WO2015143720A1 - 线缆节点单元的供电电路、系统及供电方法 - Google Patents

线缆节点单元的供电电路、系统及供电方法 Download PDF

Info

Publication number
WO2015143720A1
WO2015143720A1 PCT/CN2014/074309 CN2014074309W WO2015143720A1 WO 2015143720 A1 WO2015143720 A1 WO 2015143720A1 CN 2014074309 W CN2014074309 W CN 2014074309W WO 2015143720 A1 WO2015143720 A1 WO 2015143720A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
power supply
cable
node unit
Prior art date
Application number
PCT/CN2014/074309
Other languages
English (en)
French (fr)
Inventor
邵起明
Original Assignee
奇点新源国际技术开发(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇点新源国际技术开发(北京)有限公司 filed Critical 奇点新源国际技术开发(北京)有限公司
Priority to PCT/CN2014/074309 priority Critical patent/WO2015143720A1/zh
Priority to CN201480050977.2A priority patent/CN105706348B/zh
Publication of WO2015143720A1 publication Critical patent/WO2015143720A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators

Definitions

  • the present invention relates to the field of power supply circuit technologies, and in particular, to a power supply circuit, a system, and a power supply method for a cable node unit.
  • BACKGROUND OF THE INVENTION With the rapid development of communication technologies, the demand for data communication is increasing, and the application environment of data communication is gradually becoming complex, for example, applications such as buildings, mines, and tunnels. Due to the complex application environment, conventional communication devices may not be installed. Therefore, information collection and transmission are used to replace some communication devices by cables, thereby reducing the use of communication devices, improving the reliability of data communication in complex environments, and reducing Difficulties in the installation of communication equipment in complex environments.
  • a node unit is configured for each preset interval in the cable.
  • the node unit can realize the functions of information collection, transmission and transmission, and is a necessary functional unit of the cable.
  • the node units are connected by a bus, and the node unit usually includes a power supply circuit and a functional circuit for collecting, transmitting, and transmitting information.
  • Each node unit can be simplified to a resistance-capacitance model consisting of resistors, inductors, and capacitors as shown in Figure 1-2. Therefore, the equivalent inductance of each node unit on the cable forms a series connection, resulting in the entire line.
  • the equivalent inductance of the cable is large. When the cable is turned on or destroyed, the current on the cable fluctuates greatly. Due to the existence of the equivalent inductance, the huge energy released by the current fluctuation may cause damage to the device connected to the cable. Therefore, how to ensure The energy control released when the cable is disconnected or turned on at any position becomes an urgent problem to be solved within the allowable range.
  • the present invention provides a power supply circuit, system, and power supply method for a cable node unit to reduce energy released when the cable is disconnected or turned on.
  • the present invention provides a power supply circuit for a cable node unit, each of the power supply circuits includes: a buck circuit and a slow start circuit;
  • the step-down circuit includes an input end, an output end, and a voltage feedback end, and the input end is electrically connected to the power supply a power input end of the circuit, the output end electrically connecting the cable, the voltage feedback end detecting an output voltage of the output end through a feedback resistor, wherein the buck circuit is configured to reduce the voltage of the power input end and provide the same a cable, and adjusting a magnitude of the output voltage of the output terminal according to the voltage signal detected by the voltage feedback terminal; the first end of the slow start circuit is electrically connected to the output end of the buck circuit, and the second The terminal electrically connects the feedback resistor and the common end of the voltage feedback terminal, and the slow start circuit is configured to increase a voltage amplitude of the voltage feedback terminal when the power source is powered on, so that the step-down circuit is The voltage signal at the voltage feedback terminal reduces the amplitude of the output voltage such that the amplitude of the output voltage of the output terminal slowly rises to a first voltage threshold.
  • the slow start circuit includes: a first resistor, a first capacitor, and a one-way conduction component; one end of the first capacitor is electrically connected to an output end of the step-down circuit as a first end of the slow start circuit The other end of the first capacitor is electrically connected to one end of the first resistor, and the other end of the first resistor is grounded; one end of the one-way conducting component electrically connects the first capacitor and the first resistor a common end, the other end serving as a second end of the slow start circuit, electrically connecting the feedback resistor and the common end of the voltage feedback end; the conduction direction of the unidirectional conduction element and the charging of the first capacitor The current direction is the same.
  • the power supply circuit further includes: a current absorbing circuit electrically connected to the power input terminal at one end and electrically connected to the ground end at the other end for absorbing an inrush current in the power supply circuit of the cable node unit.
  • the current absorbing circuit includes a resistor having a resistance greater than a predetermined resistance.
  • the power supply circuit further includes: a current-proof back-up circuit connected in series between the power input terminal and the input end of the step-down circuit, for making a current in the power supply circuit of the cable node unit unidirectional Circulation.
  • the power supply circuit further includes: a voltage clamp circuit electrically connected to the power input end of the input end, and the output end is electrically connected to the ground end, wherein the input is used when the voltage of the input terminal increases The voltage of the terminal is clamped at a second voltage threshold, and the second voltage threshold is not greater than a rated voltage of the power supply circuit.
  • the step-down circuit further includes an enable end;
  • the power supply circuit of the cable node unit further includes: a batch start circuit, an input end of the batch start circuit is electrically connected to the power input end, and an output end is electrically connected to an enable end of the buck circuit, For controlling the start of the step-down circuit of the current node unit after the operation of the previous node unit of the cable is stabilized.
  • the batch starting circuit comprises: a second resistor and a third resistor;
  • the second resistor and the third resistor are connected in series between the power input end and the ground end, and the common ends of the second resistor and the third resistor are electrically connected to the enable end of the step-down circuit.
  • the present invention further provides a cable power supply system including a power supply, a power supply circuit of a cable of at least two node units, and a functional circuit of each node unit;
  • the functional circuits of each of the node units are connected in series;
  • the power input end of the power supply circuit of each of the node units is connected to the power output end of the power supply, and the power output end of the power supply circuit is connected to the power supply end of the corresponding functional circuit.
  • the present invention further provides a cable power supply method, which is applied to a cable power supply system, where the cable power supply system includes a power supply and a step-down circuit, and the step-down circuit includes an input end, an output end, and a voltage feedback.
  • the power input end of the node unit on the cable is electrically connected to the power source
  • the output end is electrically connected to the functional circuit of the node unit
  • the voltage feedback end is connected to the output end through a feedback resistor
  • the step-down circuit The amplitude of the output voltage of the output terminal can be adjusted according to the voltage signal detected by the voltage feedback terminal; the method includes:
  • the buck circuit of the current node unit is controlled to be started; when the power is turned on, the voltage amplitude of the voltage feedback terminal is raised, so that the step-down circuit is lowered.
  • the magnitude of the output voltage is such that the magnitude of the output voltage at the output of the buck circuit slowly rises to a first voltage threshold.
  • the step-down circuit is used for stepping down the voltage of the power input terminal and providing the cable to the cable.
  • the output voltage can be adjusted according to the voltage feedback terminal detecting the output voltage of the step-down circuit.
  • the slow start circuit raises the amplitude of the voltage detected by the voltage feedback terminal of the buck circuit, so that the buck circuit reduces the amplitude of the output voltage of the output terminal, and finally realizes the output of the buck circuit.
  • the amplitude of the output voltage of the terminal rises slowly until the first voltage threshold is reached, so as to avoid a large inrush current when the system where the cable is located starts.
  • the power supply circuit of the cable node unit may also be provided with a batch start circuit. After the power is powered on, the batch start circuit enables each node unit of the cable to be started one by one, and when the previous node unit is stable, start again. A node unit prevents large pulse currents from being generated when each node unit starts up at the same time.
  • the power supply circuit of the cable node unit is further provided with a current absorbing circuit.
  • the current absorbing circuit absorbs and suppresses a large current, thereby preventing an excessive surge current from causing a power supply circuit. damage.
  • the power supply circuit of the cable node unit is further provided with a voltage clamping circuit.
  • a voltage clamping circuit When the power supply voltage in the circuit suddenly increases, the voltage of the circuit is stabilized by the voltage clamping circuit to prevent the voltage from exceeding the rated voltage from causing damage to the circuit.
  • the power supply circuit of the cable node unit is further provided with an anti-current backflow circuit, which can prevent the reverse current generated when the power is powered off from causing damage to the power supply circuit.
  • the power supply circuit of the cable node unit of the present invention is provided with a step-down circuit, a slow start circuit, a batch start circuit, a current sink circuit, a voltage clamp circuit and an anti-current backflow circuit, which can be powered on and under.
  • the inrush current is suppressed, and the impact of the large inrush current on the circuit is avoided; and when the power supply voltage of the power supply circuit of the cable node unit suddenly increases, the voltage of the power supply circuit is stabilized within a safe voltage range. , The impact of the surge voltage on the power supply circuit is avoided, so that the power supply circuit of the cable node unit satisfies the characteristic requirements of the intrinsically safe circuit.
  • Figure 1-1 shows a schematic view of a cable
  • Figure 1-2 shows an equivalent model diagram of a node unit in a cable
  • FIG. 2 is a block diagram of a power supply circuit of a cable node unit, according to an exemplary embodiment
  • FIG. 3 is a circuit topology diagram of a power supply circuit of a cable node unit according to an exemplary embodiment.
  • FIG. 4 is a voltage waveform diagram of a power supply circuit of a cable node unit according to the embodiment.
  • FIG. 5 is a block diagram of a power supply circuit of another cable node unit according to an exemplary embodiment
  • FIG. 6-1 is a circuit topology of a power supply circuit of another cable node unit according to an exemplary embodiment.
  • Figure 6-2 is a schematic diagram of currents corresponding to different node units in different startup modes
  • FIG. 7 is a circuit topology diagram of still another power supply circuit of a cable node unit according to an exemplary embodiment
  • 8-1 is a circuit topology diagram of a power supply circuit of still another cable node unit according to an exemplary embodiment
  • 8-2 is a circuit topology diagram showing still another power supply circuit of a cable node unit, according to an exemplary embodiment
  • FIG. 9 is a circuit topology diagram of a power supply circuit of another cable node unit according to an exemplary embodiment
  • FIG. 10 is a flowchart of a cable power supply method according to an exemplary embodiment.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make those skilled in the art better understand the technical solutions in the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings. The described embodiments are only a part of the embodiments of the invention, and not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts should be It belongs to the scope of protection of the present invention.
  • FIG. 2 is a block diagram of a power supply circuit of a cable node unit for powering a node unit within a cable, according to an exemplary embodiment.
