WO2021238610A1 - 一种无线资源的标识方法及装置 - Google Patents

一种无线资源的标识方法及装置 Download PDF

Info

Publication number
WO2021238610A1
WO2021238610A1 PCT/CN2021/092214 CN2021092214W WO2021238610A1 WO 2021238610 A1 WO2021238610 A1 WO 2021238610A1 CN 2021092214 W CN2021092214 W CN 2021092214W WO 2021238610 A1 WO2021238610 A1 WO 2021238610A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam
electromagnetic wave
physical
modal domain
vortex electromagnetic
Prior art date
Application number
PCT/CN2021/092214
Other languages
English (en)
French (fr)
Inventor
吕艺
祝倩
倪锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021238610A1 publication Critical patent/WO2021238610A1/zh
Priority to US17/994,094 priority Critical patent/US20230093039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for identifying wireless resources.
  • Vortex electromagnetic waves are due to the electromagnetic field rotating around the propagation axis, which makes the phase wavefront spiral and has the characteristics of a spatial spiral phase distribution.
  • OAM electromagnetic waves contain a certain topological charge, which is called OAM mode.
  • Electromagnetic waves carrying different OAM modes are orthogonal to each other when coaxially transmitted in space. Due to the inherent characteristics of OAM, OAM is independent of existing resources such as frequency, time, codewords, and polarization. Theoretically speaking, if different information is loaded into different OAM modes and shared the same frequency band for mutual non-interference transmission, the channel capacity of the wireless communication system can be increased, and the spectrum efficiency will be significantly improved.
  • time domain information or code domain information can be distinguished by identifying wireless resources. How to identify wireless resources with OAM modal domains is a problem that needs attention.
  • the embodiments of the present application provide a method and device for identifying wireless resources, which are used to identify wireless resources having an OAM modal domain.
  • a method for identifying radio resources is provided.
  • the method can be implemented by the following steps: acquiring orbital angular momentum OAM modal domain information, wherein the OAM modal domain information includes a first OAM modal domain identifier, and The first OAM modal domain identifier corresponds to the first transmission parameter of the vortex electromagnetic wave in the first OAM physical mode, or the first OAM modal domain identifier corresponds to the difference between the first transmission parameter and the reference value
  • the reference value includes the transmission parameter of the plane electromagnetic wave or the transmission parameter of the vortex electromagnetic wave in the specified OAM physical mode among multiple OAM physical modes; any number of waveform symbols are identified by the same OAM mode domain
  • the vortex electromagnetic wave channels through which the resource is transmitted are the same; the wireless resource used for uplink transmission or downlink transmission is determined according to the OAM modal domain information.
  • the OAM modal domain identifier can be used to determine the wireless resource.
  • the OAM modal domain identifier is related to the transmission parameters of the vortex electromagnetic wave and can be regarded as the OAM logical mode.
  • the method is more versatile and avoids the influence of physical antenna arrays and OAM physical modes on the logic of high-level communication protocols.
  • the OAM modal domain identifier corresponds to the first sequence number among the sequence numbers of multiple ratios
  • the multiple ratios are the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes and The ratio between the reference values. If two or more ratios happen to be equal, the same multiple ratios can be sorted randomly, or according to the rule that the OAM physical mode number corresponding to the ratio is smaller, or the ratio can be sorted according to the positive number than the negative number. Sort by the previous rule, or combine two sorting rules for sorting.
  • the OAM mode domain identifier corresponds to the first sequence number among the sequence numbers of the vortex electromagnetic wave transmission parameters in the multiple OAM physical modes.
  • the sorting sequence number conforms to any one of the following sorting rules: descending order, descending order, odd and even numbers, modulo operation, or weighted sorting.
  • the OAM modal domain information further includes any one or a combination of the following: crosstalk coefficient, beam spread angle, or the first OAM physical mode; wherein, the crosstalk coefficient and the The beam spread angles all correspond to the first OAM physical mode; the crosstalk system includes: the crosstalk coefficient of the vortex electromagnetic wave and the plane electromagnetic wave in the first OAM physical mode, or the first OAM physical mode The crosstalk coefficient between the lower vortex electromagnetic wave and the vortex electromagnetic wave in the specified OAM physical mode.
  • the acquiring OAM modal domain information includes: receiving the OAM modal domain information from a network device; or acquiring the stored OAM modal domain information.
  • receiving the OAM modal domain information from a network device includes: receiving an uplink scheduling authorization UL-Grant message from the network device, the UL-Grant message carrying the OAM modal domain information; Or, receiving downlink control information DCI from the network device, where the DCI carries the OAM modal domain information.
  • the method further includes: receiving a first reference signal from the network device, where the first reference signal is the plane electromagnetic wave Or the vortex electromagnetic wave in the specified OAM physical mode among the multiple OAM physical modes; determine the reference value according to the first reference signal; send the reference value to the network device.
  • the method further includes: receiving multiple second reference signals from the network device, where the multiple second reference signals are vortex electromagnetic waves in the multiple OAM physical modes; The transmission parameters of the vortex electromagnetic waves in the multiple OAM physical modes are determined according to the second reference signal; the transmission parameters of the vortex electromagnetic waves in the multiple OAM physical modes are sent to the network device.
  • the method further includes: sending capability information to the network device, the capability information including supported OAM physical modes, for the network device to send the multiple OAM physical modes according to the capability information Vortex electromagnetic wave in the state.
  • the method further includes: receiving a mixed wave from the network device; wherein, if the reference value is a transmission parameter of a plane electromagnetic wave, the mixed wave includes the multiple OAM physical modes Or, if the reference value is the transmission parameter of the vortex electromagnetic wave in the specified OAM physical mode among the multiple OAM physical modes, the mixed wave includes the multiple The vortex electromagnetic wave in one OAM physical mode; the multiple OAM physical modes include the first OAM physical mode; according to the mixed wave, the vortex electromagnetic wave in each OAM physical mode and the reference value are determined The crosstalk coefficient of the corresponding wave; the determined crosstalk coefficient is sent to the network device.
  • the OAM modal domain identifier includes integers and/or fractions.
  • the identification of the OAM modal domain as a score can improve the ability to combat wireless multipath channel effects.
  • the OAM modal domain identification in the embodiment of the present application is more flexible.
  • the embodiment of the application may not require that the antenna array specifications of the transmitting end and the receiving end must be consistent, and may be applicable to scenarios where the antenna array specifications of the transmitting end and the receiving end are inconsistent, and the embodiment of the application does not require antenna array specifications of different OAM modes. It must be consistent and can be applied to scenarios where the antenna array specifications of different OAM modes are different.
  • the embodiments of the present application are more versatile and flexible.
  • the OAM modal domain identifier in the embodiment of the present application can shield the influence of the physical antenna array and the physical OAM modal on the logic of the high-level communication protocol.
  • the first transmission parameter or the transmission parameter includes any one or a combination of the following: signal-to-noise ratio, reference signal received power, bit error rate, block error rate, packet error rate, Number of failed retransmissions or successful transmission delay.
  • determining the wireless resource according to the OAM modal domain information includes: determining the wireless resource according to the OAM modal domain information in combination with a time domain identifier and/or a frequency domain identifier.
  • Wireless resources can be expanded from two-dimensional time-frequency to three-dimensional time-frequency-mode, and the OAM modal domain identifier is used to map modal domain resources to normalized resources that are not related to physical antennas, which also enhances the three-dimensional time-frequency mode The flexibility of wireless resource scheduling.
  • By increasing the dimension of the OAM modal domain multiple data streams are supported for simultaneous communication on the same time-frequency resource and the same antenna port.
  • a wireless resource identification method includes the following steps: determining orbital angular momentum OAM modal domain information, wherein the OAM modal domain information includes a first OAM modal domain identifier, and the second An OAM modal domain identifier corresponds to the first transmission parameter of the vortex electromagnetic wave in the first OAM physical mode, or the first OAM modal domain identifier corresponds to the first transmission parameter between the first transmission parameter and the reference value.
  • the reference value includes the transmission parameter of the plane electromagnetic wave or the transmission parameter of the vortex electromagnetic wave in the specified OAM physical mode among multiple OAM physical modes; any number of waveform symbols are transmitted through the resource identified by the same OAM mode domain
  • the vortex electromagnetic wave channels that are passed at the time are the same; the OAM modal domain information is sent to the terminal device.
  • the OAM modal domain identifier can be used to determine the wireless resource.
  • the OAM modal domain identifier is related to the transmission parameters of the vortex electromagnetic wave and can be regarded as the OAM logical mode. Compared with using the OAM physical modality to determine the wireless resource
  • the method is more versatile and avoids the influence of physical antenna arrays and OAM physical modes on the logic of high-level communication protocols.
  • the method further includes: determining a plurality of OAM modal domain identifiers, the plurality of OAM modal domain identifiers including the first OAM modal domain identifier; sending the terminal device Multiple OAM modal domain identifiers; the determining multiple OAM modal domain identifiers includes: sending vortex electromagnetic waves in multiple OAM physical modalities to the terminal device; receiving the multiple feedback from the terminal device The transmission parameters of the vortex electromagnetic wave in the physical OAM modes; according to the sequence numbers of the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes, multiple OAM modal domain identifiers are obtained; if two or more transmissions The parameters happen to be equal, and multiple transmission parameters that are equal can be sorted randomly, or sorted according to the rule that the number of OAM physical modes corresponding to the ratio is smaller, or sorted according to the rule that positive numbers are first than negative numbers. , Or combine two sorting rules to sort.
  • the determining multiple OAM modal domain identifiers includes: sending a reference electromagnetic wave to the terminal device, receiving the transmission parameter of the reference electromagnetic wave fed back from the terminal device; sending multiple OAM physical waves to the terminal device The vortex electromagnetic wave in the mode, receiving the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes fed back from the terminal device; determine the transmission parameters of the vortex electromagnetic wave in each OAM physical mode and the transmission of the reference electromagnetic wave
  • the ratios of the parameters obtain multiple ratios corresponding to multiple OAM physical modalities; according to the sequence numbers of the multiple ratios, multiple OAM modal domain identifiers are obtained;
  • the reference electromagnetic wave is a plane electromagnetic wave or the multiple OAM physics In the mode, specify the vortex electromagnetic wave in the OAM physical mode.
  • the equal multiple ratios can be sorted randomly, or according to the rule that the number of OAM physical modalities corresponding to the ratios is smaller. Sort by the rule that positive numbers are ranked first than negative numbers, or combine two sorting rules for sorting.
  • the method further includes: receiving capability information from the terminal device, where the capability information is used to indicate the OAM physical modality supported by the terminal device;
  • the vortex electromagnetic waves in the multiple OAM physical modes sent by the terminal device, and the vortex electromagnetic waves in the OAM physical mode sent by the terminal device can support.
  • the method further includes: sending a mixed wave to the terminal device, the mixed wave including the vortex electromagnetic wave in the multiple OAM physical modes and a reference electromagnetic wave, and the reference electromagnetic wave is a plane electromagnetic wave Or the vortex electromagnetic wave in the specified OAM physical mode among the multiple OAM physical modes; receiving the vortex electromagnetic wave in the multiple OAM physical modes from the terminal device and the crosstalk coefficient of the reference electromagnetic wave respectively; Sending the respective crosstalk coefficients corresponding to the multiple OAM modal domain identifiers to the terminal device.
  • the method further includes: determining beam divergence angles of the multiple OAM physical modalities; and sending beam divergence angles respectively corresponding to the multiple OAM modal domain identifiers to the terminal device.
  • the OAM modal domain identifier includes integers and/or fractions.
  • the identification of the OAM modal domain as a score can improve the ability to combat wireless multipath channel effects.
  • the OAM modal domain identification in the embodiment of the present application is more flexible.
  • the embodiment of the application may not require that the antenna array specifications of the transmitting end and the receiving end must be consistent, and may be applicable to scenarios where the antenna array specifications of the transmitting end and the receiving end are inconsistent, and the embodiment of the application does not require antenna array specifications of different OAM modes. It must be consistent and can be applied to scenarios where the antenna array specifications of different OAM modes are different.
  • the embodiments of the present application are more versatile and flexible.
  • the OAM modal domain identifier of the embodiment of the present application can shield the influence of the physical antenna array and the physical OAM modal on the logic of the high-level communication protocol.
  • the transmission parameters include any one or a combination of the following: signal-to-noise ratio, reference signal received power, bit error rate, block error rate, packet error rate, number of failed retransmissions, or successful transmission Time delay.
  • a communication device may be a terminal device, or a device located in a terminal device (for example, a chip, or a chip system, or a circuit), or a device that can be matched and used with the terminal device.
  • the device has the function of implementing the method described in the first aspect and any one of the possible designs of the first aspect.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may include an acquisition module and a determination module. Illustratively:
  • An acquisition module for acquiring orbital angular momentum OAM modal domain information where the OAM modal domain information includes a first OAM modal domain identifier, and the first OAM modal domain identifier corresponds to the first OAM physical modality
  • the first transmission parameter of the lower vortex electromagnetic wave, or the first OAM modal domain identifier corresponds to a first ratio between the first transmission parameter and a reference value, and the reference value includes the transmission parameter of the plane electromagnetic wave or Specify the transmission parameters of the vortex electromagnetic wave in the OAM physical mode in multiple OAM physical modes; the vortex electromagnetic wave channel through which any number of waveform symbols are transmitted through the resource identified by the same OAM mode domain is the same; determine the module , Used to determine radio resources used for uplink transmission or downlink transmission according to the OAM modal domain information.
  • the OAM modal domain identifier corresponds to the first sequence number among the sequence numbers of multiple ratios, and the multiple ratios are the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes and The ratio between the reference values.
  • the sorting sequence number conforms to any one of the following sorting rules: descending order, descending order, odd and even numbers, modulo operation, or weighted sorting.
  • the OAM modal domain information further includes any one or a combination of the following: crosstalk coefficient, beam spread angle, or the first OAM physical mode; wherein, the crosstalk coefficient and the The beam spread angles all correspond to the first OAM physical mode; the crosstalk system includes: the crosstalk coefficient of the vortex electromagnetic wave and the plane electromagnetic wave in the first OAM physical mode, or the first OAM physical mode The crosstalk coefficient between the lower vortex electromagnetic wave and the vortex electromagnetic wave in the specified OAM physical mode.
  • the device further includes:
  • a communication module configured to receive a first reference signal from the network device, where the first reference signal is the plane electromagnetic wave or a vortex electromagnetic wave in a specified OAM physical mode among the multiple OAM physical modes;
  • the determining module is further configured to determine the reference value according to the first reference signal
  • the communication module is also used to send the reference value to the network device.
  • the communication module is further configured to receive multiple second reference signals from the network device, and the multiple second reference signals are vortices in the multiple OAM physical modes Electromagnetic wave
  • the determining module is further configured to determine the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes according to the second reference signal;
  • the communication module is further configured to send transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes to the network device.
  • the communication module is further configured to send capability information to the network device, where the capability information includes supported OAM physical modalities.
  • the communication module is further configured to receive a mixed wave from the network device; wherein, if the reference value is a transmission parameter of a plane electromagnetic wave, the mixed wave includes the multiple OAMs The vortex electromagnetic wave in the physical mode and the plane electromagnetic wave; or, if the reference value is the transmission parameter of the vortex electromagnetic wave in the specified OAM physical mode among the multiple OAM physical modes, the mixed wave includes all Vortex electromagnetic waves in the multiple OAM physical modes; the multiple OAM physical modes include the first OAM physical mode;
  • the determining module is further configured to determine the crosstalk coefficient of the vortex electromagnetic wave and the wave corresponding to the reference value in each OAM physical mode according to the mixed wave; the communication module is also configured to determine the crosstalk The coefficient is sent to the network device.
  • the OAM modal domain identifier includes integers and/or fractions.
  • the first transmission parameter or the transmission parameter includes any one or a combination of the following: signal-to-noise ratio, reference signal received power, bit error rate, block error rate, packet error rate, Number of failed retransmissions or successful transmission delay.
  • the determining module is configured to determine wireless resources according to the OAM modal domain information in combination with a time domain identifier and/or a frequency domain identifier.
  • a communication device may be a network device, or a device located in the network device (for example, a chip, or a chip system, or a circuit), or a device that can be matched and used with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the second aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a determination module and a communication module. Illustratively:
  • the determining module is used to determine orbital angular momentum OAM modal domain information, wherein the OAM modal domain information includes a first OAM modal domain identifier, and the first OAM modal domain identifier corresponds to the first OAM physical modality
  • the first transmission parameter of the lower vortex electromagnetic wave, or the first OAM modal domain identifier corresponds to a first ratio between the first transmission parameter and a reference value, and the reference value includes the transmission parameter of the plane electromagnetic wave or Specify the transmission parameters of the vortex electromagnetic wave in the OAM physical mode in multiple OAM physical modes; the vortex electromagnetic wave channel through which any number of waveform symbols are transmitted through the resource identified by the same OAM mode domain is the same; communication module , Used to send the OAM modal domain information to the terminal device.
  • the determining module is further configured to: determine multiple OAM modal domain identifiers, the multiple OAM modal domain identifiers including the first OAM modal domain identifier; the communication module, further Used to send the multiple OAM modal domain identifiers;
  • the communication module is configured to send vortex electromagnetic waves in multiple OAM physical modes; receive the transmission parameters of the vortex electromagnetic waves in the multiple OAM physical modes fed back from the terminal device; the determining module uses Obtaining multiple OAM modal domain identifiers according to the sequence numbers of the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes;
  • the communication module is configured to send a reference electromagnetic wave, and receive the transmission parameters of the reference electromagnetic wave fed back from the terminal device; send vortex electromagnetic waves in multiple OAM physical modes, and receive feedback from the terminal device
  • the determining module is used to determine the ratio of the vortex electromagnetic wave transmission parameter and the transmission parameter of the reference electromagnetic wave in each OAM physical mode to obtain multiple OAM physical modes Multiple ratios corresponding to the modal; according to the sequence numbers of the multiple ratios, multiple OAM modal domain identifiers are obtained;
  • the reference electromagnetic wave is a plane electromagnetic wave or a designated OAM physical modal among the multiple OAM physical modals Vortex electromagnetic waves.
  • the device further includes:
  • the sent vortex electromagnetic waves in the multiple OAM physical modes are determined.
  • the communication module is also used for:
  • the mixed wave including the vortex electromagnetic wave in the multiple OAM physical modes and a reference electromagnetic wave
  • the reference electromagnetic wave is a plane electromagnetic wave or a specified OAM physical mode vortex in the multiple OAM physical modes Electromagnetic wave
  • the determining module is further configured to determine the beam spread angles of the multiple OAM physical modes
  • the communication module is further configured to send beam spread angles corresponding to the multiple OAM modal domain identifiers, respectively.
  • the OAM modal domain identifier includes integers and/or fractions.
  • the transmission parameters include any one or a combination of the following: signal-to-noise ratio, reference signal received power, bit error rate, block error rate, packet error rate, number of failed retransmissions, or successful transmission Time delay.
  • an embodiment of the present application provides a communication device, which includes a communication interface and a processor, and the communication interface is used for communication between the device and other devices, such as sending and receiving data or signals.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be network devices.
  • the processor is used to call a set of programs, instructions, or data to execute the above-mentioned first aspect or the methods described in each possible design of the first aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, it can implement the aforementioned first aspect or each possible design description method of the first aspect.
  • an embodiment of the present application provides a communication device, which includes a communication interface and a processor, and the communication interface is used for communication between the device and other devices, such as sending and receiving data or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, and other devices may be terminal devices.
  • the processor is used to call a set of programs, instructions, or data to execute the above-mentioned second aspect or each possible design description method of the second aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, it can implement the foregoing second aspect or the methods described in each possible design of the second aspect.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions.
  • the methods described in the first aspect, the second aspect, each possible design of the first aspect, or each possible design of the second aspect are executed.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, which is used to implement the above-mentioned first aspect, second aspect, each possible design of the first aspect, or the second aspect The methods described in each possible design.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application provides a communication system.
  • the system includes a terminal device and a network device.
  • the terminal device is used to execute the foregoing first aspect or the method in each possible design of the first aspect.
  • the network device is used to execute the foregoing second aspect or each possible design method of the second aspect.
  • a computer program product containing instructions is provided. When it runs on a computer, it enables the above-mentioned first aspect, second aspect, each possible design of the first aspect or each possible design of the second aspect to be The method described is executed.
  • FIG. 1 is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 2 is a schematic diagram of an RE identification method in an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a method for identifying wireless resources in an embodiment of the application
  • FIG. 4 is one of the schematic flowcharts of the method for determining the OAM modal domain identifier by the network device in the embodiment of this application;
  • FIG. 5 is a schematic diagram of antenna arrays of network equipment and terminal equipment in an embodiment of this application.
  • FIG. 6 is the second schematic diagram of the method for determining the OAM modal domain identifier by a network device in an embodiment of this application;
  • FIG. 7 is a schematic diagram of an antenna array of a network device in an embodiment of the application.
  • FIG. 8 is the third schematic flowchart of a method for a network device to determine an OAM modal domain identifier in an embodiment of this application;
  • FIG. 9 is a schematic diagram of a method for identifying resource units in an embodiment of this application.
  • FIG. 10 is one of the schematic diagrams of the structure of the communication device in the embodiment of the application.
  • FIG. 11 is the second schematic diagram of the structure of the communication device in the embodiment of this application.
  • FIG. 12 is the third schematic diagram of the structure of the communication device in the embodiment of this application.
  • the embodiments of the present application provide a method and device for identifying wireless resources.
  • the method and device are based on the same technical concept. Since the principles of the method and device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and there is no repetition. Repeat it again.
  • "and/or" describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean that there is A alone, and both A and B exist. There are three cases of B.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship. At least one involved in this application refers to one or more; multiple refers to two or more.
  • the wireless resource identification method provided in the embodiments of this application can be applied to the fourth generation (4th Generation, 4G) communication system, for example, the long term evolution (LTE) system; it can also be applied to the fifth generation (5th generation, 4G) communication system.
  • 5G) communication systems such as 5G new radio (NR); or applied to various future communication systems, such as the 6th generation (6G) communication system, and can also be applied to Bluetooth systems, WiFi systems, and LoRa System or car networking system.
  • the method provided in the embodiments of the present application can be applied to a satellite communication system, and the satellite communication system can be integrated with the above-mentioned communication system.
  • the communication system architecture shown in FIG. 1 is taken as an example to describe the application scenarios used in the present application.
  • the communication system 100 includes a network device 101 and a terminal device 102.
  • the apparatus provided in the embodiment of the present application may be applied to the network device 101 or the terminal device 102.
  • FIG. 1 only shows a possible communication system architecture to which the embodiment of the present application can be applied. In other possible scenarios, the communication system architecture may also include other devices.
  • the network device 101 is a node in a radio access network (radio access network, RAN), which may also be referred to as a base station, and may also be referred to as a RAN node (or device).
  • RAN radio access network
  • some examples of network equipment 101 are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC) , Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband Unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (AP), satellite equipment, or network equipment in a 5G communication system, or a network in a possible future communication system equipment.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base
  • the network device 101 may also be other devices with network device functions.
  • the network device 101 may also be a device that functions as a network device in D2D communication, car networking communication, and machine communication.
