WO2015143716A1 - 信息转换器的供电电路、系统及供电方法 - Google Patents

信息转换器的供电电路、系统及供电方法 Download PDF

Info

Publication number
WO2015143716A1
WO2015143716A1 PCT/CN2014/074301 CN2014074301W WO2015143716A1 WO 2015143716 A1 WO2015143716 A1 WO 2015143716A1 CN 2014074301 W CN2014074301 W CN 2014074301W WO 2015143716 A1 WO2015143716 A1 WO 2015143716A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
current
switch tube
control
Prior art date
Application number
PCT/CN2014/074301
Other languages
English (en)
French (fr)
Inventor
邵起明
Original Assignee
奇点新源国际技术开发(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇点新源国际技术开发(北京)有限公司 filed Critical 奇点新源国际技术开发(北京)有限公司
Priority to PCT/CN2014/074301 priority Critical patent/WO2015143716A1/zh
Priority to CN201480050952.2A priority patent/CN105684313B/zh
Publication of WO2015143716A1 publication Critical patent/WO2015143716A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • H03K17/284Modifications for introducing a time delay before switching in field effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • H03K5/134Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices with field-effect transistors

Definitions

  • the present invention relates to the field of power supply circuit technologies, and in particular, to an information converter power supply circuit, a system, and a power supply method.
  • Mine card readers are mainly used for tracking and identifying workers entering the mine.
  • the information converter is an important device inside it. It is connected to the beginning of the mine card reader cable to drive the cable for information conversion and data interaction.
  • the voltage rises from 0 to the power supply voltage instantaneously. Therefore, the current in the circuit will rise instantaneously to form an inrush current.
  • the inrush current will not only damage the electrical equipment itself, but also release a huge amount of inrush current. Energy, may ignite an explosive gas mixture.
  • the mine is an environment containing an explosive gas mixture
  • the electrical equipment in the mine is required to have certain explosion-proof performance. Therefore, when the information converter is applied to an environment containing an explosive gas mixture such as a mine or a tunnel, how to suppress overcurrent and overvoltage becomes an urgent problem to be solved.
  • the present invention provides a power supply circuit, system, and power supply method for an information converter to reduce an inrush current in a power supply circuit of an information converter.
  • the present invention provides a power supply circuit for an information converter, including a delay start circuit and a switch tube, wherein the switch tube includes an input end, an output end, and a control end, and the input end of the switch tube is connected to the power supply.
  • the output end of the switch tube is connected to a power supply end of each functional module in the information converter;
  • the delay start circuit includes an input end and an output end, the input end of the delay start circuit is connected to the power source, and the output end of the delay start circuit is connected to the control end of the switch tube;
  • the delay start circuit is an RC delay circuit, including a first capacitor and a first resistor; One end of the first capacitor is connected to the power source, and the other end of the first capacitor is connected to the ground through the first resistor; a common end of the first resistor and the first capacitor is connected to the switch tube Control terminal;
  • the current feedback circuit is connected in series between the power source and the input end of the switch tube through a first input end and the second input end, and an output end of the current feedback circuit is connected to a control end of the switch tube.
  • the current feedback circuit is configured to adjust a voltage provided by the output terminal to the control terminal of the switch tube to reduce the flow when the first input end and the second input end detect that the current in the power supply circuit increases Current through the switch.
  • the current feedback circuit comprises: a current shunt detection circuit and a detection resistor, the current shunt detection circuit comprising a positive input terminal, a negative input terminal and an output terminal;
  • the current shunt detection circuit is connected in parallel to the two ends of the detecting resistor through the positive input terminal and the negative input terminal, and the common terminal connected to one end of the detecting resistor is used as the current feedback circuit a first input end, a common end of the negative input terminal connected to the other end of the detecting resistor as a second input end of the current feedback circuit, and an output end of the current shunt detection circuit is the current feedback circuit Output
  • the sequentially starting control unit comprises: a control unit and a plurality of control switches, each control switch corresponding to a function module;
  • Each of the control switches is connected in series between an output end of the switch tube and a corresponding function module through an input end and an output end, and a control end of the control switch is connected to a control signal output end of the control unit;
  • the control unit is configured to control the control switch corresponding to the current function module to be turned on when detecting that the previous function module is started.
  • the present invention also provides a power supply system for an information converter, comprising a power supply and a power supply circuit of the information converter described above.
  • the present invention further provides a power supply method for an information converter, which is used for a power supply system of an information converter.
  • the power supply system includes at least a power supply and a switch tube, and includes:
  • the switch tube When the power is turned on, the voltage of the control terminal of the switch tube is gradually changed, so that the voltage difference between the control end and the input end of the switch tube is gradually changed, thereby gradually increasing the current in the switch tube. Finally, the switch tube is switched from an off state to an on state.
  • the method further includes:
  • the voltage at the control terminal of the switching transistor is adjusted to reduce the current in the supply circuit.
  • the method further includes: after detecting that the switch tube is turned on, sequentially controlling each function module in the information converter to start.
  • the power supply circuit of the information converter provided by the invention is connected with a delay start circuit on the switch tube of the power supply circuit.
  • the delay start circuit When the power supply connected to the power supply circuit is powered on, the voltage of the control terminal of the switch tube is gradually changed by the delay start circuit.
  • the voltage difference between the input end and the control end of the switch tube gradually changes, so that the current in the switch tube is gradually increased, and finally the switch tube is switched from the off state to the on (on) state, that is, the supply current of the information converter.
  • the delay start circuit is realized by the RC delay circuit, has high reliability, simple circuit structure, small volume, easy integration, and low cost.
  • the power supply circuit of the information converter is further provided with a current feedback circuit.
  • the current in the power supply circuit is suddenly increased, the voltage of the control terminal of the switch tube is adjusted to reduce the conduction current of the switch tube, thereby making the power supply The output current is reduced, and the sudden increase of the current is suppressed, further improving the safety of the information converter power supply circuit.
  • the power supply circuit of the information converter is further provided with a sequence start circuit, which can control each function module of the information converter to be activated one by one, to ensure that the previous function module has been started, and then start the next function module to make the current of the information converter The phase rises slowly, which effectively reduces the pulse current generated when the entire information converter is started.
  • the power supply circuit of the information converter is further provided with an anti-current backflow circuit. After the power is turned on, the output voltage first passes through the anti-current backflow circuit to prevent reverse current from being generated by the power supply connection, and at the same time, the positive and negative poles of the power supply are prevented from being reversed. The safety of the information converter power supply circuit is further improved.
  • the power supply circuit of the information converter is provided with an anti-current backflow circuit, a delay start circuit, a current feedback circuit, a start-up circuit and a switch circuit for controlling the circuit to be turned on and off. It can suppress the inrush current when the information converter is powered on, power off, short circuit, open circuit, etc., and avoid the impact of large inrush current on the circuit. Through the interaction of the above various circuits, the power supply circuit of the information converter satisfies the intrinsically safe circuit. Provisions. DRAWINGS
  • FIG. 1 is a schematic diagram of a power supply circuit of an information converter according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of a delay start circuit according to an exemplary embodiment
  • FIG. 3 is a schematic diagram of currents simultaneously activated by respective functional modules in the information converter
  • FIG. 4 is a schematic diagram of currents that are activated one by one for each functional module in the information converter
  • FIG. 5-1 is a block diagram of another information converter power supply circuit according to an exemplary embodiment.
  • FIG. 5-2 is a schematic diagram of another information converter power supply circuit according to an exemplary embodiment.
  • FIG. 7 is a schematic diagram of a power supply circuit of another information converter according to an exemplary embodiment
  • FIG. 8 is a schematic diagram of a starting current when each functional module is simultaneously started
  • FIG. 9 is a schematic diagram of a starting current when each functional module is sequentially activated.
  • FIG. 10 is a schematic diagram of a power supply circuit of another information converter according to an exemplary embodiment.
