WO2021237979A1 - 阻尼集成装置、阻尼器以及风力发电机组 - Google Patents

阻尼集成装置、阻尼器以及风力发电机组 Download PDF

Info

Publication number
WO2021237979A1
WO2021237979A1 PCT/CN2020/114523 CN2020114523W WO2021237979A1 WO 2021237979 A1 WO2021237979 A1 WO 2021237979A1 CN 2020114523 W CN2020114523 W CN 2020114523W WO 2021237979 A1 WO2021237979 A1 WO 2021237979A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
adapter
integrated device
length direction
component
Prior art date
Application number
PCT/CN2020/114523
Other languages
English (en)
French (fr)
Inventor
李双虎
张志弘
高杨
徐志良
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2020450114A priority Critical patent/AU2020450114A1/en
Priority to US17/999,210 priority patent/US11746749B2/en
Priority to EP20937209.3A priority patent/EP4130466A4/en
Priority to CA3178315A priority patent/CA3178315A1/en
Priority to BR112022023894A priority patent/BR112022023894A2/pt
Publication of WO2021237979A1 publication Critical patent/WO2021237979A1/zh
Priority to ZA2022/12075A priority patent/ZA202212075B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/08Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other
    • F16F7/09Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other in dampers of the cylinder-and-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1028Vibration-dampers; Shock-absorbers using inertia effect the inertia-producing means being a constituent part of the system which is to be damped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/116Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/02Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/026Springs wound- or coil-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • This application relates to the field of damping technology, in particular to a damping integrated device, a damper and a wind power generator set.
  • a damper is a device that provides resistance to movement and consumes movement energy.
  • the use of damping to absorb energy and reduce vibration has long been used in aerospace, aviation, military, wind power and other industries.
  • the tower In the field of wind power technology, the tower is the supporting structure of the wind turbine, and its structural safety and stability are related to the safety performance of the entire wind turbine. With the continuous increase in the capacity of wind turbines, the tower height continues to increase, and the tower frequency continues to decrease, which also makes the tower vibration problem more and more prominent. In order to ensure the safe and stable operation of the tower and the whole machine, it is necessary to install a damper on the tower to suppress the vibration of the tower and ensure the safe operation of the wind turbine.
  • the tuned mass damper mainly uses a mass block as the main vibration damping body, through the swing inertia force of the mass block during the tower vibration process and its damping energy dissipation device to achieve the purpose of damping the unit.
  • this kind of damper can achieve the effect of damping vibration, it also has corresponding drawbacks.
  • the main manifestation is that the frequency modulation parts and damping parts are designed separately and independently of each other. They are distributed in different positions of the damper and are applied to the damper. For example, there are separate interfaces between the towers, and the structural design is more complicated. At the same time, components such as frequency modulation components and damping components are scattered in different positions, which is not conducive to maintenance.
  • the embodiments of the present application provide a damping integrated device, a damper, and a wind power generator.
  • the damping integrated device can simultaneously meet the frequency modulation and damping requirements, and has a simple structure design and easy maintenance.
  • a damping integrated device which includes: a base body having a predetermined length and including an inner cavity extending along its own length; One end of the elastic piece in the length direction is connected to the base and the other end is connected to the adapter; the first connection piece extends into the cavity and at least partially protrudes from the base in the length direction.
  • the first connection piece is connected to the adapter
  • the damping member is capable of moving relative to the base body to make the elastic member expand and contract in the length direction; the damping member is arranged in the inner cavity, the damping member is connected to the adapter and at least partially pressed against the inner wall of the base body, and the damping member is used to absorb the first connecting member The kinetic energy.
  • the elastic member includes two or more springs distributed at intervals and extending along the length direction. One end of each spring is connected to the base and the other end is connected to the adapter. At least one spring is connected to the base and The adapters can be detachably connected.
  • the base includes a cylinder extending in the length direction and end caps respectively provided at both ends of the cylinder in the length direction.
  • the end caps and the cylinder are jointly enclosed to form an inner cavity.