  • the whole cable can be regarded as a multi-node unit, and the functional circuits of each node unit are connected in series, and the power supply circuits of each node unit are connected in parallel to the power line in the cable, and each node The power supply circuit of the unit is the same.
  • the power supply circuit of each node unit in the cable includes: a step-down circuit 1 and a slow start circuit 2.
  • each power supply circuit is electrically connected to the power source 3 through a power line.
  • the input end of the step-down circuit 1 serves as a power supply input terminal of the power supply circuit, and supplies the input voltage (the voltage output from the power source 3) to the first voltage threshold and supplies the functional circuit to the node unit (hereinafter referred to as the node unit).
  • the power source 3 needs to comply with the intrinsically safe circuit.
  • the intrinsically safe circuit means that any spark or any thermal effect generated by the circuit under the specified conditions cannot ignite the specified explosive gas mixture.
  • the standard specified conditions include a normal working state and a specified fault state, wherein the normal working state refers to a normal working state of the circuit under the specified conditions of the design, including circuit power-on and power-off operations; when the circuit is turned on or off It always releases a certain amount of energy in the form of a spark.
  • the fault condition refers to the condition that the non-protective component in the circuit is damaged or short-circuited, open-circuit grounding, and power failure.
  • the power supply of the power supply circuit of the cable node unit is provided by an information converter in a mine card reader system, and the information converter is provided with a
  • the cable-powered control circuit, that is, the power source 3 may be the control circuit in the information converter.
  • the step-down circuit 1 includes an input terminal VIN, an output terminal VOS, and a voltage feedback terminal FB, wherein the input terminal VIN is electrically connected to the power input terminal, and the output terminal VOS is electrically connected to the functional circuit of the node unit, and the voltage feedback
  • the terminal FB is electrically connected to the output terminal VOS through a resistor R1 and a resistor R2.
  • the resistor R1 and the resistor R2 are connected in series between the output terminal VOS and the ground terminal GND1, wherein the common terminal of the resistor R1 and the resistor R2 is electrically connected to the voltage feedback terminal FB, that is, the voltage input from the voltage feedback terminal FB is the resistor R2. Pressure drop.
  • the step-down circuit 1 can adjust the output voltage amplitude of the output terminal VOS according to the voltage signal received by the voltage feedback terminal FB, and the voltage signal received by the voltage feedback terminal FB. Above the reference voltage, it is considered that the voltage output from the output terminal VOS is higher than the first voltage threshold, and the output voltage amplitude of the output terminal VOS is lowered.
  • the first voltage threshold can ensure that the functional circuit of the node unit in the cable works normally.
  • the slow start circuit 2 is disposed between the output terminal VOS of the buck circuit 1 and the voltage feedback terminal FB. Specifically, the first end of the slow start circuit 2 is electrically connected to the output terminal VOS of the buck circuit, and the second start circuit 2 Two-terminal electricity Connect the common terminal of R2 and voltage feedback terminal FB.
  • the slow start circuit 2 raises the amplitude of the voltage received by the voltage feedback terminal FB higher than the reference voltage, thereby causing the step-down circuit 1 to adjust the output voltage of the output terminal VOS to make the output
  • the amplitude of the voltage is reduced such that the output voltage amplitude of the output terminal VOS slowly rises to the first voltage threshold.
  • FIG. 3 is a circuit topology diagram of a power supply circuit of a cable node unit, according to an exemplary embodiment.
  • the step-down circuit 1 mainly includes an input terminal VIN, an output terminal VOS, a voltage feedback terminal FB and an enable terminal EN.
  • the input terminal VIN is electrically connected to the power supply, and the output terminal VOS is electrically connected to the functional circuit.
  • the step-down circuit 1 can operate.
  • the step-down circuit 1 can be implemented by a voltage conversion chip.
  • the step-down circuit 1 mainly comprises an amplifier.
  • One input end of the amplifier is the voltage feedback end of the voltage feedback terminal amplifier of the buck circuit, the other input end has a reference voltage, and the output end is the output terminal vos of the buck circuit.
  • the output voltage amplitude at the output is adjusted.
  • the protection range of the step-down circuit provided by the embodiment of the present invention is not limited to the voltage conversion chip TPS62175, and the output of the output terminal can be adjusted according to the voltage signal fed back by the detected output terminal.
  • the voltage-operated step-down circuit is within the scope of the present invention.
  • the output terminal VOS is electrically connected to the voltage feedback terminal FB through a feedback resistor (resistor R1 and resistor R2), wherein the resistor R1 and the resistor R2 form a series branch, one end of the series branch is connected to the output terminal VOS, and the series branch is The other end is electrically connected to the ground GND1.
  • the common terminals of R1 and R2 are electrically connected to the voltage feedback terminal FB, that is, the voltage at the FB terminal is the voltage drop across the resistor R2.
  • the resistance ratio of R1 and R2 (i.e., the voltage division ratio of R1 and R2) is determined according to the reference voltage of the amplifier in the step-down circuit.
  • the slow start circuit 2 includes a capacitor Cl, a resistor R3, and a one-way conduction element.
  • the capacitor C1 and the resistor R3 are connected in series between the output terminal VOS of the step-down circuit 1 and the ground terminal GND2.
  • One end of the capacitor C1 is connected to the output end of the step-down circuit 1 as the first end of the slow-start circuit 2, and the other end of the capacitor C1 is electrically connected to the ground GND2 through the resistor R3.
  • the common terminal of the capacitor C1 and the resistor R3 is electrically connected to the anode of the one-way conducting component D1, and the cathode of the D1 is electrically connected to the common terminal of the voltage feedback terminal FB as the second terminal of the slow-starting circuit.
  • the conduction direction of the unidirectional conduction element is the same as the direction of the charging current of the capacitor C1, and is used to prevent the voltage amplitude of the voltage feedback terminal FB from being higher than the voltage amplitude of the output terminal VOS, which has an influence on the output terminal VOS.
  • the unidirectional conduction element is the diode D1
  • the anode of the diode D1 is electrically connected to the common terminal of the capacitor C1 and the resistor R3
  • the cathode is electrically connected to the common terminal of the resistor R1 and the resistor R2.
  • the parameter of the capacitor C1 can be determined according to the operating frequency of the step-down circuit, and then the resistance value of the resistor R3 is calculated according to the delay time and the capacitance value of the capacitor C1.
  • FIG. 4 a waveform diagram of input and output voltages of the power supply circuit of the cable node unit provided in this embodiment is shown.
  • the curve VIN represents the voltage waveform of the input terminal VIN of the step-down circuit
  • the curve VOUT represents the output voltage waveform of the output terminal VOS of the step-down circuit.
  • the input voltage VIN reaches a stable value at time t1, and the output voltage VOUT rises slowly from time t1.
  • the first voltage threshold is reached, that is, the stable time of the output voltage is greater than the input.
  • the input time of the voltage is delayed by the time At.
  • the duration of At can be determined according to the capacitance C1 and the resistance R3. It avoids the large inrush current generated when the cable system is started, thus avoiding the impact current from damaging the power supply circuit of the cable, improving the safety of the power supply circuit and prolonging the service life of the power supply circuit.
  • the power supply circuit of the cable node unit provided in this embodiment is provided with a step-down circuit and a slow start circuit.
  • the slow start circuit raises the amplitude of the voltage received by the voltage feedback terminal of the buck circuit, so that the buck circuit reduces the amplitude of the output voltage of the output terminal, and finally realizes the output voltage amplitude of the output end of the buck circuit.
  • the illustrated exemplary embodiment implements a batch boot process.
  • FIG. 5 is a block diagram of a power supply circuit of another cable node unit according to an exemplary embodiment.
  • Figure 6-1 is a circuit topology illustration of the power supply circuit of Figure 5, according to an exemplary embodiment.
  • the power supply circuit of the cable node unit includes a buck circuit 1, a slow start circuit 2, and a batch start circuit 4, wherein the connection mode and working process of the buck circuit 1 and the slow start circuit 2 are shown.
  • the corresponding description in the above embodiments is not described in this embodiment. This embodiment will focus on the operation of the batch start circuit 4.
  • the input end of the batch start circuit 4 is electrically connected to the power input terminal Vin, and the output end is electrically connected to the enable end EN of the step-down circuit 1 for controlling the plurality of node units on the cable to be started in batches, that is, when the cable is After the previous node unit is stable, the next node unit is started.
  • the batch start circuit 4 can be implemented by resistors R4 and R5, wherein R4 and R5 are electrically connected in series between the power input terminal Vin and the ground terminal G D1, and the common terminals of R4 and R5 are electrically connected.
  • the enable terminal EN of the buck circuit 1 that is, R4 and R5 divide the input voltage Vin of the node unit
  • the current of the node unit in stable operation can be detected in advance.
  • the current of the node unit during stable operation can be calculated, and the power input line of each node unit is connected to the power line.
  • the voltage drop can be used to calculate the input voltage of the power supply input of the next node unit, and then determine the resistance range of R4 and R5 according to the minimum effective voltage of the enable terminal EN of the buck circuit, so that the voltage drop on R5 V R5 is slightly higher than the minimum effective voltage when the previous node unit is stably operating.
  • the resistance ratio of R4 (second resistance) and R5 (third resistance) is the voltage drop generated by the stable node unit on the power supply line, the power supply voltage, and the drop.
  • the minimum effective voltage of the enable terminal EN of the voltage circuit is calculated, so that after the activated node unit is stable, the voltage drop on the R5 of the next node is slightly higher than the minimum effective voltage (ie, V R5 is higher than the minimum effective voltage)
  • the preset threshold may be determined according to a voltage drop of the startup current on the power line when the node unit is started.
  • the instantaneous increase of the starting current increases the voltage drop on the power line, thereby reducing the input voltage of the next node unit, thereby making V R5 lower than the enable terminal EN of the step-down circuit 1
  • the lowest effective voltage causes the next node unit to fail to start; when the previous node unit runs stably, the current of the power line is stable, and the voltage drop of the corresponding node of the previous node unit returns to normal, thereby making the input voltage of the next node unit
  • the recovery causes the voltage of the enable terminal EN of the buck circuit in the next node unit to rise slightly above the minimum effective voltage, eventually causing the next node unit to start. In this way, each node unit is controlled to be activated one by one.
  • the buck circuit of the first node unit is activated, and then the functional circuit of the first node unit is activated.
  • the batch start circuit of the present embodiment realizes the node unit by the two effective resistor voltage division according to the minimum effective voltage of the step-down circuit, the circuit structure is simple, the device is small in size, easy to integrate, and low in cost.
  • batch start circuit can also be implemented by other forms of circuits, and any circuit capable of implementing batch start of each node unit of the control cable is within the scope of the present invention.
  • the power supply circuit of the cable node unit sets a batch start circuit at the buck circuit enable end of each node unit, and controls the start of the voltage control node unit by controlling the enable end, and the batch start circuit is After the last node unit is stably operated, the enable voltage of the next node unit corresponding to the buck circuit is slightly higher than the minimum effective voltage, so that the next node unit is started.