  • FIG. 11 is a schematic flow chart of a power supply method of an information converter according to an exemplary embodiment.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Before describing an embodiment of the present invention, an intrinsically safe circuit is described. When an electrical device is used in an explosive mixture environment such as coal, petroleum, chemical, textile, etc., it is required to comply with the intrinsically safe circuit.
  • Intrinsically safe circuits are those in which any electrical spark or any thermal effect generated by the circuit under standard conditions does not ignite the specified explosive gas mixture.
  • the standard specified conditions include a normal working state and a specified fault state, wherein the normal working state refers to a normal working state of the circuit under the specified conditions of the design, including circuit power-on and power-off operations; when the circuit is turned on or off It always releases a certain amount of energy in the form of a spark.
  • the fault condition refers to the condition that the non-protective component in the circuit is damaged or short-circuited, open circuited, and power failure.
  • the present invention provides a power supply circuit for a information converter
  • the power supply circuit includes a switch tube and a delay start circuit, and a delay start circuit is connected to the control end of the switch tube, and the delay start circuit is powered.
  • the power supply connected to the circuit is powered on, the voltage at the control terminal of the control switch is slowly changed, so that the switch tube is slowly turned on. That is, the length of time from the power-on to the switch is extended.
  • the overshoot current caused by the instant opening of the switch tube is avoided, the overcurrent in the information converter subsystem is reduced, and the safety of the power supply circuit of the information converter is improved.
  • FIG. 1 is a schematic diagram of a power supply circuit of an information converter for providing an operating voltage to an information converter, according to an exemplary embodiment.
  • the power supply circuit includes: a delay start circuit 1 and a switch tube 0.
  • the delay start circuit 1 includes an input end and an output end;
  • the switch tube Q includes an input end, an output end, and a control end.
  • the input end of the switch tube Q is connected to the power source 2, and the output end is connected to the power supply end of each function module in the information converter.
  • the delay start circuit 1 When the power source 2 is powered on, the voltage at the output end of the delay start circuit 1 changes slowly, so that the voltage difference between the control end and the input end of the switch tube Q gradually changes, thereby causing the current in the switch tube Q to gradually increase.
  • the switching transistor Q When the voltage difference reaches the turn-on voltage of the switching transistor Q, the switching transistor Q is turned on. Therefore, the switch tube is slowly turned on from the off state, that is, the length of time from the power supply 2 to the switch Q is extended. Avoiding the power supply 2 - power-on, the switch Q is turned on immediately, which causes the occurrence of an inrush current in the power supply circuit. Therefore, the delay start circuit reduces the overcurrent in the power supply circuit of the information converter, thereby improving the The safety of the power supply circuit.
  • the switching transistor Q is an NMOS transistor (N-Mental-Oxide-Semiconductor, N-type metal-oxide-semiconductor)
  • the output voltage of the output terminal of the delay starting circuit 1 is gradually lowered due to the Q input.
  • the voltage at the terminal is basically constant, so the voltage difference between the input terminal and the control terminal of Q gradually increases. During this process, the current in Q gradually increases.
  • Q turns on. .
  • FIG. 2 is a circuit diagram of a delay start circuit for providing an operating voltage to an information converter, according to an exemplary embodiment.
  • the delay start circuit is an RC delay circuit.
  • the RC delay circuit includes a capacitor C1 and a resistor R1;
  • the switch tube Q can adopt a MOS tube, wherein the source S is an input end of the switch tube Q, the drain D is an output end of the switch tube Q, and the gate G is a control end of the switch tube Q.
  • the NMOS transistor can be used with RF9317. FET chip implementation.
  • the switch tube can also be implemented by other transistors having switching characteristics, and is not limited to an implementation manner of the MOS transistor.
  • the switch tube is realized by a PN type transistor
  • the base of the PN type transistor is the control end of the switch tube
  • the collector is the input end of the switch tube
  • the emitter is the output end of the switch tube.
  • One end of the capacitor C1 is connected to the output end of the power source 2, the output voltage of the power source 2 is VCC_M, and the other end of the capacitor C1 is connected to the ground terminal through the resistor R1, and this end is connected to the control end of the switch tube Q (the gate G of the MOS tube).
  • the delay start circuit provided in this embodiment is applied to the power supply circuit of the information converter.
  • the operating voltage of the information converter can be 18V, and the parameters of the delay circuit need to meet the requirement of 18V working voltage.
  • Capacitor C1 and resistor R1 form an RC delay circuit. Since the capacitor has a characteristic that the voltage cannot be abrupt, when the power supply 2 is powered up, the capacitor C1 is charged. When the power supply 2 is powered on, the capacitor C1 is equivalent to a short circuit, and the gate of the switch Q is connected. The voltages of the pole G and the source S are equal. As the capacitor C1 is continuously charged, the charging current flows through the RC delay circuit, the charging current is continuously reduced, and the voltage drop across the resistor R1 is slowly decreased, that is, the gate-source voltage U es of the switching transistor Q is gradually increased. Until the charging of the capacitor C1 is completed, the charging current is reduced to 0.
  • the power supply circuit further includes a resistor R2 connected in parallel across the capacitor C1, and the resistor R1 and the resistor R2 are connected in series to the power supply.
  • the output voltage VCC_M of 2 is divided. After the capacitor C1 is charged, the voltage at the control terminal of the switching transistor Q is stabilized as the voltage drop across the resistor R1 after the resistors R1 and R2 are divided. The voltage at the input of the switching transistor Q is the output voltage VCC_M of the power supply 2.
  • the voltage dividing ratio of the resistor R1 and the resistor R2 is such that the gate-source voltage U es of the switching transistor is greater than the turn-on voltage U T of the MOS transistor, so that the switching transistor Q is turned on.
  • FIG. 3 is a schematic diagram of current when the switch tube is turned on when the delay start circuit is not added
  • FIG. 4 is a schematic diagram of current when the switch tube is turned on after the delay start circuit is added according to the embodiment of the present invention.
  • the power supply 2 is powered up, and thereafter, the current i rises slowly, and after the time t2, the current i is stabilized at 1, and no inrush current is generated from the time period t1 to t2.
  • the delay start circuit provided in this embodiment is implemented by using an RC delay circuit, and has a simple circuit structure, small volume, and low integration cost.
  • the power supply circuit of the information converter provided by the embodiment is realized by the cooperation function of the delay start circuit and the switch tube, and when the power is turned on, the voltage of the control terminal of the switch tube is slowly increased by the delay start circuit, so that the switch tube is cut off.
  • the status is slowly turned on. That is, the length of time from the power-on to the switching tube is prolonged, and finally the current flowing in the switching tube is slowly increased, so that the current of the control information converter's power supply circuit rises slowly at the startup.
  • the overshoot current caused by the instant opening of the switch tube is avoided, the overcurrent in the information converter subsystem is reduced, and the safety of the power supply circuit of the information converter is improved.
  • the power supply circuit includes: a delay start circuit 1, a switch tube Q, and a current feedback circuit 3.
  • the circuit inside the delay start circuit 1 is the same as the circuit shown in Figure 1 and Figure 2, and will not be described here.
  • the current feedback circuit 3 includes a first input end, a second input end and an output end, the first input end is connected to the output end of the power source 2, and the second input end is connected to the input end of the switch tube Q; the current feedback circuit 3 The output end is connected to the control end of the switch tube Q.
  • FIG. 5-2 is a schematic diagram of a power supply circuit of an information converter for providing an operating voltage to an information converter according to an exemplary embodiment.
  • the current feedback circuit 3 includes a current shunt detection circuit 31 and a sense resistor R3, wherein the resistance of R3 is small.
  • the current shunt detection circuit 31 includes a positive input terminal +IN, a negative input terminal -IN, and Output OUT.
  • the current shunt detection circuit 31 can be implemented by the current shunt detection chip AD8219.
  • the current shunt detection circuit 31 is connected in parallel to the two ends of the detecting resistor R3 through the positive input terminal +IN and the negative input terminal -IN, and the common terminal connected to the positive input terminal +IN and R3 serves as the first input terminal of the current feedback circuit 3, and is connected to the power supply.
  • the output terminal of the negative input terminal -IN and R3 serves as the second input terminal of the current feedback circuit 3, and is connected to the input terminal of the delay start circuit 1.
  • the output terminal OUT of the current shunt detection circuit 31 is connected to the control terminal of the switch transistor Q as the output terminal of the current feedback circuit 3 (the G pole of the NMOS transistor in Fig. 5-2).
  • FIG. 6 a schematic diagram of a feedback control process of the current feedback circuit is shown.