  • an interval cavity is formed between the cylinder and the frequency modulation component, and the damping component is located in the interval cavity.
  • the damping component includes a mounting member, a support member, and a magnet.
  • An air gap is formed between the mounting member and the cylinder body to form an air gap between the magnet and the cylinder body; the first connecting member can drive the magnet to move relative to the base body through the adapter member and generate an induced eddy current in the base body.
  • the mounting member is a cylindrical structure and is arranged around the elastic member, the shape of the adapter and the mounting member are matched and connected, and one end of the mounting member in the length direction is closed, and the magnet includes a plurality of A magnetic block; at least a part of the magnetic blocks are spaced apart in the length direction, and/or, at least a part of the magnetic blocks are spaced apart along the outer ring surface of the mounting member.
  • the support includes two or more sliders, and the two or more sliders are spaced apart and are respectively fixedly connected to the mounting member; or, the support includes two or more first rollers, and two The above-mentioned first rollers are distributed at intervals and are respectively rotatably connected to the mounting parts.
  • a first opening is provided on the cylinder, the first opening is in communication with the inner cavity, and a second opening is provided on the mounting member, and the second opening is opposite to the first opening.
  • the damping component includes a friction body connected to the adapter, the friction body is pressed against the cylinder, and the first connecting member can drive the friction body to move relative to the cylinder through the adapter. Make the friction body and the cylinder friction fit; or, the damping component includes a bearing body with a closed cavity and a damping fluid arranged in the closed cavity. The member is connected to and pressed against the cylinder body, and the first connecting member can drive the supporting body to move relative to the base body through the adapter, so that the damping fluid flows back and forth along the length direction.
  • the damping integrated device further includes a non-return limiting component, the non-return limiting component is connected to one end of the base body in the length direction, and the non-return limiting component is used to limit the first connecting member to The length direction protrudes from the largest dimension of the base.
  • the non-return limiting component includes an adjusting rod extending in the length direction and connected to the base, the adjusting rod at least partially extends into the inner cavity, and the size of the adjusting rod extending into the inner cavity is adjustable.
  • the rod can be pressed against the surface of the adapter part away from the elastic part to limit the displacement of the adapter part in the length direction of the base body; On the side far away from the elastic member in the length direction, the friction plate can be frictionally stopped with the adapter member.
  • the adjusting rod is an elastic rod member, and the adjusting rod can be deformed by force in the length direction.
  • the surface of the adapter member away from the elastic member is provided with a buffer pad that can be deformed by force in the length direction, and the buffer pad is provided facing the non-return limiting member.
  • the first connecting member is a rod member
  • a perforation is provided on the base body where it cooperates with the first connecting member
  • a second roller is provided on the side wall surrounding the perforation, and the base body passes through the first
  • the two rollers are in rolling fit with the first connecting piece
  • the damping integrated device further includes a second connecting piece, the second connecting piece is arranged opposite to the first connecting piece in the length direction, and the second connecting piece is connected to the base body away from the first connecting piece.
  • One end of the connector is a rod member
  • a perforation is provided on the base body where it cooperates with the first connecting member
  • a second roller is provided on the side wall surrounding the perforation, and the base body passes through the first
  • the damping integrated device further includes a second connecting piece, the second connecting piece is arranged opposite to the first connecting piece in the length direction, and the second connecting piece is connected to the base body away from the first connecting piece.
  • a damper including: a damping body part; the above-mentioned damping integrated device, the part of the first connecting member of the damping integrated device protruding from the base body is rotatably connected with the damping body part.
  • the damping body portion includes a swing arm and a first mass connected to the swing arm, and a portion of the first connecting member protruding from the base is hinged with the first mass; or, the damping body portion includes A base, an arc-shaped slide rail supported on the base, and a second mass arranged on the arc-shaped slide rail and slidably connected to the arc-shaped slide rail, the portion of the first connecting piece protruding from the base is hinged to the second mass , The end of the base body away from the first connecting member is hinged with the base.