  • the batch start mode avoids a large pulse current when all the node units of the cable are started, thereby avoiding the impact of a large pulse current on the circuit components, thereby improving the safety of the power supply circuit of the cable node unit and improving The service life of the power supply circuit of the cable node unit.
  • FIG. 7 is a schematic diagram of a power supply circuit of a cable node unit according to an exemplary embodiment.
  • the power supply circuit of the cable node unit includes: a step-down circuit 1 and a slow start circuit 2
  • the circuit 4 and the current sink circuit 5 are activated in batches.
  • the connection mode and the working process of the step-down circuit 1, the slow-start circuit 2, and the batch-start circuit 4 refer to the related content in the foregoing embodiment, and details are not described herein again. This embodiment will focus on the current absorbing circuit 5. work process.
  • Each node unit in the cable is electrically connected to a current absorbing circuit 5 between the power input terminal and the ground terminal (power ground).
  • the current absorbing circuit 5 directs the current bow I to the ground terminal to prevent excessive surge current from causing damage to the power supply circuit.
  • the current absorbing circuit 5 can be implemented by a resistor R6 having a large resistance value (for example, a resistor of 1 ⁇ ⁇ ), one end of the resistor R6 is input to the power supply voltage of the power supply circuit, and the other end is electrically connected to the ground GND2, when there is a circuit
  • the resistor R6 functions to absorb and suppress the inrush current.
  • the current absorbing circuit is realized by a resistor, and the circuit structure is simple and the reliability is high. Moreover, it has the advantages of small size, easy integration, and low cost, thereby improving the integration degree of the power supply circuit and reducing the cost of the power supply circuit.
  • the current absorbing circuit can also be implemented by other circuits, and is not limited to the resistors in this embodiment. Any circuit capable of absorbing and suppressing a large current is within the scope of the present invention.
  • FIG. 8-1 is a circuit topology diagram of a power supply circuit of still another cable node unit according to an exemplary embodiment.
  • the power supply circuit includes: a step-down circuit, a slow start circuit, a batch start circuit 4, a current sink circuit 5, and a voltage clamp circuit 6.
  • Each node unit of the cable is electrically connected to a voltage clamping circuit 6 between the power input terminal and the ground terminal.
  • the input end of the voltage clamping circuit 6 is electrically connected to the power input end of the power supply circuit, and the output end is electrically connected to the ground terminal GND2.
  • the voltage clamping circuit 6 clamps the voltage of the power input terminal of the power supply circuit to a fixed value not higher than the rated voltage, preventing the voltage from exceeding the rated voltage from causing the circuit. damage.
  • the voltage clamping circuit 6 can be implemented by two inverted TVS tubes (Transient Voltage Suppressors). When a large voltage is generated at the power input end, the TVS tube acts as a clamp to make the circuit The voltage remains stable.
  • Transient Voltage Suppressors Transient Voltage Suppressors
  • the TVS tube is a high-performance protection device.
  • the multi-kilowatt surge power allows the voltage between the two poles to be clamped to a predetermined value, effectively protecting the devices in the power supply circuit from shocks from various surge pulses.
  • the TVS tube has the advantages of fast response speed, large transient power, low leakage current, small breakdown voltage deviation, easy control of clamping voltage, no damage limit, and small volume.
  • the voltage clamping circuit can be implemented by a voltage regulator tube.
  • the cathode of the voltage regulator tube is connected to the power input terminal Vin, and the anode is connected to the ground terminal GND2.
  • the Zener diode is reverse-punched, and it operates in a regulated state, and its terminal voltage remains almost unchanged, so that the supply voltage of the circuit is basically stable.
  • the rated voltage of the power supply circuit can be within the withstand voltage range of the TVS tube or the Zener tube.
  • a voltage clamping circuit is added between the power input end and the ground end.
  • the voltage can be kept stable, and the voltage is prevented from exceeding the rated voltage. Damage to the circuit improves the safety of the power supply circuit.
  • FIG. 9 is a schematic diagram of a power supply circuit of another cable node unit, according to an exemplary embodiment.
  • the power supply circuit of the cable node unit includes: a step-down circuit 1, a slow start circuit 2, a batch start circuit 4, a current sink circuit 5, a voltage clamp circuit 6, and an anti-current sink circuit 7.
  • the anti-current backflow circuit 7 is connected in series between the power input terminal and the input terminal of the slow start circuit 2 to prevent the reverse current generated when the power is turned off from causing damage to the power supply circuit.
  • the current-proof reverse current circuit 7 is realized by an element (e.g., a diode) having a unidirectional conduction characteristic, and only the same current as the conduction direction of the diode can be circulated in the circuit.
  • the diode can suppress the reverse current, prevent the reverse current from causing damage to the power supply circuit, and adopt a diode to prevent current backflow, and the circuit has a simple structure and high reliability.
  • the power supply circuit of the cable node unit is required to meet the requirements of the intrinsically safe circuit.
  • it can be realized by two diodes connected in series, so that when one of the diodes is damaged, the other diode can be used for the unidirectional conduction function.
  • the power supply of the power supply circuit of the cable node unit is provided by an information converter in the mine card reader system, and the information converter is set There is a control circuit for supplying power to the cable, and a single-way element is disposed in the control circuit. Therefore, only one unidirectional conduction element can be disposed in the current-proof backflow circuit of each node unit. That is, each node unit of the cable shares a unidirectional conduction element in the control circuit of the information converter.
  • the power supply circuit of the cable node unit provided in this embodiment is provided with a step-down circuit, a slow start circuit, a batch start circuit, a current sink circuit, a voltage clamp circuit, and an anti-current backflow circuit in each node unit.
  • the voltage circuit is used for stepping down the voltage of the power input terminal and supplying the cable to the cable, and can detect the output voltage of the step-down circuit according to the voltage feedback terminal, and adjust the output voltage.
  • the batch startup circuit starts each node unit of the cable one by one.
  • the previous node unit runs stably, the next node unit is started again, so as to avoid a large occurrence when each node unit starts at the same time. Pulse current.
  • the slow start circuit raises the amplitude of the voltage detected by the voltage feedback terminal of the buck circuit, so that the buck circuit reduces the amplitude of the output voltage of the output terminal, and finally realizes the output of the buck circuit.
  • the amplitude of the output voltage of the terminal rises slowly until the first voltage threshold is reached, so as to avoid a large inrush current when the system where the cable is located starts.
  • the current sink circuit absorbs and suppresses a large current, preventing excessive surge current from causing damage to the power supply circuit.
  • the power supply circuit of the cable node unit of the embodiment can suppress the inrush current under the conditions of power-on, power-off, short circuit, open circuit, etc., and avoid large impact. The impact of the current on the circuit, so that the power supply circuit of the cable node unit meets the characteristics of the intrinsically safe circuit.
  • the present invention further provides a cable power supply system, the power supply system includes a power source and a cable, and the cable includes at least two node units, and each node unit is
  • the power supply circuit is a power supply circuit provided by any of the above embodiments; the functional circuits of the respective node units are connected in series;
  • the power input end of the power supply circuit of each node unit is connected to the power input end of the power supply, and the power output end of the power supply circuit is connected to the power supply end of the corresponding functional circuit.
  • the power supply circuit of the cable node unit provided by any of the above embodiments, and the power supply.
  • the power source is coupled to the power source of a buck circuit in each node unit on the cable.
  • the power source can be integrated with the power supply circuit and can be an independent power source.
  • the power supply needs to comply with the intrinsically safe circuit.
  • the power supply of the power supply circuit of the cable node unit is provided by an information converter in a mine card reader system, and the information converter is provided with a A cable powered control circuit, i.e., the power supply can be the control circuit in the information converter.
  • the present invention further provides a cable power supply method, the method is applied to a cable power supply system, the cable power supply system includes a power supply and a step-down circuit, and the step-down
  • the circuit includes an input end, an output end, and a voltage feedback end.
  • the input end of the first node unit on the cable is electrically connected to the power source, and the output end is electrically connected to the functional circuit of the node unit, and the voltage feedback end passes the feedback.
  • the resistor is connected to the output end, and the step-down circuit is capable of adjusting the amplitude of the output voltage of the output terminal according to the voltage signal detected by the voltage feedback terminal; as shown in FIG. 10, the power supply method may include the following steps:
  • step S11 when it is detected that the previous node unit in the cable is stable, the step-down circuit of the current node unit is controlled to start.
  • This step can be realized by the circuit shown in Figure 6-1.
  • the step-down circuit is also provided with an enable terminal.
  • the voltage at the enable terminal is obtained by dividing the voltage of the power input terminal by the resistors (R4 and R5), when the previous node unit is obtained. During steady operation, the voltage drop across the divider resistor is slightly higher than the minimum effective voltage at the enable.
  • the instantaneously increased starting current increases the voltage drop on the cable corresponding to the previous node unit, thereby reducing the input voltage of the power supply input end of the next node unit, thereby making the voltage feedback end
  • the voltage is lower than the minimum effective voltage of the enable terminal of the buck circuit, so the next node unit cannot be started. In this way, each node unit is controlled to be activated one by one.
  • the buck circuit of the first node unit is activated, and thus the first The functional circuit of the node unit is activated.
  • step S12 when the buck circuit is powered up, the voltage amplitude of the voltage feedback terminal is raised, so that the buck circuit reduces the amplitude of the output voltage, so that the amplitude of the output voltage slowly rises. To the first voltage threshold.
  • the first voltage threshold may be determined according to a supply voltage requirement of the cable.
  • This step can be realized by the circuit shown in FIG. 3, and the voltage received by the voltage feedback terminal of the step-down circuit is raised by the charging characteristic of the RC charging circuit, and the voltage of the voltage feedback terminal rises as the capacitor is continuously charged. The amplitude is continuously reduced until the capacitor is charged, the capacitor is equivalent to the open circuit, and the voltage at the voltage feedback terminal is restored to the reference voltage, and the output voltage of the step-down circuit reaches the first voltage threshold.
  • the slow start circuit raises the amplitude of the voltage detected by the voltage feedback terminal of the buck circuit, so that the buck circuit reduces the amplitude of the output voltage of the output terminal, and finally realizes the output of the buck circuit.
  • the amplitude of the output voltage of the terminal rises slowly until the first voltage threshold is reached, so as to avoid a large inrush current when the system where the cable is located starts.
  • the batch start circuit starts each node unit of the cable one by one. When the previous node unit runs stably, the next node unit is started to avoid a large pulse current when each node unit starts at the same time.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种线缆节点单元的供电电路、系统及供电方法,所述线缆的各个节点单元的供电电路内均设置至少有降压电路(1)和缓启动电路(2),其中降压电路(1)用于将电源(3)输入端的电压降压后提供给线缆,且能够根据电压反馈端检测到降压电路的输出电压,调节输出电压。当线缆连接的电源(1)上电时,缓启动电路(2)使降压电路(1)的电压反馈端检测到的电压幅值升高,从而使降压电路(1)降低输出端输出电压的幅值,最终实现电路输出端的输出电压幅值缓慢上升,直到达到第一电压阈值,避免线缆所在系统启动时产生较大的冲击电流。

