WO2021238266A1 - 电源缓启动的控制方法、控制装置、控制设备及存储介质 - Google Patents

电源缓启动的控制方法、控制装置、控制设备及存储介质 Download PDF

Info

Publication number
WO2021238266A1
WO2021238266A1 PCT/CN2021/073475 CN2021073475W WO2021238266A1 WO 2021238266 A1 WO2021238266 A1 WO 2021238266A1 CN 2021073475 W CN2021073475 W CN 2021073475W WO 2021238266 A1 WO2021238266 A1 WO 2021238266A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
frequency
value
control
adjustment
Prior art date
Application number
PCT/CN2021/073475
Other languages
English (en)
French (fr)
Inventor
马文超
Original Assignee
广东浪潮智慧计算技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东浪潮智慧计算技术有限公司 filed Critical 广东浪潮智慧计算技术有限公司
Priority to US17/921,850 priority Critical patent/US11977401B2/en
Publication of WO2021238266A1 publication Critical patent/WO2021238266A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Definitions

  • the present invention relates to the technical field of power supply control, in particular to a control method, control device, control equipment and storage medium for slow start of power supply.
  • a slow start of the power supply is set to reduce the impact current generated by the power supply.
  • the power supply of the electronic system has strict requirements on the slow-start time and the start-up impulse current.
  • the server power supply CRPS needs to complete the establishment of 12V voltage within tens of milliseconds and ensure a small impulse current.
  • the stability of the power supply slow start determines the index level of the power supply slow start process, which in turn will affect the stability of the entire power supply.
  • the server power resonance circuit usually adopts the while cycle mode.
  • the voltage setting value of the control voltage regulation loop is gradually increased from 0V to 12V.
  • the pulse width modulation circuit starts to control, it will cause voltage fluctuations at the end of the slow start, which will affect the stability of the slow start process.
  • the purpose of the present invention is to provide a control method, control device, control equipment and storage medium for power supply slow start, which are used to improve the stability of the power supply slow start process and reduce the voltage fluctuation at the end of the slow start.
  • the present invention provides a control method for slow start of power supply, including:
  • the voltage regulation loop is used to control the slow-start output voltage; when the second given value is greater than the first given value , Using the frequency adjustment loop to control the slow-start output voltage;
  • the use of the voltage step value to control the voltage adjustment loop to perform voltage feedback adjustment, and the use of the frequency step value to control the frequency adjustment loop to perform frequency feedback adjustment is specifically:
  • the reference voltage value of the voltage regulation loop is updated according to the voltage step value, and the reference frequency value of the pulse width modulation period register is updated synchronously according to the frequency step value.
  • the method further includes:
  • the reference voltage value of the voltage regulation loop is set to 0, and the reference frequency value of the pulse width modulation period register is set to the lowest value.
  • the use of the voltage step value to control the voltage adjustment loop to perform voltage feedback adjustment, and the use of the frequency step value to control the frequency adjustment loop to perform frequency feedback adjustment is specifically:
  • the voltage step value is used to control the voltage adjustment loop to perform voltage feedback adjustment
  • the frequency step value is used to control the frequency adjustment loop to perform frequency feedback adjustment
  • it also includes:
  • the frequency step value and the voltage step value are adjusted according to the execution time length of the slow start and the target slow start time length.
  • the debugging the frequency step value and the voltage step value according to the execution time length of the slow start specifically includes:
  • the debugging of the frequency step value and the voltage step value according to the execution duration of the slow start is specifically as follows:
  • the present invention also provides a power supply slow start control device, including:
  • the first obtaining unit is used to obtain the voltage step value and the frequency step value
  • the control unit is configured to use the voltage step value to control the voltage adjustment loop to perform voltage feedback adjustment, and to use the frequency step value to control the frequency adjustment loop to perform frequency feedback adjustment;
  • the second acquiring unit is configured to acquire the given voltage value of the voltage regulation loop and the given frequency value of the frequency regulation loop, and convert the given frequency value into a first given value according to a preset rule , And convert the given voltage value into a second given value in the same measurement unit as the first given value;
  • the switching unit is configured to use the voltage regulation loop to control the slow-start output voltage when the first given value is greater than or equal to the second given value; when the second given value is greater than the first given value At a given value, use the frequency adjustment loop to control the slow-start output voltage;
  • the detection unit is configured to determine that the slow start is completed when it is detected that the slow start output voltage is greater than or equal to the preset slow start voltage.
  • the present invention also provides a power supply slow start control device, including:
  • a memory for storing instructions, the instructions including any one of the steps of the control method for slow start of the power supply described above;
  • the processor is used to execute the instructions.
  • the present invention also provides a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the power supply slow start control method as described in any one of the above are realized.
  • the power supply slow-start control method provided by the present invention adds frequency adjustment to the power supply slow-start process, uses the voltage step value to control the voltage adjustment loop for voltage feedback adjustment, and uses the frequency step value to control the frequency adjustment loop for frequency feedback adjustment ; In the adjustment process, obtain the voltage set value of the voltage adjustment loop and the frequency set value of the frequency adjustment loop, and convert them into the second set value and the first set value of the same unit of measurement, when the first set value When the set value is greater than or equal to the second set value, the voltage adjustment loop is used to control the slow-start output voltage. When the second set value is greater than the first set value, the frequency adjustment loop is used to control the slow-start output voltage to make the voltage Regulation and frequency regulation mutually restrict each other.