  • the network device 101 may also be a network device in a possible future communication system.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless link Channel control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network RAN, and the CU can also be divided into network equipment in the core network CN, which is not limited here.
  • the terminal device 102 which can also be referred to as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides users with voice or data connectivity , It can also be an IoT device.
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, and so on.
  • terminal devices can be: mobile phones (mobile phones), tablets, laptops, handheld computers, mobile internet devices (MID), wearable devices (such as smart watches, smart bracelets, pedometers, etc.) , In-vehicle equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control (industrial control) Wireless terminals, smart home equipment (for example, refrigerators, TVs, air conditioners, electric meters, etc.), smart robots, workshop equipment, wireless terminals in self-driving, wireless terminals in remote medical surgery, Wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes, and flying equipment (for example, Intelligent robots, hot air balloons, drones, airplanes), etc.
  • In-vehicle equipment for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device may also be other devices with terminal functions.
  • the terminal device may also be a device that functions as a terminal in D2D communication.
  • terminal devices with wireless transceiver functions and chips that can be installed in the aforementioned terminal devices are collectively referred to as terminal devices.
  • radio resources include resources used for uplink transmission or downlink transmission.
  • Wireless resources may include resources of multiple dimensions, for example, time domain dimensions, frequency domain dimensions, code domain dimensions, polarization dimensions, antenna (space) dimensions, or OAM modal domain dimensions.
  • the following examples illustrate the method of identifying radio resources.
  • the fifth generation (5th Generation, 5G) communication system supports dynamic orthogonal frequency division multiplexing (OFDM) sub-carrier spacing and its radio resource identification method.
  • OFDM orthogonal frequency division multiplexing
  • This radio resource identification method sets a parameter set that can be flexibly expanded, so that 5G can support the flexibility of multiple service deployments at the same time.
  • the network equipment dynamically selects the subcarrier spacing and cyclic prefix configuration in Table 1 according to the multipath delay of the wireless channel and the delay requirements of the communication service.
  • resource elements corresponding to 12 consecutive subcarriers in the frequency domain form a resource block (RB).
  • the RE can be identified by (k,l) ⁇ , ⁇ , and (k,l) ⁇ , ⁇ specifically represents: in the ⁇ th OFDM transmission parameter configuration, the kth frequency domain symbol of the ⁇ th antenna port relative to the reference point And the l-th time domain symbol.
  • the method for identifying wireless resources provided in the embodiments of the present application can identify wireless resources with OAM modal domain dimensions.
  • OAM is an inherent property of electromagnetic waves, which corresponds to the spiral phase wavefront of the beam in space. Electromagnetic waves carrying different OAM states are orthogonal to each other during coaxial transmission in space. Therefore, in theory, modulating different information onto electromagnetic waves in different OAM states for multiplexing can increase the channel capacity of a wireless communication system.
  • Antenna array refers to two or more single antennas working at the same frequency, which are fed and arranged in space according to certain requirements to form an antenna array, which is also called an antenna array.
  • the antenna radiating elements that make up the antenna array are called array elements.
  • the antenna array includes a transmitting antenna array and a receiving antenna array.
  • the structure of the antenna array includes uniform circular array (UCA), uniform linear array (ULA) and so on. In the embodiment of the present application, the structure of the antenna array is not limited.
  • OAM state also called OAM physical mode, or physical OAM mode
  • the OAM state can be any integer, such as -1, 1, 2, 3, etc., or the OAM state can be a one-dimensional array of integers.
  • the number of OAM states included in the one-dimensional array is not limited, such as [-2, -1, 1, 2], etc., or the number of OAM states can be unlimited. It is understandable that in practical applications, it can be an OAM state that includes the transmit beam and the OAM state of the receive beam in one combination, or it can be an OAM state that includes the transmit beam in one combination, and the OAM state that includes the receive beam in another combination. .
  • the OAM state is an integer.
  • the OAM modalities involved in the embodiments of the present application can be understood as OAM logical modalities. Different from OAM physical modes, OAM logical modes can be not only integers, but also fractions. In the embodiment of the present application, the OAM logical modal may also be referred to as the OAM modal domain identifier. Wherein, the vortex electromagnetic wave channels through which any number of waveform symbols are transmitted through the resource identified by the same OAM modal domain are the same. Based on this, the OAM modal domain identifier can also be referred to as an OAM modal domain port.
  • the OAM modal domain port definition method is similar to the antenna port definition method in the 5G NR standard.
  • An OAM modal domain port is defined as: when a waveform symbol is transmitted through a modal port, the vortex electromagnetic wave channel it experiences is the same as the vortex electromagnetic wave channel experienced by other waveform symbols transmitted by the OAM modal domain port. To put it another way, the terminal considers that whether the two transmitted signals experience the same vortex electromagnetic wave channel depends on whether the two signals are sent through the same OAM modal domain port. Similarly, the OAM modal domain port is a logical concept and does not correspond to a specific OAM physical modal or physical antenna array.
  • Transmission parameters can characterize the channel characteristics of electromagnetic waves, or the transmission parameters characterize the measurement performance of electromagnetic wave communication effects.
  • the transmission parameter can be any characterization of the performance of the electromagnetic wave signal.
  • the transmission parameter can be any one or a combination of the following: signal-noise ratio (signal noise ratio, SNR), reference signal received power (reference signal received power, RSRP), bit error rate (bit error rate, BER), Block error rate (block error rate), packet error rate (Packet Error Rate, PER), number of failed retransmissions, or successful transmission delay.
  • SNR signal-noise ratio
  • RSRP reference signal received power
  • bit error rate bit error rate, BER
  • Block error rate block error rate
  • packet error rate Packet Error Rate, PER
  • number of failed retransmissions or successful transmission delay.
  • the description of transmission parameters can be applied to plane electromagnetic waves and vortex electromagnetic waves in any OAM physical mode.
  • Planar electromagnetic waves can be considered as vortex electromagnetic waves with OAM physical mode of 0.
  • the following describes the wireless resource identification method provided in the embodiment of the present application.
  • the network device determines OAM modal domain information.
  • the OAM modal domain information includes the first OAM modal domain identifier, and the first OAM modal domain identifier corresponds to the first transmission parameter of the vortex electromagnetic wave in the first OAM physical mode, or the first OAM modal domain identifier corresponds to The first ratio between the first transmission parameter of the vortex electromagnetic wave and the reference value in the first OAM physical mode, the reference value includes the transmission parameter of the plane electromagnetic wave, or the reference value includes the specified OAM among the multiple OAM physical modes Transmission parameters of vortex electromagnetic waves in physical mode.
  • the network device sends the OAM modal domain information to the terminal device, and the terminal device receives the OAM modal domain information from the network device.
  • the terminal device determines radio resources used for uplink transmission or downlink transmission according to the OAM modal domain information.
  • the OAM modal domain identifier can be used to determine wireless resources.
  • the OAM modal domain identifier is related to the transmission parameters of the vortex electromagnetic wave and can be regarded as the OAM logical mode.
  • the resource method is more versatile, avoiding the influence of the physical antenna array and the OAM physical mode on the logic of the high-level communication protocol.
  • the network device sends a reference electromagnetic wave to the terminal device, and the terminal device receives the reference electromagnetic wave from the network device.
  • the reference electromagnetic wave is a plane electromagnetic wave signal, or the reference electromagnetic wave is a vortex electromagnetic wave in a specified OAM physical mode among multiple OAM physical modes.
  • the multiple OAM physical modes are OAM physical modes of multiple OAM test signals to be sent by the network device.
  • the reference electromagnetic wave may be a reference signal (RS).
  • RS reference signal
  • the terminal device determines the transmission parameter of the reference electromagnetic wave.
  • the transmission parameters of the reference electromagnetic wave may include, for example, any one or a combination of any of the following: SNR, reference signal received power, bit error rate, block error rate, packet error rate, number of failed retransmissions, or successful transmission delay.
  • the embodiments of the present application take the signal-to-noise ratio as an example for introduction.
  • the transmission parameter of the reference electromagnetic wave can be used as a reference value for determining the OAM modal domain identification.
  • the terminal device can also determine the direction of arrival (DOA) of the reference electromagnetic wave.
  • DOA direction of arrival
  • the terminal device sends a feedback signal of the reference electromagnetic wave to the network device, and the network device receives the feedback signal of the reference electromagnetic wave from the terminal device.
  • the reference electromagnetic wave feedback signal carries the determined transmission parameter of the reference electromagnetic wave.
  • the feedback signal of the reference electromagnetic wave may be a channel state information (CSI) report.
  • S404 The network device sends the first instruction information to the terminal device through the reference electromagnetic wave, and the terminal device receives the first instruction information from the network device.
  • CSI channel state information
  • the first indication information is used to indicate the sequence of the OAM physical modalities of the OAM test signal to be sent by the network device.
  • the first indication information indicates that the OAM physical modality of the OAM test signal to be sent by the network device is [+1, -1, +2, -2, +3,...] in order.
  • the terminal device sends the capability information to the network device, and the network device receives the capability information from the terminal device.
  • the capability information may include any one or more of the following: supported OAM physical modes or the number of antenna elements of the terminal device.
  • the number of antenna elements of the terminal device can be used by the network device to determine the OAM physical mode supported by the terminal device.
  • the capability information may also include antenna aperture.
  • the capability information may be a CSI report.
  • S404 and S405 are optional steps.
  • the sequence of vortex electromagnetic waves in multiple OAM mode domains can also be determined by other methods.
  • the OAM physical mode can be pre-defined as [+1, -1,+2,-2,+3,...].
  • S405 can also be omitted, and only S404 is executed. No matter which OAM physical modes are supported by the terminal, the network device can send OAM test signals in a sequence determined by itself.
  • the sequence of S404 and S405 is not limited, and the sequence can be exchanged. For example, if S405 is executed first, then the network device in S404 can determine the sequence of the OAM physical mode of the OAM test signal to be sent according to the capability information of the terminal device in S404.
  • the network device determines the local beam spread angle ⁇ l of different OAM physical modes l in the network device.
  • the beam spread angle ⁇ l can be determined according to the following formula (1).
  • R t is the local antenna aperture of the network equipment
  • is the carrier wavelength
  • the carrier wavelength ⁇ is related to the carrier frequency of the transmitted signal.
  • the network device may sequentially calculate the local beam spread angle ⁇ l of different OAM physical modes l in the network device according to the sequence of the OAM physical modes indicated by the first indication information in S404.
  • the network device sends vortex electromagnetic waves in multiple OAM physical modes to the terminal device, and the terminal device receives the vortex electromagnetic waves in multiple OAM physical modes from the network device.
  • the network device can send vortex electromagnetic waves of multiple OAM physical modes in a certain order.
  • the vortex electromagnetic waves of multiple OAM physical modes may be sent sequentially according to the order of the OAM physical modes indicated by the OAM mode order indication information in S404.
  • the order of the OAM physical modalities indicated by the OAM modal order indication information in S404 is recorded as the first order, and the network device can determine the OAM physical modalities supported by the terminal in the first order based on the terminal capability information obtained in S405 , And determine the second order of OAM physical modes, the OAM physical modes included in the second order are all modes supported by the terminal device.
  • the OAM modal sequence indication information indicates that the OAM physical modalities of the OAM test signal that the network device is about to send are [+1, -1, +2, -2, +3,...], and the capability information of the terminal device indicates The OAM physical mode supported by the terminal does not include [+2,-2], then the second order for the network device to determine the OAM physical mode is [+1,-1,+3,-3,...].
  • the terminal device determines the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes, and obtains multiple transmission parameters, and the multiple transmission parameters correspond to the multiple OAM physical modes in a one-to-one correspondence.
  • One OAM physical mode can correspond to multiple types of transmission parameters.
  • the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes may include any one or a combination of any of the following: signal-to-noise ratio, reference signal received power, bit error rate, block error rate, packet error rate, failure weight The number of transmissions or the delay of successful transmissions.
  • the embodiments of the present application take the signal-to-noise ratio as an example for introduction.
  • the signal-to-noise ratio of the OAM physical mode l can be denoted as SNR l .
  • the terminal device feeds back the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes to the network device, and the network device receives the transmission parameters of the vortex electromagnetic wave in the multiple OAM physical modes fed back from the terminal device.
  • the network device sequentially sends multiple mixed waves to the terminal device, and the terminal device receives the multiple mixed waves from the network device.
  • multiple mixed waves correspond to multiple OAM physical modes one-to-one, and any mixed wave is a mixed wave of vortex electromagnetic waves and plane electromagnetic waves in the corresponding OAM physical mode.
  • the network device may sequentially send multiple mixed waves to the terminal device in a certain sequence, and the certain sequence may follow the first sequence of the OAM physical modalities indicated by the OAM modal sequence indication information in S404. Or, according to the second order of OAM physical modality. For the specific design details of the first sequence and the second sequence, refer to S407.
  • the terminal device sequentially determines the transmission parameters of the vortex electromagnetic wave in the l OAM physical mode and the crosstalk coefficient ⁇ l with the reference electromagnetic wave from the l mixed wave.
  • the value of l can be taken from 0 to (M-1), or from 1 to M.
  • the terminal equipment can determine the crosstalk coefficient ⁇ l according to the value of l from large to small or small to large or in any order.
  • the transmission parameter as the signal-to-noise ratio SNR
  • the SNR of the vortex electromagnetic wave in the first OAM physical mode is recorded as The calculation method of the crosstalk coefficient is shown in formula (2).
  • the vortex wave is the vortex electromagnetic wave
  • the measurement of new energy is the transmission parameter
  • S412 The terminal device feeds back the crosstalk coefficient of each OAM physical mode determined in S411 to the network device.
  • the transmission parameters of each OAM physical mode determined in S411 can also be fed back to the network device.
  • the network device receives the crosstalk coefficient from the terminal device.
  • the terminal device feeds back the signal-to-noise ratio of the first OAM physical mode determined in S411 to the network device And the crosstalk coefficient ⁇ l .
  • the network device determines the ratio ⁇ of the vortex electromagnetic wave transmission parameter to the transmission parameter of the reference electromagnetic wave in each OAM physical mode, and obtains multiple ratios corresponding to the multiple OAM physical modes.
  • the transmission parameter of the reference electromagnetic wave is used as the reference value, which can be determined according to the feedback signal of the terminal device in S403.
  • the reference electromagnetic wave as a plane electromagnetic wave as an example
  • the transmission parameter as the signal-to-noise ratio SNR as an example
  • the SNR of the plane electromagnetic wave is recorded as SNR 0 .
  • can be expressed according to formula (3).
  • SNR SNR ratio scroll electromagnetic wave L in the plane of the OAM physical modality l 0 Equation (3) is ⁇ .
  • the vortex wave is the vortex electromagnetic wave
  • the plane wave is the plane electromagnetic wave
  • the measurement performance is the transmission parameter
  • S414 The network device sorts the multiple ratios ⁇ obtained in S413 to obtain multiple sorting sequence numbers.
  • the sorting sequence number can be in accordance with any sorting rule, for example, the sorting rule is any one or a combination of any one or more of descending order, descending order, odd and even number, modulo operation, or weighted sorting.
  • the network device generates multiple OAM modal domain identifiers according to the multiple sequence numbers obtained in S414.
  • the multiple OAM modal domain identifiers generated by the network device can be embodied in the form of a list or in other ways.
  • the embodiments of this application are all explained in the form of a list as an example, and the OAM modal A list of domain identifiers represents multiple OAM modal domain identifiers.
  • the OAM modal domain identifier list it is intended to express multiple OAM modal domain identifiers generated by the network device through interaction with the terminal device, and the multiple OAM modal domain identifiers correspond to multiple OAM physical modalities with the same or different numbers .
  • Multiple OAM physical modes can be supported by the terminal device, or supported by the network device, or supported by both the network device and the terminal device.
  • the OAM modal domain identifier list can be generated online or stored in advance.
  • OAM modal domain identifiers respectively correspond to multiple sorting sequence numbers one-to-one, multiple sorting sequence numbers correspond to multiple ratios ⁇ one-to-one, and multiple ratios ⁇ correspond one-to-one to multiple OAM physical modalities.
  • the OAM modal domain identifier can be considered as a sorted sequence number, which can be a natural number, such as 0, 1, 2, 3....
  • the OAM modal domain identifier can also be considered as the ratio ⁇ , which can take the value of an integer or a fraction, or an integer value or a floating-point value.
  • the OAM modal domain identifier does not directly represent the OAM physical mode, but is a manifestation of the channel performance of the vortex electromagnetic wave in the OAM physical mode, and corresponds to the transmission parameters of the vortex electromagnetic wave in the OAM physical mode.
  • one OAM modal domain identifier may correspond to one or more OAM physical modalities.
  • ratio ⁇ happens to be equal, if multiple equal ratios ⁇ are sorted according to the set rules, it can be guaranteed that an OAM modal domain identifier corresponds to an OAM physical modal.
  • multiple equal ratios ⁇ may also correspond to the same sorting sequence number, that is, to the same OAM modal domain identifier, so that one OAM modal domain identifier corresponds to multiple OAM physical modalities. In any case, the use of OAM modal domain identification does not reduce the number of available OAM physical modalities.
  • the OAM modal domain identifier 0 can correspond to plane electromagnetic waves.
  • the corresponding relationship between the logical OAM identifier m and the OAM physical mode is shown in Table 2.
  • the serial number 0 is not shown in Table 2, and the serial number 0 can be a plane electromagnetic wave.
  • the multiple OAM modal domain identifiers may also be referred to as multiple OAM modal domain ports.
  • One OAM modal domain identifier may correspond to one or more OAM physical modalities.
  • the network device may also establish the correspondence between the OAM modal domain identifier m and the beam spread angle ⁇ m , and may also establish the correspondence between the OAM modal domain identifier m and the crosstalk coefficient ⁇ m , or at the same time establish the OAM modal
  • the corresponding relationship between the domain identifier m and the beam spread angle ⁇ m and the crosstalk coefficient ⁇ m can be characterized by the crosstalk coefficient ⁇ m or the crosstalk coefficient ⁇ m.
  • the correspondence between the logical OAM identifier m, the beam spread angle, the crosstalk coefficient, and the OAM physical mode is shown in Table 3.
  • the serial number 0 can represent a plane electromagnetic wave, and the serial number 0 is not shown in Table 3.
  • the multiple OAM modal domain identifiers may also be referred to as multiple OAM modal domain ports.
  • One OAM modal domain identifier may correspond to one or more OAM physical modalities.
  • OAM physical modalities l 1 and l 4 no matter what physical technical means are adopted, for example: no matter the OAM physical modalities l 1 and l 4 are assigned the same or different Use the same or different antenna arrays, use the same or different propagation paths, as long as the two OAM physical modes l 1 and l 4 correspond to the same OAM modal domain identifier m, beam spread angle ⁇ , and crosstalk coefficient ⁇ , or, as long as the two OAM physical modes l 1 and l 2 get the OAM modal domain identifier m, the beam spread angle ⁇ , and the crosstalk coefficient ⁇ error is less than a certain tolerable threshold, then l 1 and l 2 is regarded as belonging to the same OAM modal domain identifier
  • S406 is an optional step. If S406 is omitted, the network device may not establish the correspondence between the OAM modal domain identifier m and the beam divergence angle ⁇ m . For example, the network device may only establish the OAM modal domain identifier m and the crosstalk coefficient ⁇ The corresponding relationship of m.
  • S410 ⁇ S412 is to obtain the crosstalk coefficient ⁇ l process is an optional step may be omitted, if omitted S410 ⁇ S412, the network device may not establish OAM domain identifier m and the modal crosstalk coefficients corresponding relationship between the gamma] m, e.g., It is possible to establish only the corresponding relationship between the OAM modal domain identifier m and the beam spread angle ⁇ m.
  • S413 ⁇ S415 are the process of generating multiple OAM modal domain identifiers.
  • the network device can directly sequence the vortex electromagnetic wave transmission parameters in multiple OAM physical modalities to obtain multiple sequence numbers. Multiple sort sequence numbers generate multiple OAM modal domain identifiers.
  • the ordering of the vortex electromagnetic wave transmission parameters in multiple OAM physical modes can also follow any ordering rules, for example, according to any of the following rules or a combination of multiple rules: order from largest to smallest, from smallest to largest, Odd and even numbers, modulo operation, or weighted sorting. In this way, the process of acquiring the transmission parameters of the reference electromagnetic wave in S401 to S403 can be omitted. Based on this way of obtaining the OAM modal domain identification is more concise, the method of obtaining the OAM modal domain identification according to S413 to S415 can refer to the reference electromagnetic wave, and the result is more accurate.
  • the OAM modal domain identifiers in the embodiments of the present application can be integers, such as ⁇ 1, ⁇ 2,..., or fractions or decimals, such as +1.25, -3.5,....
  • the OAM modal domain identifier can be mapped to the situation of the fractional OAM modal. Therefore, the OAM modal domain identification in the embodiment of the present application is more flexible.
  • the embodiment of the application may not require that the antenna array specifications of the transmitting end and the receiving end must be consistent, and may be applicable to scenarios where the antenna array specifications of the transmitting end and the receiving end are inconsistent, and the embodiment of the application does not require antenna array specifications of different OAM modes. It must be consistent and can be applied to scenarios where the antenna array specifications of different OAM modes are different.
  • the embodiments of the present application are more versatile and flexible.
  • the OAM modal domain identifier of the embodiment of the present application can shield the influence of the physical antenna array and the physical OAM modal on the logic of the high-level communication protocol.
  • Figure 4 exemplarily illustrates the method for the network device to determine the OAM modal domain identifier.
  • the network device can generate the OAM modal domain identifier online, or it can pre-generate the OAM modal domain identifier and store it in Locally, the network device can query the pre-stored OAM modal domain identifier to determine to send OAM modal domain information to the terminal.
  • the reference electromagnetic wave is a plane electromagnetic wave
  • the transmission parameter is the signal-to-noise ratio
  • the antenna array of the network device is deployed in a concentric circle with 4 circles, and each circle has 16 antenna elements arranged at equal intervals, and the terminal device only installs 1 circle of 16 antenna elements.
  • the radius of the concentric circle of network equipment from the inside to the outside is denoted as R 1 , R 2 , R 3 and R 4 in turn .
  • the 4 OAM physical modes adopted by the network equipment setting are +1, +3, +5, + 7. It is stipulated that the innermost antenna element sends the OAM physical mode +1, and the OAM physical mode is +3, +5, +7 sent from the inner antenna element to the outer circle in turn.
  • LOS direct line of sight
  • the flow of the method for the network device to determine the OAM modal domain identifier is as follows.
  • network device transmitting the innermost antenna elements plane electromagnetic wave signals S 0, the terminal device receives the signals S 0 according to the plane wave power P 0 to the terminal device.
  • the terminal device determines the signal to noise ratio SNR 0 plane of electromagnetic wave signals S 0.
  • the terminal device may also planar wave signals S 0 is the angle of arrival is determined DOA 0.
  • the terminal device sends a feedback signal carrying signal-to-noise ratio information SNR 0 to the network device, and the network device receives the feedback signal from the terminal device, and records the plane electromagnetic wave signal-to-noise ratio information carried by the feedback signal.
  • the feedback signal can also carry the angle of arrival DOA 0 .
  • the network device can also record the information of the arrival angle.
  • the network device sends the OAM physical modality order [+1, +5, +7, +3] of the OAM test signal to be sent by the network device to the terminal device through the plane electromagnetic wave.
  • the terminal device After receiving the information of the OAM physical mode sequence, the terminal device feeds back a confirmation message to the network device, and reports the capability information of the terminal device.
  • the network device receives the capability information from the terminal device.
  • the terminal device capability information here may include: the number of antenna elements of the terminal device or the OAM physical mode supported by the terminal device for transceiving.
  • the capability information may also include antenna aperture.
  • the confirmation message that the terminal device feeds back to the network device can indicate that the capability of the terminal device is [+1,+5,N/A, +3].
  • the network device After the network device receives this capability information, it will send the OAM test signals of [+1,+5,+3] OAM physical mode in sequence in the following process, and the +7 mode will be eliminated.
  • the network device sequentially calculates the local beam spread angles ⁇ +1 , ⁇ +5 , and ⁇ +3 of different OAM physical modes in the order of [+1, +5, +3].
  • the network device sequentially sends vortex electromagnetic waves of different OAM physical modes to the terminal device in the order of [+1, +5, +3], and the terminal device receives multiple vortex electromagnetic waves from the network device.
  • the terminal device determines the signal-to-noise ratio of the vortex electromagnetic wave in the multiple OAM physical modes.
  • the terminal equipment is in accordance with the classic
  • the inverse phase gradient method sequentially detects the signal-to-noise ratio SNR l of the vortex electromagnetic wave of the l-th OAM physical mode.
  • the terminal device feeds back the signal-to-noise ratio SNR l corresponding to each OAM physical mode to the network device.
  • the network device receives the signal-to-noise ratio SNR l corresponding to each OAM physical mode from the terminal device.
  • the network equipment sends the vortex electromagnetic waves of different OAM physical modes to the terminal equipment in the order of [+1, +5, +3] with the antenna elements and power P 0 of the corresponding circle, and sends each OAM physical Meanwhile scroll mode electromagnetic waves, the innermost antenna element in the same plane electromagnetic wave transmission power P 0 S 0.
  • the vortex electromagnetic wave and the plane electromagnetic wave of each OAM physical mode form a mixed wave.
  • the terminal device receives multiple mixed waves from the network device.
  • a vortex electromagnetic wave with a physical mode of +1 is denoted as S +1 , and the corresponding mixed wave
  • the terminal equipment in turn from the mixed wave Extract and detect the signal-to-noise ratio of different OAM physical modalities And calculate the crosstalk coefficient ⁇ l between the vortex electromagnetic wave and the plane electromagnetic wave of the physical mode according to formula (2).
  • the terminal device feeds back the signal-to-noise ratio corresponding to each OAM physical mode to the network device And the crosstalk coefficient ⁇ l .