  • the positive input terminal and the negative input terminal of the current shunt detection circuit 31 can detect that the voltage drop across the resistor R3 increases, and the voltage amplitude of the output terminal OUT increases, thereby causing the G voltage of the switch Q to increase, due to the switch tube.
  • the voltage at the input terminal of Q is substantially constant (a voltage drop of R3 is smaller than the output voltage VCC_M of the power source 2), and therefore, the gate-source voltage difference Vgs of the switching transistor Q is decreased. Further, the on-current of the switching transistor Q is reduced, and finally the output current of the power supply is reduced to achieve the purpose of suppressing the overshoot current.
  • the positive input terminal +IN is connected to one end of the resistor R3 through the capacitor C2
  • the negative input terminal -IN is connected to the other end of the resistor R3 through the capacitor C3, the capacitor C2.
  • the effect of C3 and C3 is that the chip is only amplified for a sudden increase in pulse current.
  • the output terminal OUT of the chip AD8219 is connected to the control terminal of the switch tube Q through a resistor R4.
  • One end of the capacitor C4 is connected to the resistor R4, and the other end is connected to the ground terminal.
  • the functions of R4 and C4 are filtered to filter out the pulse generated during power-on. Current.
  • a diode D1 and a capacitor C5 are sequentially connected between the resistor R4 and the control terminal of the switch tube Q, and the function of C5 is also blocked.
  • D1 acts as a unidirectional conduction, and prevents the voltage of the current shunt detection circuit 31 from being affected when the voltage of the G pole of the switching transistor Q is higher than the voltage output from the current shunt detection circuit 31.
  • a current feedback circuit is added.
  • the voltage at the control end of the switch tube is adjusted to reduce the conduction current of the switch tube.
  • the output current of the power supply is reduced, and the sudden increase of the current is suppressed, further improving the safety of the information converter power supply circuit.
  • the information converter includes a plurality of function modules, each of which can implement a corresponding function, and each function module generates a pulse current ⁇ at startup, and if each function module is simultaneously activated, the pulse current in the circuit is each function.
  • the sequential starting circuit 4 provided in this embodiment controls each functional module to be activated one by one to reduce the pulse current in the circuit.
  • the sequence start circuit 4 includes a plurality of control switches ⁇ , and a control unit 41, wherein the number of control switches ⁇ is the same as the number of function modules in the information converter, and each control switch correspondingly controls one function module, through the control unit 41, the control switch ⁇ is sequentially closed, thereby sequentially closing the power supply loop of each of the functional modules, that is, each functional module is sequentially powered, sequentially activated, and not simultaneously started.
  • the information converter includes n functional modules, and the corresponding control switches ⁇ are n, respectively K1, ⁇ 2... ⁇ , as shown in Fig. 7, the input end of K1 is connected to the output end of the switch tube Q, K1 The output end is connected to the power supply end of the function module (1), the control end of K1 is connected to the first output end of the control unit 41; the input end of the ⁇ 2 is connected to the output end of the switch tube Q, and the output end of the ⁇ 2 is connected to the function module (2) The power supply end, the control end is connected to the second output end of the control unit 41; and so on, the input end of the ⁇ is connected to the output end of the switch tube Q, the output end of the ⁇ is connected to the power supply end of the function module ( ⁇ ), and the control end is connected to the control unit 41.
  • the nth output is connected to the input end of K1 is connected to the output end of the switch tube Q, K1 The output end is connected to the power supply end of the function module (1), the control
  • each function module The startup time of each function module is very short, only a few milliseconds. Therefore, after the switch tube Q is closed, the control unit 41 controls each function module to be sequentially activated, and sequentially controls each control switch to be closed according to a preset time interval (for example, 10 milliseconds), to ensure that the previous function module has been started, and then restarts.
  • a function module ensures that the current of the information converter is slowly increased in stages, thereby effectively reducing the pulse current generated when the entire information converter is started.
  • Fig. 8 is a schematic diagram of the starting current when each functional module is started at the same time
  • Fig. 9 is a schematic diagram of the starting current when each functional module is started in sequence.
  • the pulse current generated by the simultaneous activation of each functional module is large, and the pulse current is superimposed on one On the basis of a larger current I, the pulse current in the circuit is large.
  • the pulse current in the circuit is the pulse current corresponding to the currently activated function module, and the operating current of the pulse current superimposed in the circuit is the function module that has been activated.
  • the sum of the operating currents is based on.
  • the pulse current in the circuit is the pulse current of the function module (1).
  • the total current in the circuit is Ii+Ai.
  • the pulse current in the circuit is ⁇ 2 .
  • the total current in the circuit is ⁇ ⁇ ; and so on.
  • sequential starting circuit provided in this embodiment may also be implemented by other forms of circuits, and any circuit capable of sequentially controlling each functional module to be sequentially activated is a scope to be protected by the present invention.
  • FIG. 10 is a schematic diagram showing a power supply circuit of still another information converter for providing an operating voltage to an information converter, according to an exemplary embodiment.
  • the power supply circuit includes: a switch tube Q, a delay start circuit 1, a current feedback circuit 3, a sequence start circuit 4, and an anti-current back-up circuit 5.
  • the delay start circuit 1 the current feedback circuit 3, and the sequential start circuit 4 refer to the description in the above embodiment, and details are not described herein again.
  • the anti-current backflow circuit 5 is connected in series between the output end of the power source 2 and the input end of the delay start circuit 1, and functions as a single-pass to prevent reverse current from flowing, thereby preventing the power source 2 from being reversely connected, that is, the power source is positive.
  • the negative pole is reversed.
  • the anti-current reflow circuit 5 can be implemented by a single-conducting element (for example, a diode), the anode of the diode is connected to the output end of the power source 2, and the cathode is connected to the input end of the delay-starting circuit 1, and only the power source 2 is allowed. The current flowing out passes.
  • a single-conducting element for example, a diode
  • the anti-current backflow circuit 5 can be implemented by two diodes connected in series, and the conduction directions of the two diodes are the same, because the intrinsically safe circuit standard will Assuming a diode fails, when one of the diodes fails, another diode can be used to prevent reverse current, further improving the safety of the power supply circuit.
  • the power supply circuit of the information converter provided in this embodiment is provided with an anti-current backflow circuit, a delay start circuit, a current feedback circuit, a sequential start circuit, and a switch tube for controlling the circuit to be turned on and off.
  • the output voltage first passes through the anti-current reflow circuit to prevent the reverse connection of the power supply.
  • the voltage of the control terminal of the switch is slowly changed after the delay start circuit, so that the switch tube is slowly turned on from the off state, avoiding the instant. Startup brings big Overshoot current.
  • each function module in the control information converter is started one by one by sequentially starting the circuit, thereby greatly reducing the pulse current when the function module is started.
  • the present invention further provides a power supply system for the information converter, the power supply system comprising the power supply circuit provided by any of the above embodiments, and a power supply.
  • the power source can be integrated with the power supply circuit and can be an independent power source.
  • the power source is regulated in accordance with an intrinsically safe circuit.
  • step S11 after detecting that the power is turned on, the voltage of the control end of the switch tube is gradually changed, so that the voltage difference between the control end and the input end of the switch tube is gradually changed, thereby making the switch tube The current gradually increases, eventually turning the switching tube from the off state to the on state.
  • the voltage of the control terminal is controlled to change slowly, so that the switch tube is slowly turned on from the off state, and the length of time from the power-on of the power supply to the conduction of the switch tube is prolonged.
  • the switch tube can be implemented by a MOS tube or other transistors having switching characteristics, which is not limited by the present invention.
  • step S12 after the switch is turned on, the respective function modules in the information converter are sequentially controlled to be activated.
  • the method may further include the following steps:
  • the current in the switching tube can be reduced by adjusting the voltage of the control terminal of the switching tube, thereby reducing the current output of the power supply.
  • the current change in the circuit that is fed back adjusts the current in the power supply circuit, and suppresses the rapid rise of the current in the power supply circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种信息转换器的供电电路、系统及供电方法,涉及供电电路技术领域。所述供电电路包括控制电路通断的开关管和延时启动电路,当供电电路连接的电源上电时,通过延时启动电路控制开关管控制端的电压缓慢上升,从而使开关管从截止状态缓慢开启(导通),进而使开关管输出端的输出电压缓慢上升,即信息转换器的供电电压缓慢上升。避免了开关管即时开启带来的过冲电流,降低了信息转换器的供电电路中的过电流,提高了信息转换器的供电电路安全性。

