根据具体设计的不同,沟槽100的数量可以是一个、两个、三个、或更多,本发明并不以此为限。
于一具体实施例中,第一片材及第二片材的材质为铜、铜合金、钛或钛合金。铜和铜合金为极佳的导热材质,且生产成本低。钛和钛合金具有高强度、低重量的特性,以及优良的抗腐蚀、抗疲乏、抗裂痕性。因此铜、铜合金、钛和钛合金为本发明的优选。
于另一具体实施例中,第一片材及第二片材的材质为不锈钢,不锈钢相较于铜有较高的硬度。而第一表面及第二表面分别电镀有一铜薄层,片材表面的铜薄层有助于硬焊接合,有效增加其导热效率。
请参阅图5和图6。图5是绘示本发明薄型均温板元件结构的制作方法的示意图。图6是绘示本发明薄型均温板元件结构的制作方法的步骤流程图。本发明提供薄型均温板元件结构的制造方法,图5以类似图2C实施例的薄型均温板元件结构为例,但每一实施例的制造方法皆不脱下述步骤S1-S7。
S1:提供具有一第一表面10的一第一片材1。第一表面10具有一沟槽结构100及一第一环状结构109。沟槽结构100具有一支撑结构101。第一环状结构109环设于该沟槽结构100的外侧。
S2:提供一第二片材2,具有相对应第一表面10的一第二表面20。第二表面20具有一第二环状结构209相对于第一环状结构109。
S3:铺置一浆料40覆盖满过沟槽结构100并且覆盖满过支撑结构101。浆料40包含有一金属粉末、一溶剂及一聚合物。
S4:加热浆料40以挥发溶剂、裂解与去除聚合物,及还原并烧结金属粉末,而同时形成一第一毛细结构41于沟槽结构100之内和形成一第二毛细结构42于支撑结构101之上。
S5:铺设一硬焊膏材料30于第一表面10的第一环状结构109的外侧。
S6:盖合第一片材1和第二片材2,使第一环状结构109和第二环状结构209匹配并套合,并将毛细结构与硬焊膏材料30隔绝。也就是说第一毛细结构41和第二毛细结构42在第一环状结构109和第二环状结构209的内侧,硬焊膏材料30在第一环状结构109和第二环状结构209的外侧。
S7:加热硬焊膏材料30形成一焊接层结构3而密封第一片材1和第二片材2。
具体来说,S3的步骤中可以利用一钢板70覆盖于第一片材1之上,钢板70上的孔洞对应第一片材1的沟槽结构100。浆料40放置于钢板70上的一端。接着利用一刮板71将浆料40刮过孔洞至钢板70的另一端。部分浆料40落至沟槽结构100中并填满覆盖过沟槽结构100和支撑结构101。钢板70遮蔽了第一环状结构109以及第一环状结构109的外侧,故第一环状结构109以及第一环状结构109的外侧并未沾附浆料40。
所述的铺置可以是钢版印刷制程(Stencil Printing Process)、网版印刷制程(Screen Printing Process)或点胶制程(Dispensing Process)。
S4的步骤中,首先低温加热以挥发掉溶剂,浆料40体积缩小且被收敛成固化态浆料。接着提高温度加热以裂解与去除聚合物,均匀散布于金属粉末之间的聚合物被裂解烧除。最后提高温度至金属粉末烧结温度而形成多孔隙的第一毛细结构41及第二毛细结构42。
形成于沟槽结构100中的多孔隙毛细结构为第一毛细结构41;形成于支撑结构101上的多孔隙毛细结构为第二毛细结构42,两者同时形成。
于本具体实施例中,先于步骤S5中铺设硬焊膏材料30于第一表面10,再于步骤S6中盖合第一片材1和第二片材2。于另一具体实施例中,亦有可能先于步骤S6中接合第一片材1和第二片材2,再于步骤S5中铺设硬焊膏材料30于第一片材1和第二片材2的侧面外缘。在焊接(Brazing)烧结过程中,硬焊膏材料30会藉由毛细效应而引入第一片材1和第二片材2之间。
以上步骤可以使制作薄型均温板元件结构的过程中,硬焊膏材料30不至于污染内部毛细结构。并且,藉由印刷铺设浆料步骤的调整,即可以使毛细结构填补焊接层结构造成的高度差。
综上所述,本发明藉由均温板元件腔体内支撑结构上形成毛细结构做为支撑结构高度的延伸,以弥补因上下两片材封合后元件周围焊接层结构厚度所造成的中间区域厚度断差。对于元件厚度小于0.3mm的超薄均温板而言,即使厚度仅有约 20um-30um的焊接层结构都会因为元件内外压力差而造成6.7%-10%的高低差。一旦元件厚度只有0.2mm时,周边与中间区域的高低落差将达到10%-15%。本发明超薄均温板利用支撑结构上的第二毛细结构厚度来补足硬焊封合后所增加的焊接层结构厚度,使元件厚度达到均匀及一致。介于支撑结构及第二片材之间被挤压的第二毛细结构亦可做为沟槽结构中第一毛细结构功能的补强。
此外,本发明藉由均温板元件的片材表面的环状结构,在封合过程中隔绝硬焊膏材料扩散至毛细结构中,避免毛细结构污染,进而维持了多孔隙毛细结构的毛细力。相较于习知技术,本发明解决了极薄均温板、高效毛细结构在制作过程中所会遇到的问题,实现了均温板的高品质量产制造。
藉由以上较佳具体实施例的详述,系希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。