  • the network device generates a list of OAM modal domain identifiers.
  • the list includes multiple entries, and each entry corresponds to an OAM modal domain identifier, a crosstalk coefficient, and a beam spread angle.
  • the relative SNR is used to generate the OAM modal domain identifier. That is, sort according to the ratio ⁇ of the vortex electromagnetic wave signal-to-noise ratio and the plane electromagnetic wave signal-to-noise ratio in the OAM physical mode.
  • the calculation method of the ratio ⁇ is shown in formula (3); the plane electromagnetic wave is marked as the starting number 0, and the ratio is ⁇ are arranged from largest to smallest.
  • the absolute SNR is used to generate the OAM modal domain identifier. Sort according to the magnitude of the vortex electromagnetic wave signal-to-noise ratio in the OAM physical mode, and generate the OAM modal domain identifier according to the sorting result.
  • the sorting result is ⁇ +1 > ⁇ +5 > ⁇ +3 , and the OAM modal domain identifier is generated ascending from the starting sequence number.
  • the beam spread angle and crosstalk coefficient corresponding to each OAM modal domain identifier are established, and the final logical OAM identifier sequence number generated is shown in Table 4.
  • the serial number 0 is not shown in Table 4, and the serial number 0 can be a plane electromagnetic wave.
  • one OAM modal domain identifier may correspond to one or more OAM physical modalities, and it is assumed that one OAM modal domain identifier corresponds to multiple OAM physical modalities.
  • the reference electromagnetic wave is a plane electromagnetic wave
  • the transmission parameter is the signal-to-noise ratio
  • the antenna array of the network device is deployed in one circle, with N antenna elements in each circle, and the value of N is 16, for example, and 16 antenna elements in each circle are arranged at equal intervals.
  • Network equipment can generate OAM vortex electromagnetic waves in the manner of the following formula (4).
  • p n represents the power allocated by the nth antenna element
  • s 0 (t) is the signal to be transmitted carried by the plane electromagnetic wave
  • l is the number of OAM physical modes
  • x(t) is the generated lth OAM physical mode
  • the vortex electromagnetic wave signal of the state N is the number of antenna elements per circle.
  • the value of l can be an integer, a fraction or a decimal.
  • Substituting l, which is a fraction, into formula (4) can generate vortex electromagnetic waves.
  • the value of l as a score can improve the ability to fight against wireless multipath channel effects.
  • the OAM physical mode is directly used as an OAM index to identify wireless resources. These technologies either do not support the OAM physical mode in the form of a fraction, or combine the OAM physical mode in the fractional form with the OAM physical mode in the integer form.
  • the modalities are mixed together to identify wireless resources, and the OAM modal domain identifier provided in the embodiment of the present application can support the OAM physical modalities in the form of scores.
  • the flow of the method for the network device to determine the OAM modal domain identifier is as follows.
  • the network device sends electromagnetic signals S 0 plane
  • the plane terminal device receives the electromagnetic wave signals S 0 to the terminal device from the network device at a power P 0.
  • the terminal device determines the signal to noise ratio SNR 0 plane of electromagnetic wave signals S 0.
  • the terminal device may also planar wave signals S 0 is the angle of arrival is determined DOA 0.
  • the terminal device sends a feedback signal carrying signal-to-noise ratio information SNR 0 to the network device, and the network device receives the feedback signal from the terminal device, and records the plane electromagnetic wave signal-to-noise ratio information carried by the feedback signal.
  • the feedback signal can also carry the angle of arrival DOA 0 .
  • the network device can also record the information of the arrival angle.
  • the network device sends the vortex electromagnetic wave of the OAM physical mode 1 in the fractional form to the terminal device with the power P 0 , and the terminal device receives the vortex electromagnetic wave of the OAM physical mode 1 in the fractional form of the network device.
  • the terminal device determines the signal-to-noise ratio of the vortex electromagnetic wave in the fractional OAM physical mode 1.
  • the terminal equipment is in accordance with the classic
  • the inverse phase gradient method sequentially detects the signal-to-noise ratio SNR l of the vortex electromagnetic wave of the OAM physical mode l.
  • the terminal device sends the fractional form of the signal-to-noise ratio of the vortex electromagnetic wave in the OAM physical mode 1 to the network device, and the network device receives the signal-to-noise ratio of the vortex electromagnetic wave in the OAM physical mode 1 from the terminal device.
  • the network device determines the OAM modal domain identifier.
  • sort according to the ratio of signal-to-noise ratio ⁇ SNR l /SNR 0 to obtain the OAM modal domain identifier; in another mode 2, use absolute SNR to generate OAM modal domain identifier. Sort according to the magnitude of the signal-to-noise ratio of the vortex electromagnetic wave in the OAM physical mode 1 in the form of the score, and generate the OAM mode domain identifier according to the sorting result.
  • the beam spread angle and the crosstalk coefficient corresponding to each OAM modal domain identifier can be determined with reference to the method of the embodiment shown in FIG. 6, and the repetition is not repeated here.
  • the OAM modality domain identifier determined by the OAM physical modality in the form of a fraction can be combined with the OAM modality domain identifier determined by the OAM physical modality in the integer form for comparison and sorting, and finally a A unified OAM modal domain identification, for example, a unified OAM modal domain identification sequence number table is finally obtained.
  • OAM physical mode in the fractional form and the OAM physical mode in the integer form may correspond to the same OAM modal domain identifier.
  • the OAM physical modality can support integer form and fractional form, so that a unified and universal method of modality domain identification can be obtained, and the wireless scheduling algorithm is added in The schedulable range of the OAM modal domain. If the fractional form of OAM physical mode is combined with the integer form of OAM physical mode for comparison and sorting, the influence of hardware factors such as the physical antenna array and the value form of the OAM physical mode on the modal domain identification can be avoided.
  • the above describes possible implementation manners for the network device to determine the OAM modal domain identifier through FIGS. 4 to 8.
  • the network device may determine multiple OAM modal domain identifiers, for example, the network device determines the OAM modal domain identifier list. Then, how the network device determines the first OAM modal domain identifier to be sent to the terminal device among the multiple OAM modal domain identifiers, and the optional implementation manners are described below.
  • the wireless resource includes an OAM modal domain
  • the network device can send OAM modal domain information to the terminal device, and the OAM modal domain information is used to indicate the wireless resource allocated to the terminal device.
  • the process of the network device determining the first OAM modal domain identifier can be understood as the process of determining the wireless resource allocated to the terminal.
  • the network device can allocate the wireless resource to the terminal device according to the following allocation rules:
  • each terminal device can determine multiple OAM modal domain identifiers.
  • the multiple OAM modal domain identifiers can be lists or sets or other manifestations. Take the OAM modal domain identifier list as example.
  • the resource with a lower OAM modal domain identifier in the OAM modal domain identifier list corresponding to the terminal device is preferentially selected.
  • the terminal devices with a lower priority sequentially extend the sequence numbers of the OAM modal domain identifiers until the corresponding different resources are found.
  • the resource here can be an OAM physical modality.
  • OAM modal domain ID 1 in OAM modal domain ID list 1 for terminal device select OAM modal domain ID 2 in OAM modal domain ID list 2 and OAM modal domain ID 1 for terminal device 2.
  • the OAM physical modality corresponding to OAM modal domain ID 2 is the same, and the priority of terminal device 2 is lower than that of terminal device 1, then the OAM modal domain ID list 2 is selected in order for terminal device 2 to be higher than the OAM modal domain in order OAM modal domain ID 3, OAM modal domain ID 4 of ID 2... until the OAM physical mode corresponding to the selected OAM modal domain ID is different from the OAM physical mode corresponding to OAM modal domain ID 1, then select The OAM modal domain identifies the corresponding OAM physical modal as the resource of the terminal device 2.
  • the resource allocation can be performed layer by layer according to the sequence number of the OAM modal domain identifier from low to high, until the data to be transmitted is allocated or the resources used by the OAM of this layer are allocated. For example, starting from the smallest sequence number identified by the OAM modal domain, and following the sequence of the smallest sequence number identified by the OAM modal domain, the water filling algorithm (water filling algorithm) is performed layer by layer on the time-frequency two-dimensional resources of each layer, until All data to be sent is allocated or all available time-frequency resources of this layer are allocated. Among them, one OAM modal domain identifier corresponds to one layer. It should be noted that the OAM modal domain identifier of each layer does not refer to the conventional OAM physical modal.
  • the crosstalk factors of all the previously assigned OAM modal domain identifiers to the OAM modal domain identifiers of this layer are taken into account, which must be used for the OAM power distribution of this layer.
  • the crosstalk factor is ⁇ mentioned in the embodiment of FIG. 4 or a modified form obtained by secondary calculation of ⁇ .
  • the system is modeled as the input conditions, optimization goals and constraints as described below.
  • Input condition There are N data streams waiting to be sent, and the required transmission rate and allocated power of each data stream are denoted as R n and p n , n ⁇ [1,N].
  • the system schedulable resource set is (f,t,m) ⁇ , ⁇ , where f ⁇ [1,F] is the frequency domain identification index, t ⁇ [1,T] is the time domain identification index, m ⁇ [1, M] is the modal domain identification index.
  • the total power allowed by the system is P total .
  • h n, f, t, m represents the channel quality of the n-th data stream in the m-th logical OAM mode of the t-th time slot at the f-th frequency point
  • ⁇ n, f, t, m is the f-th Whether the resource unit identified by the m-th logical OAM modality of the t-th time slot at each frequency point is allocated to the identifier of the n-th data stream
  • N 0 is the Gaussian white noise power.
  • the wireless resources can be used for uplink transmission or downlink transmission.
  • the following describes alternative implementations for the uplink and downlink respectively to allocate wireless resources with OAM modal domains to the terminal equipment by the network device.
  • Case 1 The network equipment allocates wireless resources with OAM modal domains to the terminal equipment, and the wireless resources are used for downlink transmission.
  • the OAM modal domain information sent by the network device to the terminal device may be carried in downlink control information (DCI).
  • the network device may also send multiple OAM modal domain identifiers to the terminal device.
  • the multiple OAM modal domain identifiers are embodied in the form of a list, and the network device sends a list of OAM modal domain identifiers to the terminal device.
  • the multiple OAM modal domain identifiers are determined by the network device according to the multiple OAM physical modal domains, which may be determined according to the embodiment in FIG. 4.
  • the network device sends a DCI carrying the first OAM modal domain identifier 2 to the terminal device, and sends a list of the multiple OAM modal domain identifiers to the terminal device.
  • the network device sends [2 1 3 2] to the terminal device, indicating that the first OAM modal domain identifier is 2 and the multiple OAM modal domain identifiers are [1 3 2].
  • the first OAM modal domain identifier and the OAM modal domain identifier list may both be carried in the DCI, or may be carried in different messages for separate indication.
  • the network device may indicate the resource to the terminal device through the DCI, and the network device carries the OAM modal domain identifier list in the resource indicated by the DCI.
  • the terminal device obtains the OAM modal domain identifier list on the resource indicated by the DCI.
  • the first OAM modal domain identifier may be a certain OAM modal domain identifier among multiple OAM modal domain identifiers, and the first OAM modal domain identifier may also be multiple OAM modal domain identifiers.
  • the OAM modal domain information may indicate a single value in multiple OAM modal domain identifiers, or may indicate a value range. The value range can be reflected by indicating the minimum and maximum values. For example, the multiple OAM physical modalities are [+1 +3 +5], and the corresponding multiple OAM modal domains are identified as [1 3 2].
  • the OAM modal domain information can indicate [2], indicating the first OAM mode
  • the domain identifier is [2] in [1 3 2]; the OAM modal domain information can also indicate that the minimum value is 1 and the maximum value is 3, or the indication range is 1 to 3, indicating the first OAM modal domain identifier It can be [1], [2] or [3] in [1 3 2].
  • the network device When the network device indicates the first OAM modal domain identifier, it means that the network device can send downlink data to the terminal device on the radio resource indicated by the first OAM modal domain identifier, and the terminal device can follow the first OAM modal domain identifier
  • the indicated radio resource receives downlink data.
  • the first OAM modal domain identifier is [2] in [1 3 2]
  • the network device sends downlink data to the terminal device on the radio resource whose OAM modal domain identifier is [2]
  • the terminal device can follow the OAM model
  • the radio resource indicated by the status field identifier [2] receives downlink data.
  • the first OAM modal domain is identified as [1], [2] or [3] in [1 3 2]
  • the network device is identified as [1], [2] or [3] in the OAM modal domain.
  • Send downlink data to the terminal device on the radio resource, and the terminal device can receive the downlink data according to the radio resource indicated by the OAM modal domain identifier [1], [2] or [3].
  • the terminal device may send a response message for the downlink data to the network device, and the response message may be a correct (acknowledge, ACK) response command or an error (negative acknowledge, NACK) response command.
  • ACK indicates that downlink data is received.
  • NACK indicates that retransmission is required.
  • the network device determines that retransmission is required according to the response message being NACK, and then sends the OAM modal domain information to the terminal again and sends the downlink data.
  • the OAM modal domain information may be the same as or different from the one sent last time.
  • Case 2 The network device allocates wireless resources with OAM modal domains to the terminal devices, and the wireless resources are used for uplink transmission.
  • the OAM modal domain information sent by the network device to the terminal device may be carried in an uplink scheduling grant (UL-Grant).
  • the network device may also send multiple OAM modal domain identifiers to the terminal device.
  • the multiple OAM modal domain identifiers are embodied in the form of a list, and the network device sends a list of OAM modal domain identifiers to the terminal device.
  • the multiple OAM modal domain identifiers are determined by the network device according to the multiple OAM physical modal domains, which may be determined according to the embodiment in FIG. 4.
  • the terminal device When wireless resources are used for uplink transmission, the terminal device sends multiple test signals to the network device. Assuming that the multiple OAM physical modes corresponding to the multiple test signals sent by the terminal are [+1 +5 +7 +3], the network device The supported OAM physical mode is [+1 +5 N/A +3], N/A means not supported. Multiple OAM physical modalities are [+1 +5 N/A +3] The corresponding multiple OAM modal domains are identified as [1 3 N/A 2]. The first OAM modal domain identifier corresponding to the uplink resource allocated by the network device to the terminal device is 2, then the network device sends the UL-Grant carrying the first OAM modal domain identifier as 2 to the terminal device, and sends the multiple to the terminal device.
  • a list of OAM modal domain identifiers is optionally, the network device sends [2 1 3 N/A 2] to the terminal device, indicating that the first OAM modal domain identifier is 2 and the multiple OAM modal domain identifiers are [1 3 N/A 2].
  • the first OAM modal domain identifier and the list of multiple OAM modal domain identifiers may both be carried in the UL-Grant, or may be carried in different messages for separate indication.
  • the first OAM modal domain identifier may be a certain OAM modal domain identifier among multiple OAM modal domain identifiers, and the first OAM modal domain identifier may also be multiple OAM modal domain identifiers.
  • the OAM modal domain information may indicate a single value in multiple OAM modal domain identifiers, or may indicate a value range. The value range can be reflected by indicating the minimum and maximum values.
  • OAM modal domain information can indicate [2] , Means that the first OAM modal domain identifier is [2] in [1 3 N/A 2]; OAM modal domain information can also indicate that the minimum value is 1 and the maximum value is 3, or the indicated value range is 1 to 3 , Indicates that the first OAM modal domain identifier can be [1], [2] or [3] in [1 3 2].
  • the network device When the network device indicates the first OAM modal domain identifier, it means that the uplink resource allocated by the network device to the terminal device is the radio resource indicated by the first OAM modal domain identifier, and the terminal device can indicate according to the first OAM modal domain identifier
  • the uplink data is sent by the wireless resource of the network device, and the network device may receive the uplink data on the wireless resource indicated by the first OAM modal domain identifier.
  • the first OAM modal domain identifier is [2] in [1 3 N/A 2]
  • the terminal device sends uplink data to the network device on the radio resource whose OAM modal domain identifier is [2].
  • the radio resource indicated by the OAM modal field identifier [2] receives uplink data.
  • the first OAM modal domain identifier is [1], [2] or [3] in [1 3 N/A 2]
  • the terminal device is identified in the OAM modal domain as [1], [2] or
  • the uplink data is sent to the network device on the radio resource in [3], and the network device receives the uplink data in the radio resource indicated by [1], [2] or [3] in the OAM modal domain.
  • the network device may return a response message of the uplink data to the terminal device, and the response message may be an ACK or NACK message.
  • the terminal device may also send a buffer status report (buffer status report, BSR) on the radio resource indicated by the first OAM modal domain identifier.
  • BSR buffer status report
  • the network device can determine whether it is necessary to continue to allocate radio resources for uplink transmission to the terminal device according to the BSR. If so, the network device continues to send OAM modal domain information to the terminal device for indicating the uplink resources allocated to the terminal device.
  • the OAM modal domain information may be the same as or different from the one sent last time.
  • the terminal device continues to send uplink data according to the radio resources indicated by the OAM modal domain information allocated by the network device.
  • the terminal device sends sounding reference signal (SRS) to the network device, and the network device measures the uplink channel quality according to the SRS. If the channel is good and there is data transmission demand, the network device will allocate uplink resources to the terminal device.
  • the terminal device sends a scheduling request (scheduling request, SR) to the network device.
  • the terminal device determines radio resources used for uplink transmission or downlink transmission according to the OAM modal domain information.
  • the wireless resource with the OAM modal domain may also include other dimensions, and the OAM modal domain may be combined with other dimensions to identify the wireless resource.
  • the OAM modal domain may combine any one or more of the following dimensions to indicate wireless resources: time domain dimensions, frequency domain dimensions, code domain dimensions, polarization dimensions, or antenna (space) dimensions.
  • Table 5 shows the identification method of the parameter set.
  • the orthogonal frequency division multiplexing (OFDM) subcarrier spacing index ⁇ is combined with the OAM modal domain identification m to form a two-dimensional identification vector ⁇ , m>, and the value of the cyclic prefix is determined by the two-dimensional identification vector.
  • OFDM orthogonal frequency division multiplexing
  • a resource unit identification method Under the condition of antenna port ⁇ and subcarrier spacing ⁇ , a resource unit is identified by (k,l,m) ⁇ , ⁇ , where k is the frequency domain identification index, l is the time domain identification index, and m is the OAM modal domain Logo.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of network equipment, terminal equipment, and the interaction between the network equipment and the terminal equipment.
  • the network device that receives feedback from the terminal device, the network device that determines OAM transmission parameters, and the network device that sends OAM waves to the terminal device are the same device.
  • different network devices can be used. Implementation, at this time, the corresponding information needs to be transmitted between these network devices, for example, the received feedback information and/or the determination of transmission parameters are transmitted through the X2 interface, and the details are not repeated here.
  • the network device and the terminal device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application also provides a communication device 1000.
  • the communication device 1000 may be a terminal device, or a device in a terminal device, or can be used in conjunction with a terminal device. installation.
  • the communication device 1000 may include modules corresponding to the methods/operations/steps/actions performed by the terminal device in the foregoing method embodiments.
  • the modules may be hardware circuits, software, or hardware. Circuit combined with software implementation.
  • the communication device 1000 may include an acquisition module 1001 and a determination module 1002.
  • the acquiring module 1001 is configured to acquire orbital angular momentum OAM modal domain information, where the OAM modal domain information includes a first OAM modal domain identifier, and the first OAM modal domain identifier corresponds to the first OAM physical model
  • the first transmission parameter of the vortex electromagnetic wave in the state, or the first OAM modal domain identifier corresponds to the first ratio between the first transmission parameter and a reference value, and the reference value includes the transmission parameter of the plane electromagnetic wave
  • multiple OAM physical modes specify the transmission parameters of the vortex electromagnetic wave in the OAM physical mode; the vortex electromagnetic wave channel through which any multiple waveform symbols are transmitted through the resource identified by the same OAM mode domain is the same.
  • the determining module 1002 is configured to determine radio resources used for uplink transmission or downlink transmission according to the OAM modal domain information.
  • the communication device 1000 further includes:
  • the communication module 1003 is configured to receive a first reference signal from the network device, where the first reference signal is the plane electromagnetic wave or the vortex electromagnetic wave in a specified OAM physical mode among the multiple OAM physical modes;
  • the determining module 1002 is further configured to determine the reference value according to the first reference signal
  • the communication module 1003 is also used to send the reference value to the network device.
  • the obtaining module 1001, the determining module 1002, and the communication module 1003 are also used to perform other operations performed by the terminal device in the foregoing method embodiment, which will not be repeated here.
  • an embodiment of the present application also provides a communication device 1100.
  • the communication device 1100 may be a network device, or a device in a network device, or can be used in conjunction with a network device. installation.
  • the communication device 1100 may include modules that perform one-to-one correspondence of the methods/operations/steps/actions performed by the network equipment in the foregoing method embodiments.
  • the modules may be hardware circuits, software, or hardware. Circuit combined with software implementation.
  • the communication device 1100 may include a determining module 1101 and a communication module 1102.
  • the determining module 1101 is used to determine orbital angular momentum OAM modal domain information, where the OAM modal domain information includes a first OAM modal domain identifier, and the first OAM modal domain identifier corresponds to the first OAM physical model
  • the first transmission parameter of the vortex electromagnetic wave in the state, or the first OAM modal domain identifier corresponds to the first ratio between the first transmission parameter and a reference value
  • the reference value includes the transmission parameter of the plane electromagnetic wave Or specify the transmission parameters of the vortex electromagnetic wave in the OAM physical mode among multiple OAM physical modes; the vortex electromagnetic wave channel through which any multiple waveform symbols are transmitted through the resource identified by the same OAM mode domain is the same;
  • the communication module 1102 is configured to send the OAM modal domain information to a terminal device.
  • the determining module 1101 and the communication module 1102 are also used to perform other operations performed by the network device in the foregoing method embodiment, which will not be repeated here.
  • the division of modules in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • a communication device 1200 provided in an embodiment of the application is used to implement the functions of the terminal device or the network device in the foregoing method.
  • the device can be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1200 includes at least one processor 1220, configured to implement the functions of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the apparatus 1200 may further include a communication interface 1210.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 1210 is used for the device in the communication device 1200 to communicate with other devices.
  • the communication apparatus 1200 is a network device
  • the other device may be a terminal device.
  • the communication device 1200 is a terminal device
  • the other device may be a network device.
  • the processor 1220 uses the communication interface 1210 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the processor 1220 is configured to obtain orbital angular momentum OAM modal domain information, where the OAM modal domain information includes a first OAM modal domain identifier, and the first OAM
  • the modal domain identifier corresponds to the first transmission parameter of the vortex electromagnetic wave in the first OAM physical mode, or the first OAM modal domain identifier corresponds to the first ratio between the first transmission parameter and the reference value
  • the reference value includes the transmission parameter of the plane electromagnetic wave or the transmission parameter of the vortex electromagnetic wave in the specified OAM physical mode among multiple OAM physical modes;
  • the passed vortex electromagnetic wave channels are the same; and are used to determine wireless resources used for uplink transmission or downlink transmission according to the OAM modal domain information.
  • the processor 1220 is configured to determine orbital angular momentum OAM modal domain information, where the OAM modal domain information includes a first OAM modal domain identifier, and the first OAM modal domain
  • the identifier corresponds to the first transmission parameter of the vortex electromagnetic wave in the first OAM physical mode, or the first OAM mode domain identifier corresponds to the first ratio between the first transmission parameter and the reference value
  • the The reference value includes the transmission parameters of the plane electromagnetic wave or the transmission parameters of the vortex electromagnetic wave in the specified OAM physical mode among multiple OAM physical modes; the vortex through which any number of waveform symbols are transmitted through the resource identified by the same OAM mode domain
  • the rotating electromagnetic wave channels are the same; the communication interface 1210 is used to send the OAM modal domain information to the terminal device.
  • the processor 1220 and the communication interface 1210 may also be used to execute other corresponding steps or operations performed by the terminal device or the network device in the foregoing method embodiment, which will not be repeated here.
  • the communication device 1200 may further include at least one memory 1230 for storing program instructions and/or data.
  • the memory 1230 and the processor 1220 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1220 may cooperate with the memory 1230 to operate.
  • the processor 1220 may execute program instructions stored in the memory 1230. At least one of the at least one memory may be integrated with the processor.
  • the specific connection medium between the aforementioned communication interface 1210, the processor 1220, and the memory 1230 is not limited in the embodiment of the present application.
  • the memory 1230, the processor 1220, and the communication interface 1210 are connected by a bus 1240.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 12, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1230 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication device to implement the terminal or network equipment in the foregoing method embodiment.
  • the chip is connected to a memory or the chip includes a memory, and the memory is used to store the necessary program instructions and data of the communication device.
  • the embodiment of the present application provides a computer-readable storage medium that stores a computer program, and the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the foregoing method embodiments to be executed.
  • this application can be provided as a method, a system, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线资源的标识方法及装置,用以标识具有轨道角动量 OAM 模态域的无线资源。该方法包括: 获取 OAM 模态域信息,所述 OAM 模态域信息包括第一 OAM 模态域标识,所述第一 OAM 模态域标识对应于第一 OAM 物理模态下涡旋电磁波的第一传输参数,或,所述第一 OAM 模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个 OAM 物理模态中指定 OAM 物理模态下涡旋电磁波的传输参数; 任意多个波形符号通过同一个 OAM 模态域标识的资源传输时所经过的涡旋电磁波信道是相同的; 根据所述 OAM 模态域信息确定用于上行传输或下行传输的无线资源。

