WO2021238642A1 - 一种集流体及其应用 - Google Patents

一种集流体及其应用 Download PDF

Info

Publication number
WO2021238642A1
WO2021238642A1 PCT/CN2021/092986 CN2021092986W WO2021238642A1 WO 2021238642 A1 WO2021238642 A1 WO 2021238642A1 CN 2021092986 W CN2021092986 W CN 2021092986W WO 2021238642 A1 WO2021238642 A1 WO 2021238642A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
connection area
current collector
layer
thickness
Prior art date
Application number
PCT/CN2021/092986
Other languages
English (en)
French (fr)
Inventor
赵伟
李素丽
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP21811761.2A priority Critical patent/EP4131514A4/en
Publication of WO2021238642A1 publication Critical patent/WO2021238642A1/zh
Priority to US18/051,879 priority patent/US20230290959A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a current collector and its application, and relates to the technical field of lithium ion batteries.
  • lithium-ion battery current collectors use metal foil, the positive electrode usually uses metal aluminum foil, and the negative electrode usually uses metal copper foil. Once an internal short circuit occurs in a lithium ion battery prepared directly from this metal foil, the current cannot be cut off inside the battery, resulting in The heat buildup eventually causes thermal runaway.
  • this type of current collector usually uses a non-conductive polymer film as the substrate and is placed on the upper and lower surfaces of the polymer film. Plating a layer of metal material.
  • the upper and lower surfaces of the PET (polyethylene terephthalate) film are plated with metal aluminum as the positive electrode current collector, and the upper and lower surfaces of the PET (polyethylene terephthalate) film are plated with metal copper as the negative electrode current collector.
  • the present invention provides a current collector, which is used to solve the problems of high contact impedance and low connection yield of the upper tab of the existing polymer/metal composite current collector.
  • the first aspect of the present invention provides a current collector, the current collector includes M metal layers and N polymer layers, the metal layers and the polymer layers are stacked, wherein the L metal layers include the tab connection area And the non-tab connection area, the thickness of the tab connection area is greater than the thickness of the non-tab connection area, M ⁇ 1, N ⁇ 1, L ⁇ 1, M ⁇ L.
  • the present invention provides a current collector.
  • the structure of the current collector is an improvement made on the existing composite current collector.
  • the current collector includes a polymer layer and a metal layer that are stacked on top of each other.
  • the metal layer is connected with tabs. Therefore, The metal layer connected with the tabs is divided into a tab connection area and a non-tab connection area.
  • Those skilled in the art can set the number of polymer layers and metal layers as well as the connection of the tabs according to the existing technology and actual preparation needs.
  • the metal layer of the tab connection area is thickened, so that the thickness of the metal layer in the tab connection area in the final current collector structure is greater than the thickness of the metal layer in the non-tab connection area.
  • a current collector with a uniform metal layer thickness can be prepared according to the prior art, and then conventional vapor deposition, Sputtering or electroplating method to thicken the metal layer of the lug connection area; alternatively, it is also possible to reserve an area with the same area as the lug connection area on the polymer layer, and then directly set it in the reserved area
  • the current collector structure provided in the present application can be obtained by the above two methods, and the preparation method is not further limited in the present invention.
  • the present invention provides a current collector.
  • the welding strength of the tabs is effectively improved, thereby improving the bonding force between the tabs and the current collector.
  • the contact impedance of the tab connection area is reduced, and the connection yield between the tab and the metal layer is improved.
  • the present invention can be applied to a variety of current collector structures, which are described in detail as follows:
  • the current collector includes the polymer layer and the metal layer disposed on the upper surface or the lower surface of the polymer layer.
  • Fig. 1 is a schematic diagram of the structure of a current collector provided by an embodiment of the present invention.
  • the current collector provided in this embodiment includes a polymer layer 1 and a metal layer 2.
  • the metal layer 2 is disposed on the surface of the polymer layer 1.
  • the current collector includes at least one unit, and the unit includes the polymer layer, a first metal layer disposed on the upper surface of the polymer layer, and a first metal layer disposed on the polymer layer.
  • the second metal layer on the lower surface, the first metal layer and/or the second metal layer in at least one unit includes a tab connection area and a non-tab connection area.
  • FIG 2 is a schematic diagram of a current collector structure provided by another embodiment of the present invention.
  • the current collector provided in this embodiment includes a polymer layer 1 and two metal layers.
  • the first metal layer 2-1 on the upper surface of the object layer 1 and the second metal layer 2-2 provided on the lower surface of the polymer layer 1, and the upper surface of the first metal layer 2-1 away from the polymer layer 1 includes tabs
  • FIG. 3 is a schematic diagram of the structure of a current collector provided by another embodiment of the present invention.
  • the current collector provided in this embodiment includes a polymer layer 1 and two metal layers.
  • the metal layers are respectively arranged on the polymer layer.
  • FIG. 4 is a schematic diagram of a current collector structure provided by another embodiment of the present invention.
  • the current collector provided by this embodiment includes X Units, X ⁇ 2, each unit includes a polymer layer 1 and two metal layers.
  • the metal layers are the first metal layer 2-1 arranged on the upper surface of the polymer layer 1 and the polymer layer 1
  • FIG. 4 only shows the first unit and the Xth unit in the current collector structure, and the repeating unit is omitted (that is, the repeating units all include the polymer layer 1 and the first metal layer 2-1, the second Two metal layers 2-2); the active material layer is coated on the surface of the first metal layer and the second metal layer away from the polymer layer in each unit, if the metal layer includes a tab connection area and a non-tab connection area
  • the active material layer should be coated on the non-tab connection area, and those skilled in the art can set it according to the prior art, and the present invention will not be described here.
  • connection between the unit and the unit also has the problem of low connection yield and high contact impedance. Similar to the connection of the tab, the connection between the tab is similar.
  • the method of thickening the metal layer of the zone is also applicable to the connection of the metal layer between the cells. Those skilled in the art can increase the thickness of the metal layer connection area on a metal layer for connecting with another metal layer according to actual needs.
  • a metal layer includes a metal layer connection area and a non-metal layer connection area, and the metal layer connection area is used to connect with the metal layer in another unit to obtain a multi-unit current collector structure, and the metal The thickness of the metal layer in the layer connection area is greater than the thickness of the metal layer in the non-metal layer connection area.
  • both metal layers can be thickened. It is also possible to thicken only one side of the metal layer, and the number of thickened metal layers in the present invention is not specifically limited.
  • the current collector includes X units, wherein the first metal layer and/or the second metal layer in the Z units includes the tab connection area and the non-tab connection area,
  • the first metal layer and/or the second metal layer of at least one of the remaining (XZ) units includes a metal layer connection area and a non-metal layer connection area, wherein the thickness of the metal layer connection area is greater than that of the non-metal layer connection area.
  • the thickness of the connecting area of the metal layer is X ⁇ 2, Z ⁇ 1.
  • Fig. 5 is a schematic diagram of the structure of a current collector provided by another embodiment of the present invention.
  • the current collector provided in this embodiment includes X units, X ⁇ 2, and each unit includes a polymer layer 1 and Two metal layers, the metal layers are respectively a first metal layer 2-1 arranged on the upper surface of the polymer layer 1 and a second metal layer 2-2 arranged on the lower surface of the polymer layer 1, wherein the first unit in the first unit
  • the upper surface of the metal layer 2-1 away from the polymer layer 1 includes a tab connection area and a non-tab connection area.
  • the tab 3 is connected to the tab connection area.
  • the current collector includes X units, and one of the first metal layer and the second metal layer of at least one of the Z units includes the tab connection area and the non-electrode connection area.
  • Ear connection area and the other of the first metal layer and the second metal layer includes a metal layer connection area and a non-metal layer connection area, wherein the thickness of the metal layer connection area is greater than that of the non-metal layer connection area The thickness of the zone, X ⁇ 2, Z ⁇ 1.
  • Fig. 6 is a schematic diagram of the structure of a current collector provided by another embodiment of the present invention.
  • the current collector provided in this embodiment includes X units, X ⁇ 2, and each unit includes a polymer layer 1 and Two metal layers, the metal layers are respectively a first metal layer 2-1 arranged on the upper surface of the polymer layer 1 and a second metal layer 2-2 arranged on the lower surface of the polymer layer 1, wherein the first unit in the first unit
  • the surface of a metal layer 2-1 and the second metal layer 2-2 in the X-th unit away from the polymer layer 1 includes a tab connection area and a non-tab connection area, and the second metal layer 2-2 in the first unit and
  • FIG. 7 is a schematic diagram of the structure of a current collector provided by another embodiment of the present invention.
  • the current collector provided in this embodiment includes X units, X ⁇ 2, and each unit includes a polymer layer 1 and Two metal layers, the metal layers are respectively a first metal layer 2-1 arranged on the upper surface of the polymer layer 1 and a second metal layer 2-2 arranged on the lower surface of the polymer layer 1, wherein the The first metal layer 2-1, the second metal layer 2-2, and the surface of the X-th unit second metal layer 2-2 away from the polymer layer 1 all include a tab connection area and a non- tab connection area.
  • the current collector includes X units, X ⁇ 2, and the first metal layer and/or the second metal layer in the Z units includes the tab connection area and the non-electrode connection area.
  • the other of the two metal layers includes a metal layer connection area and a non-metal layer connection area, and at the same time, the first metal layer and/or the second metal layer in at least one of the remaining XZ units includes a metal layer connection area and The non-metal layer connection area, wherein the thickness of the metal layer connection area is greater than the thickness of the non-metal layer connection area, Z ⁇ 1.
  • FIG. 8 is a schematic diagram of the structure of a current collector provided by another embodiment of the present invention.
  • the current collector provided in this embodiment includes X units, X ⁇ 2, and each unit includes a polymer layer 1 and Two metal layers, the metal layers are respectively a first metal layer 2-1 arranged on the upper surface of the polymer layer 1 and a second metal layer 2-2 arranged on the lower surface of the polymer layer 1, wherein the first unit in the first unit
  • the upper surface of a metal layer 2-1 includes a tab connection area and a non-tab connection area
  • the surface of the second metal layer 2-2 in the first unit away from the polymer layer 1 includes a metal layer connection area and a non-metal layer connection
  • the surface of the first metal layer 2-1 and/or the second metal layer 2-2 of at least one unit of the second unit to the Xth unit away from the polymer layer 1 also includes a metal layer connection area and a non-metal layer connection area 8 only shows the metal layer connection area and the non-metal
  • the thickness of the metal layer of the tab connection area is The thickness of the metal layer in the non-tab connection area is 1.05-10 times.
  • the thickness of the metal layer of the tab connection area is 1.5-3 times the thickness of the metal layer of the non-tab connection area.
  • the thickness difference between the metal layer connection area and the non-metal layer connection area also has a certain impact on the performance of the current collector.
  • the metal layer connection The thickness of the metal layer of the zone is 1.05-10 times the thickness of the metal layer of the non-metal layer connection zone.
  • the current collector structure provided by the present application effectively improves the welding strength of the tab and the current collector. Specifically, the welding strength of the tab is greater than or equal to 0.4 N/mm.
  • the present invention provides a current collector.