Claims (10)

  1. 一种薄型均温板元件结构,其特征在于包含:
    一第一片材,具有一第一表面,该第一表面具有一沟槽结构,该沟槽结构中具有一支撑结构;
    一第二片材,具有相对应该第一表面的一第二表面,该第一表面的沟槽结构与该第二表面之间形成一密闭容置空间;
    一焊接层结构,环设于该沟槽结构的外围且设于该第一片材与该第二片材之间,以使该第一片材与该第二片材气密接合;
    一第一毛细结构,形成于该沟槽结构内,且该第一毛细结构与该第二表面间形成一真空气道空间;以及
    一第二毛细结构,形成于该支撑结构与该第二表面之间。
  2. 如权利要求1所述的薄型均温板元件结构,其特征在于,该第一表面具有一第一环状结构,该第一环状结构环设于该沟槽结构的外侧,该第二表面具有一第二环状结构,且该第二环状结构匹配并套合该第一环状结构。
  3. 如权利要求2所述的薄型均温板元件结构,其特征在于,该第一环状结构为一环状凸部结构,以及该第二环状结构为一环状凹部结构。
  4. 如权利要求2所述的薄型均温板元件结构,其特征在于,该第一环状结构为一环状凹部结构,以及该第二环状结构为一环状凸部结构。
  5. 如权利要求2所述的薄型均温板元件结构,其特征在于,该第一环状结构为一第一环状凹部结构,该第二环状结构为一第二环状凹部结构,该第一环状凹部结构和该第二环状凹部结构之间形成一环状空间,该薄型均温板元件结构进一步包含有一气密环,设置于该环状空间中,且紧密贴合该第一环状凹部结构和该第二环状凹部结构。
  6. 如权利要求2所述的薄型均温板元件结构,其特征在于,该第一环状结构和该第二环状结构皆为一环状凸部结构。
  7. 如权利要求1所述的薄型均温板元件结构,其特征在于,该第一毛细结构与该第二毛细结构系由一浆料经一烧结过程而形成,该第一毛细结构与该第二毛细结构的平均孔隙尺寸小于10um,该薄型均温板元件结构的厚度不大于1.0mm,并进一步具有一工作流体置于该密闭容置空间,且该密闭容置空间为真空负压状态。
  8. 如权利要求1所述的薄型均温板元件结构,其特征在于,该第二毛细结构的厚度介于该焊接层结构的厚度的80%至120%之间。
  9. 如权利要求1所述的薄型均温板元件结构,其特征在于,该第一片材及第 二片材的材质为铜、铜合金、钛、钛合金或不锈钢。
  10. 一种薄型均温板元件结构的制造方法,其特征在于包含:
    提供具有一第一表面的一第一片材,该第一表面具有一沟槽结构及一第一环状结构,该沟槽结构内具有一支撑结构,且该第一环状结构环设于该沟槽结构的外侧;
    铺置一浆料于该沟槽结构并且覆盖过该支撑结构,该浆料包含有一金属粉末;
    加热该浆料以烧结该金属粉末,而产生一第一毛细结构形成于该沟槽结构的内和一第二毛细结构形成于该支撑结构之上;
    铺设一硬焊膏材料于该第一表面的该第一环状结构的外侧;
    提供一第二片材,具有相对应该第一表面的一第二表面,该第二表面具有一第二环状结构相对于该第一环状结构;
    盖合该第一片材和该第二片材,使该第一环状结构和该第二环状结构扣合并将该第一毛细结构及该第二毛细结构与该硬焊膏材料隔绝;以及
    加热该硬焊膏材料形成一焊接层结构而密封该第一片材和该第二片材。
PCT/CN2021/093490 2020-05-26 2021-05-13 薄型均温板元件结构及其制造方法 WO2021238662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010453394.1 2020-05-26
CN202010453394.1A CN113727573B (zh) 2020-05-26 2020-05-26 薄型均温板元件结构及其制造方法