Description

一种无线资源的标识方法及装置
相关申请的交叉引用
本申请要求在2020年05月28日提交中国专利局、申请号为202010470761.9、申请名称为“一种无线资源的标识方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种无线资源的标识方法及装置。
背景技术
大容量、高频谱效率一直是无线通信领域迫切需要解决的问题。近年来,许多新颖的无线传输技术研究正在浮现,例如携带轨道角动量(orbital angular momentum,OAM)的涡旋电磁波技术。涡旋电磁波是由于电磁场绕传播轴旋转使得相位波前呈现螺旋状具有空间螺旋形相位分布的特征。OAM电磁波含有一定的拓扑荷,称之为OAM模态。携带不同OAM模态的电磁波在空间中同轴传输时相互正交。由于OAM这一固有特性,使得OAM独立于频率,时间,码字及极化等现有的资源。从理论上来说,若将不同的信息加载到不同的OAM模态并共享同一频段进行互不干扰的传输,可以增加无线通信系统的信道容量,频谱效率将有显著的提高。
现有技术,可以通过对无线资源进行标识区分不同的时域信息或码域信息。如何对具有OAM模态域的无线资源进行标识是需要关注的问题。
发明内容
本申请实施例提供一种无线资源的标识方法及装置,用以对具有OAM模态域的无线资源进行标识。
第一方面,提供一种无线资源的标识方法,该方法可以通过以下步骤实现:获取轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;根据所述OAM模态域信息确定用于上行传输或下行传输的无线资源。通过上述方法,能够使用OAM模态域标识来确定无线资源,OAM模态域标识是与涡旋电磁波的传输参数相关的,可以看做OAM逻辑模态,相比使用OAM物理模态确定无线资源的方法更具有通用性,避免了物理天线阵列和OAM物理模态对于高层通信协议逻辑的影响。
在一个可能的设计中,所述OAM模态域标识对应于多个比值的排序序号中的第一序号,所述多个比值为所述多个OAM物理模态下涡旋电磁波的传输参数与所述基准值之间 的比值。如果两个或两个以上比值恰巧相等,可以随机对相等的多个比值进行排序,也可以按照比值对应的OAM物理模态数较小的排在前面的规则排序,也可以按照正数比负数排在前面的规则排序,或者结合两个排序规则进行排序。
在一个可能的实现方式中,所述OAM模态域标识对应于多个OAM物理模态下涡旋电磁波传输参数的排序序号中的第一序号。
在一个可能的设计中,所述排序序号符合以下任意一项排序规则:由大到小的顺序、由小到大的顺序、奇偶数、取模运算、或加权排序。在一个可能的设计中,所述OAM模态域信息还包括以下任一项或多项的组合:串扰系数、波束扩散角或所述第一OAM物理模态;其中,所述串扰系数和所述波束扩散角均与所述第一OAM物理模态对应;所述串扰系统包括:所述第一OAM物理模态下涡旋电磁波与平面电磁波的串扰系数,或者所述第一OAM物理模态下涡旋电磁波与所述指定OAM物理模态下涡旋电磁波的串扰系数。
在一个可能的设计中,所述获取OAM模态域信息,包括:从网络设备接收所述OAM模态域信息;或者,获取存储的所述OAM模态域信息。
在一个可能的设计中从网络设备接收所述OAM模态域信息,包括:从所述网络设备接收上行调度授权UL-Grant消息,所述UL-Grant消息中携带所述OAM模态域信息;或者,从所述网络设备接收下行控制信息DCI,所述DCI中携带所述OAM模态域信息。
在一个可能的设计中,若从网络设备接收所述OAM模态域信息,则所述方法还包括:接收来自所述网络设备的第一参考信号,所述第一参考信号为所述平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下的涡旋电磁波;根据所述第一参考信号确定所述基准值;将所述基准值发送给所述网络设备。
在一个可能的设计中,所述方法还包括:接收来自所述网络设备的多个第二参考信号,所述多个第二参考信号为所述多个OAM物理模态下的涡旋电磁波;根据所述第二参考信号确定所述多个OAM物理模态下涡旋电磁波的传输参数;将所述多个OAM物理模态下涡旋电磁波的传输参数发送给所述网络设备。
在一个可能的设计中,所述方法还包括:向所述网络设备发送能力信息,所述能力信息包括支持的OAM物理模态,用于网络设备按照能力信息来发送所述多个OAM物理模态下的涡旋电磁波。
在一个可能的设计中,所述方法还包括:接收来自所述网络设备的混合波;其中,若所述基准值为平面电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波和所述平面电磁波;或者,若所述基准值为所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波;所述多个OAM物理模态包括所述第一OAM物理模态;根据所述混合波,确定每一个OAM物理模态下涡旋电磁波与所述基准值对应波的串扰系数;将确定的所述串扰系数发送给所述网络设备。
在一个可能的设计中,所述OAM模态域标识包括整数和/或分数。所述OAM模态域标识为分数可以提高针对无线多径信道效应的对抗能力。本申请实施例的OAM模态域标识更具有灵活性。另外,本申请实施例可以不要求发送端和接收端的天线阵列规格必须一致,可以适用于发送端和接收端的天线阵列规格不一致的场景,本申请实施例也没有要求不同OAM模态的天线阵列规格必须一致,可以适用于不同OAM模态的天线阵列规格有差异的场景,本申请实施例更具有通用性和灵活性。总之,本申请实施例的OAM模态域 标识能够屏蔽物理天线阵列和物理OAM模态的对于高层通信协议逻辑的影响。另外,利用以信噪比为代表的度量性能进行计算,并以转换之后的逻辑模态作为调度参考,极大的增加了调度算法的通用性和灵活性。
在一个可能的设计中,所述第一传输参数或所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
在一个可能的设计中,根据所述OAM模态域信息确定无线资源,包括:根据所述OAM模态域信息,结合时域标识和/或频域标识,确定无线资源。可以将无线资源从时频二维拓展到时-频-模三维,并且,利用OAM模态域标识将模态域资源映射为物理天线不相关的归一化资源,同样增强了时频模三维无线资源调度的灵活性。通过增加OAM模态域维度,支持多条数据流在相同时-频资源和相同天线端口上同时进行通信。
第二方面,提供一种无线资源的标识方法,该方法包括以下步骤:确定轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;向终端设备发送所述OAM模态域信息。通过上述方法,能够使用OAM模态域标识来确定无线资源,OAM模态域标识是与涡旋电磁波的传输参数相关的,可以看做OAM逻辑模态,相比使用OAM物理模态确定无线资源的方法更具有通用性,避免了物理天线阵列和OAM物理模态对于高层通信协议逻辑的影响。
在一个可能的设计中,所述方法还包括:确定多个OAM模态域标识,所述多个OAM模态域标识包括所述第一OAM模态域标识;向所述终端设备发送所述多个OAM模态域标识;所述确定多个OAM模态域标识,包括:向所述终端设备发送多个OAM物理模态下的涡旋电磁波;接收来自所述终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;根据所述多个OAM物理模态下涡旋电磁波的传输参数的排序序号,获得多个OAM模态域标识;如果两个或两个以上传输参数恰巧相等,可以随机对相等的多个传输参数进行排序,也可以按照比值对应的OAM物理模态数较小的排在前面的规则排序,也可以按照正数比负数排在前面的规则排序,或者结合两个排序规则进行排序。
或者,所述确定多个OAM模态域标识,包括:向所述终端设备发送基准电磁波,接收来自所述终端设备反馈的所述基准电磁波的传输参数;向所述终端设备发送多个OAM物理模态下的涡旋电磁波,接收来自所述终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;确定每个OAM物理模态下涡旋电磁波传输参数与基准电磁波的传输参数的比值,获得多个OAM物理模态对应的多个比值;根据所述多个比值的排序序号,获得多个OAM模态域标识;所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波。可选的,如果两个或两个以上比值恰巧相等,可以随机对相等的多个比值进行排序,也可以按照比值对应的OAM物理模态数较小的排在前面的规则排序,也可以按照正数比负数排在前面的规则排序,或者结合两个排序规则进行排序。
在一个可能的设计中,所述方法还包括:接收来自所述终端设备的能力信息,所述能 力信息用于指示所述终端设备支持的OAM物理模态;根据所述能力信息,确定向所述终端设备发送的所述多个OAM物理模态下的涡旋电磁波,发送的OAM物理模态的涡旋电磁波是终端设备能够支持的。
在一个可能的设计中,所述方法还包括:向所述终端设备发送混合波,所述混合波包括所述多个OAM物理模态下涡旋电磁波和基准电磁波,所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波;接收来自所述终端设备的所述多个OAM物理模态下的涡旋电磁波分别与所述基准电磁波的串扰系数;向所述终端设备发送所述多个OAM模态域标识分别对应的串扰系数。
在一个可能的设计中,所述方法还包括:确定所述多个OAM物理模态的波束扩散角;向所述终端设备发送所述多个OAM模态域标识分别对应的波束扩散角。
在一个可能的设计中,所述OAM模态域标识包括整数和/或分数。所述OAM模态域标识为分数可以提高针对无线多径信道效应的对抗能力。本申请实施例的OAM模态域标识更具有灵活性。另外,本申请实施例可以不要求发送端和接收端的天线阵列规格必须一致,可以适用于发送端和接收端的天线阵列规格不一致的场景,本申请实施例也没有要求不同OAM模态的天线阵列规格必须一致,可以适用于不同OAM模态的天线阵列规格有差异的场景,本申请实施例更具有通用性和灵活性。总之,本申请实施例的OAM模态域标识能够屏蔽物理天线阵列和物理OAM模态的对于高层通信协议逻辑的影响。另外,利用以信噪比为代表的度量性能进行计算,并以转换之后的逻辑模态作为调度参考,极大的增加了调度算法的通用性和灵活性。
在一个可能的设计中,所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
第三方面,提供一种通信装置,该装置可以是终端设备,也可以是位于终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。该装置具有实现上述第一方面和第一方面的任一种可能的设计中所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括获取模块和确定模块。示例性地:
获取模块,用于获取轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;确定模块,用于根据所述OAM模态域信息确定用于上行传输或下行传输的无线资源。
在一个可能的设计中,所述OAM模态域标识对应于多个比值的排序序号中的第一序号,所述多个比值为所述多个OAM物理模态下涡旋电磁波的传输参数与所述基准值之间的比值。
在一个可能的设计中,所述排序序号符合以下任意一项排序规则:由大到小的顺序、由小到大的顺序、奇偶数、取模运算、或加权排序。
在一个可能的设计中,所述OAM模态域信息还包括以下任一项或多项的组合:串扰 系数、波束扩散角或所述第一OAM物理模态;其中,所述串扰系数和所述波束扩散角均与所述第一OAM物理模态对应;所述串扰系统包括:所述第一OAM物理模态下涡旋电磁波与平面电磁波的串扰系数,或者所述第一OAM物理模态下涡旋电磁波与所述指定OAM物理模态下涡旋电磁波的串扰系数。
在一个可能的设计中,所述装置还包括:
通信模块,用于接收来自所述网络设备的第一参考信号,所述第一参考信号为所述平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下的涡旋电磁波;
所述确定模块,还用于根据所述第一参考信号确定所述基准值;
所述通信模块,还用于将所述基准值发送给所述网络设备。
在一个可能的设计中,所述通信模块,还用于接收来自所述网络设备的多个第二参考信号,所述多个第二参考信号为所述多个OAM物理模态下的涡旋电磁波;
所述确定模块,还用于根据所述第二参考信号确定所述多个OAM物理模态下涡旋电磁波的传输参数;
所述通信模块,还用于将所述多个OAM物理模态下涡旋电磁波的传输参数发送给所述网络设备。
在一个可能的设计中,所述通信模块,还用于向所述网络设备发送能力信息,所述能力信息包括支持的OAM物理模态。
在一个可能的设计中,所述通信模块,还用于接收来自所述网络设备的混合波;其中,若所述基准值为平面电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波和所述平面电磁波;或者,若所述基准值为所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波;所述多个OAM物理模态包括所述第一OAM物理模态;
所述确定模块,还用于根据所述混合波,确定每一个OAM物理模态下涡旋电磁波与所述基准值对应波的串扰系数;所述通信模块,还用于将确定的所述串扰系数发送给所述网络设备。
在一个可能的设计中,所述OAM模态域标识包括整数和/或分数。
在一个可能的设计中,所述第一传输参数或所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
在一个可能的设计中,所述确定模块,用于:根据所述OAM模态域信息,结合时域标识和/或频域标识,确定无线资源。
第四方面,提供一种通信装置,该装置可以是网络设备,也可以是位于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括确定模块和通信模块。示例性地:
确定模块,用于确定轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中 指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;通信模块,用于向终端设备发送所述OAM模态域信息。
在一个可能的设计中,所述确定模块还用于:确定多个OAM模态域标识,所述多个OAM模态域标识包括所述第一OAM模态域标识;所述通信模块,还用于发送所述多个OAM模态域标识;
在确定多个OAM模态域标识时:
所述通信模块,用于发送多个OAM物理模态下的涡旋电磁波;接收来自所述终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;所述确定模块,用于根据所述多个OAM物理模态下涡旋电磁波的传输参数的排序序号,获得多个OAM模态域标识;
或者,所述通信模块,用于发送基准电磁波,接收来自所述终端设备反馈的所述基准电磁波的传输参数;发送多个OAM物理模态下的涡旋电磁波,接收来自所述终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;所述确定模块,用于确定每个OAM物理模态下涡旋电磁波传输参数与基准电磁波的传输参数的比值,获得多个OAM物理模态对应的多个比值;根据所述多个比值的排序序号,获得多个OAM模态域标识;所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波。
在一个可能的设计中,所述装置还包括:
接收来自所述终端设备的能力信息,所述能力信息用于指示所述终端设备支持的OAM物理模态;
根据所述能力信息,确定发送的所述多个OAM物理模态下的涡旋电磁波。
在一个可能的设计中,所述通信模块,还用于:
发送混合波,所述混合波包括所述多个OAM物理模态下涡旋电磁波和基准电磁波,所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波;
接收来自所述终端设备的所述多个OAM物理模态下的涡旋电磁波分别与所述基准电磁波的串扰系数;
发送所述多个OAM模态域标识分别对应的串扰系数。
在一个可能的设计中,所述确定模块还用于确定所述多个OAM物理模态的波束扩散角;
所述通信模块,还用于发送所述多个OAM模态域标识分别对应的波束扩散角。
在一个可能的设计中,所述OAM模态域标识包括整数和/或分数。
在一个可能的设计中,所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
第五方面,本申请实施例提供一种通信装置,该装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第一方面或第一方面各个可能的设计描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上 述第一方面或第一方面各个可能的设计描述的方法。
第六方面,本申请实施例提供一种通信装置,该装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第二方面或第二方面各个可能的设计描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面或第二方面各个可能的设计描述的方法。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一方面、第二方面、第一方面各个可能的设计或第二方面各个可能的设计中所述的方法被执行。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面、第二方面、第一方面各个可能的设计或第二方面各个可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供了一种通信系统,所述系统包括终端设备和网络设备,所述终端设备用于执行上述第一方面或第一方面各个可能的设计中的方法,所述网络设备用于执行上述第二方面或第二方面各个可能的设计中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得如上述第一方面、第二方面、第一方面各个可能的设计或第二方面各个可能的设计中所述的方法被执行。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中RE的标识方法示意图;
图3为本申请实施例中无线资源的标识方法流程示意图;
图4为本申请实施例中网络设备确定OAM模态域标识的方法流程示意图之一;
图5为本申请实施例中网络设备和终端设备的天线阵列示意图;
图6为本申请实施例中网络设备确定OAM模态域标识的方法流程示意图之二;
图7为本申请实施例中网络设备的天线阵列示意图;
图8为本申请实施例中网络设备确定OAM模态域标识的方法流程示意图之三;
图9为本申请实施例中资源单元的标识方法示意图;
图10为本申请实施例中通信装置结构示意图之一;
图11为本申请实施例中通信装置结构示意图之二;
图12为本申请实施例中通信装置结构示意图之三。
具体实施方式
本申请实施例提供一种无线资源的标识方法及装置其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以 存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的无线资源的标识方法可以应用于第四代(4th Generation,4G)通信系统,例如,长期演进(long term evolution,LTE)系统;还可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR);或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统,还可以应用于蓝牙系统、WiFi系统、LoRa系统或车联网系统中。本申请实施例提供的方法可以应用于卫星通信系统其中,所述卫星通信系统可以与上述通信系统相融合。
为了便于理解本申请实施例,以图1所示的通信系统架构为例对本申请使用的应用场景进行说明。参阅图1所示,通信系统100包括网络设备101和终端设备102。本申请实施例提供的装置可以应用到网络设备101,或者应用到终端设备102。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以包括其他设备。
网络设备101为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些网络设备101的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。网络设备101还可以是其他具有网络设备功能的设备,例如,网络设备101还可以是D2D通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备101还可以是未来可能的通信系统中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备102,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。 目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
在无线通信系统中,可以通过对无线资源进行标识从而使得终端设备和网络设备之间确定上行或下行传输的资源。本申请实施例中,无线资源包括用于上行传输或用于下行传输的资源。无线资源可以包括多个维度的资源,例如,时域维度、频域维度、码域维度、极化维度、天线(空间)维度或OAM模态域维度。
下面举例说明无线资源的标识的方法。
在一个实施例中,以表1为例,第五代(5th Generation,5G)通信系统支持动态正交频分复用(orthogonal frequency division multiplexing,OFDM)子载波间隔及其无线资源的标识方法。
表1
μ Δf=2 μ·15[kHz] 循环前缀
0 15 标准的(normal)
1 30 normal
2 60 normal,扩展的(extended)
3 120 normal
4 240 normal
如表1所示,5G将15kHz至240kHz不同的OFDM子载波间隔分别标识为μ=0,1,2,3,4,并且分别对应不同长度的循环前缀。这种无线资源标识方法设定了一个可以灵活扩展的参数集,使得5G可以同时支持多种业务部署的灵活性。在不同应用场景中,网络设备根据无线信道的多径时延和通信业务的时延要求来动态地选择表1中的子载波间隔及循环前缀配置。
如图2所示,在频域上12个连续的子载波对应的资源单元(resource element,RE)组成了一个资源块(resource block,RB)。可以用(k,l) ρ,μ标识RE,(k,l) ρ,μ具体表示:第μ个OFDM传输参数配置下,第ρ个天线端口的相对于参考点的第k个频域符号和第l个时域符号。
本申请实施例提供的无线资源的标识方法,能够标识具有OAM模态域维度的无线资源。