  • the welding strength of the tabs is effectively improved, thereby improving the connection between the tabs and the current collector.
  • the bonding force reduces the contact impedance of the tab connection area and improves the connection yield between the tab and the metal layer.
  • the second aspect of the present invention provides a lithium ion battery, which includes any of the above-mentioned current collectors.
  • the current collector On the basis of the current collector provided in this application, those skilled in the art can prepare a positive electrode sheet according to the prior art, and combine it with a negative electrode sheet, a separator, an electrolyte, a tab, etc. to prepare a lithium ion battery.
  • the lithium ion battery provided by the invention effectively reduces the ohmic impedance of the lithium ion battery and improves the welding yield of the lithium ion battery by using the current collector of the invention.
  • the present invention provides a current collector. By thickening the tab connecting area of the metal layer connecting the tabs, the welding strength of the tabs is effectively improved, thereby improving the bonding force between the tabs and the current collector, and reducing The contact impedance of the tab connection area is improved, and the connection yield between the tab and the metal layer is improved.
  • the current collector includes multiple units, thickening the metal layer connection area on the metal layer for the connection between the units can effectively improve the welding strength between the units, thereby reducing the gap between the current collector units.
  • the contact resistance improves the connection yield between the current collector units.
  • the lithium ion battery provided by the present invention by using the current collector provided by the present invention, effectively reduces the ohmic impedance of the lithium ion battery and improves the welding yield of the lithium ion battery.
  • FIG. 1 is a schematic diagram of the structure of a current collector provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a current collector provided by another embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a current collector provided by still another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a current collector provided by still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of a current collector provided by still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of a current collector provided by still another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of a current collector provided by still another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the structure of a current collector provided by still another embodiment of the present invention.
  • the positive ear ears used in the following examples and comparative examples were purchased from Lianyungang Delison Electronic Technology Co., Ltd., the material of the positive ear was aluminum; the negative electrode ears were purchased from Lianyungang Delison Electronic Technology Co., Ltd., and the material of the negative electrode was nickel, and the surface was plated with copper.
  • Ultrasonic welding uses the UM-20 ultrasonic metal welding machine of Shenzhen Strong Energy Electronic Technology Co., Ltd. Welding parameters: welding power 3000W, welding frequency 20kHz, welding amplitude 40 ⁇ m, welding time 0.42s, welding pressure 0.3MPa.
  • Laser welding adopts the ZXL-200W model laser welding machine of Dongguan Zhengxin Laser Technology Co., Ltd., welding parameters: laser wavelength 1064nm, laser power 200W, pulse frequency 150Hz, pulse width 10ms.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is aluminum, the thickness of the polymer PET layer is 6 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 1 ⁇ m.
  • the thickness of the metal layer of the connection area is 1.05 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive electrode lug is 0.1mm and the width is 6mm;
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is aluminum, the thickness of the polymer PET layer is 6 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 1 ⁇ m.
  • the thickness of the metal layer of the connection area is 1.5 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive electrode lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.1 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is aluminum, the thickness of the polymer PET layer is 6 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 1 ⁇ m.
  • the thickness of the metal layer in the connection area is 2 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive electrode lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.6 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is aluminum, the thickness of the polymer PET layer is 6 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 1 ⁇ m.
  • the thickness of the metal layer of the connection area is 3 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive electrode lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.2 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is aluminum, the thickness of the polymer PET layer is 6 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 1 ⁇ m.
  • the thickness of the metal layer in the connection area is 5 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive electrode lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.9 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 6 ⁇ m, the thickness of the metal layer in the non-tab connection area is 1 ⁇ m, and the tab The thickness of the metal layer in the connection area is 1.05 ⁇ m, and the negative electrode lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.1mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 0.4 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 6 ⁇ m, the thickness of the metal layer in the non-tab connection area is 1 ⁇ m, and the tab The thickness of the metal layer in the connection area is 1.5 ⁇ m, and the negative electrode lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.1mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 0.9 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 6 ⁇ m, the thickness of the metal layer in the non-tab connection area is 1 ⁇ m, and the tab The thickness of the metal layer of the connection area is 2 ⁇ m, and the negative electrode lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.1mm, and the width is 6mm;
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 6 ⁇ m, the thickness of the metal layer in the non-tab connection area is 1 ⁇ m, and the tab The thickness of the metal layer in the connection area is 3 ⁇ m, and the negative electrode lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.1mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.1 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 6 ⁇ m, the thickness of the metal layer in the non-tab connection area is 1 ⁇ m, and the tab The thickness of the metal layer in the connection area is 5 ⁇ m, and the negative electrode lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.1mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.8 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PP, the metal layer is aluminum, the thickness of the polymer PP layer is 4 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 0.5 ⁇ m.
  • the thickness of the metal layer in the lug connection area is 5 ⁇ m, and the positive lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.9 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 5 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 0.5 ⁇ m.
  • the thickness of the metal layer in the lug connection area is 5 ⁇ m, and the negative lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative lug is nickel, the thickness of the negative lug is 0.1mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.7 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PET, the metal layer is aluminum, the thickness of the polymer PET layer is 1 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 2 ⁇ m.
  • the thickness of the metal layer of the connection area is 3 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive electrode lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.3 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 1, where the polymer layer is PP, the metal layer is copper, the thickness of the polymer PP layer is 1 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 2 ⁇ m. The thickness of the metal layer in the connection area is 2.5 ⁇ m.
  • the negative electrode lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel plated with copper on the surface.
  • the thickness of the negative electrode lug is 0.1mm and the width is 0.1mm. Is 6mm;
  • the current collector structure provided by this embodiment is shown in Figure 2, where the polymer layer is PP, the metal layer is aluminum, the thickness of the polymer PP layer is 22 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 1.1 ⁇ m. The thickness of the metal layer in the lug connection area is 2 ⁇ m.
  • the positive lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding. The thickness of the positive lug is 0.08mm and the width is 8mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.9 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 2, where the polymer layer is PP, the metal layer is copper, the thickness of the polymer PP layer is 25 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 0.9 ⁇ m.
  • the thickness of the metal layer in the lug connection area is 1.6 ⁇ m, and the negative lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative lug is nickel, the thickness of the negative lug is 0.08mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.7 N/mm.
  • the current collector structure provided by this embodiment is shown in Figure 3, where the polymer layer is PP, the metal layer is aluminum, the thickness of the polymer PP layer is 8 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 0.7 ⁇ m.
  • the thickness of the metal layer in the lug connection area is 1.2 ⁇ m, and the positive lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive lug is 0.05mm and the width is 8mm;
  • the current collector structure provided by this embodiment is shown in Figure 3, where the polymer layer is PP, the metal layer is copper, the thickness of the polymer PP layer is 8 ⁇ m, and the thickness of the metal layer in the non-tab connection area is 0.7 ⁇ m.
  • the thickness of the metal layer in the lug connection area is 1.2 ⁇ m.
  • the negative lug is welded to the lug connection area of the metal copper layer by ultrasonic welding.
  • the material of the negative lug is nickel plated with copper on the surface, and the thickness of the negative lug is 0.05mm.
  • the width is 8mm;
  • the thickness of the metal layer of the zone is 1 ⁇ m, and the tab connection area and the metal layer connection area (the metal layer connection area here is set on each metal layer that does not need to be connected to the tab, that is, the metal layer omitted in Figure 6 includes metal
  • the thickness of the metal layer is 1.5 ⁇ m, and the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the positive electrode The thickness of the ear is 0.2mm and the width is 12mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.6 N/mm.
  • the thickness of the metal layer in the zone is 1 ⁇ m, and the thickness of the metal layer in the lug connection area and the metal layer connection area is 1.5 ⁇ m.
  • the negative lug is welded to the lug connection area of the metal stainless steel layer by laser welding.
  • the material of the negative lug is Stainless steel, the thickness of the negative lug is 0.2mm, and the width is 12mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.4 N/mm.
  • the thickness of the metal layer of the zone is 0.8 ⁇ m, and the thickness of the metal layer of the lug connection area and the metal layer connection area is 2 ⁇ m.
  • the positive lug is welded to the lug connection area of the metal aluminum layer by laser welding.
  • the thickness of the positive lug is 0.03mm, the width is 15mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.9 N/mm.
  • the thickness of the metal layer in the zone is 0.8 ⁇ m, and the thickness of the metal layer in the lug connection area and the metal layer connection area is 2 ⁇ m.
  • the negative lug is welded to the lug connection area of the metal nickel layer by laser welding.
  • the material of the negative lug is Nickel, the thickness of the negative lug is 0.03mm, and the width is 15mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 2.7 N/mm.
  • the thickness of the metal layer of the zone is 0.6 ⁇ m, and the thickness of the metal layer of the lug connection area and the metal layer connection area is 1 ⁇ m.
  • the positive electrode lug is welded to the lug connection area of the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive lug is 1mm, the width is 10mm;
  • the thickness of the metal layer of the zone is 0.6 ⁇ m, and the thickness of the metal layer of the lug connection area and the metal layer connection area is 1 ⁇ m.
  • the negative electrode lug is welded to the lug connection area of the metal nickel layer by ultrasonic welding.
  • the material of the negative electrode lug is Nickel, the thickness of the negative lug is 1mm, and the width is 10mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this example is 1.9 N/mm.
  • the current collector provided by this comparative example includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper surface of the polymer layer.
  • the polymer layer is PET, the metal layer is aluminum, and the thickness of the polymer PET layer is 6 ⁇ m.
  • the thickness is 1 ⁇ m, and the positive electrode lug is welded to the metal aluminum layer by ultrasonic welding.
  • the thickness of the positive lug is 0.1mm and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.2 N/mm.