Description

线缆节点单元的供电电路、 系统及供电方法
技术领域 本发明涉及供电电路技术领域, 尤其涉及线缆节点单元的供电电路、系统及供电 方法。 背景技术 随着通信技术的飞速发展, 人们对数据通信的需求日益增大, 数据通信的应用环 境也逐渐复杂, 例如, 楼宇、 矿井、 隧道等应用环境。 由于应用环境复杂, 可能无法 装设常规的通信设备, 因此, 通过线缆实现信息的收集、 发送来代替部分通信设备, 从而减少通信设备的使用,提高复杂环境中数据通信的可靠性, 以及降低复杂环境的 通信设备装设难度。
为使线缆具有信息收集、 发送和传输的功能, 如图 1-1所示, 在线缆内, 每间隔 预设长度就会配置一个节点单元。该节点单元能够实现信息收集、发送和传输的功能, 是线缆的必要功能单元。节点单元之间通过总线连接,节点单元通常包括供电电路和 实现信息收集、 发送和传输的功能电路。
每个节点单元都可以简化为如图 1-2所示的由电阻、电感和电容构成的阻容模型, 因此, 线缆上每个节点单元的等效电感形成串联连接关系, 从而导致整个线缆的等效 电感很大。 当线缆接通瞬间或被破坏导致其断开时, 造成线缆上电流大幅波动, 由于 等效电感的存在, 电流波动释放的巨大能量可能导致与线缆连接的设备损坏, 因此, 如何保证线缆在任何位置断开或接通时释放的能量控制在允许范围内成为亟待解决 的问题。 发明内容 本发明提供了一种线缆节点单元的供电电路、系统及供电方法, 以降低线缆在断 开或接通时释放的能量。
为了解决上述技术问题, 本发明实施例公开了如下技术方案:
第一方面,本发明提供一种线缆节点单元的供电电路,每个所述供电电路均包括: 降压电路和缓启动电路;
所述降压电路包括输入端、输出端和电压反馈端, 所述输入端电连接所述供电电 路的电源输入端,所述输出端电连接线缆,所述电压反馈端通过反馈电阻检测所述输 出端的输出电压,所述降压电路用于降低所述电源输入端的电压,并提供给所述线缆, 以及, 根据所述电压反馈端检测到的电压信号调节所述输出端输出电压的幅值; 所述缓启动电路的第一端电连接所述降压电路的输出端,第二端电连接所述反馈 电阻与所述电压反馈端的公共端,所述缓启动电路用于当所述电源上电时, 升高所述 电压反馈端的电压幅值,使所述降压电路根据所述电压反馈端的电压信号降低输出电 压的幅值, 以使所述输出端输出电压的幅值缓慢上升到第一电压阈值。
优选地, 所述缓启动电路包括: 第一电阻、 第一电容及单向导通元件; 所述第一电容的一端作为所述缓启动电路的第一端电连接所述降压电路的输出 端,所述第一电容的另一端电连接所述第一电阻的一端,所述第一电阻的另一端接地; 所述单向导通元件的一端电连接所述第一电容与所述第一电阻的公共端,另一端 作为所述缓启动电路的第二端, 电连接所述反馈电阻与所述电压反馈端的公共端; 所述单向导通元件的导通方向与所述第一电容的充电电流方向相同。
优选地, 所述供电电路还包括: 一端与所述电源输入端电连接, 另一端与接地端 电连接的电流吸收电路, 用于吸收所述线缆节点单元的供电电路中的冲击电流。
优选地, 所述电流吸收电路包括阻值大于预设阻值的电阻。
优选地, 所述供电电路还包括: 串联在所述电源输入端和所述降压电路输入端之 间的防电流倒灌电路, 用于使所述线缆节点单元的供电电路中的电流单向流通。
优选地, 所述供电电路还包括: 输入端与所述电源输入端电连接, 输出端与接地 端电连接的电压箝位电路,用于当所述输入端的电压增大时,将所述输入端的电压箝 位在第二电压阈值, 所述第二电压阈值不大于所述供电电路的额定电压。
优选地, 所述降压电路还包括使能端;
所述线缆节点单元的供电电路还包括: 分批启动电路, 所述分批启动电路的输入 端与所述电源输入端电连接,输出端与所述降压电路的使能端电连接,用于当线缆的 上一节点单元的运行稳定后, 控制所述当前节点单元的降压电路启动。
优选地, 所述分批启动电路包括: 第二电阻和第三电阻;
所述第二电阻和所述第三电阻串联于电源输入端和接地端之间,且所述第二电阻 和所述第三电阻的公共端电连接所述降压电路的使能端。
第二方面, 本发明还提供一种线缆供电系统, 包括电源、 至少两个节点单元的线 缆的供电电路, 及各个节点单元的功能电路; 其中,
各个所述节点单元的功能电路依次串联; 各个所述节点单元的供电电路的电源输入端, 均连接所述电源的电源输出端, 所 述供电电路的电源输出端连接对应的功能电路的供电端。
第三方面, 本发明还提供一种线缆供电方法, 应用于线缆供电系统中, 所述线缆 供电系统包括电源和降压电路, 所述降压电路包括输入端、输出端和电压反馈端, 线 缆上节点单元的电源输入端与所述电源电连接,输出端与所述节点单元的功能电路电 连接,所述电压反馈端通过反馈电阻连接所述输出端,所述降压电路能够根据所述电 压反馈端检测到的电压信号调节所述输出端输出电压的幅值; 所述方法包括:
当检测到线缆中上一节点单元运行稳定后, 控制当前节点单元的降压电路启动; 当所述电源上电时, 升高所述电压反馈端的电压幅值, 使所述降压电路降低输出 电压的幅值, 以使所述降压电路输出端的输出电压的幅值缓慢上升到第一电压阈值。
本实施例提供的线缆节点单元的供电电路,线缆的每个节点单元内都至少设置有 降压电路和缓启动电路, 其中降压电路用于将电源输入端的电压降压后提供给线缆, 且能够根据电压反馈端检测到降压电路的输出电压,调节输出电压。当线缆连接的电 源上电时, 缓启动电路使降压电路的电压反馈端检测到的电压幅值升高, 从而使降压 电路降低输出端输出电压的幅值, 最终实现降压电路输出端的输出电压幅值缓慢上 升, 直到达到第一电压阈值, 避免线缆所在系统启动时产生较大的冲击电流。
所述线缆节点单元的供电电路还可以设置有分批启动电路, 在电源上电后, 分批 启动电路使线缆的各个节点单元逐个启动, 当上一个节点单元运行稳定后, 再启动下 一个节点单元, 避免各个节点单元同时启动时产生很大的脉冲电流。
所述线缆节点单元的供电电路还设置有电流吸收电路,当电路由于短路或其它原 因导致电流突然增大时,通过电流吸收电路吸收和抑制大电流, 防止过大的冲击电流 对供电电路造成损坏。
所述线缆节点单元的供电电路还设置有电压箝位电路,当电路中的供电电压突然 增大时,通过电压箝位电路使电路的电压保持稳定, 防止电压超过额定电压对电路造 成损坏。
所述线缆节点单元的供电电路还设置有防电流倒灌电路,所述防电流倒灌电路能 够防止电源下电时出现的反向电流对供电电路造成损坏。
综上所述, 本发明的线缆节点单元的供电电路设置有降压电路、 缓启动电路、 分 批启动电路、 电流吸收电路、 电压箝位电路和防电流倒灌电路, 能够在上电、 下电、 短路、 断路等情况下抑制冲击电流, 避免大冲击电流对电路的冲击; 且在线缆节点单 元的供电电路的供电电压突然增大时, 使供电电路的电压稳定于安全的电压范围内, 避免浪涌电压对供电电路的冲击,从而使线缆节点单元的供电电路满足本质安全电路 的特性要求。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地,对于本领域普通技术人 员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1-1示出了线缆的示意图;
图 1-2示出了线缆中一个节点单元的等效模型示意图;
图 2是根据一示例性实施例示出的线缆节点单元的供电电路的框图;
图 3 是根据一示例性实施例示出的一种线缆节点单元的供电电路的电路拓扑示 图 4是本实施例提供的线缆节点单元的供电电路的电压波形图;
图 5是根据一示例性实施例示出的另一种线缆节点单元的供电电路的框图; 图 6-1是根据一示例性实施例示出的另一种线缆节点单元的供电电路的电路拓扑 示意图;
图 6-2是各个节点单元在不同启动方式下对应的电流示意图;
图 7 是根据一示例性实施例示出的又一种线缆节点单元的供电电路的电路拓扑 示意图;
图 8-1是根据一示例性实施例示出的再一种线缆节点单元的供电电路的电路拓扑 示意图;
图 8-2是根据一示例性实施例示出了又一种线缆节点单元的供电电路的电路拓扑 示意图;
图 9 是根据一示例性实施例示出的另一种线缆节点单元的供电电路的电路拓扑 示意图;
图 10是根据一示例性实施例示出的一种线缆供电方法的流程图。 具体实施方式 为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实 施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述 的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当 属于本发明保护的范围。
图 2是根据一示例性实施例示出的线缆节点单元的供电电路的框图,所述线缆节 点单元的供电电路用于为线缆内的节点单元供电。
由于线缆的长度很长, 可以将整个线缆看成多分节点单元, 各个节点单元的功能 电路依次串联, 而各个节点单元的供电电路均并联于线缆内的电源线上, 且每个节点 单元的供电电路相同, 如图 2所示, 线缆中每个节点单元的供电电路均包括: 降压电 路 1和缓启动电路 2。
每个供电电路的电源输入端均通过电源线与电源 3电连接。所述降压电路 1的输 入端作为供电电路的电源输入端, 将输入电压(电源 3输出的电压)降至第一电压阈 值后提供给节点单元的功能电路 (下文简称节点单元)。