  • a wind power generating set including the above-mentioned damper is provided.
  • the damping integrated device provided according to the embodiment of the present application includes a base, a frequency modulating component, a first connecting piece, and a damping component.
  • the frequency modulating component includes an elastic member and an adapter disposed in the cavity of the base, and the elastic member is respectively connected to the base and the adapter The adapter is connected with the first connecting piece.
  • the damping component is also located in the inner cavity of the base body and connected to the adapter and pressed against the inner wall of the base. When the damping integrated device is in use, it can pass through the first connecting piece. And the end of the base away from the first connecting member is respectively connected to the main body of the damper and the component to be damped.
  • the damping integrated device has both frequency modulation and damping characteristics.
  • the frequency modulation component and the damping component are integrated in the inner cavity of the base body, and on the basis of meeting the frequency modulation and damping requirements, the overall structure of the damping integrated device is compact and easy to maintain.
  • the damping component and the frequency modulation component are both connected to the external component through the first connector and the base body, with few interfaces and strong versatility.
  • Fig. 1 is a schematic diagram of the structure of a wind power generator set according to an embodiment of the present application
  • Figure 2 is a cross-sectional view along the A-A direction in Figure 1;
  • Fig. 3 is a schematic structural diagram of a damping body portion of a damper according to an embodiment of the present application
  • FIG. 4 is a schematic cross-sectional structure diagram of an integrated damping device according to an embodiment of the present application.
  • Fig. 5 is a schematic partial cross-sectional view of a damping integrated device according to an embodiment of the present application.
  • Fig. 6 is a cross-sectional view along the length of the damping integrated device according to an embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional structure diagram of a damping integrated device according to another embodiment of the present application.
  • Fig. 8 is a side view of a damping integrated device according to another embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional structure diagram of a damping integrated device according to another embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional structure diagram of a damping integrated device according to another embodiment of the present application.
  • FIG. 11 is a schematic cross-sectional structure diagram of a damping integrated device according to another embodiment of the present application.
  • Fig. 12 is a cross-sectional view in the length direction of the damping integrated device according to another embodiment of the present application.
  • FIG. 13 is a schematic cross-sectional structure diagram of a damping integrated device according to another embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a damper according to another embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a damper according to another embodiment of the present application.
  • 10-base body 10a-inner cavity; 10b-perforation; 11-cylinder body; 111-first opening; 12-end cap;
  • 40-damping component 41-mounting part; 411-second opening; 42-supporting part; 421-sliding block; 422-first roller; 43-magnet; 431-magnet block; 44-bearing body; 441-closed Cavity; 45- damping fluid; 40a- friction body;
  • 200-damping body part 200a-swing arm; 200b-first mass; 200c-base; 200d-curved slide rail; 200e-second mass;
  • an embodiment of the present application provides a wind turbine generator set, including a tower 2, a nacelle 3, a generator 4, and an impeller 5.
  • the nacelle 3 is arranged at the top of the tower 2, and the generator 4 is arranged in the nacelle 3. It can be located inside the nacelle 3, of course, it can also be located outside the nacelle 3.
  • the impeller 5 includes a hub 5a and a plurality of blades 5b connected to the hub 5a, and the impeller 5 is connected to the rotor of the generator 4 through the hub 5a. When the wind acts on the blade 5b, it drives the entire impeller 5 and the rotor of the generator 4 to rotate, so as to convert wind energy into electrical energy.
  • the wind generator set provided by the embodiment of the present application further includes a damper 1, through which the vibration of the tower 2 of the wind generator set is suppressed to ensure the safe operation of the wind generator set.
  • the damper 1 may be arranged inside the tower 2.
  • the embodiment of the present application also provides a damper 1.
  • the damper 1 includes a damping body part 200 and a damping integrated device 100, and the damping integrated device 100 is connected to the damping body part 200.
  • the damping body 200 may include a swing arm 200a and a first mass 200b connected to the swing arm 200a.