  • the current collector provided by this comparative example includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper surface of the polymer layer.
  • the polymer layer is PET, the metal layer is copper, the thickness of the polymer PET layer is 6 ⁇ m, and the metal layer The thickness is 1 ⁇ m, the negative electrode lug is welded to the metal copper layer by ultrasonic welding, the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.1mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.1 N/mm.
  • the current collector provided by this comparative example includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper and lower surfaces of the polymer layer.
  • the polymer layer is PP
  • the metal layer is aluminum
  • the thickness of the polymer PET layer is 22 ⁇ m.
  • the thickness of the metal layer is 1.1 ⁇ m
  • the positive electrode lug is welded to the metal aluminum layer on the upper surface of the polymer layer by ultrasonic welding.
  • the thickness of the lug is 0.08mm and the width is 8mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.3 N/mm.
  • the current collector provided by this comparative example includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper and lower surfaces of the polymer layer.
  • the polymer layer is PP
  • the metal layer is copper
  • the thickness of the polymer PET layer is 25 ⁇ m.
  • the thickness of the metal layer is 0.9 ⁇ m
  • the negative electrode lug is welded to the metal copper layer on the upper surface of the polymer layer by ultrasonic welding.
  • the material of the negative electrode lug is nickel, the thickness of the negative electrode lug is 0.08mm, and the width is 6mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.2N/mm.
  • the current collector provided by this comparative example includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper and lower surfaces of the polymer layer.
  • the polymer layer is PP
  • the metal layer is aluminum
  • the thickness of the polymer PP layer is 8 ⁇ m.
  • the thickness of the metal layer is 0.7 ⁇ m
  • the positive electrode lugs are welded to the metal aluminum layer on the upper and lower surfaces of the polymer layer by ultrasonic welding.
  • the thickness of the positive lug is 0.05mm and the width is 8mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.2N/mm.
  • the current collector provided by this comparative example includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper and lower surfaces of the polymer layer.
  • the polymer layer is PP
  • the metal layer is copper
  • the thickness of the polymer PP layer is 8 ⁇ m.
  • the thickness of the metal layer is 0.7 ⁇ m
  • the negative electrode lug is welded to the metal aluminum layer on the upper and lower surfaces of the polymer layer by ultrasonic welding.
  • the material of the negative electrode lug is copper-plated metal nickel on the surface, and the thickness of the negative electrode lug is 0.05mm, the width is 8mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.2N/mm.
  • the current collector provided by this comparative example includes 9 units, and each unit includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper and lower surfaces of the polymer layer; the polymer layer is PP and the metal layer is aluminum.
  • the thickness of the polymer PP layer is 8 ⁇ m, and the thickness of the metal layer is 0.6 ⁇ m.
  • the positive electrode lug is welded to the metal aluminum layer on the upper surface of the polymer layer of the first unit by ultrasonic welding.
  • the thickness of the positive electrode lug is 1mm and the width is 1mm. Is 10mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.2N/mm.
  • the current collector provided by this comparative example includes 10 units, and each unit includes a polymer layer and a metal layer.
  • the metal layer is arranged on the upper and lower surfaces of the polymer layer.
  • the polymer layer is PP and the metal layer is nickel.
  • the thickness of the polymer PP layer is 8 ⁇ m, and the thickness of the metal layer is 0.6 ⁇ m.
  • the negative electrode lug is welded to the metal nickel layer on the upper surface of the polymer layer of the first unit by ultrasonic welding.
  • the material of the negative electrode lug is nickel.
  • the thickness of the ear is 1mm and the width is 10mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.1 N/mm.
  • the current collector provided by this comparative example includes 9 units, and each unit includes a polymer layer and a metal layer arranged on the upper and lower surfaces of the polymer layer; wherein the polymer layer is PET, the metal layer is aluminum, and the polymer layer is The thickness of the PET layer is 9 ⁇ m, and the thickness of the metal layer is 1 ⁇ m.
  • the positive electrode ears are welded to the metal aluminum layer on the upper surface of the first unit polymer layer and the lower surface of the ninth unit polymer layer by ultrasonic welding.
  • the thickness of the ear is 0.2mm and the width is 12mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.3 N/mm.
  • the current collector provided by this comparative example includes 10 units, and each unit includes a polymer layer and a metal layer arranged on the upper and lower surfaces of the polymer layer; wherein the polymer layer is PET, the metal layer is stainless steel, and the polymer layer is made of stainless steel.
  • the thickness of the PET layer is 9 ⁇ m, and the thickness of the metal layer is 1 ⁇ m.
  • Laser welding is used to weld the negative electrode ears to the metal stainless steel layer on the upper surface of the first unit polymer layer and the lower surface of the 10th unit polymer layer.
  • the material of the ear is stainless steel, the thickness of the negative ear is 0.2mm, and the width is 12mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.3 N/mm.
  • the current collector provided by this comparative example includes 9 units, each unit includes a polymer layer and a metal layer arranged on the upper and lower surfaces of the polymer layer; wherein the polymer layer is PP, the metal layer is aluminum, and the polymer layer is The thickness of the PP layer is 8 ⁇ m, and the thickness of the metal layer is 0.8 ⁇ m.
  • the positive ear is welded to the upper and lower surfaces of the first unit polymer layer and the metal aluminum layer on the lower surface of the ninth unit polymer layer by laser welding. Above, the thickness of the positive lug is 0.03mm and the width is 15mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.3 N/mm.
  • the current collector provided in this comparative example includes 10 units, each unit includes a polymer layer and a metal layer arranged on the upper and lower surfaces of the polymer layer; wherein the polymer layer is PP, the metal layer is nickel, and the polymer layer is The thickness of the PP layer is 8 ⁇ m, and the thickness of the metal layer is 0.8 ⁇ m.
  • Laser welding is used to weld the negative electrode ear to the upper and lower surfaces of the first unit polymer layer and the metal nickel layer on the lower surface of the 10th unit polymer layer.
  • the material of the negative lug is nickel, the thickness of the negative lug is 0.03mm, and the width is 15mm;
  • Example 2 Using the same welding strength test method as in Example 1, the results show that the welding strength of the tabs in this comparative example is 0.2N/mm.
  • the present invention prepares a lithium ion battery on the basis of the current collectors provided in the above embodiments and comparative examples.
  • the lithium cobalt oxide cathode material was purchased from Beijing Dangsheng Material Technology Co., Ltd. with a specific capacity of 181 mAh/g; the graphite anode material was purchased from Shanghai Shanshan Technology Co., Ltd. with a specific capacity of 359 mAh/g.
  • the polyethylene (PE) porous diaphragm is a wet diaphragm ND12 produced by Shanghai Enjie New Material Technology Co., Ltd., with a thickness of 12 ⁇ m; the electrolyte is the LBC445B33 type electrolyte of Shenzhen Xinzhoubang Technology Co., Ltd.
  • the above-mentioned positive electrode sheet and negative electrode sheet, matched polyethylene (PE) porous separator, and electrolyte are prepared into a lithium ion battery C1 through a conventional preparation process.
  • the current collector provided in Example 2 was used as the positive electrode, and the current collector provided in Example 7 was used as the negative electrode.
  • the lithium ion battery C2 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 3 was used as the positive electrode, and the current collector provided in Example 8 was used as the negative electrode.
  • the lithium ion battery C3 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 4 was used as the positive electrode, and the current collector provided in Example 9 was used as the negative electrode.
  • the lithium ion battery C4 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 5 was used as the positive electrode, and the current collector provided in Example 10 was used as the negative electrode.
  • the lithium ion battery C5 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 11 was used as the positive electrode, and the current collector provided in Example 12 was used as the negative electrode.
  • the lithium ion battery C6 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 13 was used as the positive electrode, and the current collector provided in Example 14 was used as the negative electrode.
  • the lithium ion battery C7 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 15 was used as the positive electrode, and the current collector provided in Example 16 was used as the negative electrode.
  • the lithium ion battery C8 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 17 was used as the positive electrode, and the current collector provided in Example 18 was used as the negative electrode.
  • the lithium ion battery C9 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 19 was used as the positive electrode, and the current collector provided in Example 20 was used as the negative electrode.
  • the lithium ion battery C10 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 21 was used as the positive electrode, and the current collector provided in Example 22 was used as the negative electrode.
  • the lithium ion battery C11 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Example 23 was used as the positive electrode, and the current collector provided in Example 24 was used as the negative electrode.
  • the lithium ion battery C12 was prepared by the same preparation method as that in Example 25.
  • the current collector provided in Comparative Example 1 was used as the positive electrode, and the current collector provided in Comparative Example 2 was used as the negative electrode.
  • the lithium ion battery A1 was prepared by the same preparation method as in Example 25.
  • the current collector provided in Comparative Example 3 was used as the positive electrode, and the current collector provided in Comparative Example 4 was used as the negative electrode.
  • the lithium ion battery A2 was prepared by the same preparation method as in Example 25.
  • the current collector provided in Comparative Example 5 was used as the positive electrode, and the current collector provided in Comparative Example 6 was used as the negative electrode.
  • the lithium ion battery A3 was prepared by the same preparation method as in Example 25.
  • the current collector provided in Comparative Example 7 was used as the positive electrode, and the current collector provided in Comparative Example 8 was used as the negative electrode.
  • the lithium ion battery A4 was prepared by the same preparation method as in Example 25.
  • the current collector provided in Comparative Example 9 was used as the positive electrode, and the current collector provided in Comparative Example 10 was used as the negative electrode.
  • the lithium ion battery A5 was prepared by the same preparation method as in Example 25.
  • the current collector provided in Comparative Example 11 was used as the positive electrode, and the current collector provided in Comparative Example 12 was used as the negative electrode.
  • the lithium ion battery A6 was prepared by the same preparation method as in Example 25.
  • the present invention continues to test the ohmic impedance and the battery welding yield rate of the lithium ion batteries C1-C12 prepared in Examples 25-36 and the lithium ion batteries A1-A6 prepared in Comparative Examples 13-18. The results are shown in Table 1.
  • the ohmic impedance test method includes: testing the battery ohmic impedance with an internal resistance tester (RBM-200 smart battery internal resistance tester from Shenzhen Chaosi Technology Co., Ltd.), and the AC signal frequency is set to 1KHz.
  • an internal resistance tester RBM-200 smart battery internal resistance tester from Shenzhen Chaosi Technology Co., Ltd.
  • the battery welding yield test method includes: preparing 100 identical lithium-ion batteries, visually inspecting the solder joints of each lithium-ion battery and testing the welding strength, requiring visual inspection that each metal layer is connected to At the same time, the metal layer and the external tab are also connected together. At the same time, it is required that the welding strength of each metal layer is not less than 80% of the normal welding strength value through the tensile machine test. If there is a visual inspection of the metal layer and If the welding strength test fails to meet the requirements, the lithium-ion battery is considered to be a defective product, and the number of good batteries is counted.
  • the good product rate the number of good batteries/100*100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种集流体及其应用。本发明第一方面提供了一种集流体,所述集流体包括M个金属层和N个聚合物层,所述金属层和聚合物层层叠设置,其中,L个金属层包括极耳连接区和非极耳连接区,所述极耳连接区的厚度大于所述非极耳连接区的厚度,M≥1,N≥1,L≥1,M≥L。本发明提供了一种集流体,通过对金属层上用于连接极耳的极耳连接区做增厚处理,有效提高了极耳的焊接强度,从而提高了极耳与集流体的结合力,降低了极耳连接区的接触阻抗,提高了极耳与金属层的连接良率。