Description

信息转换器的供电电路、 系统及供电方法
技术领域 本发明涉及供电电路技术领域,尤其涉及信息转换器供电电路、系统及供电方法。 背景技术 矿用读卡器主要用于对进入矿井的工作人员进行跟踪识别。信息转换器是其内部 的一个重要装置, 它连接在矿用读卡器线缆的起始端, 用于驱动所述线缆, 实现信息 转换和数据交互等功能。
电气设备在上电瞬间, 电压瞬间从 0上升到电源供电电压, 因此, 电路内的电流 会瞬间升高形成冲击电流,冲击电流不但会使电气设备本身损坏, 而且在产生冲击电 流时释放的巨大能量, 可能会引爆爆炸性气体混合物。
由于矿井属于含有爆炸性气体混合物的环境,要求矿井中的电气设备具有一定的 防爆性能。 因此, 当所述信息转换器应用于矿井、 隧道等含有爆炸性气体混合物的环 境时, 如何抑制过电流、 过电压成为亟待解决的问题。
发明内容 本发明提供了一种信息转换器的供电电路、系统及供电方法, 以降低信息转换器 的供电电路中冲击电流。
为了解决上述技术问题, 本发明实施例公开了如下技术方案:
第一方面,本发明提供一种信息转换器的供电电路,包括延时启动电路和开关管, 其中, 所述开关管包括输入端、 输出端和控制端, 所述开关管的输入端连接电源, 所 述开关管的输出端连接所述信息转换器内的各个功能模块的供电端;
所述延时启动电路包括输入端和输出端,所述延时启动电路的输入端连接所述电 源, 所述延时启动电路的输出端连接所述开关管的控制端;
所述延时启动电路, 用于当所述电源上电时, 控制所述延时启动电路输出端的输 出电压幅值逐渐变化, 使所述开关管的控制端与输入端之间的电压差逐渐变化,进而 使所述开关管中的电流逐渐增大, 最终使所述开关管从截止状态转换为导通状态。
优选地, 所述延时启动电路为 RC延时电路, 包括第一电容和第一电阻; 所述第一电容的一端连接所述电源,所述第一电容的另一端通过所述第一电阻连 接接地端; 所述第一电阻和所述第一电容的公共端连接所述开关管的控制端;
所述延时启动电路, 具体用于当所述电源上电时, 开始为所述第一电容充电, 所 述延时启动电路输出端的输出电压在充电时间内逐渐降低,以使所述开关管的控制端 与输入端之间的电压差在充电时间内逐渐增大, 进而使所述开关管中的电流逐渐增 大, 直到所述第一电容充电结束使所述开关管导通。
优选地, 所述信息转换器的供电电路还包括: 电流反馈电路, 包括第一输入端、 第二输入端和输出端;
所述电流反馈电路通过第一输入端和所述第二输入端串联于所述电源和所述开 关管的输入端之间,所述电流反馈电路的输出端连接所述开关管的控制端,所述电流 反馈电路用于通过所述第一输入端和所述第二输入端检测到供电电路中的电流增大 时,调节所述输出端提供给所述开关管控制端的电压,以降低流经所述开关管的电流。
优选地, 所述电流反馈电路包括: 电流分流检测电路和检测电阻, 所述电流分流 检测电路包括正极输入端、 负极输入端和输出端;
所述检测电阻串联在所述电源和所述开关管的输入端之间;
所述电流分流检测电路通过所述正极输入端和所述负极输入端并联在所述检测 电阻的两端,所述正极输入端与所述检测电阻的一端连接的公共端作为所述电流反馈 电路的第一输入端,所述负极输入端与所述检测电阻的另一端连接的公共端作为所述 电流反馈电路的第二输入端,所述电流分流检测电路的输出端为所述电流反馈电路的 输出端;
所述电流分流检测电路通过所述检测电阻上的压降检测到所述供电电路中的电 流增大时,所述电流分流检测电路输出端的电压幅值相应增大, 并提供给所述开关管 的控制端, 以降低流经所述开关管的电流。
优选地, 所述信息转换器的供电电路还包括: 串联于所述电源和所述延时启动电 路之间的防电流倒灌电路, 用于使所述供电电路单向导通。
优选地, 所述信息转换器的供电电路还包括: 依次启动控制单元, 用于控制所述 节点单元中的各个功能模块分时启动;
所述依次启动控制单元包括: 控制单元和多个控制开关, 每个控制开关对应一个 功能模块;
每个所述控制开关通过输入端和输出端串联于所述开关管的输出端和对应的功 能模块之间, 所述控制开关的控制端连接所述控制单元的一个控制信号输出端; 所述控制单元用于当检测上一功能模块启动完成时,控制当前功能模块对应的控 制开关导通。
第二方面, 本发明还提供一种信息转换器的供电系统, 包括电源及上述的信息转 换器的供电电路。
第三方面, 本发明还提供一种信息转换器的供电方法, 用于信息转换器的供电系 统, 所述供电系统至少包括电源和开关管, 包括:
当电源上电时, 调节所述开关管的控制端的电压逐渐变化, 使所述开关管的控制 端与输入端之间的电压差逐渐变化,进而使所述开关管中的电流逐渐增大,最终使所 述开关管从截止状态转换为导通状态。
优选地, 所述方法还包括:
当检测到所述电流增大时, 调节所述开关管控制端的电压, 以降低所述供电路中 的电流。
优选地, 所述方法还包括: 当检测到所述开关管导通后, 依次控制所述信息转换 器中的各个功能模块启动。
本发明提供的信息转换器的供电电路,在供电电路的开关管上连接一延时启动电 路, 当供电电路连接的电源上电时,通过延时启动电路控制开关管控制端的电压逐渐 变化, 使开关管的输入端与控制端之间的电压差逐渐变化,进而使开关管中的电流逐 渐增大, 最终使开关管从截止状态转换为导通(开启)状态, 即信息转换器的供电电 流缓慢上升, 避免了开关管即时开启带来的过冲电流, 因此, 降低了信息转换器的供 电电路中的过电流, 提高了信息转换器的供电电路安全性。 所述延时启动电路通过 RC延时电路实现, 可靠性高, 电路结构简单, 体积小, 易集成, 成本低。
所述信息转换器的供电电路还设置有电流反馈电路,当检测到供电电路中的电流 突然增大时, 调节开关管控制端的电压, 以使开关管的导通电流减小, 从而使电源的 输出电流减小, 抑制电流突然增大, 进一步提高了信息转换器供电电路的安全性。
所述信息转换器的供电电路还设置有依次启动电路,能够控制信息转换器的各个 功能模块逐个启动, 保证上一功能模块已经启动完成后, 再启动下一个功能模块, 使 信息转换器的电流缓慢分阶段上升,从而有效地减小了整个信息转换器启动时产生的 脉冲电流。
所述信息转换器的供电电路还设置有防电流倒灌电路,电源上电后输出的电压首 先经过防电流倒灌电路, 防止电源接反产生反向电流, 同时可以防止电源的正负极反 接, 进一步提高了信息转换器供电电路的安全性。 综上所述, 信息转换器的供电电路设置有防电流倒灌电路、 延时启动电路、 电流 反馈电路、 依次启动电路和控制电路通断的开关管。 能够在信息转换器上电、 下电、 短路、 断路等情况下抑制冲击电流, 避免大冲击电流对电路的冲击, 通过上述的各个 电路的共同作用, 使信息转换器的供电电路满足本质安全电路的规定。 附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据一示例性实施例示出的一种信息转换器的供电电路示意图; 图 2是根据一示例性实施例示出的一种延时启动电路示意图;