当所述线缆应用于含有爆炸性混合物环境时,电源 3需要符合本质安全电路的规 定。其中,本质安全电路是指当电路在标准规定条件下产生的任何电火花或任何热效 应均不能点燃规定的爆炸性气体混合物。所述标准规定条件包括正常工作状态和规定 的故障状态, 其中, 正常工作状态是指电路在设计规定条件下的正常工作的状态, 包 括电路上电、 下电操作; 当电路接通或断开时总是以火花形式释放一定的能量。 故障 状态是指电路中非保护性元件损坏或产生短路、 断路接地及电源故障等情况。
当所述线缆应用于矿用读卡器系统时,所述线缆节点单元的供电电路的电源由矿 用读卡器系统中的信息转换器提供,所述信息转换器中设置有为所述线缆供电的控制 电路, 即所述电源 3可以是所述信息转换器中的所述控制电路。
如图 2所示,降压电路 1包括输入端 VIN、输出端 VOS和电压反馈端 FB,其中, 输入端 VIN与电源输入端电连接, 输出端 VOS与节点单元的功能电路电连接, 电压 反馈端 FB通过电阻 R1和电阻 R2与输出端 VOS电连接。电阻 R1与电阻 R2串联于 所述输出端 VOS和接地端 GND1之间,其中, 电阻 R1和电阻 R2的公共端与电压反 馈端 FB电连接, 即电压反馈端 FB输入的电压是电阻 R2上的压降。
降压电路 1除具有上述的降压功能外, 还能够根据所述电压反馈端 FB接收到的 电压信号, 调节所述输出端 VOS的输出电压幅值, 当电压反馈端 FB接收到的电压 信号高于基准电压时, 认为输出端 VOS输出的电压高于第一电压阈值, 降低输出端 VOS 的输出电压幅值。 所述第一电压阈值能够保证线缆内节点单元的功能电路正常 工作。
缓启动电路 2设置在降压电路 1的输出端 VOS和电压反馈端 FB之间, 具体的, 缓启动电路 2的第一端与降压电路的输出端 VOS电连接, 缓启动电路 2的第二端电 连接 R2和电压反馈端 FB的公共端。
当电源 3上电时, 缓启动电路 2使电压反馈端 FB接收到的电压幅值升高, 高于 所述基准电压, 进而使降压电路 1调节输出端 VOS的输出电压, 使所述输出电压的 幅值降低, 从而使所述输出端 VOS的输出电压幅值缓慢上升到所述第一电压阈值。
图 3 是根据一示例性实施例示出的一种线缆节点单元的供电电路的电路拓扑示 意图。
所述降压电路 1主要包括输入端 VIN, 输出端 VOS, 电压反馈端 FB和使能端 EN。输入端 VIN电连接电源, 输出端 VOS电连接功能电路, 使能端 EN输入的电压 大于有效电压时, 降压电路 1才能工作。例如, 所述降压电路 1可以通过电压转换芯 片实现。
其中, 降压电路 1主要包括放大器, 放大器的一个输入端是降压电路的电压反馈 端放大器的电压反馈端, 另一个输入端输入有基准电压,输出端即降压电路的输出端 vos。 当放大器的两个输入端的电压信号不相等时, 调节其输出端的输出电压幅值。
需要说明的是,本发明实施例提供的降压电路的保护范围并不限定于电压转换芯 片 TPS62175, 凡是能够实现降压, 且能够根据检测到的输出端反馈回来的电压信号, 调节输出端输出的电压功能的降压电路均在本发明的保护范围之内。
同时, 输出端 VOS通过反馈电阻 (电阻 R1和电阻 R2) 电连接电压反馈端 FB 其中, 电阻 R1和电阻 R2构成的串联支路, 串联支路的一端连接所述输出端 VOS, 串联支路的另一端电连接接地端 GND1。 R1和 R2的公共端电连接电压反馈端 FB, 即 FB端电压是电阻 R2上的压降。
其中, R1和 R2的阻值比 (即 R1和 R2的分压比) 根据降压电路内的放大器的 基准电压确定。
缓启动电路 2包括电容 Cl、 电阻 R3和单向导通元件其中, 电容 C1和电阻 R3 串联在降压电路 1的输出端 VOS和接地端 GND2之间。 其中, 电容 C1的一端作为 所述缓启动电路 2的第一端连接降压电路 1的输出端,电容 C1的另一端通过电阻 R3 电连接接地端 GND2。 电容 C1和电阻 R3的公共端电连接单向导通元件 D1的阳极, D1的阴极作为缓启动电路的第二端电连接 R2和电压反馈端 FB的公共端。
单向导通元件的导通方向与所述电容 C1的充电电流方向相同, 用于避免电压反 馈端 FB的电压幅值高于输出端 VOS的电压幅值, 对输出端 VOS产生影响。 当单向 导通元件是二极管 D1时, 二极管 D1的阳极与所述电容 C1和电阻 R3的公共端电连 接, 阴极与电阻 R1和电阻 R2的公共端电连接。 电容 CI和电阻 R3构成 RC串联充电电路, 充电时间常数为 T = R3 x Cl。 电容 C1的参数可以根据降压电路的工作频率确定,然后根据延时时间和电容 C1的容值计 算出电阻 R3的阻值。
初始时, 电容 C1上没有电荷。 当电源 3上电瞬间, 即输入端 VIN得电瞬间, 为 电容 C1充电, 并产生充电电流, 且充电电流中的一部分电流经过二极管 D1和电阻 R2流向接地端 GND1 , 从而使电阻 R2上的压降升高, 且高于基准电压, 降压电路 1 内的放大器检测到反相输入端的电压高于同相输入端的基准电压, 认为输出端 VOS 输出电压的幅值高于第一电压阈值, 减小输出端 VOS输出电压的幅值。 随着电容 C1 不断充电, 充电电流逐渐减小, 电阻 R2上的压降逐渐减小, 输出端 VOS输出电压 的减小幅度逐渐变小。 因此, 输出端 vos的输出电压的幅值逐渐升高, 最终当电容
C1充电完成时, 电容相当于断路, 充电电流减小为 0, 电阻 R2上的压降恢复到输出 电压在电阻 R2上的压降, 电阻 R2上的压降等于基准电压, 放大器不再调节输出端 VOS的输出电压,此时, VOS的输出电压达到第一电压阈值,因此,所述输出端 VOS 的输出电压幅值在所述缓启动电路 2充电时间内逐渐上升到所述第一电压阈值。
请参见图 4图, 示出了本实施例提供的线缆节点单元的供电电路的输入、输出电 压的波形图。 图中曲线 VIN表示降压电路的输入端 VIN的电压波形; 曲线 VOUT表 示降压电路的输出端 VOS的输出电压波形。
由图 4可以看出, 电源上电后, 输入电压 VIN在 tl时刻达到稳定值, 而输出电 压 VOUT从 tl时刻缓慢上升, 经过 At后, 达到第一电压阈值, 即输出电压的稳定时 刻比输入电压的输入时刻延迟了时长 At。 其中, At的时长可以根据电容 C1 和电阻 R3 确定。 避免了线缆所在系统启动时产生较大的冲击电流, 从而避免冲击电流对线 缆的供电电路造成损坏,提高了供电电路的安全性,同时延长了供电电路的使用寿命。
本实施例提供的线缆节点单元的供电电路, 设置有降压电路和缓启动电路。 当电 源上电时, 缓启动电路使降压电路的电压反馈端接收的电压幅值升高, 从而使降压电 路降低输出端输出电压的幅值, 最终实现降压电路输出端的输出电压幅值缓慢上升, 直到达到第一电压阈值,避免线缆所在系统启动时产生较大的冲击电流,进而避免了 冲击电流对线缆节点单元的供电电路的冲击,提高了供电电路的安全性, 同时延长了 供电电路的使用寿命。
由于节点单元的启动电流比稳定运行时的运行电流大,如果线缆上多个节点单元 同时启动, 线缆上将产生很大的冲击电流, 为了降低线缆的启动电流, 采用分批启动 方式, 即当一个节点单元稳定运行后, 再启动下一个节点单元。 具体可以通过以下所 示的示例性实施例实现分批启动过程。
请参见图 5和图 6-1, 图 5是根据一示例性实施例示出的另一种线缆节点单元的 供电电路的框图。图 6-1是根据一示例性实施例示出的图 5的供电电路的电路拓扑示 意图。
如图 5所示, 所述线缆节点单元的供电电路包括降压电路 1、 缓启动电路 2和分 批启动电路 4, 其中, 降压电路 1和缓启动电路 2的连接方式及工作过程请参见上述 实施例中的相应描述,本实施例不再赘述。本实施例将重点介绍分批启动电路 4的工 作过程。
分批启动电路 4的输入端与电源输入端 Vin电连接,输出端与降压电路 1的使能 端 EN电连接, 用于控制线缆上的多个节点单元分批启动, 即当线缆的上一节点单元 稳定运行后, 再启动下一个节点单元。
如图 6-1所示, 分批启动电路 4可以通过电阻 R4和 R5实现, 其中, R4和 R5 串联电连接于电源输入端 Vin和接地端 G D1之间, 且 R4和 R5的公共端电连接降 压电路 1的使能端 EN, 即 R4和 R5对该节点单元的输入电压 Vin进行分压, 且使能 端 EN的电压即电阻 R5上的压降 VR5=Vin*R5/ ( R4+R5 )。
节点单元稳定运行时的电流可以预先检测得到,根据图 1-2所示的线缆等效模型, 可以计算出节点单元稳定运行时的电流,在各个节点单元的电源输入端连接电源线上 产生的压降, 从而可以计算出下一节点单元的电源输入端的输入电压,进而根据降压 电路使能端 EN的最低有效电压, 确定 R4和 R5的阻值取值范围, 使得 R5上的压降 V R5在上一节点单元稳定运行时略高于所述最低有效电压。 即, R4 (第二电阻) 和 R5 (第三电阻) 的阻值比 (即 R4和 R5的分压比) 通过运行稳定的节点单元在电源 线上产生的压降、电源电压以及所述降压电路的使能端 EN的最低有效电压计算得到, 使得已启动的节点单元运行稳定后, 下一节点的 R5上的压降略高于所述最低有效电 压(即 VR5高于最低有效电压预设阈值,所述预设阈值可以根据节点单元启动时的启 动电流在电源线上的压降确定)。