Description

一种集流体及其应用 技术领域
本发明涉及一种集流体及其应用,涉及锂离子电池技术领域。
背景技术
由于锂离子电池的能量密度以及功率密度高,目前已是一种用途非常广泛的二次电池。常规的锂离子电池集流体采用金属箔材,正极通常使用金属铝箔,负极通常使用金属铜箔,而直接采用该金属箔材制备得到的锂离子电池一旦发生内部短路,电池内部无法切断电流,导致热量聚集最终引发热失控。为了解决该问题,有研究者采用一类新型的聚合物/金属复合集流体替代常规的金属集流体,这类集流体通常采用不导电的聚合物薄膜做基底,并在聚合物薄膜的上下表面镀一层金属材料。例如在PET(聚对苯二甲酸乙二醇酯)薄膜的上下表面镀金属铝作为正极集流体,在PET(聚对苯二甲酸乙二醇酯)薄膜的上下表面镀金属铜作为负极集流体,都取得了一定的改善电池安全性能的效果。
然而,在上述聚合物/金属复合集流体连接极耳后,由于极耳与集流体的结合力差,导致极耳连接区的接触阻抗高,此外,连接在复合集流体上的极耳良率也较低,最终对复合集流体以及锂离子电池的性能都产生一定的影响。因此,如何改善连接在聚合物/金属复合集流体上的极耳的接触阻抗以及连接良率受到了越来越多的关注。
发明内容
本发明提供一种集流体,用于解决现有的聚合物/金属复合集流体上极耳的接触阻抗高、连接良率低的问题。
本发明第一方面提供了一种集流体,所述集流体包括M个金属层和N个聚合物层,所述金属层和聚合物层层叠设置,其中,L个金属层包括极耳连接区和非极耳连接区,所述极耳连接区的厚度大于所述非极耳连接区的厚度,M≥1,N≥1,L≥1,M≥L。
本发明提供了一种集流体,该集流体结构是在现有的复合集流体上作出的改进,集流体包括层叠设置的聚合物层和金属层,金属层上连接有极耳,因此,将连接有极耳的金属层分为极耳连接区和非极耳连接区,本领 域技术人员可根据现有技术并结合实际制备需要设置聚合物层和金属层的数量以及极耳的连接,随后对极耳连接区的金属层做增厚处理,使得最终集流体结构中极耳连接区的金属层厚度大于非极耳连接区的金属层厚度。具体在集流体的制备过程中,本领域技术人员可依据实际需求和现有的工艺方法进行制备,例如,可先依据现有技术制备得到金属层厚度均一的集流体,再通过常规蒸镀、溅射或电镀的方法对极耳连接区的金属层做增厚处理;或者,也可以先在聚合物层上预留出与极耳连接区面积相同的区域,再在该预留区域直接设置相应厚度的金属层,以上两种方法均可得到本申请提供的集流体结构,本发明对制备方式不做进一步限定。本发明提供了一种集流体,通过对金属层上用于连接极耳的极耳连接区做增厚处理,有效提高了极耳的焊接强度,从而提高了极耳与集流体的结合力,降低了极耳连接区的接触阻抗,提高了极耳与金属层的连接良率。
本发明可适用于多种集流体结构,详细阐述如下:
在一种具体实施方式中,所述集流体包括所述聚合物层和设置于所述聚合物层上表面或下表面的所述金属层。
图1为本发明一实施例提供的集流体结构示意图,如图1所示,本实施方式提供的集流体包括一个聚合物层1和一个金属层2,金属层2设置于聚合物层1的上表面,该金属层2远离聚合物层1的上表面包括极耳连接区(图1中短划线
Figure PCTCN2021092986-appb-000001
框出的部分,下同)和非极耳连接区(图1中圆点
Figure PCTCN2021092986-appb-000002
框出的部分,下同),极耳3与极耳连接区连接,即N=M=L=1。
在另一种具体实施方式中,所述集流体至少包括一个单元,所述单元包括所述聚合物层和设置于所述聚合物层上表面的第一金属层和设置于所述聚合物层下表面的第二金属层,至少一个单元中的所述第一金属层和/或所述第二金属层包括极耳连接区和非极耳连接区。
图2为本发明又一实施例提供的集流体结构示意图,如图2所示,本实施方式提供的集流体包括一个聚合物层1和两个金属层,两层金属层分别为设置在聚合物层1的上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,第一金属层2-1远离聚合物层1的上表面包括极耳连接区和非极耳连接区,极耳3与极耳连接区连接,即N=L=1,M=2。
图3为本发明再一实施例提供的集流体结构示意图,如图3所示,本 实施方式提供的集流体包括一个聚合物层1和两个金属层,金属层分别为设置在聚合物层1的上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,第一金属层2-1远离聚合物层1的上表面和第二金属层2-2远离聚合物层1的下表面均包括极耳连接区和非极耳连接区,第一金属层2-1和第二金属层2-2上的极耳连接区均连接有极耳3,即N=1,M=L=2。
本发明提供的集流体结构也同样适用于多单元的集流体结构,图4为本发明再一实施例提供的集流体结构示意图,如图4所示,本实施方式提供的集流体包括X个单元,X≥2,每个单元内均包括一个聚合物层1和两层金属层,金属层分别为设置在聚合物层1上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,其中第一单元内第一金属层2-1的上表面包括极耳连接区和非极耳连接区,极耳3与该极耳连接区连接,即M≥2,N≥2,L=1。
可以理解的是,图4仅示出该集流体结构中的第一单元和第X单元,省略了其中的重复单元(即重复单元均包括聚合物层1和第一金属层2-1、第二金属层2-2);活性材料层涂覆在每个单元中第一金属层和第二金属层远离聚合物层的表面,若该金属层包括极耳连接区和非极耳连接区时,活性材料层应涂覆在非极耳连接区,本领域技术人员依据现有技术设置即可,本发明在此不再说明。
本领域技术人员可根据实际需要设置极耳的数量和连接位置,并对连接极耳的金属层上的极耳连接区做增厚处理即可,本发明不再详细列举。
当集流体包括两个或两个以上单元时,申请人进一步发现单元与单元之间的连接处同样存在连接良率不高以及接触阻抗高的问题,与极耳的连接类似,对极耳连接区的金属层增厚的方法同样适用于单元之间金属层的连接,本领域技术人员可根据实际需要将某一金属层上用于与另一层金属层连接的金属层连接区做增厚处理,即,某一金属层上包括金属层连接区和非金属层连接区,金属层连接区用于和另一单元中的金属层连接,得到一种多单元的集流体结构,并且该金属层连接区的金属层厚度大于非金属层连接区的金属层厚度。此外,需要注意的是,由于单元之间金属层的连接涉及位于上层单元内的金属层和下层单元的金属层,因此,在实际制备 过程中,可对两层金属层均做增厚处理,也可以仅对一侧金属层做增厚处理,本发明增厚的金属层数量不做具体限制。
在一种具体实施方式中,所述集流体包括X个单元,其中,Z个单元中所述第一金属层和/或第二金属层包括所述极耳连接区和非极耳连接区,剩余(X-Z)个单元中至少一个单元的所述第一金属层和/或第二金属层包括金属层连接区和非金属层连接区,其中,所述金属层连接区的厚度大于所述非金属层连接区的厚度,X≥2,Z≥1。
图5为本发明再一实施例提供的集流体结构示意图,如图5所示,本实施方式提供的集流体包括X个单元,X≥2,每个单元内均包括一个聚合物层1和两层金属层,金属层分别为设置在聚合物层1上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,其中第一单元内第一金属层2-1远离聚合物层1的上表面包括极耳连接区和非极耳连接区,极耳3与该极耳连接区连接,第2单元至第X个单元中至少一个单元内的第一金属层2-1和/或第二金属层2-2远离聚合物层的表面包括金属层连接区和非金属层连接区,其中,图5仅示出第X单元中第一金属层2-1的金属层连接区(图5中长划线
Figure PCTCN2021092986-appb-000003
框出的部分,下同)和非金属层连接区(图5中方点
Figure PCTCN2021092986-appb-000004
框出的部分,下同),即Z=1。
在另一种具体实施方式中,所述集流体包括X个单元,Z个单元中至少一个单元的所述第一金属层和第二金属层中的一个包括所述极耳连接区和非极耳连接区且所述第一金属层和所述第二金属层中的另一个包括金属层连接区和非金属层连接区,其中,所述金属层连接区的厚度大于所述非金属层连接区的厚度,X≥2,Z≥1。
图6为本发明再一实施例提供的集流体结构示意图,如图6所示,本实施方式提供的集流体包括X个单元,X≥2,每个单元内均包括一个聚合物层1和两层金属层,金属层分别为设置在聚合物层1上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,其中,第一单元内第一金属层2-1和第X单元内第二金属层2-2远离聚合物层1的表面包括极耳连接区和非极耳连接区,同时第一单元内第二金属层2-2和第X单元内第一金属层2-1远离聚合物层1的表面包括金属连接区和非金属连接区,Z=2。
图7为本发明再一实施例提供的集流体结构示意图,如图7所示,本实施方式提供的集流体包括X个单元,X≥2,每个单元内均包括一个聚合物层1和两层金属层,金属层分别为设置在聚合物层1上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,其中,第一单元中的第一金属层2-1、第二金属层2-2和第X单元第二金属层2-2远离聚合物层1的表面均包括极耳连接区和非极耳连接区,同时,第X单元内第一金属层2-1远离聚合物层1的表面包括金属层连接区和非金属层连接区,Z=1。
在又一种具体实施例方式中,所述集流体包括X个单元,X≥2,Z个单元中所述第一金属层和/或第二金属层包括所述极耳连接区和非极耳连接区,所述Z个单元中至少一个单元的所述第一金属层和第二金属层中的一个包括所述极耳连接区和非极耳连接区且所述第一金属层和第二金属层中的另一个包括金属层连接区和非金属层连接区,同时,剩余X-Z个单元中至少一个单元内的所述第一金属层和/或第二金属层包括金属层连接区和非金属层连接区,其中,所述金属层连接区的厚度大于所述非金属层连接区的厚度,Z≥1。
图8为本发明再一实施例提供的集流体结构示意图,如图8所示,本实施方式提供的集流体包括X个单元,X≥2,每个单元内均包括一个聚合物层1和两层金属层,金属层分别为设置在聚合物层1上表面的第一金属层2-1和设置在聚合物层1下表面的第二金属层2-2,其中,第一单元内第一金属层2-1的上表面包括极耳连接区和非极耳连接区,第一单元内第二金属层2-2远离聚合物层1的表面包括金属层连接区和非金属层连接,同时,第2单元至第X单元中至少一个单元的第一金属层2-1和/或第二金属层2-2远离聚合物层1的表面也包括金属层连接区和非金属层连接区,图8仅示出第X单元中第一金属层2-1和第二金属层2-2的金属层连接区和非金属层连接区,即Z=1。