  • the pulse width modulation frequency is calculated from the most initial frequency, it will cause voltage fluctuations at the end of the slow start, which affects the stability of the slow start process.
  • the frequency adjustment is involved in the starting process, which effectively improves the stability of the power supply's slow-start and reduces the voltage fluctuation when the slow-start is completed.
  • the present invention also provides a control device, control equipment and storage medium for slow start of power supply, which have the above-mentioned beneficial effects, and will not be repeated here.
  • FIG. 1 is a flowchart of a method for controlling slow start of a power supply according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a control device for slow start of power supply provided by an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a control device for slow start of power supply provided by an embodiment of the present invention.
  • the core of the present invention is to provide a control method, control device, control device and storage medium for the slow start of the power supply, which are used to improve the stability of the slow start process of the power supply and reduce the voltage fluctuation at the end of the slow start.
  • FIG. 1 is a flowchart of a method for controlling slow start of a power supply provided by an embodiment of the present invention.
  • the method for controlling a slow start of a power supply includes:
  • the process of power supply slow start is a process of voltage stepping and frequency stepping.
  • the power supply controller receives the voltage step value and frequency step value input by the staff to perform voltage adjustment and frequency adjustment. Both the voltage step value and the frequency step value can adopt the reference value, and the appropriate value can also be obtained through simulation for the slow-start process of the power supply of different models.
  • S102 Use the voltage step value to control the voltage adjustment loop to perform voltage feedback adjustment, and use the frequency step value to control the frequency adjustment loop to perform frequency feedback adjustment.
  • the reference voltage value (VrefSoft) of the voltage regulation loop is updated according to the voltage step value
  • the reference frequency value (PTPER) of the pulse width modulation (PWM) period register is updated synchronously according to the frequency step value
  • the method further includes:
  • the voltage step value is used to control the voltage regulation loop for voltage feedback regulation, that is, the reference voltage value of the voltage regulation loop starts from 0, and the voltage step value is increased at a certain rate to obtain a new reference voltage value, then the voltage regulation loop
  • the circuit performs voltage adjustment according to the new reference voltage value.
  • Use the frequency step value to control the frequency adjustment loop for frequency feedback adjustment that is, start the reference frequency value of the frequency adjustment link from the lowest value, and increase the frequency step value synchronously with the control of the voltage step value to obtain a new reference frequency value ,
  • the frequency adjustment loop performs frequency adjustment according to the new reference frequency value.
  • the boot flag Onflag When the system has a boot command, the boot flag Onflag will be set to 1. After detecting that the power-on flag position is 1, the system enters the power-on state and the slow start starts. At this time, the voltage step value is used to control the voltage adjustment loop for voltage feedback adjustment, and the frequency step value is used to control the frequency adjustment loop for frequency feedback adjustment. .
  • S103 Obtain the given voltage value of the voltage regulation loop and the given frequency value of the frequency regulation loop, convert the given frequency value to the first given value according to the preset rules, and convert the given voltage value to the first given value.
  • a given value The second given value in the same unit of measurement.
  • S104 When the first given value is greater than or equal to the second given value, use the voltage regulation loop to control the slow start output voltage; when the second given value is greater than the first given value, use the frequency regulation loop to control the slow start Start the output voltage.
  • step S102 it is necessary to select one of the voltage regulation loop and the frequency regulation loop to control the slow-start output voltage.
  • Voltage regulation and frequency regulation check and balance each other to ensure the stability of the slow-start process of the power supply.
  • a mechanism needs to be set up to measure the relationship between voltage regulation and frequency regulation.
  • step S103 after sampling the voltage setting value of the voltage regulation loop and the frequency setting value of the frequency regulation loop respectively according to the preset sampling frequency, the frequency setting value is converted to the first value according to the preset rule.
  • Set a given value and convert the given voltage value into a second given value in the same unit of measurement as the first given value, so as to compare the voltage regulation with the frequency regulation.
  • step S104 when the first given value is greater than or equal to the second given value, it indicates that the frequency adjustment rate is too fast, and the voltage adjustment loop is used to control the slow-start output voltage.
  • the second given value is greater than the first given value, indicating that the voltage regulation rate is too fast, the frequency regulation loop is used to control the slow-start output voltage.
  • the slow-start output voltage is detected, and when the slow-start output voltage is greater than or equal to the preset slow-start voltage (for example, the server power supply is usually 12V), it is determined that the slow-start is completed.
  • the preset slow-start voltage for example, the server power supply is usually 12V
  • the power supply slow-start control method adds frequency adjustment to the power supply slow-start process, uses the voltage step value to control the voltage adjustment loop for voltage feedback adjustment, and uses the frequency step value to control the frequency adjustment loop for frequency feedback Adjustment; in the adjustment process, obtain the voltage set value of the voltage adjustment loop and the frequency set value of the frequency adjustment loop, and convert them into the second set value and the first set value of the same unit of measurement respectively.
  • the voltage regulation loop is used to control the slow-start output voltage.
  • the frequency regulation loop is used to control the slow-start output voltage so that Voltage regulation and frequency regulation restrict each other.
  • the embodiment of the present invention adopts The frequency adjustment is involved in the slow start process, which effectively improves the stability of the power supply slow start and reduces the voltage fluctuation when the slow start is completed.