  • one end of the swing arm 200a may be connected to the first mass 200b, and the other end It can be connected to the tower 2.
  • the other end of the swing arm 200a can be connected to a structure such as a tower platform inside the tower 2, and the vibration of the component to be damped, such as the tower 2, can be obtained through the swing arm 200a. The kinetic energy of, then drives the first mass 200b to swing.
  • the damper 1 needs to provide frequency modulation, damping and other requirements for the components to be damped, such as the tower 2, the traditional damper, the components that realize the frequency modulation function, and the components that realize the damping function are all set independently and distributed in the damper. different positions. Due to the small internal space of the tower 2, the structure of the traditional damper will introduce more interference possibilities. For example, the risk of interference between the components of the damper and related accessories in the tower, such as ladders, causes the structural design of the damper to be more complicated. At the same time, components such as frequency modulation components and damping components are scattered in different positions, etc., and there are separate interfaces with the environment in which the damper is applied, such as the tower 2, which has many interfaces and is not conducive to maintenance.
  • an embodiment of the present application further provides an integrated damping device 100, which can enable the damper 1 to simultaneously meet the frequency modulation and damping requirements, and has a simple structure design and easy maintenance.
  • the integrated damping device 100 can be separately produced and sold as an independent component.
  • the integrated damping device 100 can also be used in the damper 1 of the foregoing embodiments and used as a component of the damper 1.
  • the damping integrated device 100 provided by the embodiment of the present application includes a base 10, a frequency modulating component 20, a first connecting piece 30, and a damping component 40.
  • the base 10 has a predetermined length and includes a length along its own length. A cavity 10a extending in the direction X.
  • the frequency modulation component 20 is disposed in the inner cavity 10a.
  • the frequency modulation component 20 includes an elastic member 21 and an adapter member 22.
  • the first connecting member 30 extends into the inner cavity 10a and at least partially protrudes from the base 10 in the length direction X.
  • the first connecting member 30 is connected to the adapter 22 and can move relative to the base 10 so that the elastic member 21 is in the length direction X Retractable.
  • the damping component 40 is disposed in the inner cavity 10 a, the damping component 40 is connected to the adapter 22 and at least partially pressed against the inner wall of the base body 10, and the damping component 40 is used for absorbing the kinetic energy of the first connector 30.
  • the damping integrated device 100 provided by the embodiment of the present application includes a frequency modulation component 20 and a damping component 40, and both the frequency modulation component 20 and the damping component 40 are integrated in the inner cavity 10 a of the base 10.
  • the part of the first connecting member 30 protruding from the base 10 can be rotatably connected with the damping body portion 200, and the end of the base 10 away from the first connecting member 30 is connected to the component to be damped, such as a tower.
  • the frame 2 is connected or other components of the damping body part 200 are connected.
  • the damper 1 can be adjusted by the frequency modulation member 20.
  • the damping component 40 absorbs the kinetic energy transmitted to the first connecting member 30 through the damping component 40 to achieve a vibration reduction effect. That is, the integrated damping device 100 has both frequency modulation and damping characteristics.
  • the frequency modulation component 20 and the damping component 40 are integrated in the inner cavity 10a inside the base body 10, and on the basis of meeting the frequency modulation and damping requirements, the damping integrated device 100 has a compact overall structure and is easy to maintain.
  • both the damping component 40 and the frequency modulation component 20 are connected to external components through the first connector 30 and the base body 10, with few interfaces and strong versatility.
  • the elastic member 21 provided by the foregoing embodiments includes two or more springs 211 distributed at intervals and extending along the length direction X. One end of each spring 211 is connected to the base 10 and the other end is connected to Adapter 22.
  • the elastic member 21 By restricting the elastic member 21 to include two or more springs 211 distributed at intervals, the overall structure of the elastic member 21 is simple, and the frequency modulation characteristics of the integrated damping device 100 are better optimized, so that the integrated damping device 100 can be more effective when applied to the damper 1. Good to ensure the frequency modulation requirements of the damper 1.