申请人进一步研究发现,对金属层上极耳连接区和非极耳连接区厚度的差值大小也对集流体性能有一定的影响,具体地,所述极耳连接区的金属层厚度为所述非极耳连接区金属层厚度的1.05-10倍。
进一步地,所述极耳连接区的金属层厚度为所述非极耳连接区金属层 厚度的1.5-3倍。
与极耳连接区和非极耳连接区厚度差值的影响相同,金属层连接区和非金属层连接区的厚度差值也对集流体性能有一定的影响,具体地,所述金属层连接区的金属层厚度为所述非金属层连接区的金属层厚度的1.05-10倍。
采用本申请提供的集流体结构,有效提高了极耳与集流体的焊接强度,具体地,所述极耳的焊接强度大于等于0.4N/mm。
综上,本发明提供了一种集流体,通过对金属层上用于连接极耳的极耳连接区做增厚处理,有效提高了极耳的焊接强度,从而提高了极耳与集流体的结合力,降低了极耳连接区的接触阻抗,提高了极耳与金属层的连接良率。
本发明第二方面提供了一种锂离子电池,包括上述任一所述的集流体。
在本申请提供的集流体基础上,本领域技术人员可依据现有技术制备得到正极片,并搭配负极片、隔膜、电解液、极耳等制备得到锂离子电池。本发明提供的锂离子电池,通过采用本发明的集流体,有效降低了锂离子电池的欧姆阻抗,提高了锂离子电池焊接良品率。
本发明的实施,至少具有以下优势:
1、本发明提供了一种集流体,通过对金属层连接极耳的极耳连接区做增厚处理,有效提高了极耳的焊接强度,从而提高了极耳与集流体的结合力,降低了极耳连接区的接触阻抗,提高了极耳与金属层的连接良率。
2、当集流体包括多个单元时,通过对金属层上用于单元之间连接的金属层连接区做增厚处理,可有效提高单元之间的焊接强度,从而降低集流体单元之间的接触阻抗,提高集流体单元间的连接良率。
3、本发明提供的锂离子电池,通过采用本发明提供的集流体,有效降低了锂离子电池的欧姆阻抗,提高了锂离子电池焊接良品率。
附图说明
图1为本发明一实施例提供的集流体结构示意图;
图2为本发明又一实施例提供的集流体结构示意图;
图3为本发明再一实施例提供的集流体结构示意图;
图4为本发明再一实施例提供的集流体结构示意图;
图5为本发明再一实施例提供的集流体结构示意图;
图6为本发明再一实施例提供的集流体结构示意图;
图7为本发明再一实施例提供的集流体结构示意图;
图8为本发明再一实施例提供的集流体结构示意图。
附图说明:
1-聚合物层;2-金属层;2-1-第一金属层;2-2-第二金属层;3-极耳。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例和对比例中使用的正极耳购自连云港德立信电子科技有限公司,正极耳的材质为铝;负极耳购自连云港德立信电子科技有限公司,负极耳的材质为镍、表面镀铜的金属镍和不锈钢中的一种。
超声焊接采用深圳市斯特高能电子科技有限公司的UM-20型号超声波金属焊接机进行焊接,焊接参数:焊接功率3000W,焊接频率20kHz,焊接振幅40μm,焊接时间0.42s,焊接压力0.3MPa。
激光焊接采用东莞市正信激光科技有限公司的ZXL-200W型号激光焊接机进行焊接,焊接参数:激光波长1064nm,激光功率200W,脉冲频率150Hz,脉冲宽度10ms。
实施例1
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为1.05μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,该正极耳的厚度为0.1mm,宽度为6mm;
采用力控仪器科技有限公司的LK-108A型号拉力测试仪,将极耳用夹具夹好,然后通过拉力测试仪测试极耳从集流体上拉脱的拉力值N,极耳宽度为D,可计算得到极耳焊接强度F=N/D,结果显示,本实施例中极耳焊接强度为0.6N/mm。
实施例2
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为1.5μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.1N/mm。
实施例3
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为2μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.6N/mm。
实施例4
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为3μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.2N/mm。
实施例5
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为5μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.9N/mm。
实施例6
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属 层为铜,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为1.05μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为0.4N/mm。
实施例7
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铜,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为1.5μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为0.9N/mm。
实施例8
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铜,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为2μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.5N/mm。
实施例9
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铜,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为3μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.1N/mm。
实施例10
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属 层为铜,聚合物PET层的厚度为6μm,非极耳连接区的金属层厚度为1μm,极耳连接区的金属层厚度为5μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.8N/mm。
实施例11
本实施例提供的集流体结构如图1所示,其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为4μm,非极耳连接区的金属层厚度为0.5μm,极耳连接区的金属层厚度为5μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.9N/mm。
实施例12
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铜,聚合物PET层的厚度为5μm,非极耳连接区的金属层厚度为0.5μm,极耳连接区的金属层厚度为5μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.7N/mm。
实施例13
本实施例提供的集流体结构如图1所示,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为1μm,非极耳连接区的金属层厚度为2μm,极耳连接区的金属层厚度为3μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.3N/mm。
实施例14
本实施例提供的集流体结构如图1所示,其中,聚合物层为PP,金属层为铜,聚合物PP层的厚度为1μm,非极耳连接区的金属层厚度为2μm,极耳连接区的金属层厚度为2.5μm,采用超声焊的方式将负极耳焊接在金属铜 层的极耳连接区上,负极耳的材质为表面镀铜的镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2N/mm。
实施例15
本实施例提供的集流体结构如图2所示,其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为22μm,非极耳连接区的金属层厚度为1.1μm,极耳连接区的金属层厚度为2μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.08mm,宽度为8mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.9N/mm。
实施例16
本实施例提供的集流体结构如图2所示,其中,聚合物层为PP,金属层为铜,聚合物PP层的厚度为25μm,非极耳连接区的金属层厚度为0.9μm,极耳连接区的金属层厚度为1.6μm,采用超声焊的方式将负极耳焊接在金属铜层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.08mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.7N/mm。
实施例17