当上一节点单元启动时, 瞬间增大的启动电流使电源线上的压降增大, 从而使下 一节点单元的输入电压减小,进而使 VR5低于降压电路 1使能端 EN的最低有效电压, 导致下一节点单元无法启动; 当上一节点单元运行稳定后, 电源线的电流平稳, 上一 节点单元对应线缆的压降恢复正常, 从而使下一节点单元的输入电压恢复,进而使下 一节点单元中降压电路的使能端 EN的电压上升至略高于最低有效电压,最终使下一 个节点单元启动。 通过此种方式控制各个节点单元逐个启动。 对于线缆中的第一个节点单元,当电源上电后,线缆中没有正在启动的节点单元, 电源线上的压降恰好使第一节点单元中的 R4和 R5对电源电压分压后的电压, 略高 于降压电路使能端的最低有效电压, 因此, 第一节点单元的降压电路启动, 进而第一 节点单元的功能电路启动。
如图 6-2所示, 其中, (a) 图是各个节点单元同时启动的电流示意图, 此种启动 方式在电路中产生的脉冲电流 Ai =Ai +Ai2 +…… +Δίη。 (b) 图是各个节点单元分批 启动的电流示意图, 此种启动方式, Δί Δί , 其中, 下标 i为正整数, 即各个节点单 元分批启动时, 电路中的脉冲电流为当前启动的节点单元所产生的脉冲电流, 小于所 有节点单元同时启动的脉冲电流之和。
本实施的分批启动电路通过两个电阻分压实现根据降压电路的最低有效电压分 批启动节点单元, 电路结构简单, 器件体积小, 易集成, 成本低。
当然, 所述分批启动电路还可以采用其它形式的电路实现, 凡是能够实现控制线 缆的各个节点单元分批启动的电路均是本发明所要保护的范围。
本实施例提供的线缆节点单元的供电电路在每个节点单元的降压电路使能端设 置一分批启动电路,通过控制使能端的电压控制节点单元的启动,所述分批启动电路 在上一节点单元稳定运行后,使下一节点单元对应降压电路的使能端电压略高于最低 有效电压, 从而使所述下一节点单元启动。分批启动方式避免了线缆的所有节点单元 全部启动时产生很大的脉冲电流,进而避免较大的脉冲电流对电路元件的冲击, 从而 提高了线缆节点单元的供电电路的安全性,提高了线缆节点单元的供电电路的使用寿 命。
图 7是根据一示例性实施例示出的又一种线缆节点单元的供电电路的示意图,如 图 7所示, 所述线缆节点单元的供电电路包括: 降压电路 1、 缓启动电路 2、 分批启 动电路 4和电流吸收电路 5。 其中, 降压电路 1、 缓启动电路 2和分批启动电路 4的 连接方式及工作过程请参见上述实施例中的相关内容,此处不再赘述,本实施例将着 重介绍电流吸收电路 5的工作过程。
线缆中的每个节点单元均在电源输入端和接地端(电源地)之间电连接一电流吸 收电路 5。 当供电电路由于短路或其它原因使电流突然增大时, 电流吸收电路 5将电 流弓 I向接地端, 防止过大的冲击电流对所述供电电路造成损坏。
可选地, 电流吸收电路 5可以采用阻值较大的电阻 R6 (例如, 1Μ Ω的电阻) 实 现, 电阻 R6的一端输入供电电路的电源电压, 另一端电连接接地端 GND2, 当电路 中有大的冲击电流时, 电阻 R6起到吸收和抑制冲击电流的作用。 电流吸收电路采用电阻实现, 电路结构简单、 可靠性高。 而且具有体积小、 易集 成且成本低等优点, 因此提高了供电电路的集成度, 且降低了供电电路的成本。
本领域技术人员可以理解的是, 电流吸收电路还可以采用其它的电路实现, 并不 限于本实施例中的电阻,凡是能够吸收和抑制大电流的电路均属于本发明所要求保护 的范围。
图 8-1是根据一示例性实施例示出的再一种线缆节点单元的供电电路的电路拓扑 示意图。 如图 8-1所示, 供电电路均包括: 降压电路 1、 缓启动电路 2、 分批启动电 路 4、 电流吸收电路 5和电压箝位电路 6。
线缆的每个节点单元都在电源输入端和接地端之间电连接一个电压箝位电路 6。 其中, 电压箝位电路 6的输入端与所述供电电路的电源输入端电连接,输出端与接地 端 GND2电连接。 当电源出现故障使电路中的供电电压突然增大时, 电压箝位电路 6 将供电电路的电源输入端电压箝位在不高于额定电压的某一固定值,防止电压超过额 定电压对电路造成损坏。
可选地, 电压箝位电路 6 可以采用两个反相相连的 TVS 管 (Transient Voltage Suppressor, 瞬态抑制二极管) 实现, 当电源输入端产生大电压时, TVS管起到箝位 作用, 使电路的电压保持稳定。
TVS管是一种高效能保护器件, 当 TVS管的两极受到反向瞬态高能量冲击时, 它能够以 10- 12量级的速度, 将其两极间的高阻抗变为低阻抗, 吸收高达数千瓦的浪 涌功率, 使两极间的电压箝位于一个预定值, 有效地保护供电电路中的器件, 避免受 各种浪涌脉冲的冲击。 由于 TVS管具有响应速度快、 瞬态功率大、 漏电流低、 击穿 电压偏差小、 箝位电压较易控制、 无损坏极限、 体积小等优点。
如图 8-2所示, 所述电压箝位电路可以采用稳压管实现, 所述稳压管的阴极连接 电源输入端 Vin, 阳极连接接地端 GND2, 当电源输入端 Vin的供电电压突然增大时, 稳压管被反向击穿, 工作在稳压状态, 其端电压几乎保持不变, 从而使电路的供电电 压基本保持稳定。
选择 TVS管或稳压管时, 供电电路的额定电压在 TVS管或稳压管的承受电压范 围内即可。
本实施例提供的线缆节点单元的供电电路,在电源输入端和接地端之间增设电压 箝位电路, 当电路中的供电电压突然增大时, 能够使电压保持稳定, 防止电压超过额 定电压对电路的损坏, 提高了所述供电电路的安全性。
图 9是根据一示例性实施例示出的另一种线缆节点单元的供电电路的示意图。如 图 9所示, 所述线缆节点单元的供电电路包括: 降压电路 1、 缓启动电路 2、 分批启 动电路 4、 电流吸收电路 5、 电压箝位电路 6和防电流倒灌电路 7。
所述防电流倒灌电路 7串联在电源输入端和缓启动电路 2的输入端之间,防止电 源下电时出现的反向电流对所述供电电路造成损坏。
所述防电流倒灌电路 7采用具有单向导通特性的元件(例如, 二极管)实现, 只 能在电路中流通与所述二极管的导通方向相同的电流。当电路中出现反向电流时, 二 极管能够抑制该反向电流, 防止反向电流对供电电路造成的损坏,采用二极管实现防 电流倒灌, 电路结构简单、 可靠性高。
当线缆应用于含有爆炸性混合物环境时,需要线缆节点单元的供电电路符合本质 安全电路的要求。为了提高防电流倒灌电路 7的可靠性,可以通过两个相互串联的二 极管实现, 这样, 当其中的一个二极管损坏时, 可以利用另一个二极管实现单向导通 功能。
当线缆节点单元的供电电路应用于矿用读卡器系统时,所述线缆节点单元的供电 电路的电源由矿用读卡器系统中的信息转换器提供,所述信息转换器中设置有为所述 线缆供电的控制电路, 所述控制电路中设置有一个单向导通元件, 因此, 在各个节点 单元的防电流倒灌电路中可以仅设置一个单向导通元件。即线缆的各个节点单元共用 信息转换器的控制电路内的单向导通元件。
本实施例提供的线缆节点单元的供电电路, 在每个节点单元都设置有降压电路、 缓启动电路、 分批启动电路、 电流吸收电路、 电压箝位电路和防电流倒灌电路, 其中 降压电路用于将电源输入端的电压降压后提供给线缆,且能够根据电压反馈端检测到 降压电路的输出电压, 调节输出电压。在线缆连接的电源上电时, 分批启动电路使线 缆的各个节点单元逐个启动,当上一个节点单元运行稳定后,再启动下一个节点单元, 避免各个节点单元同时启动时产生很大的脉冲电流。当线缆连接的电源上电时, 缓启 动电路使降压电路的电压反馈端检测到的电压幅值升高,从而使降压电路降低输出端 输出电压的幅值,最终实现降压电路输出端的输出电压幅值缓慢上升,直到达到第一 电压阈值,避免线缆所在系统启动时产生较大的冲击电流。当电路由于短路或其它原 因导致电流突然增大时,通过电流吸收电路吸收和抑制大电流, 防止过大的冲击电流 对供电电路造成损坏。当电路中的供电电压突然增大时,通过电压箝位电路使电路的 电压保持稳定, 防止电压超过额定电压对电路造成损坏。所述防电流倒灌电路能够防 止电源下电时出现的反向电流对供电电路造成损坏。综上所述,本实施例的线缆节点 单元的供电电路能够在上电、 下电、 短路、 断路等情况下抑制冲击电流, 避免大冲击 电流对电路的冲击, 从而使线缆节点单元的供电电路满足本质安全电路的特性要求。 相应于上述的线缆节点单元的供电电路实施例, 本发明还提供了线缆供电系统, 所述供电系统包括电源、 线缆, 所述线缆至少包括两个节点单元, 每个节点单元均包 括一个供电电路和功能电路, 所述供电电路是上述任一实施例提供的供电电路; 各个节点单元的功能电路依次串联;
各个节点单元的供电电路的电源输入端, 均连接所述电源的电源输入端, 所述供 电电路的电源输出端连接对应的功能电路的供电端。
上述任一实施例提供的线缆节点单元的供电电路, 以及电源。所述电源与线缆上 各个节点单元中的降压电路的电源输入端连接所述电源。
所述电源可以与所述供电电路集成在一起, 可以是独立的电源。 当所述线缆应用 于含有爆炸性混合物环境时, 电源需要符合本质安全电路的规定。
当所述线缆应用于矿用读卡器系统时,所述线缆节点单元的供电电路的电源由矿 用读卡器系统中的信息转换器提供,所述信息转换器中设置有为所述线缆供电的控制 电路, 即所述电源可以是所述信息转换器中的所述控制电路。
相应于上述的线缆节点单元的供电电路, 本发明还提供一线缆供电方法, 所述方 法应用于线缆供电系统中,所述线缆供电系统包括电源和降压电路,所述降压电路包 括输入端、输出端和电压反馈端,线缆上第一个节点单元的输入端与所述电源电连接, 输出端与所述节点单元的功能电路电连接,所述电压反馈端通过反馈电阻连接所述输 出端,所述降压电路能够根据所述电压反馈端检测到的电压信号调节所述输出端输出 电压的幅值; 如图 10所示, 所述供电方法可以包括以下步骤:
在步骤 S11中, 当检测到线缆中上一节点单元运行稳定后, 控制当前节点单元的 降压电路启动。