为更好的理解本申请的方法,首先介绍一下OAM模态域以及本申请涉及的一些其他术语或概念。
OAM是电磁波的一种固有属性,对应于波束在空间中的螺旋形相位波前。携带不同OAM态的电磁波在空间中同轴传输时相互正交,因此理论上,将不同的信息调制到不同OAM态的电磁波上用于复用,可以增加无线通信系统的信道容量。
通过天线阵列产生OAM波束是OAM波束的一种较为便捷的产生方法。天线阵列,是指将工作在同一频率的两个或两个以上的单个天线,按照一定的要求进行馈电和空间排列构成天线阵列,也叫天线阵。构成天线阵的天线辐射单元称为阵元。天线阵列包括发射天线阵列和接收天线阵列。天线阵列的结构包括均匀环形阵(uniform circular array,UCA)、均匀直线阵(uniform linear array,ULA)等。在本申请实施例中,天线阵列的结构不作限定。
OAM态,也称OAM物理模态,或者,物理OAM模态,是电磁波的固有属性之一。OAM态可以为任意整数,如-1,1,2,3等,或者OAM态可以为整数构成的一维数组,一维数组中包括的OAM态的个数不做限定,如[-2,-1,1,2]等有限数量个,或者OAM态的数量可以无上限。可以理解的是,实际应用时,可以是一个组合内包括发射波束的OAM态和接收波束的OAM态,或者可以是一个组合内包括发射波束的OAM态,另一个组合内包括接收波束的OAM态。一般的,OAM态为整数。
基于OAM物理模态的概念,本申请实施例涉及的OAM模态可以理解为OAM逻辑模态。与OAM物理模态不同,OAM逻辑模态不仅可以是整数,也可以为分数。本申请实施例中,OAM逻辑模态又可以称为OAM模态域标识。其中,任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的。基于此,OAM模态域标识又可以称为OAM模态域端口。OAM模态域端口的定义方法与5G NR标准中的天线端口(antenna port)定义方法存在类似之处。一个OAM模态域端口定义为:当一个波形符号通过一个模态端口传输,它所经历的涡旋电磁波信道和该OAM模态域端口传输的其他波形符号经历的涡旋电磁波信道是相同的。换一种表述方式,终端认为两个传输的信号是否经历相同的涡旋电磁波信道取决于这两个信号是否通过同一个OAM模态域端口发送。同样的,OAM模态域端口是一个逻辑概念,并不和一个特定的OAM物理模态或物理天线阵列对应。
传输参数能够表征电磁波的信道特点,或者说传输参数表征电磁波通信效果的度量性能。本申请实施例中,传输参数可以是任意表征电磁波信号性能的优劣。例如传输参数可以是以下任意一项或多项的组合:信噪比(signal noise ratio,SNR)、参考信号接收功率(reference signal received power,RSRP)、误码率(bit error rate,BER)、误块率(block error rate)、误包率(Packet Error Rate,PER)、失败重传次数或成功传输时延。传输参数的说明可以适用于平面电磁波和任意OAM物理模态的涡旋电磁波。
平面电磁波可以认为是OAM物理模态为0的涡旋电磁波。
如图3所示,下面介绍一下本申请实施例提供的无线资源的标识方法。
S301、网络设备确定OAM模态域信息。
OAM模态域信息中包括第一OAM模态域标识,第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数与基准值之间的第一比值,该基准值包括平面电磁波的传输参数,或者该基准值包括多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数。
S302、网络设备向终端设备发送该OAM模态域信息,终端设备从网络设备接收该OAM模态域信息。
S303、终端设备根据该OAM模态域信息确定用于上行传输或下行传输的无线资源。
图3实施例,能够使用OAM模态域标识来确定无线资源,OAM模态域标识是与涡旋电磁波的传输参数相关的,可以看做OAM逻辑模态,相比使用OAM物理模态确定无线资源的方法更具有通用性,避免了物理天线阵列和OAM物理模态对于高层通信协议逻辑的影响。
下面对图3实施例的一些可选实现方式进行举例说明。
首先介绍一下网络设备确定OAM模态域标识的方法,具体如图4所示。
S401、网络设备向终端设备发送基准电磁波,终端设备接收来自网络设备的基准电磁波。
基准电磁波为平面电磁波信号,或者基准电磁波为多个OAM物理模态中指定OAM物理模态下的涡旋电磁波。多个OAM物理模态为网络设备即将发送的多个OAM测试信号的OAM物理模态。
例如,基准电磁波可以是参考信号(reference signal,RS)。
S402、终端设备确定基准电磁波的传输参数。
基准电磁波的传输参数例如可以包括以下任意一项或任意多项的组合:SNR、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。本申请实施例以信噪比为例进行介绍。该基准电磁波的传输参数可以作为确定OAM模态域标识的基准值。
终端设备还可以确定基准电磁波的达角(direction of arrival,DOA)。
S403、终端设备向网络设备发送基准电磁波的反馈信号,网络设备接收来自终端设备的该基准电磁波的反馈信号。
该基准电磁波的反馈信号中携带所确定的基准电磁波的传输参数。
例如,该基准电磁波的反馈信号可以是信道状态信息(channel state information,CSI)报告。S404、网络设备通过基准电磁波向终端设备发送第一指示信息,终端设备接收来自网络设备的第一指示信息。
该第一指示信息用于指示该网络设备即将发送的OAM测试信号的OAM物理模态的顺序。例如该第一指示信息指示网络设备即将发送的OAM测试信号的OAM物理模态依次为[+1,-1,+2,-2,+3,…]。S405、终端设备向网络设备发送能力信息,网络设备接收来自终端设备的能力信息。
该能力信息可以包括以下任意一项或多项:支持的OAM物理模态或终端设备的天线阵子的数量。终端设备的天线阵子的数量可以用于网络设备确定终端设备支持的OAM物理模态。该能力信息还可以包括天线孔径。
例如,该能力信息可以是CSI报告。
其中,S404和S405为可选步骤,实际应用中,还可以通过其他方式来确定多个OAM模态域的涡旋电磁波的顺序,例如,可以预先规定好OAM物理模态依次为[+1,-1,+2,-2,+3,…]。
S405也可以省略,只执行S404,不管终端支持哪些OAM物理模态,网络设备可以按照自身确定的顺序发送OAM测试信号即可。
S404和S405的顺序不作限定,可以交换顺序,比如先执行S405,那么S404中网络 设备可以按照S404中终端设备的能力信息确定即将发送的OAM测试信号的OAM物理模态的顺序。
S406、网络设备确定不同OAM物理模态l在网络设备本地的波束扩散角φ l
可以按照下述公式(1)确定波束扩散角φ l
Figure PCTCN2021092214-appb-000001
其中,R t为网络设备本地天线孔径,λ为载波波长,载波波长λ与发射信号的载波频率有关。
网络设备可以按照S404中的第一指示信息指示的OAM物理模态的顺序,依次计算不同OAM物理模态l在网络设备本地的波束扩散角φ l
S407、网络设备向终端设备发送多个OAM物理模态下的涡旋电磁波,终端设备接收来自网络设备的多个OAM物理模态下的涡旋电磁波。
网络设备可以按照一定的顺序发送多个OAM物理模态的涡旋电磁波。例如,可以按照S404中的OAM模态顺序指示信息指示的OAM物理模态的顺序,依次发送多个OAM物理模态的涡旋电磁波。或者,S404中的OAM模态顺序指示信息指示的OAM物理模态的顺序记为第一顺序,网络设备可以结合S405中获得的终端的能力信息,判断第一顺序中终端支持的OAM物理模态,并确定OAM物理模态的第二顺序,第二顺序中包括的OAM物理模态均为终端设备支持的模态。例如,该OAM模态顺序指示信息指示网络设备即将发送的OAM测试信号的OAM物理模态依次为[+1,-1,+2,-2,+3,…],终端设备的能力信息指示终端支持的OAM物理模态中不包括[+2,-2],则,网络设备确定OAM物理模态的第二顺序依次为[+1,-1,+3,-3,…]。
S408、终端设备确定该多个OAM物理模态下涡旋电磁波的传输参数,获得多个传输参数,多个传输参数与多个OAM物理模态一一对应。
一个OAM物理模态可以对应多种类型的传输参数。该多个OAM物理模态下涡旋电磁波的传输参数可以包括以下任意一项或任意多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。本申请实施例以信噪比为例进行介绍。OAM物理模态l信噪比可以记为SNR l
S409、终端设备向网络设备反馈该多个OAM物理模态下涡旋电磁波的传输参数,网络设备接收来自终端设备反馈的该多个OAM物理模态下涡旋电磁波的传输参数。
S410、网络设备依次向终端设备发送多个混合波,终端设备接收来自网络设备的多个混合波。其中,多个混合波与多个OAM物理模态一一对应,任一混合波为对应的OAM物理模态下的涡旋电磁波和平面电磁波的混合波。
网络设备可以按照一定的顺序依次向终端设备发送多个混合波,该一定的顺序可以照S404中的OAM模态顺序指示信息指示的OAM物理模态的第一顺序。或者,按照OAM物理模态的第二顺序。第一顺序和第二顺序的具体设计细节可以参照S407。
S411、终端设备依次从第l个混合波中确定第l个OAM物理模态下涡旋电磁波的传输参数及其与基准电磁波的串扰系数γ l
假设多个OAM物理模态的数量为M个,l的取值可以从0取到(M-1),也可以从1取到M。终端设备可以按照l取值由大到小或由小到大或任意的顺序确定串扰系数γ l
以传输参数为信噪比SNR为例,第l个OAM物理模态下涡旋电磁波的SNR记为
Figure PCTCN2021092214-appb-000002
串扰系数的计算方法如公式(2)所示。
Figure PCTCN2021092214-appb-000003
公式(2)中涡旋波即涡旋电磁波,度量新能即传输参数。
S412、终端设备向网络设备反馈S411所确定的每个OAM物理模态的串扰系数。还可以向网络设备反馈S411所确定的每个OAM物理模态的传输参数。网络设备接收来自终端设备的串扰系数。
例如,终端设备向网络设备反馈S411所确定的第l个OAM物理模态的信噪比
Figure PCTCN2021092214-appb-000004
和串扰系数γ l
S413、网络设备确定每个OAM物理模态下涡旋电磁波传输参数与基准电磁波的传输参数的比值ζ,获得多个OAM物理模态对应的多个比值。
基准电磁波的传输参数作为基准值,可以依据S403中终端设备反馈信号确定。以基准电磁波为平面电磁波为例,以传输参数为信噪比SNR为例,平面电磁波的SNR记为SNR 0。则ζ可以根据公式(3)表示。公式(3)中ζ为OAM物理模态l下涡旋电磁波SNR l与平面电磁波的SNR 0的比值。
Figure PCTCN2021092214-appb-000005
公式(3)中涡旋波即涡旋电磁波,平面波即平面电磁波,度量性能即传输参数。
S414、网络设备将S413获得的多个比值ζ进行排序,获得多个排序序号。
排序序号可以按照任意排序规则,例如,排序规则为由大到小的顺序、由小到大的顺序、奇偶数、取模运算或加权排序中的任一种或多种的结合。
S415、网络设备按照S414获得的多个排序序号,生成多个OAM模态域标识。
本申请实施例中,网络设备生成的多个OAM模态域标识,可以通过列表的形式体现,也可以通过其他方式体现,本申请实施例均以列表形式作为举例来展开说明,通过OAM模态域标识列表来表示多个OAM模态域标识。当涉及OAM模态域标识列表时,意在表达网络设备通过与终端设备交互生成的多个OAM模态域标识,该多个OAM模态域标识对应多个数量相同或不同的OAM物理模态,多个OAM物理模态可以是终端设备支持的,或网络设备支持的,或网络设备和终端设备都支持的。OAM模态域标识列表可以在线生成也可以预先存储下来。
多个OAM模态域标识分别与多个排序序号一一对应,多个排序序号与多个比值ζ一一对应,多个比值ζ与多个OAM物理模态一一对应。OAM模态域标识可以认为是一个排序的序号,可以是自然数,例如0、1、2、3……。OAM模态域标识也可以认为是比值ζ,比值ζ可以取值为整数或分数,或者为整型数值或者为浮点型数值。可以看出OAM模态域标识并非直接表现为OAM物理模态,是OAM物理模态下涡旋电磁波的信道性能的体现,对应OAM物理模态下涡旋电磁波的传输参数。
在对比值ζ进行排序时,如果出现比值ζ恰巧相等的情况,可以随机对相等的多个比值进行排序,也可以按照比值对应的OAM物理模态数较小的排在前面的规则排序,也可以按照正数比负数排在前面的规则排序,或者结合两个排序规则进行排序。
本申请实施例中,一个OAM模态域标识可能对应一个或多个OAM物理模态。当出现比值ζ恰巧相等的情况时,如果按照设定的规则对多个相等的比值ζ进行排序,则能够保证一个OAM模态域标识对应一个OAM物理模态。可选的,还可以将多个相等的比值ζ对应同一个排序序号,即对应同一个OAM模态域标识,这样一个OAM模态域标识对应多个OAM物理模态。不管怎样,使用OAM模态域标识并没有减少可使用的OAM物理模态的 数量。
OAM模态域标识用字母m表示,m=[1,2,3,…],或者m=[0,1,2,3,…]。其中,OAM模态域标识0可以对应平面电磁波。
示例性的,逻辑OAM标识m与OAM物理模态的对应关系如表2所示。表2中未表示出序号0,序号0可以是平面电磁波。
表2
Figure PCTCN2021092214-appb-000006
该多个OAM模态域标识也可以称为多个OAM模态域端口。一个OAM模态域标识可能对应一个或多个OAM物理模态。示例性地,在表2所示的逻辑OAM标识序号表格中,对于OAM物理模态l 1和l 4,不管采用什么样的物理技术手段,例如:无论对OAM物理模态l 1和l 2分配相同或不同的发射功率、采用相同或不同的天线阵列、采用相同或不同的传播路径,只要这两个OAM物理模态l 1和l 4对应相同的OAM模态域标识m=1,则l 1和l 4被视作隶属于一个相同的OAM模态域标识或OAM模态域端口。
可选的,网络设备还可以建立OAM模态域标识m与波束扩散角φ m的对应关系,还可以建立OAM模态域标识m与串扰系数γ m的对应关系,或者,同时建立OAM模态域标识m与波束扩散角φ m和串扰系数γ m的对应关系。通过该对应关系的建立,可以通过串扰系数γ m或和串扰系数γ m来表征OAM模态域标识m的一些特征。
示例性地,逻辑OAM标识m、波束扩散角、串扰系数与OAM物理模态的对应关系如表3所示。序号0可以表示平面电磁波,表3中未示出序号0。
表3
Figure PCTCN2021092214-appb-000007
该多个OAM模态域标识也可以称为多个OAM模态域端口。一个OAM模态域标识可能对应一个或多个OAM物理模态。在表3所示的逻辑OAM标识序号表格中,对于OAM物理模态l 1和l 4,不管采用什么样的物理技术手段,例如:无论对OAM物理模态l 1和l 4分配相同或不同的发射功率、采用相同或不同的天线阵列、采用相同或不同的传播路径,只要这两个OAM物理模态l 1和l 4对应相同的OAM模态域标识m、波束扩散角φ和串扰系数γ,或者,只要这两个OAM物理模态l 1和l 2得到OAM模态域标识m、波束扩散角φ和串扰系数γ的误差小于某个可容忍的门限值,则l 1和l 2被视作隶属于一个相同的OAM模态域标识或OAM模态域端口。
S406是可选的步骤,若省略S406,则网络设备可以不建立OAM模态域标识m与波 束扩散角φ m的对应关系,例如,网络设备可以只建立OAM模态域标识m与串扰系数γ m的对应关系。
S410~S412是获取串扰系数γ l的过程,为可选步骤,也可以省略,若省略S410~S412,则网络设备可以不建立OAM模态域标识m与串扰系数γ m的对应关系,例如,可以只建立OAM模态域标识m与波束扩散角φ m的对应关系。
当也可以即省略S406,又省略S410~S412。
S413~S415是生成多个OAM模态域标识的过程,在一个可能的实现方式中,网络设备可以直接对多个OAM物理模态下涡旋电磁波传输参数进行排序,获得多个排序序号,按照多个排序序号,生成多个OAM模态域标识。对多个OAM物理模态下涡旋电磁波传输参数进行排序也可以按照任意的排序规则,例如按照以下任一规则或多个规则的结合:由大到小的顺序、由小到大的顺序、奇偶数、取模运算、或加权排序。这样,可以省略S401~S403获取基准电磁波的传输参数的过程。基于此种获得OAM模态域标识的方式更简洁,按照S413~S415获取OAM模态域标识的方式能够参考基准电磁波,结果更加准确。
本申请实施例中OAM模态域标识既可以是整数,例如:±1,±2,…,也可以是分数或小数,例如:+1.25,-3.5,…。OAM模态域标识可以映射到分数OAM模态的情况。因此,本申请实施例的OAM模态域标识更具有灵活性。另外,本申请实施例可以不要求发送端和接收端的天线阵列规格必须一致,可以适用于发送端和接收端的天线阵列规格不一致的场景,本申请实施例也没有要求不同OAM模态的天线阵列规格必须一致,可以适用于不同OAM模态的天线阵列规格有差异的场景,本申请实施例更具有通用性和灵活性。
总之,本申请实施例的OAM模态域标识能够屏蔽物理天线阵列和物理OAM模态的对于高层通信协议逻辑的影响。另外,利用以信噪比为代表的度量性能进行计算,并以转换之后的逻辑模态作为调度参考,极大的增加了调度算法的通用性和灵活性。
需要说明的是,图4示例性的说明了网络设备确定OAM模态域标识的方法,实际应用中,网络设备可以在线生成OAM模态域标识,也可以预先生成OAM模态域标识并存储在本地,网络设备可以查询预先存储的OAM模态域标识来确定向终端发送OAM模态域信息。
基于图4实施例,以下通过具体应用场景一对网络设备确定OAM模态域标识的方法作进一步详细介绍。在该应用场景下,基准电磁波为平面电磁波,传输参数为信噪比。
如图5所示,假设网络设备的天线阵列采用同心圆方式部署4圈,每圈16个天线阵子等间距排列,终端设备仅安装1圈16个天线阵子。网络设备的同心圆从内向外的圆半径依次记为R 1,R 2,R 3和R 4,网络设备设定采用的4种OAM物理模态分别是+1,+3,+5,+7,并且规定最内圈天线阵子发送OAM物理模态+1,从内向外圈的天线阵子依次发送OAM物理模态为+3,+5,+7。网络设备和终端设备均采用28GHz频段的无线电波进行通信,对应的波长为λ=1cm。网络设备和终端设备之间可以存在直视(LOS)路径信道。
如图6所示,在图5所述天线阵列的基础上,网络设备确定OAM模态域标识的方法的流程如下所述。
S601、网络设备使用最内圈天线阵子按照功率P 0向终端设备发送平面电磁波信号S 0,终端设备接收平面电磁波信号S 0
S602、终端设备确定平面电磁波信号S 0的信噪比SNR 0
终端设备还可以平面电磁波信号S 0的确定到达角DOA 0
S603、终端设备向网络设备发送携带信噪比信息SNR 0的反馈信号,网络设备接收来自终端设备的反馈信号,并记录该反馈信号携带的平面电磁波信噪比信息。
反馈信号还可以携带到达角DOA 0。网络设备还可以记录该到达角的信息。
S604、网络设备通过平面电磁波向终端设备发送该网络设备即将发送的OAM测试信号的OAM物理模态的顺序[+1,+5,+7,+3]。
可以理解,这里的OAM物理模态的顺序并不一定是递增的或递减的,也有可能是乱序的。
S605、终端设备收到OAM物理模态的顺序的信息之后,向网络设备反馈确认消息,并且汇报该终端设备的能力信息。网络设备接收来自终端设备的能力信息。
这里的终端设备能力信息可以包括:终端设备的天线阵子的数量或者终端设备支持收发的OAM物理模态。该能力信息还可以包括天线孔径。
例如,假设终端设备仅支持OAM物理模态[+1,+3,+5],则终端设备向网络设备反馈的确认消息可以指示终端设备的能力为[+1,+5,N/A,+3]。
网络设备收到此能力信息之后,在下面的流程中将会依次发送[+1,+5,+3]的OAM物理模态的OAM测试信号,而剔除+7模态。
S606、网络设备按[+1,+5,+3]的顺序依次计算不同OAM物理模态在本地的波束扩散角φ +1+5+3
根据前述的模态与发射内外圈的映射关系,以及上文的公式(1)可知:
Figure PCTCN2021092214-appb-000008
Figure PCTCN2021092214-appb-000009
S607、网络设备按[+1,+5,+3]的顺序依次向终端设备发送不同OAM物理模态的涡旋电磁波,终端设备接收来自网络设备的多个涡旋电磁波。
S608、终端设备确定该多个OAM物理模态下涡旋电磁波的信噪比。
终端设备按照经典的
Figure PCTCN2021092214-appb-000010
逆相位梯度法依次检测第l个OAM物理模态的涡旋电磁波的信噪比SNR l
S609、终端设备向网络设备反馈每个OAM物理模态对应的信噪比SNR l。网络设备从终端设备接收每个OAM物理模态对应的信噪比SNR l
如果网络设备的涡旋电磁波到达不同的终端设备的到达角DOA不同,那么即使是相同的OAM物理模态在不同终端设备也会检测到不同的信噪比。
S610、网络设备按[+1,+5,+3]的顺序,以对应圈的天线阵子和功率P 0,依次向终端设备发送不同OAM物理模态的涡旋电磁波,并且发送每个OAM物理模态的涡旋电磁波的同时,以最内圈天线振子、相同的功率P 0发送平面电磁波S 0。每个OAM物理模态的涡旋电磁波和平面电磁波组成混合波。终端设备接收来自网络设备的多个混合波。
例如,物理模态为+1的涡旋电磁波记为S +1,对应的混合波
Figure PCTCN2021092214-appb-000011
S611、终端设备依次从混合波
Figure PCTCN2021092214-appb-000012
中提取和检测不同OAM物理模态的信噪比
Figure PCTCN2021092214-appb-000013
并且根据公式(2)计算该物理模态的涡旋电磁波与平面电磁波的串扰系数γ l
S612、终端设备向网络设备反馈每个OAM物理模态对应的信噪比
Figure PCTCN2021092214-appb-000014
和串扰系数γ l
S613、网络设备生成OAM模态域标识的列表,列表中包括多个表项,每一个表项对应一个OAM模态域标识、一个串扰系数和一个波束扩散角。
可选的,一种方式1中,使用相对SNR生成OAM模态域标识。即,按照OAM物理模态下涡旋电磁波信噪比与平面电磁波信噪比的比值ζ大小进行排序,比值ζ计算方法如公式(3)所示;平面电磁波记为起始序号0,按照比值ζ从大到小排列。可选的,在另一种方式2中,使用绝对SNR生成OAM模态域标识。按照OAM物理模态下涡旋电磁波信噪比的大小进行排序,按照排序结果生成OAM模态域标识。
无论方式1还是方式2,不妨假设排序结果是ζ +1+5+3,从起始序号向上递增生成OAM模态域标识。建立每个OAM模态域标识对应的波束扩散角和串扰系数,最终生成的逻辑OAM标识序号如表4所示。表4中未表示出序号0,序号0可以是平面电磁波。
表4
Figure PCTCN2021092214-appb-000015