Publications (1)

Publication Number Publication Date
WO2021238662A1 true WO2021238662A1 (zh) 2021-12-02

Family

ID=78671873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093490 WO2021238662A1 (zh) 2020-05-26 2021-05-13 薄型均温板元件结构及其制造方法

Country Status (2)

Country Link
CN (1) CN113727573B (zh)
WO (1) WO2021238662A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576703A (zh) * 2023-05-11 2023-08-11 广东思泉热管理技术有限公司 一种具有鱼骨状毛细结构均热板制备工艺及其产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278700A (zh) * 2019-07-27 2019-09-24 Oppo(重庆)智能科技有限公司 电子设备及其组装方法
US20190335619A1 (en) * 2018-04-26 2019-10-31 Tai-Sol Electronics Co., Ltd. Loop heat transfer device with gaseous and liquid working fluid channels separated by partition wall
CN110779370A (zh) * 2019-12-06 2020-02-11 昆山联德电子科技有限公司 薄型均温板
CN210489604U (zh) * 2019-10-15 2020-05-08 深圳垒石热管理技术有限公司 均温板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6994152B2 (en) * 2003-06-26 2006-02-07 Thermal Corp. Brazed wick for a heat transfer device
CN105764300B (zh) * 2014-12-19 2018-09-07 鹏鼎控股(深圳)股份有限公司 均温板及其制造方法
CN105758240A (zh) * 2014-12-19 2016-07-13 富葵精密组件(深圳)有限公司 均温板及其制作方法
CN110285699A (zh) * 2019-07-26 2019-09-27 联德精密材料(中国)股份有限公司 一种复合型均温板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190335619A1 (en) * 2018-04-26 2019-10-31 Tai-Sol Electronics Co., Ltd. Loop heat transfer device with gaseous and liquid working fluid channels separated by partition wall
CN110278700A (zh) * 2019-07-27 2019-09-24 Oppo(重庆)智能科技有限公司 电子设备及其组装方法
CN210489604U (zh) * 2019-10-15 2020-05-08 深圳垒石热管理技术有限公司 均温板
CN110779370A (zh) * 2019-12-06 2020-02-11 昆山联德电子科技有限公司 薄型均温板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576703A (zh) * 2023-05-11 2023-08-11 广东思泉热管理技术有限公司 一种具有鱼骨状毛细结构均热板制备工艺及其产品

Also Published As

Publication number Publication date
CN113727573B (zh) 2022-08-26
CN113727573A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN100580900C (zh) 基板载放台
KR101986682B1 (ko) 금속 본딩된 보호 층을 갖는 기판 지지 조립체
JP6903262B2 (ja) 半導体処理に使用される機器部品を修理する方法
CN112944965B (zh) 一种高导热均热板及其制备方法
CN111761050B (zh) 以金属浆料制作毛细结构的方法
CN105202956A (zh) 钼铜或钨铜合金等热沉材料为基板的复合均热板制造方法
WO2021238662A1 (zh) 薄型均温板元件结构及其制造方法
CN108202180A (zh) 靶材组件的制造方法
TWI819157B (zh) 超薄型均溫板及其製造方法
WO2021073492A1 (zh) 具有支撑结构的真空均热板及终端
US11092383B2 (en) Heat dissipation device
TW202006308A (zh) 一種製作毛細結構的方法
JP2010232366A (ja) パワーエレクトロニクス用デバイス
CN201146179Y (zh) 全压接快速散热型陶瓷外壳
TWI827071B (zh) 超薄型均溫板元件結構及其製造方法
JP2008235743A (ja) サセプタ
TW202200957A (zh) 均溫板
CN111486727A (zh) 均温板
CN101399237B (zh) 全压接快速散热型陶瓷外壳
TWM579874U (zh) Ultra-thin heat sink
TWI679394B (zh) 超薄型散熱板
CN112582330A (zh) 半导体工艺设备及其静电卡盘组件
US20240079217A1 (en) Wafer placement table
US20240079218A1 (en) Wafer placement table
WO2023173471A1 (zh) 一种组合式蒸发器均温板及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811947

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 24/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21811947

Country of ref document: EP

Kind code of ref document: A1