本实施例提供的集流体结构如图3所示,其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为8μm,非极耳连接区的金属层厚度为0.7μm,极耳连接区的金属层厚度为1.2μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.05mm,宽度为8mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.5N/mm。
实施例18
本实施例提供的集流体结构如图3所示,其中,聚合物层为PP,金属层为铜,聚合物PP层的厚度为8μm,非极耳连接区的金属层厚度为0.7μm,极耳连接区的金属层厚度为1.2μm,采用超声焊的方式将负极耳焊接在金属铜 层的极耳连接区上,负极耳的材质为表面镀铜的镍,负极耳的厚度为0.05mm,宽度为8mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.5N/mm。
实施例19
本实施例提供的集流体结构如图6所示,X=9,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为9μm,非极耳连接区和非金属层连接区的金属层厚度为1μm,极耳连接区和金属层连接区(此处的金属层连接区设置在每层无需连接极耳的金属层上,即图6中省略的金属层上均包括金属层连接区和非金属层连接区,以下实施例中金属层连接区均相同)的金属层厚度为1.5μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.2mm,宽度为12mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.6N/mm。
实施例20
本实施例提供的集流体结构如图6所示,X=10,其中,聚合物层为PET,金属层为不锈钢,聚合物PET层的厚度为9μm,非极耳连接区和非金属层连接区的金属层厚度为1μm,极耳连接区和金属层连接区的金属层厚度为1.5μm,采用激光焊的方式将负极耳焊接在金属不锈钢层的极耳连接区上,负极耳的材质为不锈钢,负极耳的厚度为0.2mm,宽度为12mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.4N/mm。
实施例21
本实施例提供的集流体结构如图7所示,X=9,其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为8μm,非极耳连接区和非金属层连接区的金属层厚度为0.8μm,极耳连接区和金属层连接区的金属层厚度为2μm,采用激光焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为0.03mm,宽度为15mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.9N/mm。
实施例22
本实施例提供的集流体结构如图7所示,X=10,其中,聚合物层为PP,金属层为镍,聚合物PP层的厚度为8μm,非极耳连接区和非金属层连接区的金属层厚度为0.8μm,极耳连接区和金属层连接区的金属层厚度为2μm,采用激光焊的方式将负极耳焊接在金属镍层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为0.03mm,宽度为15mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2.7N/mm。
实施例23
本实施例提供的集流体结构如图8所示,X=9,其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为8μm,非极耳连接区和非金属层连接区的金属层厚度为0.6μm,极耳连接区和金属层连接区的金属层厚度为1μm,采用超声焊的方式将正极耳焊接在金属铝层的极耳连接区上,正极耳的厚度为1mm,宽度为10mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为2N/mm。
实施例24
本实施例提供的集流体结构如图8所示,X=10,其中,聚合物层为PP,金属层为镍,聚合物PP层的厚度为8μm,非极耳连接区和非金属层连接区的金属层厚度为0.6μm,极耳连接区和金属层连接区的金属层厚度为1μm,采用超声焊的方式将负极耳焊接在金属镍层的极耳连接区上,负极耳的材质为镍,负极耳的厚度为1mm,宽度为10mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本实施例中极耳焊接强度为1.9N/mm。
对比例1
本对比例提供的集流体包括聚合物层和金属层,金属层设置在聚合物层的上表面,其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为6μm,金属层厚度均为1μm,采用超声焊的方式将正极耳焊接在金属铝层上,正极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳 焊接强度为0.2N/mm。
对比例2
本对比例提供的集流体包括聚合物层和金属层,金属层设置在聚合物层的上表面,其中,聚合物层为PET,金属层为铜,聚合物PET层的厚度为6μm,金属层厚度均为1μm,采用超声焊的方式将负极耳焊接在金属铜层上,负极耳的材质为镍,负极耳的厚度为0.1mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.1N/mm。
对比例3
本对比例提供的集流体包括聚合物层和金属层,金属层设置在聚合物层的上表面和下表面,其中,聚合物层为PP,金属层为铝,聚合物PET层的厚度为22μm,金属层厚度均为1.1μm,采用超声焊的方式将正极耳焊接在聚合物层上表面的金属铝层上,极耳的厚度为0.08mm,宽度为8mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.3N/mm。
对比例4
本对比例提供的集流体包括聚合物层和金属层,金属层设置在聚合物层的上表面和下表面,其中,聚合物层为PP,金属层为铜,聚合物PET层的厚度为25μm,金属层厚度均为0.9μm,采用超声焊的方式将负极耳焊接在聚合物层上表面的金属铜层上,负极耳的材质为镍,负极耳的厚度为0.08mm,宽度为6mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.2N/mm。
对比例5
本对比例提供的集流体包括聚合物层和金属层,金属层设置在聚合物层的上表面和下表面,其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为8μm,金属层厚度均为0.7μm,采用超声焊的方式将正极耳焊接在聚合物层上表面和下表面的金属铝层上,正极耳的厚度为0.05mm,宽度为8mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.2N/mm。
对比例6
本对比例提供的集流体包括聚合物层和金属层,金属层设置在聚合物层的上表面和下表面,其中,聚合物层为PP,金属层为铜,聚合物PP层的厚度为8μm,金属层厚度均为0.7μm,采用超声焊的方式将负极耳焊接在聚合物层上表面和下表面的金属铝层上,负极耳的材质为表面镀铜的金属镍,负极耳的厚度为0.05mm,宽度为8mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.2N/mm。
对比例7
本对比例提供的集流体包括9个单元,每个单元均包括聚合物层和金属层,金属层设置在聚合物层的上表面和下表面;其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为8μm,金属层厚度均为0.6μm,采用超声焊的方式将正极耳焊接在第一单元聚合物层上表面的金属铝层上,正极耳的厚度为1mm,宽度为10mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.2N/mm。
对比例8
本对比例提供的集流体包括10个单元,每个单元均包括聚合物层和金属层,金属层设置在聚合物层的上表面和下表面;其中,聚合物层为PP,金属层为镍,聚合物PP层的厚度为8μm,金属层厚度均为0.6μm,采用超声焊的方式将负极耳焊接在第一单元聚合物层上表面的金属镍层上,负极耳的材质为镍,极耳的厚度为1mm,宽度为10mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.1N/mm。
对比例9
本对比例提供的集流体包括9个单元,每个单元均包括聚合物层和设置在聚合物层的上表面和下表面的金属层;其中,聚合物层为PET,金属层为铝,聚合物PET层的厚度为9μm,金属层厚度均为1μm,采用超声焊的方式将正极耳分别焊接在第一单元聚合物层上表面和第9单元聚合物层下表面的金属铝层上,正极耳的厚度为0.2mm,宽度为12mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.3N/mm。
对比例10
本对比例提供的集流体包括10个单元,每个单元均包括聚合物层和设置在聚合物层的上表面和下表面的金属层;其中,聚合物层为PET,金属层为不锈钢,聚合物PET层的厚度为9μm,金属层厚度均为1μm,采用激光焊的方式将负极耳分别焊接在第一单元聚合物层上表面和第10单元聚合物层下表面的金属不锈钢层上,负极耳的材质为不锈钢,负极耳的厚度为0.2mm,宽度为12mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.3N/mm。
对比例11
本对比例提供的集流体包括9个单元,每个单元均包括聚合物层和设置在聚合物层的上表面和下表面的金属层;其中,聚合物层为PP,金属层为铝,聚合物PP层的厚度为8μm,金属层厚度均为0.8μm,采用激光焊的方式将正极耳焊接在第一单元聚合物层上表面、下表面以及第9单元聚合物层下表面的金属铝层上,正极耳的厚度为0.03mm,宽度为15mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.3N/mm。
对比例12