图 3是信息转换器中的各个功能模块同时启动的电流示意图;
图 4是信息转换器中的各个功能模块逐个启动的电流示意图;
图 5-1是根据一示例性实施例示出的另一种信息转换器供电电路的框图; 图 5-2是根据一示例性实施例示出的另一种信息转换器供电电路的示意图 图 6是电流反馈电路的反馈控制过程示意图;
图 7是根据一示例性实施例示出的又一种信息转换器的供电电路示意图; 图 8是各个功能模块同时启动时启动电流的示意图;
图 9是各个功能模块依次启动时的启动电流示意图;
图 10根据一示例性实施例示出了再一种信息转换器的供电电路示意图; 图 11根据一示例性实施例示出的一种信息转换器的供电方法流程示意图。 具体实施方式 在介绍本发明实施例之前, 对本质安全电路进行说明, 当电气设备应用在煤矿、 石油、 化工、 纺织等含有爆炸性混合物环境中时, 需要符合本质安全电路的规定。
本质安全电路是指当电路在标准规定条件下产生的任何电火花或任何热效应均 不能点燃规定的爆炸性气体混合物。所述标准规定条件包括正常工作状态和规定的故 障状态, 其中, 正常工作状态是指电路在设计规定条件下的正常工作的状态, 包括电 路上电、 下电操作; 当电路接通或断开时总是以火花形式释放一定的能量。 故障状态 是指电路中非保护性元件损坏或产生短路、 断路接地及电源故障等情况。
为实现本发明的目的, 本发明提供了一种信息转换器的供电电路, 该供电电路包 括开关管和延时启动电路,在开关管的控制端连接延时启动电路, 延时启动电路在供 电电路连接的电源上电时, 控制开关管控制端的电压缓慢变化, 使开关管缓慢导通, 即延长从电源上电到开关管导通的时长。避免了开关管即时开启带来的过冲电流, 降 低了信息转换器子系统中的过电流, 提高了信息转换器的供电电路的安全性。
以上是本发明的核心思想, 为了使本领域技术人员更好地理解本发明方案, 下面 将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清除、完整地描述, 显然, 所述描述的实施例仅是本发明一部分实施例, 而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
图 1是根据一示例性实施例示出的信息转换器的供电电路的示意图,该供电电路 用于为信息转换器提供工作电压。
如图 1所示, 所述供电电路包括: 延时启动电路 1和开关管0。 延时启动电路 1 包括输入端、 输出端; 开关管 Q包括输入端、 输出端和控制端。 开关管 Q的输入端 连接所述电源 2, 输出端连接信息转换器内各个功能模块的供电端。
延时启动电路 1的输入端连接电源 2, 输出端连接开关管 Q的控制端。 当所述信 息转换器应用于包含爆炸性气体混合物的环境时,所述电源 2采用符合本质安全电路 规定的电源, 下文简称本安电源。
当所述电源 2上电时, 延时启动电路 1输出端的电压缓慢变化, 使开关管 Q的 控制端与输入端之间的电压差逐渐变化, 进而使开关管 Q 中的电流逐渐增大, 当所 述电压差达到开关管 Q的开启电压时, 开关管 Q导通。 从而实现开关管从截止状态 缓慢导通, 即延长了从电源 2上电到开关管 Q导通的时长。 避免电源 2—上电, 开 关管 Q就即时导通, 进而导致供电电路中产生冲击电流的现象发生, 因此, 所述延 时启动电路降低了信息转换器的供电电路中过电流, 提高了所述供电电路的安全性。
例如, 开关管 Q为 NMOS管(N-Mental-Oxide- Semiconductor, N型金属-氧化物 -半导体) 时, 当电源 2上电时, 延时启动电路 1输出端的输出电压逐渐降低, 由于 Q输入端的电压基本不变, 因此 Q的输入端与控制端之间的电压差逐渐增大, 此过 程中, Q中的电流逐渐增大, 当电压差增大到 Q的开启电压时, Q导通。
图 2是根据一示例性实施例示出的一种延时启动电路的电路示意图,该供电电路 用于为信息转换器提供工作电压。
如图 2所示, 所述延时启动电路为 RC延时电路。 该 RC延时电路包括电容 C1 和电阻 R1 ;
所述开关管 Q可以采用 MOS管, 其中, 源极 S为开关管 Q的输入端, 漏极 D 为开关管 Q的输出端,栅极 G为开关管 Q的控制端。例如, NMOS管可以采用 RF9317 场效应管芯片实现。
需要说明的是, 所述开关管还可以采用其它具有开关特性的晶体管实现, 并不限 定于 MOS管一种实现方式。 例如, 当开关管通过 PN型三极管实现时, PN型三 极管的基极是开关管的控制端,集电极是开关管的输入端,发射极是开关管的输出端。
电容 C1 的一端连接电源 2的输出端, 电源 2的输出电压为 VCC_M, 电容 C1 的另一端通过电阻 R1连接接地端, 且该端连接开关管 Q的控制端( MOS管的栅极 G)。
本实施例提供的延时启动电路应用于信息转换器的供电电路中,该信息转换器的 工作电压可以是 18V, 延时电路的参数需要满足工作电压 18V的要求。
延时启动电路的工作过程如下:
电容 C1和电阻 R1构成 RC延时电路, 由于电容具有电压不能突变的特性, 当 电源 2上电后, 为电容 C1充电, 在电源 2上电瞬间, 电容 C1相当于短路, 开关管 Q的栅极 G和源极 S的电压相等。 随着电容 C1不断充电, RC延时电路中流经充电 电流, 充电电流不断减小, 电阻 R1 上的压降缓慢下降, 即开关管 Q 的栅源极电压 Ues逐渐升高。直到电容 C1充电完成, 充电电流降为 0, 此时, 电容 C1相当于断路, 开关管 Q的控制端的电压稳定为电阻 R1上的压降, 此时, 开关管 Q的栅源极电压 Ues大于开启电压 UT, 从截止状态转换为导通状态。 由此可知, 电源上电后, 开关 管的 Ues逐渐升高, 从截止状态缓慢转换为导通状态, 即延长了从电源上电到开关管 导通的时长。
供电电路还包括并联在电容 C1两端的电阻 R2, 电阻 R1和电阻 R2串联对电源
2的输出电压 VCC_M进行分压。 电容 C1充电完成后, 开关管 Q控制端的电压稳定 为电阻 R1和 R2分压后电阻 R1上的压降。 而开关管 Q的输入端的电压为电源 2的 输出电压 VCC_M。 电阻 R1和电阻 R2的分压比, 使得开关管的栅源电压 Ues大于 MOS管的开启电压 UT, 使开关管 Q导通。
由上述内容可知, 在开关管 Q从电源上电后缓慢导通的过程中, 栅源极的电压 差逐渐增大, 即开关管中从源极到漏极的电流(即供电电路中流通的电流)从 0缓慢 上升, 不会出现较大的脉冲电流。
下面结合图 3和图 4,说明信息转换器在不同的启动方式下对应的电流变化情况。 图 3为未增加延时启动电路时开关管开启时的电流示意图;图 4为本发明实施例提供 的增加延时启动电路后开关管开启时的电流示意图。