本申请实施例中,一个OAM模态域标识可能对应一个或多个OAM物理模态,假设一个OAM模态域标识对应多个OAM物理模态。
在表2所示的逻辑OAM标识序号表格中,对于任意两个OAM物理模态l 1和l 2,不管采用什么样的物理技术手段,例如:无论对OAM物理模态l 1和l 2分配相同或不同的发射功率、采用相同或不同的天线阵列、采用相同或不同的传播路径,只要这两个OAM物理模态l 1和l 2对应相同的OAM模态域标识m、波束扩散角φ和串扰系数γ,或者,只要这两个OAM物理模态l 1和l 2得到OAM模态域标识m、波束扩散角φ和串扰系数γ的误差小于某个可容忍的门限值,则l 1和l 2被视作隶属于一个相同的OAM模态域标识或OAM模态域端口。
基于图4实施例,以下通过具体应用场景二对网络设备确定OAM模态域标识的方法作进一步详细介绍。在该应用场景下,基准电磁波为平面电磁波,传输参数为信噪比。
如图7所示,假设网络设备的天线阵列部署1圈,每圈N个天线阵子,N取值为16为例,每圈16个天线阵子等间距排列。
网络设备可以按照下述公式(4)的方式生成OAM涡旋电磁波的。
Figure PCTCN2021092214-appb-000016
其中,p n表示第n个天线阵子分配的功率,s 0(t)是平面电磁波承载的待发送信号,l是OAM物理模态的数量,x(t)是生成的第l个OAM物理模态的涡旋电磁波信号,N是每圈天线阵子的数量。
l的取值可以为整数,也可以为分数或小数。例如
Figure PCTCN2021092214-appb-000017
又例如,
Figure PCTCN2021092214-appb-000018
将取值为分数的l代入公式(4)可以生成涡旋电磁波。与l取值为整数相比,l取值为分数可以提高针对无线多径信道效应的对抗能力。
在一些技术中,将OAM物理模态直接所谓作为OAM索引来标识无线资源,这些技术要么不支持分数形式的OAM物理模态,要么就把分数形式的OAM物理模态和整数形 式的OAM物理模态混合在一起标识无线资源,本申请实施例提供的OAM模态域标识能够支持分数形式的OAM物理模态。
如图8所示,在图7所述天线阵列的基础上,网络设备确定OAM模态域标识的方法的流程如下所述。
S801、网络设备以功率P 0向终端设备发送平面电磁波信号S 0,终端设备接收来自网络设备的平面电磁波信号S 0
S802、终端设备确定平面电磁波信号S 0的信噪比SNR 0
终端设备还可以平面电磁波信号S 0的确定到达角DOA 0
S803、终端设备向网络设备发送携带信噪比信息SNR 0的反馈信号,网络设备接收来自终端设备的反馈信号,并记录该反馈信号携带的平面电磁波信噪比信息。
反馈信号还可以携带到达角DOA 0。网络设备还可以记录该到达角的信息。
S804、网络设备以功率P 0向终端设备发送分数形式的OAM物理模态l的涡旋电磁波,终端设备接收来自网络设备分数形式的OAM物理模态l的涡旋电磁波。
S805、终端设备确定该分数形式的OAM物理模态l下涡旋电磁波的信噪比。
终端设备按照经典的
Figure PCTCN2021092214-appb-000019
逆相位梯度法依次检测OAM物理模态l的涡旋电磁波的信噪比SNR l
S806、终端设备向网络设备发送该分数形式的OAM物理模态l下涡旋电磁波的信噪比,网络设备接收来自终端设备的OAM物理模态l下涡旋电磁波的信噪比。
S807、网络设备确定OAM模态域标识。
与S613类似,在一种可选的实现方式1中,根据信噪比的比值ζ=SNR l/SNR 0进行排序,得到OAM模态域标识;在另一种方式2中,使用绝对SNR生成OAM模态域标识。按照该分数形式的OAM物理模态l下涡旋电磁波的信噪比的大小进行排序,按照排序结果生成OAM模态域标识。
本申请实施例中,可以参照图6所示实施例的方法确定每个OAM模态域标识对应的波束扩散角和串扰系数,重复之处不再赘述。
需要说明的是,图8实施例和图6实施例的区别是OAM物理模态的数值类型不同,各个步骤之间可以相互参照,重复之处不再赘述。
在一个可能的设计中,由分数形式的OAM物理模态确定得到的OAM模态域标识,可以与由整数形式的OAM物理模态确定的OAM模态域标识结合进行比较和排序,最终得到一个统一的OAM模态域标识,例如最后得到一个统一的OAM模态域标识序号表。
可以理解,分数形式的OAM物理模态与整数形式的OAM物理模态有可能对应于相同的OAM模态域标识。
本申请实施例中,根据OAM物理模态转换为OAM模态域标识,OAM物理模态可以支持整数形式和分数形式,这样能够得到统一和通用的模态域标识的方法,增加无线调度算法在OAM模态域的可调度范围。若将分数形式的OAM物理模态和整数形式的OAM物理模态结合进行比较和排序,可以避免物理天线阵列、OAM物理模式取值形式等硬件因素对模态域标识的影响。
以上通过图4~图8介绍了网络设备确定OAM模态域标识的可能的实现方式,网络设备可能确定多个OAM模态域标识,例如,网络设备确定OAM模态域标识列表。那么网络设备如何在多个OAM模态域标识中确定向终端设备发送的第一OAM模态域标识,以 下对可选的实现方式进行说明。
网络设备向终端设备分配无线资源时,该无线资源包括OAM模态域,网络设备可以向终端设备发送OAM模态域信息,通过OAM模态域信息来指示为终端设备分配的无线资源。
网络设备确定第一OAM模态域标识的过程,可以理解为确定为终端分配的无线资源的过程,网络设备可以依照下述分配规则为终端设备分配无线资源:
(1)对于同一个终端设备的不同优先级的数据,优先级越高,分配的无线资源对应的OAM模态域标识越低;
(2)对于多个终端设备,每个终端设备均可以确定多个OAM模态域标识,该多个OAM模态域标识可以是列表或者集合或者其他表现形式,以OAM模态域标识列表为例。在为一个终端设备分配无线资源时,优先选择该终端设备对应的OAM模态域标识列表中较低OAM模态域标识的资源。当多个终端设备优选的OAM模态域标识对应的资源相同时,优先级较低的终端设备依次顺延OAM模态域标识的序号,直至找到对应的差别的资源。这里的资源可以是OAM物理模态。例如,为终端设备1选择OAM模态域标识列表1中的OAM模态域标识1,为终端设备2选择OAM模态域标识列表2中的OAM模态域标识2,OAM模态域标识1和OAM模态域标识2对应的OAM物理模态相同,终端设备2的优先级低于终端设备1,则为终端设备2选择OAM模态域标识列表2中按顺序依次高于OAM模态域标识2的OAM模态域标识3、OAM模态域标识4……,直到选择的OAM模态域标识对应的OAM物理模态与OAM模态域标识1对应的OAM物理模态不同,则选择该OAM模态域标识对应的OAM物理模态作为终端设备2的资源。
(3)若待传数据优先级相同,则可以按照OAM模态域标识从低到高的序号逐层进行资源分配,直到待发数据分配完毕或本层OAM所用资源分配完毕。例如,从OAM模态域标识的最小序号开始,按照OAM模态域标识的序号从小到大的顺序,逐层地对每一层的时频二维资源执行注水算法(water filling algorithm),直至所有待发送数据分配完毕或本层所有可用时频资源分配完毕。其中,一个OAM模态域标识对应一层。需要注意的是,每一层OAM模态域标识并不是指常规的OAM物理模态。
在下一层OAM模态域标识的分配过程中,将之前已经分配过的所有层OAM模态域标识对这一层OAM模态域标识的串扰因子都考虑进来,作为本层OAM功率分配时必须考虑的干扰噪声,计算待发送数据流所需要的时频资源数量和发送功率,直至所有待发送数据分配完毕或本层所有可用时频资源分配完毕。若仍有数据待发送,则继续进入下一层OAM模态域标识。串扰因子即图4实施例提到的γ或者根据γ二次计算得到的变型形式。
系统建模为如下所述的输入条件、优化目标和约束条件。
输入条件:有N条数据流等待发送,每条数据流要求的传输速率和分配功率分别记为R n和p n,n∈[1,N]。系统可调度资源集合为(f,t,m) ρ,μ,其中,f∈[1,F]为频域标识索引,t∈[1,T]为时域标识索引,m∈[1,M]为模态域标识索引。系统允许的总功率为P total
优化目标:
Figure PCTCN2021092214-appb-000020
约束条件:∑p n≤P total
p n≥0,n=1,2,…,N
Figure PCTCN2021092214-appb-000021
其中,h n,f,t,m表示第n条数据流在第f个频点第t个时隙第m个逻辑OAM模态上的信道质量,δ n,f,t,m是第f个频点第t个时隙第m个逻辑OAM模态标识的资源单元是否分配给第n条数据流的标识符,N 0是高斯白噪声功率。
无线资源可用于上行传输或下行传输,下面针对上行和下行分别对网络设备为终端设备分配具有OAM模态域的无线资源的可选实现方式进行说明。
情况一、网络设备为终端设备分配具有OAM模态域的无线资源,无线资源用于下行传输。
S302中,网络设备向终端设备发送的OAM模态域信息可以携带于下行链路控制信息(downlink control information,DCI)中。网络设备还可以向终端设备发送多个OAM模态域标识,例如,多个OAM模态域标识以列表形式体现,网络设备向终端设备发送OAM模态域标识列表。该多个OAM模态域标识为网络设备根据多个OAM物理模态域确定,可以按照图4实施例来确定。
假设多个OAM物理模态为[+1 +3 +5],分别对应的多个OAM模态域标识为[1 3 2],网络设备为终端设备分配的下行资源对应的第一OAM模态域标识为2,则网络设备向终端设备发送携带第一OAM模态域标识为2的DCI,并且向终端设备发送该多个OAM模态域标识的列表。可选的,网络设备向终端设备发送[2 1 3 2],表示第一OAM模态域标识为2以及多个OAM模态域标识为[1 3 2]。
其中,第一OAM模态域标识和OAM模态域标识列表可以均携带于DCI中,也可以携带于不同的消息中分开来指示。例如,网络设备可以通过DCI向终端设备指示资源,网络设备在DCI指示的资源中携带OAM模态域标识列表。终端设备在DCI指示的资源上获取OAM模态域标识列表。
可选的,本申请实施例中,第一OAM模态域标识可以是多个OAM模态域标识中的某一个OAM模态域标识,第一OAM模态域标识也可以是多个OAM模态域标识中的某几个OAM模态域标识。OAM模态域信息可以指示多个OAM模态域标识中的单一值,也可以指示一个取值范围。该取值范围可以通过指示最小值和最大值来体现。例如多个OAM物理模态为[+1 +3 +5],分别对应的多个OAM模态域标识为[1 3 2],OAM模态域信息可以指示[2],表示第一OAM模态域标识为[1 3 2]中的[2];OAM模态域信息也可以指示最小值为1且最大值3,或者指示取值范围为1~3,表示第一OAM模态域标识可以为[1 3 2]中的[1]、[2]或[3]。
当网络设备指示第一OAM模态域标识时,意味着网络设备可以在第一OAM模态域标识所指示的无线资源上向终端设备发送下行数据,终端设备可以按照第一OAM模态域标识指示的无线资源接收下行数据。例如,第一OAM模态域标识为[1 3 2]中的[2],网络设备在OAM模态域标识为[2]的无线资源上向终端设备发送下行数据,终端设备可以按照OAM模态域标识为[2]指示的无线资源接收下行数据。又例如,第一OAM模态域标识为[1 3 2]中的[1]、[2]或[3],网络设备在OAM模态域标识为[1]、[2]或[3]的无线资源上向终端设备发送下行数据,终端设备可以按照OAM模态域标识为[1]、[2]或[3]指示的无线资源接收下行数据。
终端设备在接收到下行数据之后,可以向网络设备发送该下行数据的响应消息,响应消息可以是正确(acknowledge,ACK)应答指令或错误(negative acknowledge,NACK)应答指令。ACK指示接收到下行数据。NACK指示需要重传。网络设备根据响应消息为NACK,确定需要重传,则再次向终端发送OAM模态域信息,以及发送下行数据。该OAM模态域信息可以与上次发送的相同也可以不同。
情况二:网络设备为终端设备分配具有OAM模态域的无线资源,无线资源用于上行传输。
S302中,网络设备向终端设备发送的OAM模态域信息可以携带于上行调度授权(uplink grant,UL-Grant)中。网络设备还可以向终端设备发送多个OAM模态域标识,例如,多个OAM模态域标识以列表形式体现,网络设备向终端设备发送OAM模态域标识列表。该多个OAM模态域标识为网络设备根据多个OAM物理模态域确定,可以按照图4实施例来确定。
在无线资源用于上行传输时,由终端设备向网络设备发送多个测试信号,假设终端发送多个测试信号对应的多个OAM物理模态为[+1 +5 +7 +3],网络设备支持的OAM物理模态为[+1 +5 N/A +3],N/A表示不支持。多个OAM物理模态为[+1 +5 N/A +3]分别对应的多个OAM模态域标识为[1 3 N/A 2]。网络设备为终端设备分配的上行资源对应的第一OAM模态域标识为2,则网络设备向终端设备发送携带第一OAM模态域标识为2的UL-Grant,并且向终端设备发送该多个OAM模态域标识的列表。可选的,网络设备向终端设备发送[2 1 3 N/A 2],表示第一OAM模态域标识为2以及多个OAM模态域标识为[1 3 N/A 2]。
其中,第一OAM模态域标识和多个OAM模态域标识的列表可以均携带于UL-Grant中,也可以携带于不同的消息中分开来指示。
可选的,本申请实施例中,第一OAM模态域标识可以是多个OAM模态域标识中的某一个OAM模态域标识,第一OAM模态域标识也可以是多个OAM模态域标识中的某几个OAM模态域标识。OAM模态域信息可以指示多个OAM模态域标识中的单一值,也可以指示一个取值范围。该取值范围可以通过指示最小值和最大值来体现。例如多个OAM物理模态为[+1 +5 N/A +3],分别对应的多个OAM模态域标识为[1 3 N/A 2],OAM模态域信息可以指示[2],表示第一OAM模态域标识为[1 3 N/A 2]中的[2];OAM模态域信息也可以指示最小值为1且最大值3,或者指示取值范围为1~3,表示第一OAM模态域标识可以为[1 3 2]中的[1]、[2]或[3]。
当网络设备指示第一OAM模态域标识时,意味着网络设备为终端设备分配的上行资源为第一OAM模态域标识所指示的无线资源,终端设备可以按照第一OAM模态域标识指示的无线资源发送上行数据,网络设备可以在第一OAM模态域标识指示的无线资源上接收上行数据。例如,第一OAM模态域标识为[1 3 N/A 2]中的[2],终端设备在OAM模态域标识为[2]的无线资源上向网络设备发送上行数据,网络设备在OAM模态域标识为[2]指示的无线资源接收上行数据。又例如,第一OAM模态域标识为[1 3 N/A 2]中的[1]、[2]或[3],终端设备在OAM模态域标识为[1]、[2]或[3]的无线资源上向网络设备发送上行数据,网络设备在OAM模态域标识为[1]、[2]或[3]指示的无线资源接收上行数据。网络设备可以向终端设备返回该上行数据的响应消息,该响应消息可以是ACK或NACK消息。
可选的,终端设备还可以在第一OAM模态域标识所指示的无线资源上发送缓存状态报告(buffer status report,BSR)。网络设备可以根据该BSR判断是否需要继续为该终端设 备分配用于上行传输的无线资源。若是,则网络设备继续向终端设备发送OAM模态域信息,用于指示为终端设备分配的上行资源,该OAM模态域信息可以与上次发送的相同也可以不同。终端设备继续按照网络设备分配的OAM模态域信息指示的无线资源发送上行数据。
可选的,在网络设备发送UL-Grant之前,还可以包括以下步骤。终端设备向网络设备发送探测参考信息(sounding reference signal,SRS),网络设备根据SRS测量上行信道质量。若信道较好且有数据传输需求,网络设备会向终端设备分配上行资源。终端设备向网络设备发送调度请求(scheduling request,SR)。
S303中,终端设备根据该OAM模态域信息确定用于上行传输或下行传输的无线资源。在一个可选的实施例中,具有OAM模态域的无线资源还可以包含其他维度,可以将OAM模态域与其他维度结合来标识无线资源。例如,OAM模态域可以结合以下任意一种或多种维度来指示无线资源:时域维度、频域维度、码域维度、极化维度或天线(空间)维度。
以OAM模态域结合时域维度和频域维度标识无线资源为例进行说明。
表5示出了参数集的标识方法,将正交频分复用(orthogonal frequency division multiplexing,OFDM)子载波间隔索引μ与OAM模态域标识m结合在一起,组成二维标识向量<μ,m>,并且由二维标识向量来决定循环前缀的取值。
表5
Figure PCTCN2021092214-appb-000022
如图9所示,示例了一个资源单元的标识方法。在天线端口ρ和子载波间隔μ的条件下,一个资源单元用(k,l,m) ρ,μ标识,其中,k为频域标识索引,l为时域标识索引,m为OAM模态域标识。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。前述实施例中,为叙述简便起见,接收终端设备反馈的网络设备、确定OAM传输参数的网络设备、向终端设备发送OAM波的网络设备为同一设备,但实际应用中,可以由不同的网络设备实施,此时,需要在这些网络设备之间进行相应信息的传输,例如通过X2接口传输收到的反馈信息和/或确定传输参数等,具体不再赘述。
为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图10所示,基于同一技术构思,本申请实施例还提供了一种通信装置1000,该通信装置1000可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。一种设计中,该通信装置1000可以包括执行上述方法实施例中终端设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置1000可以包括获取模块1001和确定模块1002。
获取模块1001,用于获取轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的。
确定模块1002,用于根据所述OAM模态域信息确定用于上行传输或下行传输的无线资源。
通信装置1000还包括:
通信模块1003,用于接收来自所述网络设备的第一参考信号,所述第一参考信号为所述平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下的涡旋电磁波;
所述确定模块1002,还用于根据所述第一参考信号确定所述基准值;
所述通信模块1003,还用于将所述基准值发送给所述网络设备。
获取模块1001、确定模块1002和通信模块1003还用于执行上述方法实施例中终端设备执行其它操作,在此不再一一赘述。
如图11所示,基于同一技术构思,本申请实施例还提供了一种通信装置1100,该通信装置1100可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。一种设计中,该通信装置1100可以包括执行上述方法实施例中网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置1100可以包括确定模块1101和通信模块1102。
确定模块1101,用于确定轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;
通信模块1102,用于向终端设备发送所述OAM模态域信息。
确定模块1101和通信模块1102还用于执行上述方法实施例中网络设备执行其它操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图12所示为本申请实施例提供的通信装置1200,用于实现上述方法中终端设备或网络设备的功能。当实现网络设备的功能时,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1200包括至少一个处理器1220,用于实现本申请实施例提供的方法中终端设备或网络设备的功能。装置1200还可以包括通信接口1210。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1210用于通信装置1200中的装置可以和其它设备进行通信。示例性地,通信装置1200是网络设备时,该其它设备可以是终端设备。通信装置1200是终端设备时,该其它装置可以是网络设备。处理器1220利用通信接口1210收发数据,并用于实现上述方法实施例所述的方法。示例性地,当实现终端设备的功能时,处理器1220用于获取轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;以及用于根据所述OAM模态域信息确定用于上行传输或下行传输的无线资源。
当实现网络设备的功能时,处理器1220,用于确定轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;通信接口1210,用于向终端设备发送所述OAM模态域信息。
处理器1220和通信接口1210还可以用于执行上述方法实施例终端设备或网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
通信装置1200还可以包括至少一个存储器1230,用于存储程序指令和/或数据。存储器1230和处理器1220耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1220可能和存储器1230协同操作。处理器1220可能执行存储器1230中存储的程序指令。所述至少一个存储器中的至少一个可以与处理器集成在一起。
本申请实施例中不限定上述通信接口1210、处理器1220以及存储器1230之间的具体连接介质。本申请实施例在图12中以存储器1230、处理器1220以及通信接口1210之间通过总线1240连接,总线在图12中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置1100和通信装置1200具体是芯片或者芯片系统时,通信模块1102和通信接口1210所输出或接收的可以是基带信号。通信装置1100和通信装置1200具体是设备时, 通信模块1102和通信接口1210所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1230可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的终端所执行的操作和功能中的部分或全部,或网络设备所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图10、图11或图12所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中终端或网络设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被执行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (41)