该步骤可以通过图 6-1所示的电路实现, 降压电路还设置有使能端, 使能端的电 压由电阻(R4和 R5 )对电源输入端的电压进行分压得到, 当上一节点单元稳定运行 时, 分压电阻上的压降略高于使能端的最低有效电压。 当上一节点单元启动时, 瞬间 增大的启动电流使所述上一节点单元对应的线缆上压降增大,从而使下一节点单元电 源输入端的输入电压减小,进而使电压反馈端的电压低于降压电路使能端的最低有效 电压, 因此下一节点单元无法启动。 通过此种方式控制各个节点单元逐个启动。
对于线缆中的第一个节点单元,当电源上电后,线缆中没有正在启动的节点单元, 电源线上的压降恰好使第一节点单元中的 R4和 R5对电源电压分压后的电压, 略高 于降压电路使能端的最低有效电压, 因此, 第一节点单元的降压电路启动, 进而第一 节点单元的功能电路启动。
在步骤 S12中, 当所述降压电路上电时, 升高所述电压反馈端的电压幅值, 使所 述降压电路降低输出电压的幅值, 以使所述输出电压的幅值缓慢上升到第一电压阈 值。
所述第一电压阈值可以根据线缆的供电电压要求确定。
该步骤可以通过图 3所示的电路实现, 利用 RC充电电路的充电特性, 使降压电 路的电压反馈端接收到的电压升高, 且随着电容不断充电,所述电压反馈端的电压升 高幅度不断减小, 直到电容充电完成, 电容相当于断路, 电压反馈端的电压恢复为基 准电压, 此时降压电路的输出电压达到第一电压阈值。
当线缆连接的电源上电时,缓启动电路使降压电路的电压反馈端检测到的电压幅 值升高, 从而使降压电路降低输出端输出电压的幅值,最终实现降压电路输出端的输 出电压幅值缓慢上升,直到达到第一电压阈值,避免线缆所在系统启动时产生较大的 冲击电流。在电源上电后, 分批启动电路使线缆的各个节点单元逐个启动, 当上一个 节点单元运行稳定后, 再启动下一个节点单元,避免各个节点单元同时启动时产生很 大的脉冲电流。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部 分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。尤其, 对于 装置或系统实施例而言, 由于其基本相似于方法实施例, 所以描述得比较简单, 相关 之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性 的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单 元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分 布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实 施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下, 即可以理解并 实施。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序 模块。 一般地, 程序模块包括执行特定任务或实现特定抽象数据类型的例程、 程序、 对象、 组件、 数据结构等等。 也可以在分布式计算环境中实践本发明, 在这些分布式 计算环境中, 由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环 境中, 程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
需要说明的是, 在本文中, 诸如 "第一"和 "第二"等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体 或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括" 、 "包含"或者 其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包 括为这种过程、 方法、 物品或者设备所固有的要素。 在没有更多限制的情况下, 由语 句 "包括一个…… " 限定的要素, 并不排除在包括所述要素的过程、 方法、物品或者 设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式, 应当指出, 对于本技术领域的普通技术人 员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润 饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种线缆节点单元的供电电路, 其特征在于, 每个所述供电电路均包括: 降压电路和缓启动电路;
所述降压电路包括输入端、输出端和电压反馈端, 所述输入端电连接所述供 电电路的电源输入端, 所述输出端电连接线缆, 所述电压反馈端通过反馈电阻检 测所述输出端的输出电压, 所述降压电路用于降低所述电源输入端的电压, 并提 供给所述线缆, 以及, 根据所述电压反馈端检测到的电压信号调节所述输出端输 出电压的幅值;
所述缓启动电路的第一端电连接所述降压电路的输出端,第二端电连接所述 反馈电阻与所述电压反馈端的公共端, 所述缓启动电路用于当所述电源上电时, 升高所述电压反馈端的电压幅值,使所述降压电路根据所述电压反馈端的电压信 号降低输出电压的幅值,以使所述输出端输出电压的幅值缓慢上升到第一电压阈 值。
2、 根据权利要求 1所述的线缆节点单元的供电电路, 其特征在于, 所述缓 启动电路包括: 第一电阻、 第一电容及单向导通元件;
所述第一电容的一端作为所述缓启动电路的第一端,电连接所述降压电路的 输出端, 所述第一电容的另一端电连接所述第一电阻的一端, 所述第一电阻的另 一端接地;
所述单向导通元件的一端电连接所述第一电容与所述第一电阻的公共端,另 一端作为所述缓启动电路的第二端,电连接所述反馈电阻与所述电压反馈端的公 共端;
所述单向导通元件的导通方向与所述第一电容的充电电流方向相同。
3、 根据权利要求 1所述的线缆节点单元的供电电路, 其特征在于, 还包括: 一端与所述电源输入端电连接, 另一端与接地端电连接的电流吸收电路, 用于吸 收所述线缆节点单元的供电电路中的冲击电流。
4、 根据权利要求 3所述的线缆节点单元的供电电路, 其特征在于, 所述电 流吸收电路包括阻值大于预设阻值的电阻。
5、 根据权利要求 1所述的线缆节点单元的供电电路, 其特征在于, 还包括: 串联在所述电源输入端和所述降压电路输入端之间的防电流倒灌电路,用于使所 述线缆节点单元的供电电路中的电流单向流通。
6、 根据权利要求 1所述的线缆节点单元的供电电路, 其特征在于, 还包括: 输入端与所述电源输入端电连接, 输出端与接地端电连接的电压箝位电路, 用于 当所述输入端的电压增大时, 将所述输入端的电压箝位在第二电压阈值, 所述第 二电压阈值不大于所述供电电路的额定电压。
7、 根据权利要求 1所述的线缆节点单元的供电电路, 其特征在于, 所述降 压电路还包括使能端;
所述线缆节点单元的供电电路还包括: 分批启动电路, 所述分批启动电路的 输入端与所述电源输入端电连接, 输出端与所述降压电路的使能端电连接, 用于 当线缆的上一节点单元的运行稳定后, 控制所述当前节点单元的降压电路启动。
8、 根据权利要求 1所述的线缆节点单元的供电电路, 其特征在于, 所述分 批启动电路包括: 第二电阻和第三电阻;
所述第二电阻和所述第三电阻串联于电源输入端和接地端之间,且所述第二 电阻和所述第三电阻的公共端电连接所述降压电路的使能端。
9、 一种线缆供电系统, 其特征在于, 包括电源、 至少两个权利要求 1 至 8 任一项所述的线缆节点单元的供电电路, 及各节点单元的功能电路; 其中, 各个所述节点单元的功能电路依次串联;
各个所述节点单元的供电电路的电源输入端, 均连接所述电源的电源输出 端, 所述供电电路的电源输出端连接对应的功能电路的供电端。
10、 一种线缆供电方法, 其特征在于, 应用于线缆供电系统中, 所述线缆供 电系统包括电源和降压电路, 所述降压电路包括输入端、 输出端和电压反馈端, 线缆上节点单元的电源输入端与所述电源电连接,输出端与所述节点单元的功能 电路电连接, 所述电压反馈端通过反馈电阻连接所述输出端, 所述降压电路能够 根据所述电压反馈端检测到的电压信号调节所述输出端输出电压的幅值;所述方 法包括:
当检测到线缆中上一节点单元运行稳定后,控制当前节点单元的降压电路启 动;
当所述降压电路上电时, 升高所述电压反馈端的电压幅值, 使所述降压电路 降低输出电压的幅值,以使所述降压电路输出端的输出电压的幅值缓慢上升到第 一电压阈值。
PCT/CN2014/074309 2014-03-28 2014-03-28 线缆节点单元的供电电路、系统及供电方法 WO2015143720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/074309 WO2015143720A1 (zh) 2014-03-28 2014-03-28 线缆节点单元的供电电路、系统及供电方法
CN201480050977.2A CN105706348B (zh) 2014-03-28 2014-03-28 线缆节点单元的供电电路、系统及供电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074309 WO2015143720A1 (zh) 2014-03-28 2014-03-28 线缆节点单元的供电电路、系统及供电方法