  • the method for controlling the slow start of the power supply further includes:
  • the frequency step value and voltage step value are adjusted according to the slow-start execution time and the target slow-start duration.
  • the simulation test can be performed before the power supply is put into use, the output voltage waveform is received at the output terminal of the power supply, and the output voltage change during the slow start process can be checked through the oscilloscope, and the frequency step value and voltage step value can be performed accordingly. Adjustment.
  • Debug the frequency step value and voltage step value according to the execution time of the slow start which can specifically include:
  • the frequency step value is reduced, otherwise the frequency step value is increased; when the control duration of the voltage regulation loop is lower than the second preset duration, the voltage step is reduced Into the value, otherwise increase the voltage step value.
  • the first preset duration and the second preset duration may be obtained by multiplying the target slow start duration by a certain ratio.
  • an ideal result of setting the frequency step value and the voltage step value is to debug the frequency step value and the voltage step value according to the execution time of the slow start through simulation debugging, so that the slow start is adjusted first.
  • the voltage regulation loop is controlled, and then by the frequency regulation loop.
  • the first half of the slow-start process can be controlled by the voltage regulation loop, and the second half of the time can be controlled by the frequency regulation loop, or other control time ratios can be set.
  • FIG. 2 is a schematic structural diagram of a control device for slow start of a power supply provided by an embodiment of the present invention.
  • the device for controlling the slow start of the power supply includes:
  • the first obtaining unit 201 is configured to obtain a voltage step value and a frequency step value
  • the control unit 202 is configured to use the voltage step value to control the voltage adjustment loop to perform voltage feedback adjustment, and to use the frequency step value to control the frequency adjustment loop to perform frequency feedback adjustment;
  • the second acquiring unit 203 is configured to acquire the given voltage value of the voltage regulation loop and the given frequency value of the frequency regulation loop, convert the given frequency value into a first given value according to a preset rule, and give the voltage to The fixed value is converted into a second given value in the same unit of measurement as the first given value;
  • the switching unit 204 is configured to use the voltage regulation loop to control the slow-start output voltage when the first given value is greater than or equal to the second given value; when the second given value is greater than the first given value, use the frequency adjustment Loop control slow start output voltage;
  • the detection unit 205 is configured to determine that the slow start is completed when it is detected that the slow start output voltage is greater than or equal to the preset slow start voltage.
  • FIG. 3 is a schematic structural diagram of a control device for slow start of power supply provided by an embodiment of the present invention.
  • control device for slow start of power supply provided by the embodiment of the present invention includes:
  • the memory 310 is configured to store instructions, and the instructions include the steps of the power supply slow start control method described in any one of the foregoing embodiments;
  • the processor 320 is configured to execute the instructions.
  • the processor 320 may include one or more processing cores, such as a 3-core processor, an 8-core processor, and so on.
  • the processor 320 may be implemented in a hardware form of at least one of a digital signal processing DSP (Digital Signal Processing), a field programmable gate array FPGA (Field-Programmable Gate Array), and a programmable logic array PLA (Programmable Logic Array).
  • the processor 320 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a central processing unit (CPU); the coprocessor is a It is a low-power processor for processing data in the standby state.
  • the processor 320 may be integrated with a GPU (Graphics Processing Unit), which is used to render and draw content that needs to be displayed on the display screen.
  • the processor 320 may also include an artificial intelligence (AI) processor, which is used to process computing operations related to machine learning.
  • AI artificial intelligence
  • the memory 310 may include one or more storage media, and the storage media may be non-transitory.
  • the memory 310 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the memory 310 is used to store at least the following computer program 311. After the computer program 311 is loaded and executed by the processor 320, it can implement the relevant steps in the power slow-start control method disclosed in any of the foregoing embodiments. .
  • the resources stored in the memory 310 may also include an operating system 312 and data 313, etc., and the storage mode may be short-term storage or permanent storage.
  • the operating system 312 may be Windows.
  • the data 313 may include, but is not limited to, the data involved in the foregoing methods.
  • control device for the slow start of the power supply may further include a display screen 330, a power supply 340, a communication interface 350, an input/output interface 360, a sensor 370, and a communication bus 380.
  • FIG. 3 does not constitute a limitation on the control device for the slow start of the power supply, and may include more or fewer components than shown in the figure.
  • the power supply slow-start control device provided in the embodiment of the present application includes a memory and a processor.
  • the processor executes a program stored in the memory, it can implement the above-mentioned power supply slow-start control method with the same effect as above.
  • the above-described device and device embodiments are only illustrative, for example, the division of modules is only a logical function division, and there may be other divisions in actual implementation, such as multiple modules or components. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical or other forms.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed on multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules.
  • the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. Execute all or part of the steps of the method described in each embodiment of the present invention.
  • the embodiment of the present invention also provides a storage medium with a computer program stored on the storage medium, and when the computer program is executed by a processor, the steps of a control method such as a slow start of a power supply are implemented.
  • the storage medium may include: U disk, mobile hard disk, Read-Only Memory (Read-Only Memory), Random Access Memory (Random Access Memory), magnetic disk or optical disk and other media that can store program codes.