  1. 一种无线资源的标识方法,其特征在于,包括:
    获取轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;
    根据所述OAM模态域信息确定用于上行传输或下行传输的无线资源。
  2. 如权利要求1所述的方法,其特征在于,所述OAM模态域标识对应于多个比值的排序序号中的第一序号,所述多个比值为所述多个OAM物理模态下涡旋电磁波的传输参数与所述基准值之间的比值。
  3. 如权利要求2所述的方法,其特征在于,所述排序序号符合以下任意一项排序规则:由大到小的顺序、由小到大的顺序、奇偶数、取模运算、或加权排序。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述OAM模态域信息还包括以下任一项或多项的组合:串扰系数、波束扩散角或所述第一OAM物理模态;其中,所述串扰系数和所述波束扩散角均与所述第一OAM物理模态对应;所述串扰系统包括:所述第一OAM物理模态下涡旋电磁波与平面电磁波的串扰系数,或者所述第一OAM物理模态下涡旋电磁波与所述指定OAM物理模态下涡旋电磁波的串扰系数。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一参考信号,所述第一参考信号为所述平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下的涡旋电磁波;
    根据所述第一参考信号确定所述基准值;
    将所述基准值发送给所述网络设备。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的多个第二参考信号,所述多个第二参考信号为所述多个OAM物理模态下的涡旋电磁波;
    根据所述第二参考信号确定所述多个OAM物理模态下涡旋电磁波的传输参数;
    将所述多个OAM物理模态下涡旋电磁波的传输参数发送给所述网络设备。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送能力信息,所述能力信息包括支持的OAM物理模态。
  8. 如权利要求5~7任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的混合波;其中,若所述基准值为平面电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波和所述平面电磁波;或者,若所述基准值为所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波;所述多个OAM物理模态包括所述第一OAM物理模态;
    根据所述混合波,确定每一个OAM物理模态下涡旋电磁波与所述基准值对应波的串扰系数;
    将确定的所述串扰系数发送给所述网络设备。
  9. 如权利要求1~8任一项所述的方法,其特征在于,所述OAM模态域标识包括整数和/或分数。
  10. 如权利要求1~9任一项所述的方法,其特征在于,所述第一传输参数或所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
  11. 如权利要求1~10任一项所述的方法,其特征在于,根据所述OAM模态域信息确定无线资源,包括:
    根据所述OAM模态域信息,结合时域标识和/或频域标识,确定无线资源。
  12. 一种无线资源的标识方法,其特征在于,包括:
    确定轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;
    发送所述OAM模态域信息。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:确定多个OAM模态域标识,所述多个OAM模态域标识包括所述第一OAM模态域标识;发送所述多个OAM模态域标识;
    所述确定多个OAM模态域标识,包括:
    发送多个OAM物理模态下的涡旋电磁波;接收来自终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;根据所述多个OAM物理模态下涡旋电磁波的传输参数的排序序号,获得多个OAM模态域标识;
    或者,发送基准电磁波,接收来自所述终端设备反馈的所述基准电磁波的传输参数;向所述终端设备发送多个OAM物理模态下的涡旋电磁波,接收来自所述终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;确定每个OAM物理模态下涡旋电磁波传输参数与基准电磁波的传输参数的比值,获得多个OAM物理模态对应的多个比值;根据所述多个比值的排序序号,获得多个OAM模态域标识;所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波。
  14. 如权利要求13所述的方法,其特征在于,所述方法还包括:
    接收来自所述终端设备的能力信息,所述能力信息用于指示所述终端设备支持的OAM物理模态;
    根据所述能力信息,确定向所述终端设备发送的所述多个OAM物理模态下的涡旋电磁波。
  15. 如权利要求13或14所述的方法,其特征在于,所述方法还包括:
    发送混合波,所述混合波包括所述多个OAM物理模态下涡旋电磁波和基准电磁波,所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波;
    接收来自所述终端设备的所述多个OAM物理模态下的涡旋电磁波分别与所述基准电 磁波的串扰系数;
    向所述终端设备发送所述多个OAM模态域标识分别对应的串扰系数。
  16. 如权利要求13~15任一项所述的方法,其特征在于,所述方法还包括:
    确定所述多个OAM物理模态的波束扩散角;
    发送所述多个OAM模态域标识分别对应的波束扩散角。
  17. 如权利要求12~16任一项所述的方法,其特征在于,所述OAM模态域标识包括整数和/或分数。
  18. 如权利要求12~17任一项所述的方法,其特征在于,所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
  19. 一种通信装置,其特征在于,包括:
    获取模块,用于获取轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;
    确定模块,用于根据所述OAM模态域信息确定用于上行传输或下行传输的无线资源。
  20. 如权利要求19所述的装置,其特征在于,所述OAM模态域标识对应于多个比值的排序序号中的第一序号,所述多个比值为所述多个OAM物理模态下涡旋电磁波的传输参数与所述基准值之间的比值。
  21. 如权利要求20所述的装置,其特征在于,所述排序序号符合以下任意一项排序规则:由大到小的顺序、由小到大的顺序、奇偶数、取模运算、或加权排序。
  22. 如权利要求19~21任一项所述的装置,其特征在于,所述OAM模态域信息还包括以下任一项或多项的组合:串扰系数、波束扩散角或所述第一OAM物理模态;其中,所述串扰系数和所述波束扩散角均与所述第一OAM物理模态对应;所述串扰系统包括:所述第一OAM物理模态下涡旋电磁波与平面电磁波的串扰系数,或者所述第一OAM物理模态下涡旋电磁波与所述指定OAM物理模态下涡旋电磁波的串扰系数。
  23. 如权利要求19~22任一项所述的装置,其特征在于,所述装置还包括:
    通信模块,用于接收来自所述网络设备的第一参考信号,所述第一参考信号为所述平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下的涡旋电磁波;
    所述确定模块,还用于根据所述第一参考信号确定所述基准值;
    所述通信模块,还用于将所述基准值发送给所述网络设备。
  24. 如权利要求23所述的装置,其特征在于,
    所述通信模块,还用于接收来自所述网络设备的多个第二参考信号,所述多个第二参考信号为所述多个OAM物理模态下的涡旋电磁波;
    所述确定模块,还用于根据所述第二参考信号确定所述多个OAM物理模态下涡旋电磁波的传输参数;
    所述通信模块,还用于将所述多个OAM物理模态下涡旋电磁波的传输参数发送给所述网络设备。
  25. 如权利要求24所述的装置,其特征在于,
    所述通信模块,还用于向所述网络设备发送能力信息,所述能力信息包括支持的OAM物理模态。
  26. 如权利要求23~25任一项所述的装置,其特征在于,所述通信模块,还用于接收来自所述网络设备的混合波;其中,若所述基准值为平面电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波和所述平面电磁波;或者,若所述基准值为所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数,则所述混合波包括所述多个OAM物理模态下涡旋电磁波;所述多个OAM物理模态包括所述第一OAM物理模态;
    所述确定模块,还用于根据所述混合波,确定每一个OAM物理模态下涡旋电磁波与所述基准值对应波的串扰系数;所述通信模块,还用于将确定的所述串扰系数发送给所述网络设备。
  27. 如权利要求19~26任一项所述的装置,其特征在于,所述OAM模态域标识包括整数和/或分数。
  28. 如权利要求19~27任一项所述的装置,其特征在于,所述第一传输参数或所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
  29. 如权利要求19~28任一项所述的装置,其特征在于,所述确定模块,用于:根据所述OAM模态域信息,结合时域标识和/或频域标识,确定无线资源。
  30. 一种无线资源的标识装置,其特征在于,包括:
    确定模块,用于确定轨道角动量OAM模态域信息,其中,所述OAM模态域信息包括第一OAM模态域标识,所述第一OAM模态域标识对应于第一OAM物理模态下涡旋电磁波的第一传输参数,或者,所述第一OAM模态域标识对应于所述第一传输参数与基准值之间的第一比值,所述基准值包括平面电磁波的传输参数或者多个OAM物理模态中指定OAM物理模态下涡旋电磁波的传输参数;任意多个波形符号通过同一个OAM模态域标识的资源传输时所经过的涡旋电磁波信道是相同的;
    通信模块,用于发送所述OAM模态域信息。
  31. 如权利要求30所述的装置,其特征在于,所述确定模块还用于:确定多个OAM模态域标识,所述多个OAM模态域标识包括所述第一OAM模态域标识;所述通信模块,还用于发送所述多个OAM模态域标识;
    在确定多个OAM模态域标识时:
    所述通信模块,用于发送多个OAM物理模态下的涡旋电磁波;接收来自终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;所述确定模块,用于根据所述多个OAM物理模态下涡旋电磁波的传输参数的排序序号,获得多个OAM模态域标识;
    或者,所述通信模块,用于发送基准电磁波,接收来自所述终端设备反馈的所述基准电磁波的传输参数;发送多个OAM物理模态下的涡旋电磁波,接收来自所述终端设备反馈的所述多个OAM物理模态下涡旋电磁波的传输参数;所述确定模块,用于确定每个OAM物理模态下涡旋电磁波传输参数与基准电磁波的传输参数的比值,获得多个OAM物理模态对应的多个比值;根据所述多个比值的排序序号,获得多个OAM模态域标识;所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电 磁波。
  32. 如权利要求31所述的装置,其特征在于,所述装置还包括:
    接收来自所述终端设备的能力信息,所述能力信息用于指示所述终端设备支持的OAM物理模态;
    根据所述能力信息,确定向所述终端设备发送的所述多个OAM物理模态下的涡旋电磁波。
  33. 如权利要求31或32所述的装置,其特征在于,所述通信模块,还用于:
    发送混合波,所述混合波包括所述多个OAM物理模态下涡旋电磁波和基准电磁波,所述基准电磁波为平面电磁波或者所述多个OAM物理模态中指定OAM物理模态下涡旋电磁波;
    接收来自所述终端设备的所述多个OAM物理模态下的涡旋电磁波分别与所述基准电磁波的串扰系数;
    向所述终端设备发送所述多个OAM模态域标识分别对应的串扰系数。
  34. 如权利要求31~33任一项所述的装置,其特征在于,所述确定模块还用于确定所述多个OAM物理模态的波束扩散角;
    所述通信模块,还用于发送所述多个OAM模态域标识分别对应的波束扩散角。
  35. 如权利要求30~34任一项所述的装置,其特征在于,所述OAM模态域标识包括整数和/或分数。
  36. 如权利要求30~35任一项所述的装置,其特征在于,所述传输参数包括以下任意一项或多项的组合:信噪比、参考信号接收功率、误码率、误块率、误包率、失败重传次数或成功传输时延。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器用于运行一组程序,以使得权利要求1~11任一项所述的方法被执行,或者,以使得权利要求12~18任一项所述的方法被执行。
  38. 如权利要求37所述的装置,其特征在于,还包括存储器,所述存储器存储有所述处理器运行的程序。
  39. 如权利要求37或38所述的装置,其特征在于,所述装置为芯片或集成电路。
  40. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,以使得权利要求1~11任一项所述的方法被执行,或者,以使得权利要求12~18任一项所述的方法被执行。
  41. 一种计算机程序产品,其特征在于,所述计算机程序产品包含指令,当所述指令在计算机上运行时,使得权利要求1~11任一项所述的方法被执行,或者,以使得权利要求12~18任一项所述的方法被执行。
PCT/CN2021/092214 2020-05-28 2021-05-07 一种无线资源的标识方法及装置 WO2021238610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/994,094 US20230093039A1 (en) 2020-05-28 2022-11-25 Radio resource identification method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010470761.9A CN113747575A (zh) 2020-05-28 2020-05-28 一种无线资源的标识方法及装置
CN202010470761.9 2020-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,094 Continuation US20230093039A1 (en) 2020-05-28 2022-11-25 Radio resource identification method and apparatus