本对比例提供的集流体包括10个单元,每个单元均包括聚合物层和设置在聚合物层的上表面和下表面的金属层;其中,聚合物层为PP,金属层为镍,聚合物PP层的厚度为8μm,金属层厚度均为0.8μm,采用激光焊的方式将负极耳焊接在第一单元聚合物层上表面、下表面以及第10单元聚合物层下表面的金属镍层上,负极耳的材质为镍,负极耳的厚度为0.03mm,宽度为15mm;
采用与实施例1相同的焊接强度测试方法,结果显示,本对比例中极耳焊接强度为0.2N/mm。
本发明在以上实施例和对比例提供的集流体的基础上,制备得到了锂离子电池。在以下实施例和对比例中,钴酸锂正极材料购自北京当升材料科技股份有限公司,比容量181mAh/g;石墨负极材料购自上海杉杉科技有限公司, 比容量359mAh/g。
聚乙烯(PE)多孔隔膜为上海恩捷新材料科技有限公司生产的湿法隔膜ND12,厚度为12μm;电解液为深圳新宙邦科技股份有限公司的LBC445B33型号电解液。
实施例25
将95质量份的钴酸锂正极材料、2质量份的乙炔黑导电剂、0.5质量份的碳纳米管导电剂、2.5质量份的PVDF粘结剂以及60质量份的溶剂NMP,通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,将其涂布在实施例1提供的集流体上,然后在120℃下烘干、40吨压力下辊压,分切成正极片。正极片的极片面密度为20mg/cm 2,压实密度为4.16g/cm 3
将95质量份的石墨负极材料、1.5质量份的乙炔炭黑导电剂、0.5质量份的碳纳米管导电剂、2.0质量份的丁苯橡胶(SBR)粘结剂、1.0质量份的羧甲基纤维素(CMC)以及100质量份的溶剂水,通过双行星搅拌机在真空下以公转30r/min、自转1500r/min的条件搅拌4h,分散成均匀的浆料,将其涂布在实施例6提供的集流体上,然后在110℃下烘干、40吨压力下辊压,分切成负极片。负极片的极片面密度为10mg/cm 2,压实密度为1.74g/cm 3
将上述的正极片和负极片、搭配聚乙烯(PE)多孔隔膜、电解液通过常规制备工艺制备成锂离子电池C1。
实施例26
采用实施例2提供的集流体作为正极,实施例7提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C2。
实施例27
采用实施例3提供的集流体作为正极,实施例8提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C3。
实施例28
采用实施例4提供的集流体作为正极,实施例9提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C4。
实施例29
采用实施例5提供的集流体作为正极,实施例10提供的集流体作为负极, 采用与实施例25相同的制备方法制备得到锂离子电池C5。
实施例30
采用实施例11提供的集流体作为正极,实施例12提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C6。
实施例31
采用实施例13提供的集流体作为正极,实施例14提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C7。
实施例32
采用实施例15提供的集流体作为正极,实施例16提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C8。
实施例33
采用实施例17提供的集流体作为正极,实施例18提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C9。
实施例34
采用实施例19提供的集流体作为正极,实施例20提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C10。
实施例35
采用实施例21提供的集流体作为正极,实施例22提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C11。
实施例36
采用实施例23提供的集流体作为正极,实施例24提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池C12。
对比例13
采用对比例1提供的集流体作为正极,对比例2提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池A1。
对比例14
采用对比例3提供的集流体作为正极,对比例4提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池A2。
对比例15
采用对比例5提供的集流体作为正极,对比例6提供的集流体作为负极, 采用与实施例25相同的制备方法制备得到锂离子电池A3。
对比例16
采用对比例7提供的集流体作为正极,对比例8提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池A4。
对比例17
采用对比例9提供的集流体作为正极,对比例10提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池A5。
对比例18
采用对比例11提供的集流体作为正极,对比例12提供的集流体作为负极,采用与实施例25相同的制备方法制备得到锂离子电池A6。
本发明继续对实施例25-36制备得到的锂离子电池C1-C12以及对比例13-18制备得到的锂离子电池A1-A6的欧姆阻抗以及电池焊接良品率进行测试,结果见表1。
其中,欧姆阻抗的测试方法包括:通过内阻测试仪(深圳市超思思科技有限公司的RBM-200智能电池内阻测试仪)测试电池欧姆阻抗,交流信号频率设置为1KHz。
电池焊接良品率的测试方法包括:制备100只相同的锂离子电池,并对每一只锂离子电池的焊接点进行目视检查以及焊接强度测试,要求目视检测每一层金属层均连接在一起且金属层与外接的极耳也连接在一起,同时要求经过拉力机测试每一层金属层的焊接强度均不低于正常焊接强度值的80%,若有一层金属层的目视检查和焊接强度测试不符合要求即认为该锂离子电池为不良品,统计良品电池的数量,良品率=良品电池数量/100*100%。
表1锂离子电池C1-C12以及A1-A6的性能测试结果
  欧姆阻抗(mΩ) 电池焊接良品率
C1 128 98%
C2 123 99%
C3 120 99%
C4 117 99%
C5 124 98%
C6 133 97%
C7 116 99%
C8 127 99%
C9 131 99%
C10 109 98%
C11 118 98%
C12 138 98%
A1 221 68%
A2 205 72%
A3 219 70%
A4 224 69%
A5 207 75%
A6 214 73%
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种集流体,其特征在于,所述集流体包括M个金属层和N个聚合物层,所述金属层和聚合物层层叠设置,其中,L个金属层包括极耳连接区和非极耳连接区,所述极耳连接区的厚度大于所述非极耳连接区的厚度,M≥1,N≥1,L≥1,M≥L。
  2. 根据权利要求1所述的集流体,其特征在于,所述集流体包括所述聚合物层和设置于所述聚合物层上表面或下表面的所述金属层。
  3. 根据权利要求1所述的集流体,其特征在于,所述集流体至少包括一个单元,所述单元包括所述聚合物层和设置于所述聚合物层上表面的第一金属层和设置于所述聚合物层下表面的第二金属层,至少一个单元中的所述第一金属层和/或所述第二金属层包括所述极耳连接区和非极耳连接区。
  4. 根据权利要求3所述的集流体,其特征在于,所述集流体包括X个单元,其中,Z个单元中所述第一金属层和/或第二金属层包括所述极耳连接区和非极耳连接区,剩余(X-Z)个单元中至少一个单元的所述第一金属层和/或第二金属层包括金属层连接区和非金属层连接区,其中,所述金属层连接区的厚度大于所述非金属层连接区的厚度,X≥2,Z≥1。
  5. 根据权利要求3或4所述的集流体,其特征在于,所述集流体包括X个单元,其中,Z个单元中至少一个单元的所述第一金属层和第二金属层中的一个包括所述极耳连接区和非极耳连接区且所述第一金属层和第二金属层中的另一个包括金属层连接区和非金属层连接区,其中,所述金属层连接区的厚度大于所述非金属层连接区的厚度,X≥2,Z≥1。
  6. 根据权利要求1-5任一项所述的集流体,其特征在于,所述极耳连接区的金属层厚度为所述非极耳连接区金属层厚度的1.05-10倍。
  7. 根据权利要求1-5任一项所述的集流体,其特征在于,所述极耳连接区的金属层厚度为所述非极耳连接区金属层厚度的1.5-3倍。
  8. 根据权利要求4或5所述的集流体,其特征在于,所述金属层连接区的金属层厚度为所述非金属层连接区的金属层厚度的1.05-10倍。
  9. 根据权利要求1-8任一项所述的集流体,其特征在于,所述极耳的焊接强度大于等于0.4N/mm。
  10. 一种锂离子电池,其特征在于,包括上述权利要求1-9任一项所述的集流体。
PCT/CN2021/092986 2020-05-29 2021-05-11 一种集流体及其应用 WO2021238642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21811761.2A EP4131514A4 (en) 2020-05-29 2021-05-11 CURRENT COLLECTORS AND THEIR USE
US18/051,879 US20230290959A1 (en) 2020-05-29 2022-11-02 Current collector and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010473157.1 2020-05-29
CN202010473157.1A CN111509233A (zh) 2020-05-29 2020-05-29 一种集流体及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/051,879 Continuation US20230290959A1 (en) 2020-05-29 2022-11-02 Current collector and application thereof