  • the computer program contained in the storage medium provided in this embodiment can realize the steps of the above-mentioned power supply slow start control method when being executed by the processor, and the effect is the same as the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源缓启动的控制方法、控制装置、控制设备及存储介质,将频率调节加入电源缓启动过程,利用电压步进值控制电压调节环路进行电压反馈调节,利用频率步进值控制频率调节环路进行频率反馈调节;在调节过程中,根据电压调节环路的电压给定值和频率调节环路的频率给定值选择由电压调节环路和频率调节环路中的一个来控制缓启动输出电压,使电压调节与频率调节相互制约。现有技术中在缓启动结束时,由于脉冲宽度调制频率从最起始频率开始计算,会导致缓启动结束的时刻出现电压波动的现象,影响缓启动过程的稳定性,而本发明通过在缓启动过程中介入频率调节,有效提高了电源缓启动的稳定性,减小了缓启动完成时的电压波动。

Description

电源缓启动的控制方法、控制装置、控制设备及存储介质
本申请要求于2020年5月28日提交中国专利局、申请号为202010469693.4、发明名称为“电源缓启动的控制方法、控制装置、控制设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电源控制技术领域,特别是涉及一种电源缓启动的控制方法、控制装置、控制设备及存储介质。
背景技术
现有的大多数电子系统都支持热插拔功能,为避免热插拔对系统造成较大损害,通过设置电源的缓启动来减小电源上电产生的冲击电流。电子系统的电源对缓启动时间和启动冲击电流都有着严格的要求,如服务器电源CRPS需要在几十个毫秒内完成12V电压的建立并保证较小的冲击电流。电源缓启动的稳定性决定了电源缓启动过程的指标水平,进而会影响到整个电源的稳定性。
目前服务器电源谐振电路(LLC)通常采用while循环模式,在循环过程中控制电压调节环路的电压给定值由0V逐渐增加至12V,当12V电压建立起来时,整个缓启动过程结束,继而由脉冲宽度调制电路开始控制,会导致缓启动结束时出现电压波动现象,影响缓启动过程的稳定性。
发明内容
本发明的目的是提供一种电源缓启动的控制方法、控制装置、控制设备及存储介质,用于提高电源缓启动过程的稳定性,减小缓启动结束时的电压波动。
为解决上述技术问题,本发明提供一种电源缓启动的控制方法,包括:
获取电压步进值和频率步进值;
利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述 频率步进值控制频率调节环路进行频率反馈调节;
获取所述电压调节环路的电压给定值和所述频率调节环路的频率给定值,按预设规则将所述频率给定值转换为第一给定值,并将所述电压给定值转换为与所述第一给定值同一计量单位的第二给定值;
当所述第一给定值大于或等于所述第二给定值时,利用所述电压调节环路控制缓启动输出电压;当所述第二给定值大于所述第一给定值时,利用所述频率调节环路控制所述缓启动输出电压;
当检测到所述缓启动输出电压大于或等于预设缓启动电压时,确定缓启动完成。
可选的,所述利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节,具体为:
按所述电压步进值更新所述电压调节环路的参考电压值,同步地,按所述频率步进值更新脉冲宽度调制周期寄存器的参考频率值。
可选的,在所述利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节之前,还包括:
将所述电压调节环路的参考电压值设置为0,将所述脉冲宽度调制周期寄存器的参考频率值设置为最低值。
可选的,所述利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节,具体为:
当检测到开机标志位置为1后,利用所述电压步进值控制所述电压调节环路进行电压反馈调节,利用所述频率步进值控制所述频率调节环路进行频率反馈调节。
可选的,还包括:
根据所述缓启动的执行时长和目标缓启动时长调节所述频率步进值和所述电压步进值。
可选的,所述根据所述缓启动的执行时长对所述频率步进值和所述电压步进值进行调试,具体包括:
当所述频率调节环路的控制时长低于第一预设时长时,缩小所述频率 步进值,否则增加所述频率步进值;
当所述电压调节环路的控制时长低于第二预设时长时,缩小所述电压步进值,否则增加所述电压步进值。
可选的,所述根据所述缓启动的执行时长对所述频率步进值和所述电压步进值进行调试,具体为:
根据所述缓启动的执行时长对所述频率步进值和所述电压步进值进行调试,以使所述缓启动先由所述电压调节环路控制,后由所述频率调节环路控制。
为解决上述技术问题,本发明还提供一种电源缓启动的控制装置,包括:
第一获取单元,用于获取电压步进值和频率步进值;
控制单元,用于利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节;
第二获取单元,用于获取所述电压调节环路的电压给定值和所述频率调节环路的频率给定值,按预设规则将所述频率给定值转换为第一给定值,并将所述电压给定值转换为与所述第一给定值同一计量单位的第二给定值;
切换单元,用于当所述第一给定值大于或等于所述第二给定值时,利用所述电压调节环路控制缓启动输出电压;当所述第二给定值大于所述第一给定值时,利用所述频率调节环路控制所述缓启动输出电压;
检测单元,用于当检测到所述缓启动输出电压大于或等于预设缓启动电压时,确定缓启动完成。
为解决上述技术问题,本发明还提供一种电源缓启动的控制设备,包括:
存储器,用于存储指令,所述指令包括上述任意一项所述电源缓启动的控制方法的步骤;
处理器,用于执行所述指令。
为解决上述技术问题,本发明还提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任意一项所述电源缓 启动的控制方法的步骤。
本发明所提供的电源缓启动的控制方法,将频率调节加入电源缓启动过程,利用电压步进值控制电压调节环路进行电压反馈调节,利用频率步进值控制频率调节环路进行频率反馈调节;在调节过程中,获取电压调节环路的电压给定值和频率调节环路的频率给定值,分别转换为同一计量单位的第二给定值和第一给定值,当第一给定值大于或等于第二给定值时,利用电压调节环路控制缓启动输出电压,当第二给定值大于第一给定值时,利用频率调节环路控制缓启动输出电压,使电压调节与频率调节相互制约。现有技术中在缓启动结束时,由于脉冲宽度调制频率从最起始频率开始计算,会导致缓启动结束的时刻出现电压波动的现象,影响缓启动过程的稳定性,而本发明通过在缓启动过程中介入频率调节,有效提高了电源缓启动的稳定性,减小了缓启动完成时的电压波动。