如图 3所示, 在 tl时刻, 电源 2上电, 电流 i从 0迅速上升到 Ι+ Δί, 随后电流 慢慢稳定为电流 I。
如图 4所示, 在 tl时刻, 电源 2上电, 之后, 电流 i缓慢上升, 到 t2时刻后, 电流 i稳定为 I,从 tl到 t2时间段内未产生冲击电流。 tl到 t2时间段的时长即 RC电 路的充电常数 T = R1C1。 在选取 R1和 C1 时, 根据从电源上电到运行稳定所需的时 间确定。
本实施例提供的延时启动电路采用 RC延时电路实现, 电路结构简单, 体积小, 易集成成本低。
需要说明的是, 本发明还可以采用其它的延时启动电路, 只要能够实现在电源上 电时,控制开关管控制端的电压缓慢上升, 从而使开关管中的电流缓慢上升的功能即 可, 并不限定为 RC延时电路。
本实施例提供的信息转换器的供电电路, 通过延时启动电路和开关管的配合作 用, 实现在电源上电时, 通过延时启动电路控制开关管控制端的电压缓慢上升, 使开 关管从截止状态缓慢开启。即延长了从电源上电到开关管导通的时长,最终使开关管 中流通的电流缓慢上升,达到控制信息转换器的供电电路在启动时的电流缓慢上升的 目的。避免了开关管即时开启带来的过冲电流,降低了信息转换器子系统中的过电流, 提高了信息转换器的供电电路的安全性。
请参见图 5-1, 是根据一示例性实施例示出了另一种信息转换器的供电电路的框 图。 所述供电电路包括: 延时启动电路 1、 开关管 Q和电流反馈电路 3。 延时启动电 路 1内部的电路与图 1和图 2所示的电路相同, 此处不再赘述。
电流反馈电路 3包括第一输入端、第二输入端和输出端, 所述第一输入端连接电 源 2的输出端, 所述第二输入端连接开关管 Q的输入端; 电流反馈电路 3的输出端 连接开关管 Q的控制端。
电流反馈电路 3起反馈控制作用,当通过所述第一输入端和所述第二输入端检测 到供电电路中的电流突然增大时, 即电流上升速度很快,在几微秒的时间内增加几十 毫安, 例如, 上电、 短路等状态下会存在电流突然增大的情况, 调节所述输出端提供 给所述开关管控制端的电压, 使开关管的输入端和控制端之间的电压差减小, 从而使 开关管中的电流减小, 最终使电源的电流减小。
图 5-2是根据一示例性实施例示出的一种信息转换器的供电电路的示意图, 该供 电电路用于为信息转换器提供工作电压。
如图 5-2所示, 所述电流反馈电路 3包括电流分流检测电路 31和检测电阻 R3, 其中 R3的阻值很小。 电流分流检测电路 31包括正极输入端 +IN、 负极输入端 -IN和 输出端 OUT。例如,电流分流检测电路 31可以通过电流分流检测芯片 AD8219实现。 电流分流检测电路 31通过正极输入端 +IN和负极输入端 -IN并联在检测电阻 R3 的两端, 正极输入端 +IN与 R3连接的公共端作为电流反馈电路 3的第一输入端, 连 接电源 2的输出端; 负极输入端 -IN与 R3连接的公共端作为电流反馈电路 3的第二 输入端, 连接延时启动电路 1的输入端。
电流分流检测电路 31的输出端 OUT作为电流反馈电路 3的输出端连接开关管 Q 的控制端 (图 5-2中 NMOS管的 G极)。
请参见图 6, 示出了电流反馈电路的反馈控制过程示意图, 如图 6所示, 当供电 电路中的电流由于某种原因突然增大时, 电阻 R3上的压降增大, 此时, 电流分流检 测电路 31的正极输入端和负极输入端能够检测到电阻 R3上的压降增大,输出端 OUT 的电压幅值增大, 进而导致开关管 Q的 G极电压增大, 由于开关管 Q的输入端的电 压基本不变 (比电源 2的输出电压 VCC_M小一个 R3的压降), 因此, 开关管 Q的 栅源极电压差 Vgs减小。 进而使开关管 Q的导通电流减小, 最终使电源的输出电流 减小, 达到抑制过冲电流的目的。
如图 5-2所示, 电流分流检测电路 31采用芯片 AD8219实现时, 正极输入端 +IN 通过电容 C2连接电阻 R3的一端, 负极输入端 -IN通过电容 C3连接电阻 R3的另一 端, 电容 C2和 C3的作用是隔直, 使得所述芯片只对突然增大的脉冲电流进行放大。 在芯片 AD8219的输出端 OUT通过电阻 R4连接开关管 Q的控制端,电容 C4的一端 连接所述电阻 R4, 另一端连接接地端, R4和 C4的作用是滤波, 滤除上电时产生的 脉冲电流。
如图 5-2所示, 在电阻 R4和开关管 Q的控制端之间依次连接有二极管 D1和电 容 C5, C5的作用也是隔直, 在所述供电电路稳定时, 如果电流分流检测电路 31输 出的电压高于开关管 Q的 G极电压时, 不会对开关管 Q的 G极产生影响。 D1起到 单向导通作用, 防止开关管 Q的 G极电压高于电流分流检测电路 31输出的电压时, 对电流分流检测电路 31的电压产生影响。
本实施例提供的信息转换器的供电电路, 增加了电流反馈电路, 当检测到供电电 路中的电流突然增大时, 调节开关管控制端的电压, 以使开关管的导通电流减小, 从 而使电源的输出电流减小,抑制电流突然增大,进一步提高了信息转换器供电电路的 安全性。
图 7是根据一示例性实施例示出的又一种信息转换器的供电电路示意图,该供电 电路用于为信息转换器提供工作电压。 如图 7所示, 所述供电电路包括: 延时启动电 路 1、 开关管 Q、 电流反馈电路 3和依次启动电路 4。
延时启动电路 1和电流反馈电路 3的电路结构和连接方式请参见上述实施例中的 相关描述, 此处不再赘述。
信息转换器中包括多个功能模块, 每个功能模块能够实现相应的功能, 每个功能 模块启动时都会产生一个脉冲电流 Δί, 如果各个功能模块同时启动, 则电路中的脉 冲电流是每个功能模块单独启动时产生的脉冲电流的总和,导致电路中的脉冲电流过 大。采用本实施例提供的依次启动电路 4控制各个功能模块逐个启动, 以降低电路中 的脉冲电流。
所述依次启动电路 4包括多个控制开关 Κ, 以及控制单元 41, 其中, 控制开关 Κ 的数量与信息转换器内的功能模块的数量相同, 每个控制开关对应控制一个功能模 块, 通过控制单元 41使控制开关 Κ依次闭合, 从而依次闭合各个所述功能模块的供 电回路, 即各个功能模块依次得电, 依次启动, 并非同时启动。
假设信息转换器中包括 η个功能模块, 对应的控制开关 Κ为 η个, 分别为 Kl、 Κ2…… Κη, 则如图 7所示, K1的输入端连接开关管 Q的输出端, K1的输出端连接 功能模块(1 ) 的供电端, K1的控制端连接控制单元 41的第 1个输出端; Κ2的输入 端连接开关管 Q的输出端, Κ2的输出端连接功能模块 (2) 的供电端, 控制端连接 控制单元 41的第二输出端; 依次类推, Κη的输入端连接开关管 Q的输出端, Κη的 输出端连接功能模块 (η) 的供电端, 控制端连接控制单元 41的第 η个输出端。