Publications (1)

Publication Number Publication Date
WO2015143720A1 true WO2015143720A1 (zh) 2015-10-01

Family

ID=54193951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074309 WO2015143720A1 (zh) 2014-03-28 2014-03-28 线缆节点单元的供电电路、系统及供电方法

Country Status (2)

Country Link
CN (1) CN105706348B (zh)
WO (1) WO2015143720A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736680A (zh) * 2020-05-28 2020-10-02 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302051A (zh) * 2018-09-27 2019-02-01 深圳市大迈科技有限公司 控制器上电控制电路和控制装置
CN111697823A (zh) * 2019-03-14 2020-09-22 深圳Tcl新技术有限公司 一种电源开关电路
CN114185382A (zh) * 2020-09-15 2022-03-15 大唐移动通信设备有限公司 一种动态调压方法、系统及动态调压电源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014142A (ja) * 2005-06-30 2007-01-18 Canon Inc 電源制御装置及び撮像装置
US20080136382A1 (en) * 2006-12-06 2008-06-12 Texas Instruments Incorporated Reference voltage generator for reduced voltage overshoot in a switch mode regulator at the end of soft-start
US20090021227A1 (en) * 2007-07-17 2009-01-22 Takashi Sase Power-supply device, ic circuit, and information processing apparatus, and soft-start control method
CN102685673A (zh) * 2012-05-18 2012-09-19 奇点新源国际技术开发(北京)有限公司 一种线缆系统
CN103546031A (zh) * 2012-07-09 2014-01-29 晶豪科技股份有限公司 具有缓启动电路的电压转换器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563066B2 (ja) * 2002-04-02 2004-09-08 ローム株式会社 電源装置及びそれを備えた携帯機器
JP4673046B2 (ja) * 2004-11-26 2011-04-20 ザインエレクトロニクス株式会社 スイッチング電源
JP5640562B2 (ja) * 2010-08-26 2014-12-17 ミツミ電機株式会社 多出力電源装置
CN202333771U (zh) * 2011-10-14 2012-07-11 中联重科股份有限公司 一种电源保护电路以及工程机械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014142A (ja) * 2005-06-30 2007-01-18 Canon Inc 電源制御装置及び撮像装置
US20080136382A1 (en) * 2006-12-06 2008-06-12 Texas Instruments Incorporated Reference voltage generator for reduced voltage overshoot in a switch mode regulator at the end of soft-start
US20090021227A1 (en) * 2007-07-17 2009-01-22 Takashi Sase Power-supply device, ic circuit, and information processing apparatus, and soft-start control method
CN102685673A (zh) * 2012-05-18 2012-09-19 奇点新源国际技术开发(北京)有限公司 一种线缆系统
CN103546031A (zh) * 2012-07-09 2014-01-29 晶豪科技股份有限公司 具有缓启动电路的电压转换器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736680A (zh) * 2020-05-28 2020-10-02 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质
WO2021238266A1 (zh) * 2020-05-28 2021-12-02 广东浪潮智慧计算技术有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质
CN111736680B (zh) * 2020-05-28 2022-04-22 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质
US11977401B2 (en) 2020-05-28 2024-05-07 Guangdong Inspur Smart Computing Technology Co., Ltd. Power supply soft-start control method, control apparatus and control device, and storage medium

Also Published As

Publication number Publication date
CN105706348A (zh) 2016-06-22
CN105706348B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
AU2017215235B2 (en) Adapter and charging control method
US8064179B2 (en) Integrated circuit including a switching regulator design for power over Ethernet devices
CN106104997B (zh) 用于防止总线电压下降的方法和系统
US10700515B2 (en) Power supply with surge voltage protection
TW201505305A (zh) 過電流保護電路以及其伺服器
CN102546188B (zh) 电源电路及电源电路的控制方法
CN104022489B (zh) 具有自动重启和软启动功能的电源短路保护系统及方法
US9065272B2 (en) Scalable power supply circuit including protection features
WO2015143720A1 (zh) 线缆节点单元的供电电路、系统及供电方法
CN107276401A (zh) 本质上安全的功率调节电路
CN113964808B (zh) 一种热插拔线路输入端尖峰脉冲抑制装置
CN104332958A (zh) 一种过压保护电路及方法
CN111224374B (zh) 一种保护电路
WO2015143716A1 (zh) 信息转换器的供电电路、系统及供电方法
CN114336561A (zh) 一种直流浪涌电压抑制电路
CN109196751B (zh) 一种充电装置及终端
CN105337513A (zh) 电源转换装置及其过功率保护方法
EP2738932A1 (en) Secondary power system and method for suppressing voltage transient in the secondary power system
CN116316493A (zh) 短路电流抑制电路、服务器设备及过流抑制电路
CN205724876U (zh) 一种非隔离供电pse设备端口浪涌防护电路
US9654022B2 (en) Power conversion device and control method thereof
CN111697551B (zh) 一种电压保护电路以及电子设备
CN114268215B (zh) 一种基于dcr电流采样的并联均流电源系统
CN111725786B (zh) 一种电子设备、电源及其电源电路
CN217824231U (zh) 一种超前响应本安保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14887081

Country of ref document: EP

Kind code of ref document: A1