本发明还提供一种电源缓启动的控制装置、控制设备及存储介质,具有上述有益效果,在此不再赘述。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电源缓启动的控制方法的流程图;
图2为本发明实施例提供的一种电源缓启动的控制装置的结构示意图;
图3为本发明实施例提供的一种电源缓启动的控制设备的结构示意图。
具体实施方式
本发明的核心是提供一种电源缓启动的控制方法、控制装置、控制设 备及存储介质,用于提高电源缓启动过程的稳定性,减小缓启动结束时的电压波动。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的一种电源缓启动的控制方法的流程图。
如图1所示,本发明实施例提供的电源缓启动的控制方法包括:
S101:获取电压步进值和频率步进值。
本发明实施例提供的步骤基于电源控制器实现。
在本发明实施例中,电源缓启动的过程为电压步进与频率步进的过程。电源控制器接收工作人员输入的电压步进值和频率步进值以进行电压调节和频率调节。电压步进值和频率步进值均可以采用基准值,也可以针对不同型号的电源的缓启动过程通过仿真得到合适的值。
S102:利用电压步进值控制电压调节环路进行电压反馈调节,利用频率步进值控制频率调节环路进行频率反馈调节。
在具体实施中,按电压步进值更新电压调节环路的参考电压值(VrefSoft),同步地,按频率步进值更新脉冲宽度调制(PWM)周期寄存器的参考频率值(PTPER)。
在缓启动开始前,电源处于关机状态,则在步骤S102之前还包括:
将电压调节环路的参考电压值设置为0,将脉冲宽度调制周期寄存器的参考频率值设置为最低值,以获得最大输出频率,将脉冲宽度调制模块处于失能状态。
利用电压步进值控制电压调节环路进行电压反馈调节,即对电压调节环路的参考电压值从0开始,按一定的速率增加电压步进值,得到新的参考电压值,则电压调节环路根据新的参考电压值进行电压调节。利用频率步进值控制频率调节环路进行频率反馈调节,即对频率调节环节的参考频 率值从最低值开始,与电压步进值的控制同步地增加频率步进值,得到新的参考频率值,则频率调节环路根据新的参考频率值进行频率调节。
当系统有开机指令时,开机标志位Onflag标志位会置1。当检测到开机标志位置为1后,系统进入开机状态,缓启动开始,此时利用电压步进值控制电压调节环路进行电压反馈调节,利用频率步进值控制频率调节环路进行频率反馈调节。
S103:获取电压调节环路的电压给定值和频率调节环路的频率给定值,按预设规则将频率给定值转换为第一给定值,并将电压给定值转换为与第一给定值同一计量单位的第二给定值。
S104:当第一给定值大于或等于第二给定值时,利用电压调节环路控制缓启动输出电压;当第二给定值大于第一给定值时,利用频率调节环路控制缓启动输出电压。
在步骤S102的执行过程中,需要选择电压调节环路和频率调节环路之一来控制缓启动输出电压。电压调节和频率调节相互制衡,才能保证电源缓启动过程的稳定性,则需要设置一种机制去衡量电压调节和频率调节之间的关系。
如步骤S103所述,按预设的采样频率分别对电压调节环路的电压给定值和频率调节环路的频率给定值进行采样后,按预设规则将频率给定值转换为第一给定值,并将电压给定值转换为与第一给定值同一计量单位的第二给定值,以便对电压调节和频率调节进行对比。
如步骤S104所述,当第一给定值大于或等于第二给定值时,说明频率调节速率过快,则采用电压调节环路控制缓启动输出电压。当第二给定值大于第一给定值时,说明电压调节速率过快,则采用频率调节环路控制缓启动输出电压。
S105:当检测到缓启动输出电压大于或等于预设缓启动电压时,确定缓启动完成。
检测缓启动输出电压,当缓启动输出电压大于或等于预设缓启动电压(如服务器电源通常为12V)时,确定缓启动完成。
本发明实施例提供的电源缓启动的控制方法,将频率调节加入电源缓 启动过程,利用电压步进值控制电压调节环路进行电压反馈调节,利用频率步进值控制频率调节环路进行频率反馈调节;在调节过程中,获取电压调节环路的电压给定值和频率调节环路的频率给定值,分别转换为同一计量单位的第二给定值和第一给定值,当第一给定值大于或等于第二给定值时,利用电压调节环路控制缓启动输出电压,当第二给定值大于第一给定值时,利用频率调节环路控制缓启动输出电压,使电压调节与频率调节相互制约。现有技术中在缓启动结束时,由于脉冲宽度调制频率从最起始频率开始计算,会导致缓启动结束的时刻出现电压波动的现象,影响缓启动过程的稳定性,而本发明实施例通过在缓启动过程中介入频率调节,有效提高了电源缓启动的稳定性,减小了缓启动完成时的电压波动。
在上述实施例的基础上,在本发明实施例中,电源缓启动的控制方法还包括:
根据缓启动的执行时长和目标缓启动时长调节频率步进值和电压步进值。
为满足电源缓启动的电压稳定性要求和缓启动时长要求,对于不同类型、不同型号的电源,根据缓启动的执行时长和目标缓启动时长调节频率步进值和电压步进值。
在具体实施中,可以在电源投入使用前进行仿真测试,在电源输出端接收输出电压波形,通过示波器查看缓启动过程中输出电压的变化情况,据此对频率步进值和电压步进值进行调整。
根据缓启动的执行时长对频率步进值和电压步进值进行调试,具体可以包括:
当频率调节环路的控制时长低于第一预设时长时,缩小频率步进值,否则增加频率步进值;当电压调节环路的控制时长低于第二预设时长时,缩小电压步进值,否则增加电压步进值。
通过设置第一预设时长和第二预设时长,控制频率调节环路和电压调节环路的控制比例。第一预设时长和第二预设时长可以通过目标缓启动时长乘上一定比例得到。
此外,一种理想的频率步进值和电压步进值设置结果是,通过仿真调试,根据缓启动的执行时长对频率步进值和所述电压步进值进行调试,以使缓启动先由电压调节环路控制,后由频率调节环路控制。具体地,可以使缓启动过程的前一半时间由电压调节环路控制,后一半时间由频率调节环路控制,或设置其他的控制时间比例。
上文详述了电源缓启动的控制方法对应的各个实施例,在此基础上,本发明还公开了与上述方法对应的电源缓启动的控制装置、设备及存储介质。
图2为本发明实施例提供的一种电源缓启动的控制装置的结构示意图。
如图2所示,本发明实施例提供的电源缓启动的控制装置包括:
第一获取单元201,用于获取电压步进值和频率步进值;
控制单元202,用于利用电压步进值控制电压调节环路进行电压反馈调节,利用频率步进值控制频率调节环路进行频率反馈调节;