每个功能模块的启动时间都很短, 只有几毫秒。 因此, 在开关管 Q 闭合后, 控 制单元 41控制各功能模块依次启动时, 按照预设时间间隔(例如 10毫秒)依次控制 各个控制开关闭合, 保证上一功能模块已经启动完成后, 再启动下一个功能模块, 保 证信息转换器的电流缓慢分阶段上升,从而有效地减小了整个信息转换器启动时产生 的脉冲电流。
请参见图 8和图 9, 图 8是各个功能模块同时启动时启动电流的示意图; 图 9是 各个功能模块依次启动时的启动电流示意图。
假设各个功能模块启动完成后的运行电流分别是 L、 12…… In, 总的运行电流是 Ι=Ιι+Ι2+…… +In; 各个功能模块启动时产生的脉冲电流分别是 Ai Δί2…… Δίη
如图 8所示, 各个功能模块同时启动时, 电路中的电流在 η个功能模块的运行电 流的总和 I基础上增加各个脉冲电流 ΔΙ, ΔΙ = Δί1 + Δί2 +…… +Δίη, 其中, η为正整 数。
各个功能模块同时启动的方式产生的脉冲电流较大, 而且, 该脉冲电流叠加在一 个较大的电流 I的基础上, 导致电路中的脉冲电流很大。
如图 9所示, 每次只启动一个功能模块, 这样, 电路中的脉冲电流是当前启动的 功能模块对应的脉冲电流,且该脉冲电流叠加在电路中的运行电流是已经启动的各个 功能模块的运行电流总和的基础上。
例如, 当功能模块 1启动时, 电路中的脉冲电流是功能模块 (1 ) 对应的脉冲电 流 Ai 电路中总的电流为 Ii+ Ai 功能模块(2)启动时, 电路中的脉冲电流为 Δί2, 电路中总的电流为 Ι Ι^Δ^; 依次类推, 功能模块 η启动时, 电路中的脉冲电流为 △in, 电路中总的电流为 Ii+I2+…… +Ιη+ Δίη, 由此可见, 各个功能模块逐个启动产生 的脉冲电流远小于同时启动时的脉冲电流, 因此,本实施例提供的依次启动电路能够 大大减小电路中的脉冲电流, 从而提高了供电电路的安全性。
需要说明的是, 本实施例提供的依次启动电路还可以通过其它形式的电路实现, 凡是能够实现依次控制各个功能模块依次启动的电路均是本发明要保护的范围。
图 10是根据一示例性实施例示出了再一种信息转换器的供电电路示意图, 该供 电电路用于为信息转换器提供工作电压。 如图 10所示, 该供电电路包括: 开关管 Q、 延时启动电路 1、 电流反馈电路 3、 依次启动电路 4和防电流倒灌电路 5。 其中, 延 时启动电路 1、 电流反馈电路 3和依次启动电路 4的相关内容请参见与上述实施例中 的描述, 此处不再赘述。
防电流倒灌电路 5串联在电源 2的输出端和延时启动电路 1的输入端之间,起到 单向导通的作用, 防止反向电流流通, 从而能够防止电源 2反接, 即电源的正、 负极 接反。
所述防电流倒灌电路 5可以采用单向导通元件(例如, 二极管)实现, 二极管的 阳极连接所述电源 2的输出端, 阴极连接所述延时启动电路 1的输入端, 只允许从电 源 2流出的电流通过。
为了使本实施例提供的防电流倒灌电路满足本安电路的规定,所述防电流倒灌电 路 5可以采用两个串联的二极管实现, 且两个二极管的导通方向相同, 因为本质安全 电路标准会假定一个二极管失效, 当其中的一个二极管失效时,还可以采用另一个二 极管防止反向电流, 进一步提高了供电电路的安全性。
本实施例提供的信息转换器的供电电路,设置有防电流倒灌电路、延时启动电路、 电流反馈电路、依次启动电路和控制电路通断的开关管。 电源上电后输出的电压首先 经过防电流倒灌电路, 防止电源接反产生反向电流; 然后, 经过延时启动电路控制开 关管控制端的电压缓慢变化, 使开关管从截止状态缓慢开启,避免即时启动带来大的 过冲电流。在开关管导通后, 通过依次启动电路, 控制信息转换器中的各个功能模块 逐个启动, 大大减小功能模块启动时的脉冲电流。在信息转换器运行过程中, 如果由 于某种原因导致电路中的电流突然增大,电流反馈电路能够检测到电流突然增大的变 化情况,调节开关管的控制端的电压,使开关管的输入端和控制端之间的电压差减小, 从而减小开关管中电流,最终使供电电路中的电流减小。实现了根据反馈回来的电路 中的电流变化情况, 调节供电电路中的电流, 抑制供电电路中的电流快速上升。通过 上述的各个电路的共同作用, 使信息转换器的供电电路满足本质安全电路的规定。
相应于上述的信息转换器的供电电路实施例,本发明还提供了信息转换器的供电 系统, 所述供电系统包括上述任一实施例提供的供电电路, 以及电源。所述电源可以 与所述供电电路集成在一起,可以是独立的电源。当信息转换器应用于含有爆炸性混 合气体的环境时, 所述电源采用符合本质安全电路的规定。
相应于上述的信息转换器的供电电路实施例, 本发明还提供了供电方法实施例。 图 11是根据一示例性实施例示出的一种信息转换器的供电方法流程示意图, 所 述方法用于为信息转换器供电, 该方法用于信息转换器的供电系统,所述供电系统至 少包括电源和开关管,所述开关管的输入端连接所述电源,输出端连接信息转换器中 各个功能模块的供电端。 如图 11所示, 所述方法可以包括以下步骤:
在步骤 S11中, 检测到电源上电后, 调节所述开关管控制端的电压逐渐变化, 使 所述开关管的控制端与输入端之间的电压差逐渐变化,进而使所述开关管中的电流逐 渐增大, 最终使所述开关管从截止状态转换为导通状态。
该步骤主要通过控制开关管控制端的电压缓慢变化,使开关管由截止状态缓慢导 通, 延长从电源上电到所述开关管导通的时长。
所述开关管可以采用 MOS管实现, 或者其它的具有开关特性的晶体管实现, 本发明对此并不限制。
在步骤 S12中,在所述开关管导通后, 依次控制所述信息转换器内的各个功能模 块启动。
每个功能模块的启动时间都很短, 只有几毫秒。 因此, 在开关管闭合后, 控制各 功能模块依次启动时, 按照预设时间间隔 (例如 10毫秒) 依次控制各个控制开关闭 合, 保证上一功能模块已经启动完成后, 再启动下一个功能模块。
可选地, 所述方法还可以包括以下步骤:
在步骤 S13中, 当检测到所述电流增大时, 调节所述开关管控制端的电压, 以降 低所述供电电路中的电流。 本实施例提供的信息转换器供电方法, 在电源上电时, 控制开关管的控制端的电 压缓慢变化, 使开关管从截止状态缓慢开启, 避免即时启动带来较大的过冲电流。在 开关管闭合后,控制信息转换器中的各个功能模块按照预设时间间隔逐个启动, 大大 减小功能模块启动时的脉冲电流。在信息转换器运行过程中, 如果由于某种原因导致 电路中的电流突然增大,可以通过调节所述开关管控制端的电压, 降低开关管中的电 流, 从而减小电源输出的电流, 实现根据反馈回来的电路中的电流变化情况, 调节供 电电路中的电流, 抑制供电电路中的电流快速上升。采用上述的供电方法, 能够避免 电源上电时的过冲电流, 以及降低信息转换器的功能模块的脉冲电流; 进一步的, 还 能够抑制电路中的突然增大的电流, 提高了供电电路的安全性。