Publications (1)

Publication Number Publication Date
WO2021238610A1 true WO2021238610A1 (zh) 2021-12-02

Family

ID=78722961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092214 WO2021238610A1 (zh) 2020-05-28 2021-05-07 一种无线资源的标识方法及装置

Country Status (3)

Country Link
US (1) US20230093039A1 (zh)
CN (1) CN113747575A (zh)
WO (1) WO2021238610A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218359A1 (en) * 2022-05-13 2023-11-16 Lenovo (Singapore) Pte. Ltd. Multiple mode orbital angular momentum
CN117579098A (zh) * 2023-12-10 2024-02-20 中国人民解放军93216部队 基于涡旋电磁波的多用户认知跳模抗干扰方法、系统及计算机可读介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974263B2 (en) * 2020-07-16 2024-04-30 Lg Electronics Inc. Method of using orbital angular momentum in a wireless communication system and apparatus therefor
WO2023108522A1 (en) * 2021-12-16 2023-06-22 Qualcomm Incorporated Reference signal sequence indication in orbital angular momentum (oam) communication systems
CN118435526A (zh) * 2021-12-23 2024-08-02 高通股份有限公司 用于轨道角动量(oam)通信系统的基于公式的圆间预译码权重确定
WO2023132476A1 (ko) * 2022-01-05 2023-07-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2023220899A1 (zh) * 2022-05-16 2023-11-23 北京小米移动软件有限公司 发送和接收参考信号配置信息的方法及其装置
WO2023245681A1 (zh) * 2022-06-24 2023-12-28 北京小米移动软件有限公司 基于轨道角动量的上行传输配置方法、装置及系统
WO2024000527A1 (zh) * 2022-06-30 2024-01-04 北京小米移动软件有限公司 轨道角动量oam模态指示方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014170869A1 (en) * 2013-04-19 2014-10-23 Twist Off S.R.L. Method for generating microwave or rf electromagnetic wave beams with non-zero orbital angular momentum and with intensity distribution concentrated in a limited angular region
US20160044647A1 (en) * 2014-08-08 2016-02-11 Nxgen Partners Ip, Llc Modulation and multiple access technique using orbital angular momentum
US20160277173A1 (en) * 2013-11-05 2016-09-22 Eutelsat S A Radio communications system and method based on time twisted waves
CN108833072A (zh) * 2018-06-05 2018-11-16 西安电子科技大学 基于涡旋电磁波的信号调制解调方法及系统
CN109446477A (zh) * 2018-10-24 2019-03-08 西安电子科技大学 一种多模态轨道角动量涡旋波的任意采样接收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014170869A1 (en) * 2013-04-19 2014-10-23 Twist Off S.R.L. Method for generating microwave or rf electromagnetic wave beams with non-zero orbital angular momentum and with intensity distribution concentrated in a limited angular region
US20160277173A1 (en) * 2013-11-05 2016-09-22 Eutelsat S A Radio communications system and method based on time twisted waves
US20160044647A1 (en) * 2014-08-08 2016-02-11 Nxgen Partners Ip, Llc Modulation and multiple access technique using orbital angular momentum
CN108833072A (zh) * 2018-06-05 2018-11-16 西安电子科技大学 基于涡旋电磁波的信号调制解调方法及系统
CN109446477A (zh) * 2018-10-24 2019-03-08 西安电子科技大学 一种多模态轨道角动量涡旋波的任意采样接收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG WENCHI; ZHANG WEI; JING HAIYUE; GAO SHANGHUA; ZHANG HAILIN: "Orbital Angular Momentum for Wireless Communications", IEEE WIRELESS COMMUNICATIONS, COORDINATED SCIENCE LABORATORY; DEPT. ELECTRICAL AND COMPUTER ENGINEERING; UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, US, vol. 26, no. 1, 1 February 2019 (2019-02-01), US , pages 100 - 107, XP011709538, ISSN: 1536-1284, DOI: 10.1109/MWC.2017.1700370 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218359A1 (en) * 2022-05-13 2023-11-16 Lenovo (Singapore) Pte. Ltd. Multiple mode orbital angular momentum
CN117579098A (zh) * 2023-12-10 2024-02-20 中国人民解放军93216部队 基于涡旋电磁波的多用户认知跳模抗干扰方法、系统及计算机可读介质

Also Published As

Publication number Publication date
CN113747575A (zh) 2021-12-03
US20230093039A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021238610A1 (zh) 一种无线资源的标识方法及装置
CN113348642B (zh) 执行发送和接收操作的用户设备和系统
WO2021052179A1 (zh) 一种上行数据传输方法及装置
WO2020048438A1 (zh) 一种射频参数的上报方法及装置
JP2021533616A (ja) 通信方法及び装置
WO2014000514A1 (zh) 设备间通信方法、用户设备和基站
JP7399190B2 (ja) 通信方法及び通信装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021155550A1 (zh) 参考信号资源的配置方法及装置
WO2020143807A1 (zh) 准共址指示方法及装置
JP2023517980A (ja) 通信方法および装置
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2019129253A1 (zh) 一种通信方法及装置
WO2019157903A1 (zh) 一种资源配置方法及装置
CN114451017B (zh) 一种激活和释放非动态调度传输的方法及装置
WO2023207919A1 (zh) 资源调度方法和通信装置
WO2023185433A1 (zh) 通信方法和通信装置
WO2021062711A1 (zh) 传输上行控制信息的方法和装置
WO2022228478A1 (zh) 信息传输方法、通信装置、计算机可读存储介质和芯片
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
CN111669251B (zh) 传输块大小的确定方法及通信装置
WO2024061014A1 (zh) 一种通信方法及装置
WO2024032806A1 (zh) 数据传输方法、装置、芯片、芯片模组及存储介质
WO2023151564A1 (zh) 通信方法、装置及系统
WO2024169273A1 (zh) 传输指示方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812677

Country of ref document: EP

Kind code of ref document: A1