第二获取单元203,用于获取电压调节环路的电压给定值和频率调节环路的频率给定值,按预设规则将频率给定值转换为第一给定值,并将电压给定值转换为与第一给定值同一计量单位的第二给定值;
切换单元204,用于当第一给定值大于或等于第二给定值时,利用电压调节环路控制缓启动输出电压;当第二给定值大于第一给定值时,利用频率调节环路控制缓启动输出电压;
检测单元205,用于当检测到缓启动输出电压大于或等于预设缓启动电压时,确定缓启动完成。
由于装置部分的实施例与方法部分的实施例相互对应,因此装置部分的实施例请参见方法部分的实施例的描述,这里暂不赘述。
图3为本发明实施例提供的一种电源缓启动的控制设备的结构示意图。
如图3所示,本发明实施例提供的电源缓启动的控制设备包括:
存储器310,用于存储指令,所述指令包括上述任意一项实施例所述的电源缓启动的控制方法的步骤;
处理器320,用于执行所述指令。
其中,处理器320可以包括一个或多个处理核心,比如3核心处理器、8核心处理器等。处理器320可以采用数字信号处理DSP(Digital Signal Processing)、现场可编程门阵列FPGA(Field-Programmable Gate Array)、可编程逻辑阵列PLA(Programmable Logic Array)中的至少一种硬件形式来实现。处理器320也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器CPU(Central Processing Unit);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器320可以集成有图像处理器GPU(Graphics Processing Unit),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器320还可以包括人工智能AI(Artificial Intelligence)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器310可以包括一个或多个存储介质,该存储介质可以是非暂态的。存储器310还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。本实施例中,存储器310至少用于存储以下计算机程序311,其中,该计算机程序311被处理器320加载并执行之后,能够实现前述任一实施例公开的电源缓启动的控制方法中的相关步骤。另外,存储器310所存储的资源还可以包括操作系统312和数据313等,存储方式可以是短暂存储或者永久存储。其中,操作系统312可以为Windows。数据313可以包括但不限于上述方法所涉及到的数据。
在一些实施例中,电源缓启动的控制设备还可包括有显示屏330、电源340、通信接口350、输入输出接口360、传感器370以及通信总线380。
本领域技术人员可以理解,图3中示出的结构并不构成对电源缓启动的控制设备的限定,可以包括比图示更多或更少的组件。
本申请实施例提供的电源缓启动的控制设备,包括存储器和处理器,处理器在执行存储器存储的程序时,能够实现如上所述的电源缓启动的控 制方法,效果同上。
需要说明的是,以上所描述的装置、设备实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本发明各个实施例所述方法的全部或部分步骤。
为此,本发明实施例还提供一种存储介质,该存储介质上存储有计算机程序,计算机程序被处理器执行时实现如电源缓启动的控制方法的步骤。
该存储介质可以包括:U盘、移动硬盘、只读存储器ROM(Read-Only Memory)、随机存取存储器RAM(Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例中提供的存储介质所包含的计算机程序能够在被处理器执行时实现如上所述的电源缓启动的控制方法的步骤,效果同上。
以上对本发明所提供的一种电源缓启动的控制方法、控制装置、控制设备及存储介质进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置、设备及存储介质而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种电源缓启动的控制方法,其特征在于,包括:
    获取电压步进值和频率步进值;
    利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节;
    获取所述电压调节环路的电压给定值和所述频率调节环路的频率给定值,按预设规则将所述频率给定值转换为第一给定值,并将所述电压给定值转换为与所述第一给定值同一计量单位的第二给定值;
    当所述第一给定值大于或等于所述第二给定值时,利用所述电压调节环路控制缓启动输出电压;当所述第二给定值大于所述第一给定值时,利用所述频率调节环路控制所述缓启动输出电压;
    当检测到所述缓启动输出电压大于或等于预设缓启动电压时,确定缓启动完成。
  2. 根据权利要求1所述的控制方法,其特征在于,所述利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节,具体为:
    按所述电压步进值更新所述电压调节环路的参考电压值,同步地,按所述频率步进值更新脉冲宽度调制周期寄存器的参考频率值。
  3. 根据权利要求2所述的控制方法,其特征在于,在所述利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节之前,还包括:
    将所述电压调节环路的参考电压值设置为0,将所述脉冲宽度调制周期寄存器的参考频率值设置为最低值。
  4. 根据权利要求1所述的控制方法,其特征在于,所述利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节,具体为:
    当检测到开机标志位置为1后,利用所述电压步进值控制所述电压调节环路进行电压反馈调节,利用所述频率步进值控制所述频率调节环路进行频率反馈调节。
  5. 根据权利要求1所述的控制方法,其特征在于,还包括:
    根据所述缓启动的执行时长和目标缓启动时长调节所述频率步进值和所述电压步进值。
  6. 根据权利要求5所述的控制方法,其特征在于,所述根据所述缓启动的执行时长对所述频率步进值和所述电压步进值进行调试,具体包括:
    当所述频率调节环路的控制时长低于第一预设时长时,缩小所述频率步进值,否则增加所述频率步进值;
    当所述电压调节环路的控制时长低于第二预设时长时,缩小所述电压步进值,否则增加所述电压步进值。