Claims

权 利 要 求
1 种信息转换器的供电电路, 其特征在于, 包括延时启动电路和开关管, 其中,所述开关管包括输入端、输出端和控制端,所述开关管的输入端连接电源, 所述开关管的输出端连接所述信息转换器内的各个功能模块的供电端;
所述延时启动电路包括输入端和输出端,所述延时启动电路的输入端连接所 述电源, 所述延时启动电路的输出端连接所述开关管的控制端;
所述延时启动电路, 用于当所述电源上电时, 控制所述延时启动电路输出端 的输出电压幅值逐渐变化,使所述开关管的控制端与输入端之间的电压差逐渐变 化, 进而使所述开关管中的电流逐渐增大, 最终使所述开关管从截止状态转换为 导通状态。
2、 根据权利要求 1所述的信息转换器的供电电路, 其特征在于, 所述延时 启动电路为 RC延时电路, 包括第一电容和第一电阻;
所述第一电容的一端连接所述电源,所述第一电容的另一端通过所述第一电 阻连接接地端; 所述第一电阻和所述第一电容的公共端连接所述开关管的控制
¾;
所述延时启动电路用于当所述电源上电时, 开始为所述第一电容充电, 所述 延时启动电路输出端的输出电压在充电时间内逐渐降低,以使所述开关管的控制 端与输入端之间的电压差在充电时间内逐渐增大,进而使所述开关管中的电流逐 渐增大, 直到所述第一电容充电结束使所述开关管导通。
3、 根据权利要求 1所述的信息转换器的供电电路, 其特征在于, 还包括: 电流反馈电路, 包括第一输入端、 第二输入端和输出端;
所述电流反馈电路通过第一输入端和所述第二输入端串联于所述电源和所 述开关管的输入端之间, 所述电流反馈电路的输出端连接所述开关管的控制端, 所述电流反馈电路用于通过所述第一输入端和所述第二输入端检测到供电电路 中的电流增大时, 调节提供给所述开关管控制端的电压, 以降低流经所述开关管 的电流。
4、 根据权利要求 3所述的信息转换器的供电电路, 其特征在于, 所述电流 反馈电路包括: 电流分流检测电路和检测电阻, 所述电流分流检测电路包括正极 输入端、 负极输入端和输出端;
所述检测电阻串联在所述电源和所述开关管的输入端之间;
所述电流分流检测电路通过所述正极输入端和所述负极输入端并联在所述 检测电阻的两端,所述正极输入端与所述检测电阻的一端连接的公共端作为所述 电流反馈电路的第一输入端,所述负极输入端与所述检测电阻的另一端连接的公 共端作为所述电流反馈电路的第二输入端,所述电流分流检测电路的输出端为所 述电流反馈电路的输出端;
所述电流分流检测电路通过所述检测电阻上的压降检测到所述供电电路中 的电流增大时, 所述电流分流检测电路的输出端的电压幅值相应增大, 并提供给 所述开关管的控制端, 以降低流经所述开关管的电流。
5、 根据权利要求 1所述的信息转换器的供电电路, 其特征在于, 还包括: 串联于所述电源和所述延时启动电路之间的防电流倒灌电路,用于使所述供电电 路单向导通。
6、 根据权利要求 1所述的信息转换器的供电电路, 其特征在于, 还包括: 依次启动控制单元, 用于控制所述节点单元中的各个功能模块分时启动;
所述依次启动控制单元包括: 控制单元和多个控制开关, 每个控制开关对应 个功能模块;
每个所述控制开关通过输入端和输出端串联于所述开关管的输出端和对应 的功能模块之间,所述控制开关的控制端连接所述控制单元的一个控制信号输出
¾ ;
所述控制单元用于当检测上一功能模块启动完成时,控制当前功能模块对应 的控制开关导通。
7 种信息转换器的供电系统, 其特征在于, 包括电源及权利要求 1 至 7 任一项所述的信息转换器的供电电路。
8 种信息转换器的供电方法, 用于信息转换器的供电系统, 所述供电系 统至少包括电源和开关管, 其特征在于, 包括:
当电源上电时, 调节所述开关管的控制端的电压逐渐变化, 使所述开关管的 控制端与输入端之间的电压差逐渐变化, 进而使所述开关管中的电流逐渐增大, 最终使所述开关管从截止状态转换为导通状态。
9、 根据权利要求 8所述的方法, 其特征在于, 还包括:
当检测到所述电流增大时, 调节所述开关管控制端的电压, 以降低所述供电 路中的电流。
10、 根据权利要求 8所述的方法, 其特征在于, 还包括:
当检测到所述开关管导通后,依次控制所述信息转换器中的各个功能模块启 动。
PCT/CN2014/074301 2014-03-28 2014-03-28 信息转换器的供电电路、系统及供电方法 WO2015143716A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/074301 WO2015143716A1 (zh) 2014-03-28 2014-03-28 信息转换器的供电电路、系统及供电方法
CN201480050952.2A CN105684313B (zh) 2014-03-28 2014-03-28 信息转换器的供电电路、系统及供电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074301 WO2015143716A1 (zh) 2014-03-28 2014-03-28 信息转换器的供电电路、系统及供电方法

Publications (1)

Publication Number Publication Date
WO2015143716A1 true WO2015143716A1 (zh) 2015-10-01

Family

ID=54193947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074301 WO2015143716A1 (zh) 2014-03-28 2014-03-28 信息转换器的供电电路、系统及供电方法

Country Status (2)

Country Link
CN (1) CN105684313B (zh)
WO (1) WO2015143716A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460029A (zh) * 2019-09-05 2019-11-15 中国科学院长春光学精密机械与物理研究所 一种供配电系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839529A (zh) * 2017-11-27 2019-06-04 无锡华润矽科微电子有限公司 芯片工作电压的测试装置及测试方法
CN110602003B (zh) * 2019-09-17 2021-10-22 深圳市三旺通信股份有限公司 一种光口可灵活配置的矿用本安型万兆三层交换机
CN110601314A (zh) * 2019-10-16 2019-12-20 深圳市欧瑞博科技有限公司 供电电路以及智能照明装置
CN116364130A (zh) * 2023-03-29 2023-06-30 珠海妙存科技有限公司 eMMC延时启动电路和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2243137Y (zh) * 1995-07-19 1996-12-18 江山市何家山水泥厂 交流异步电机断相过载保护器
CN101325411A (zh) * 2008-04-16 2008-12-17 中兴通讯股份有限公司 一种直流电源上电缓启动电路
CN202050391U (zh) * 2011-02-24 2011-11-23 广州视源电子科技有限公司 Mos管的延时启动电路
CN103163817A (zh) * 2011-12-16 2013-06-19 鸿富锦精密工业(深圳)有限公司 控制多设备顺序启动的电路
CN203027199U (zh) * 2012-12-03 2013-06-26 北京北超伺服技术有限公司 一种大功率伺服驱动装置
US20130278300A1 (en) * 2010-12-22 2013-10-24 Reynaldo P. Domingo Mosfet switch gate drive, mosfet switch system and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859001B (zh) * 2006-03-01 2010-05-12 华为技术有限公司 一种直流电源缓启动电路
CN102098032B (zh) * 2011-02-23 2014-02-12 海能达通信股份有限公司 一种抑制上电脉冲电流的延迟开关电路
CN103699169B (zh) * 2012-09-27 2015-06-24 株式会社理光 电源电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2243137Y (zh) * 1995-07-19 1996-12-18 江山市何家山水泥厂 交流异步电机断相过载保护器
CN101325411A (zh) * 2008-04-16 2008-12-17 中兴通讯股份有限公司 一种直流电源上电缓启动电路
US20130278300A1 (en) * 2010-12-22 2013-10-24 Reynaldo P. Domingo Mosfet switch gate drive, mosfet switch system and method
CN202050391U (zh) * 2011-02-24 2011-11-23 广州视源电子科技有限公司 Mos管的延时启动电路
CN103163817A (zh) * 2011-12-16 2013-06-19 鸿富锦精密工业(深圳)有限公司 控制多设备顺序启动的电路
CN203027199U (zh) * 2012-12-03 2013-06-26 北京北超伺服技术有限公司 一种大功率伺服驱动装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460029A (zh) * 2019-09-05 2019-11-15 中国科学院长春光学精密机械与物理研究所 一种供配电系统

Also Published As

Publication number Publication date
CN105684313A (zh) 2016-06-15
CN105684313B (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
KR102521293B1 (ko) 회로 보호 및 자가촉매적 전압 변환을 위한 단일 트랜지스터 장치
US9276485B2 (en) Control circuit for controlling reverse surge current in a synchronous rectification circuit and power supply device including the control circuit
WO2015143716A1 (zh) 信息转换器的供电电路、系统及供电方法
US9461466B2 (en) Overvoltage protection device
US10236879B2 (en) Thyristor driving apparatus
CN107852159B (zh) 驱动装置
US20150303816A1 (en) Power switching converter
JP2008547087A (ja) ソフトスタート回路を備えた突入電流制御システムおよび方法
JP2012157191A (ja) スイッチング電源装置
CN108306495B (zh) 用于开关式电源的双阶段Vcc充电
US10176950B2 (en) Latching relay drive circuit
US9653998B2 (en) Boost converter and power controling method thereof
US20160203931A1 (en) Systems and methods for freewheel contactor circuits
EP3125390B1 (en) Overvoltage protection circuit
US10542592B2 (en) LED driver and LED driving method
US8513930B2 (en) Active power switch topology for switching regulators
CN103178489A (zh) 电压瞬变保护系统及方法、电压调节器
CN105706348B (zh) 线缆节点单元的供电电路、系统及供电方法
US10411461B2 (en) Protection circuit for brushless DC motor, and control device
JP2021078312A (ja) スイッチングレギュレータ
CN216216502U (zh) 一种防电流倒灌电路及开关电源
JP6090846B2 (ja) 電源装置、電源制御方法および電子装置
JP2009095166A (ja) 電圧制御形スイッチングデバイスのゲート駆動装置
CN108683416B (zh) 一种负载开关控制电路
JP2022040668A (ja) 昇圧型スイッチングレギュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14886888

Country of ref document: EP

Kind code of ref document: A1