  • At least one spring 211 may be detachably connected to the base 10 and the adapter 22 respectively.
  • the number of springs 211 included in the elastic member 21 can be changed as required, thereby better ensuring the frequency modulation requirements of the integrated damping device 100, so that the applied damper 1 can be adapted to the components to be damped, such as the tower 2.
  • the number of frequency adjustment springs 211 try to keep the two frequencies consistent, and better optimize the vibration damping effect.
  • a plurality of first hanging rings 20a may be provided on the surface of the adapter 22 facing the elastic member 21 in the length direction X, and the inner cavity 10a of the base body 10 faces the surface of the adapter 22
  • a second hanging ring 20b corresponding to the first hanging ring 20a is provided on the upper part.
  • the end of the spring 211 facing the first hanging ring 20a is hooked on the first hanging ring 20a and can be detachably connected, and the spring 211 faces the second hanging ring 20b.
  • the other end is hooked on the second hanging ring 20b and can be detachably connected.
  • each spring 211 may be detachably connected to the base 10 and the adapter 22 respectively.
  • the damping integrated device 100 may further include a transition plate 20c, and the base body 10 can be connected to the springs 211 of the elastic member 21 through the transition plate 20c.
  • the transition plate 20c When the transition plate 20c is included, the second hanging ring 20b may be indirectly connected to the base 10 through the transition plate 20c.
  • the arrangement of the transition plate 20c is more conducive to the installation of the elastic member 21, and at the same time, the integrated damping device 100 is easy to process and assemble as a whole, and the wear on the base 10 can be reduced.
  • both the transition plate 20c and the adapter 22 can be plate-shaped structures and are arranged oppositely in the length direction X, and each spring 211 can be connected between the transition plate 20c and the adapter 22.
  • the base 10 includes a cylinder 11 extending along the length direction X and is respectively disposed on the cylinder 11 At the end caps 12 at both ends of the length direction X, the end caps 12 and the cylinder 11 jointly enclose an inner cavity 10a.
  • a compartment is formed between the cylinder 11 and the frequency modulation component 20, and the damping component 40 is located in the compartment.
  • the cross-section of the cylinder 11 may be circular, the shape of the end cap 12 matches the shape of the cylinder 11, and the two sides in the length direction X
  • the end caps 12 can be detachably connected to the cylinder 11 respectively.
  • one of the end caps 12 and the barrel 11 may be fixedly connected or an integral structure, and the other end cap 12 and the barrel 11 may be detachably connected.
  • one of the end caps 12 can be matched with the first connecting member 30.
  • the end cap 12 that is mutually matched with the first connecting member 30 and the cylinder 11 can be detachably linked.
  • the damping component 40 includes a mounting part 41, a support part 42 and a magnet 43.
  • One end of the mounting member 41 in the length direction X is connected to the adapter 22, the magnet 43 is disposed facing the cylinder 11 and connected to the mounting member 41, and the supporting member 42 is supported between the mounting member 41 and the cylinder 11, so that the magnet 43 and An air gap 90 is formed between the cylinders 11.
  • the first connecting member 30 can drive the magnet 43 to move along the length direction X relative to the base 10 through the adapter 22 and generate an induced eddy current in the base 10.
  • the damping component 40 adopts the above-mentioned structural form, so that when the applied component to be damped such as the tower 2 vibrates, because the first connecting member 30 is connected to the first mass 200b of the damping body 200, the vibration of the component to be damped
  • the first mass 200b drives the first connecting member 30 to move along the length direction X, thereby causing the magnet 43 to move relative to the barrel 11, so that an induced eddy current is generated inside the barrel 11 to absorb the kinetic energy of the first connecting member 30 and It is converted into heat energy, thereby reducing the vibration of the parts to be damped.
  • the springs 211 of the frequency modulation component are stretched or compressed with the movement of the first connecting member 30 to adjust the frequency of the damper 1.