  7. 根据权利要求5所述的控制方法,其特征在于,所述根据所述缓启动的执行时长对所述频率步进值和所述电压步进值进行调试,具体为:
    根据所述缓启动的执行时长对所述频率步进值和所述电压步进值进行调试,以使所述缓启动先由所述电压调节环路控制,后由所述频率调节环路控制。
  8. 一种电源缓启动的控制装置,其特征在于,包括:
    第一获取单元,用于获取电压步进值和频率步进值;
    控制单元,用于利用所述电压步进值控制电压调节环路进行电压反馈调节,利用所述频率步进值控制频率调节环路进行频率反馈调节;
    第二获取单元,用于获取所述电压调节环路的电压给定值和所述频率调节环路的频率给定值,按预设规则将所述频率给定值转换为第一给定值,并将所述电压给定值转换为与所述第一给定值同一计量单位的第二给定值;
    切换单元,用于当所述第一给定值大于或等于所述第二给定值时,利用所述电压调节环路控制缓启动输出电压;当所述第二给定值大于所述第一给定值时,利用所述频率调节环路控制所述缓启动输出电压;
    检测单元,用于当检测到所述缓启动输出电压大于或等于预设缓启动电压时,确定缓启动完成。
  9. 一种电源缓启动的控制设备,其特征在于,包括:
    存储器,用于存储指令,所述指令包括权利要求1至7任意一项所述 电源缓启动的控制方法的步骤;
    处理器,用于执行所述指令。
  10. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任意一项所述电源缓启动的控制方法的步骤。
PCT/CN2021/073475 2020-05-28 2021-01-25 电源缓启动的控制方法、控制装置、控制设备及存储介质 WO2021238266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,850 US11977401B2 (en) 2020-05-28 2021-01-25 Power supply soft-start control method, control apparatus and control device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010469693.4A CN111736680B (zh) 2020-05-28 2020-05-28 电源缓启动的控制方法、控制装置、控制设备及存储介质
CN202010469693.4 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238266A1 true WO2021238266A1 (zh) 2021-12-02

Family

ID=72647918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073475 WO2021238266A1 (zh) 2020-05-28 2021-01-25 电源缓启动的控制方法、控制装置、控制设备及存储介质

Country Status (3)

Country Link
US (1) US11977401B2 (zh)
CN (1) CN111736680B (zh)
WO (1) WO2021238266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488292A (zh) * 2023-04-24 2023-07-25 惠州市乐亿通科技有限公司 一种软启动方法、装置、终端设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736680B (zh) * 2020-05-28 2022-04-22 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856103B1 (en) * 2003-09-17 2005-02-15 Varon Lighting, Inc. Voltage regulator for line powered linear and switching power supply
CN102573197A (zh) * 2010-12-31 2012-07-11 海洋王照明科技股份有限公司 一种led驱动输出级电路及led驱动电源
WO2015143720A1 (zh) * 2014-03-28 2015-10-01 奇点新源国际技术开发(北京)有限公司 线缆节点单元的供电电路、系统及供电方法
CN106707245A (zh) * 2016-12-13 2017-05-24 中国电子科技集团公司第三十八研究所 真空管发射机负载缓启动控制方法和电路
CN110492755A (zh) * 2019-09-18 2019-11-22 济宁中科先进技术研究院有限公司 一种电动汽车控制器电源电路
CN111736680A (zh) * 2020-05-28 2020-10-02 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5778237A (en) * 1995-01-10 1998-07-07 Hitachi, Ltd. Data processor and single-chip microcomputer with changing clock frequency and operating voltage
JP2003330549A (ja) * 2002-05-10 2003-11-21 Hitachi Ltd 半導体集積回路、電源回路及び情報記録媒体
CN100561838C (zh) * 2004-12-21 2009-11-18 罗姆股份有限公司 开关调节器
JP5486221B2 (ja) * 2009-06-23 2014-05-07 スパンション エルエルシー Dc−dcコンバータの制御回路、dc−dcコンバータ及び電子機器
CN102931655B (zh) * 2011-08-12 2014-12-10 珠海全志科技股份有限公司 一种动态调节电压和频率的电路控制系统和方法
US8868893B2 (en) * 2011-12-13 2014-10-21 Active-Semi, Inc. Multi-mode power manager for power management integrated circuit
CN105099211B (zh) * 2014-05-13 2018-04-20 台达电子企业管理(上海)有限公司 直流对直流变换装置及其控制方法