Publications (1)

Publication Number Publication Date
WO2021238642A1 true WO2021238642A1 (zh) 2021-12-02

Family

ID=71878666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092986 WO2021238642A1 (zh) 2020-05-29 2021-05-11 一种集流体及其应用

Country Status (4)

Country Link
US (1) US20230290959A1 (zh)
EP (1) EP4131514A4 (zh)
CN (1) CN111509233A (zh)
WO (1) WO2021238642A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509233A (zh) * 2020-05-29 2020-08-07 珠海冠宇电池股份有限公司 一种集流体及其应用
CN111900413B (zh) * 2020-08-11 2021-09-28 珠海冠宇电池股份有限公司 一种集流体及其制备方法和应用
CN112234210A (zh) * 2020-09-30 2021-01-15 江苏卓高新材料科技有限公司 一种复合集流体及其制备方法及电池
CN113113566A (zh) * 2021-04-09 2021-07-13 珠海冠宇电池股份有限公司 一种集流体及其应用
CN114204036A (zh) * 2021-11-17 2022-03-18 合肥国轩高科动力能源有限公司 一种复合集流体的制备方法
CN114373936B (zh) * 2021-12-13 2024-03-01 苏州蔚利昆新能源科技有限公司 集流体
CN114203958A (zh) * 2021-12-13 2022-03-18 珠海冠宇电池股份有限公司 集流体、极片、电芯及电池
CN114700604A (zh) * 2022-03-18 2022-07-05 江阴纳力新材料科技有限公司 极耳超声波焊接方法
CN114843523A (zh) * 2022-05-18 2022-08-02 江苏正力新能电池技术有限公司 一种复合箔材、极片及复合箔材的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129939A (ko) * 2015-04-30 2016-11-10 한국전자통신연구원 집전체
CN208433467U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN208433464U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN208433466U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
CN111509233A (zh) * 2020-05-29 2020-08-07 珠海冠宇电池股份有限公司 一种集流体及其应用
CN112216842A (zh) * 2019-07-12 2021-01-12 宁德新能源科技有限公司 复合集流体及包括所述复合集流体的电极极片和电芯

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690575B2 (ja) * 2010-12-16 2015-03-25 シャープ株式会社 非水系二次電池
CN209183628U (zh) * 2018-10-11 2019-07-30 宁德时代新能源科技股份有限公司 二次电池及其极片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160129939A (ko) * 2015-04-30 2016-11-10 한국전자통신연구원 집전체
CN208433467U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN208433464U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN208433466U (zh) * 2018-02-09 2019-01-25 深圳前海优容科技有限公司 电池、电池电芯及集流体
CN112216842A (zh) * 2019-07-12 2021-01-12 宁德新能源科技有限公司 复合集流体及包括所述复合集流体的电极极片和电芯
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
CN111509233A (zh) * 2020-05-29 2020-08-07 珠海冠宇电池股份有限公司 一种集流体及其应用

Also Published As

Publication number Publication date
EP4131514A1 (en) 2023-02-08
US20230290959A1 (en) 2023-09-14
CN111509233A (zh) 2020-08-07
EP4131514A4 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2021238642A1 (zh) 一种集流体及其应用
CN111969214B (zh) 一种异型结构的正极片及包括该正极片的锂离子电池
US20200303768A1 (en) Sandwich electrodes and methods of making the same
JP5468714B1 (ja) 蓄電デバイスおよびその製造方法
WO2022033504A1 (zh) 一种集流体及其制备方法和应用
CN212412090U (zh) 一种集流体和锂离子电池
CN108682788A (zh) 一种柔性锂电池电极
WO2022037092A1 (zh) 一种集流体、极片和电池
WO2022267764A1 (zh) 一种正极集流体和锂离子电池
WO2022143889A1 (zh) 一种极片和锂离子电池
CN111129505B (zh) 一种使用轻量化的集流体的锂电池
CN108281609A (zh) 一种带极耳的正极极片、其制备方法及包含该正极极片的锂离子电池
WO2022242255A1 (zh) 电极极片、制备方法、复合集流体、电池及电子设备
WO2022143859A1 (zh) 一种极片和锂离子电池
WO2023072045A1 (zh) 一种固态电芯及其制备方法和储能装置
CN114171720A (zh) 电池极片及其制备方法、锂离子电池
CN111129415B (zh) 可摩擦生成石墨烯的电池正极汇流结构和集流体
CN115842091A (zh) 一种电池极片、电芯、电池、电池模块、电池包及用电装置
CN219832703U (zh) 一种涂层集流体、极片及锂电池
CN218274649U (zh) 一种复合集流体单元及复合集流体极耳连接结构
CN214672685U (zh) 一种极片和锂离子电池
CN114937755B (zh) 一种复合极片、电芯和复合极片的制备方法
CN219393418U (zh) 一种极片和电池
CN219180547U (zh) 一种锂电池负极片及锂离子电池
CN213660579U (zh) 一种锂电池的极片连接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021811761

Country of ref document: EP

Effective date: 20221103

NENP Non-entry into the national phase

Ref country code: DE