US10250252B2 (en) * 2016-11-03 2019-04-02 Semiconductor Components Industries, Llc Control circuit and method therefor
FR3083929B1 (fr) * 2018-07-16 2020-06-19 Renault S.A.S Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
US11251703B2 (en) * 2019-01-14 2022-02-15 Texas Instruments Incorporated Methods and apparatus to facilitate multiple modes of converter operation
CN110380601B (zh) * 2019-07-23 2022-01-14 成都四威功率电子科技有限公司 一种数字llc谐振变换器的软启动系统及方法
CN111082649B (zh) * 2019-12-15 2021-04-27 苏州浪潮智能科技有限公司 一种状态跳转式llc闭环缓启动方法及装置
US11258368B2 (en) * 2020-06-10 2022-02-22 Monolithic Power Systems, Inc. Resonant converter circuit with switching frequency control based on input voltage
CN116800076A (zh) * 2022-03-15 2023-09-22 辉芒微电子(深圳)股份有限公司 一种上电软启动电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856103B1 (en) * 2003-09-17 2005-02-15 Varon Lighting, Inc. Voltage regulator for line powered linear and switching power supply
CN102573197A (zh) * 2010-12-31 2012-07-11 海洋王照明科技股份有限公司 一种led驱动输出级电路及led驱动电源
WO2015143720A1 (zh) * 2014-03-28 2015-10-01 奇点新源国际技术开发(北京)有限公司 线缆节点单元的供电电路、系统及供电方法
CN106707245A (zh) * 2016-12-13 2017-05-24 中国电子科技集团公司第三十八研究所 真空管发射机负载缓启动控制方法和电路
CN110492755A (zh) * 2019-09-18 2019-11-22 济宁中科先进技术研究院有限公司 一种电动汽车控制器电源电路
CN111736680A (zh) * 2020-05-28 2020-10-02 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488292A (zh) * 2023-04-24 2023-07-25 惠州市乐亿通科技有限公司 一种软启动方法、装置、终端设备及计算机可读存储介质
CN116488292B (zh) * 2023-04-24 2024-01-09 惠州市乐亿通科技股份有限公司 一种软启动方法、装置、终端设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN111736680B (zh) 2022-04-22
CN111736680A (zh) 2020-10-02
US20230161363A1 (en) 2023-05-25
US11977401B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
US11062673B2 (en) Closed loop CPU performance control
WO2021238266A1 (zh) 电源缓启动的控制方法、控制装置、控制设备及存储介质
US7228446B2 (en) Method and apparatus for on-demand power management
US7337335B2 (en) Method and apparatus for on-demand power management
KR20120003927A (ko) 적응형 전압 스케일링
CN111414285A (zh) 服务器系统启动功能的测试方法、测试装置及测试设备
WO2021088425A1 (zh) 一种服务器硬盘错峰上电的方法、设备及介质
KR20210001883A (ko) 순환 명령어 집합을 처리하는 방법, 장치, 기기 및 저장 매체
CN114328312B (zh) 数据处理方法、计算机设备及可读存储介质
CN111211937A (zh) 服务器链路信号稳定性的测试方法、测试装置及测试系统
CN107450854A (zh) 一种期望速率下最大线程数的确定方法及系统
CN107562106B (zh) 一种超低功耗高可靠性电源管理设计及实现方法
CN112834898A (zh) 一种存储设备电源芯片稳定性的测试方法、装置及设备
CN112732498B (zh) 模拟设备单点上下电的测试方法、装置、设备及存储介质
CN115263794A (zh) 一种风扇转速调节方法、装置、设备及介质
CN109799872A (zh) 提高低解析度实时时钟唤醒精度的方法、装置及电子设备
CN113485768B (zh) 一种phy参数配置装置及ssd
CN110007173A (zh) 一种供电单元故障模拟设备及供电单元故障模拟方法
CN115857471B (zh) 一种汽车控制器下电测试方法、装置、设备及存储介质
CN117631793B (zh) 复位方法、装置、计算机设备和存储介质
CN118132243B (zh) 一种中断信号处理方法、装置、设备、介质、电路及系统
CN114153388B (zh) 一种硬盘系统和硬盘配置信息刷新方法、装置及介质
CN116700190A (zh) 一种计算dcs系统的切换时间方法、装置、设备及介质
US20140040606A1 (en) Method of Proactively Event Triggering and Related Computer System
CN116662115A (zh) 服务器部件电压调节方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813758

Country of ref document: EP

Kind code of ref document: A1