  • the mounting member 41 is a cylindrical structure and is arranged around the elastic member 21, and the shape of the adapter 22 matches and connects with the mounting member 41.
  • One end of the mounting member 41 in the length direction X is closed.
  • the magnet 43 includes a plurality of magnetic blocks 431, and at least a part of the magnetic blocks 431 are distributed at intervals in the length direction X.
  • At least a part of the magnetic blocks 431 may be distributed along the outer ring surface of the mounting member 41 at intervals.
  • the mounting member 41 and the adapter member 22 may be an integral structure, which has high connection strength and is easy to install.
  • the mounting member 41 in the damping integrated device 100 provided by the foregoing embodiments, can be arranged coaxially with the cylinder 11 of the base body 10 as a whole. As a result, when the mounting member 41 moves with the first connecting member 30 relative to the barrel 11, the eddy current generated on the barrel 11 is more uniform, and the kinetic energy of the first connecting member 30 can be better converted into heat energy on the barrel 11. Ensure the effect of damping and vibration reduction.
  • the supporting member 42 includes more than two first rollers 422, and the two or more first rollers 422 are spaced apart and are respectively rotatably connected to the mounting member 41.
  • the support member 42 adopts the above-mentioned structural form, which can not only ensure the formation of the air gap 90 between the magnet 43 and the cylinder 11, at the same time, the above arrangement can also make the support member 42 and the inner wall of the base 10 have rolling friction, which can ensure the first
  • the connecting member 30 drives the smooth movement of the mounting member 41, thereby better absorbing the kinetic energy of the first connecting member 30, and ensuring the damping effect of the integrated damping device 100 and the damper 1 used in it.
  • the magnet 43 is provided with first rollers 422 at both ends of the length direction X, respectively.
  • a depression may be provided on the outer peripheral surface of the cylinder 11, so that at least part of the first roller 422 extends into the depression and rotates between the cylinder 11 and the rotating member such as a shaft. connect.
  • the cylinder 11 is provided with a first opening 111, and the first opening 111 is in communication with the inner cavity 10 a. Because the damping component 40 can generate an eddy current on the cylinder 11 to convert the kinetic energy of the first connector 30 into the thermal energy of the cylinder 11.
  • the damping integrated device 100 By providing the first opening 111 on the cylinder 11, it is possible to facilitate the damping integrated device 100 to fully dissipate heat, and to ensure the damping effect of the damping integrated device 100.
  • the above arrangement can also facilitate the maintenance of the internal structure of the integrated damping device 100, for example, it can facilitate the disassembly and assembly and the replacement of the spring 211 of the elastic member 21 and so on.
  • the size of the first opening 111 is not limited to a specific number, and it can be one, of course, it can also be two or more. When there are more than two, the two or more first openings 111 are in the circumferential direction of the cylinder 11. Interval distribution. Optionally, the first opening 111 penetrates the side wall of the cylinder 11 in the radial direction of the cylinder 11 and communicates with the inner cavity 10a.
  • the mounting member 41 is provided with a second opening 411, and the second opening 411 is disposed opposite to the first opening 111, which can better ensure the damping integration.
  • the heat dissipation requirements and maintenance requirements of the device 100 are provided with a second opening 411, and the second opening 411 is disposed opposite to the first opening 111, which can better ensure the damping integration.
  • the second opening 411 and the first opening 111 can be disposed opposite to each other in a direction intersecting the length direction X.
  • the second opening 411 and the first opening 111 can be positioned on the diameter of the cylinder 11 Set up relative to each other.
  • the integrated damping device 100 provided in the above embodiments of the present application further includes a non-return limiting component 50, which is connected to the base body 10 at one end of the length direction X, the non-return limiting member 50 is used to limit the maximum size of the first connecting member 30 protruding from the base 10 in the length direction X.
  • the damping integrated device 100 also has a non-return limit function. Since the first connecting member 30 can be connected with the first mass 200b of the damping body part 200, the first connecting member 30 is restricted from protruding in the length direction X.
  • the amplitude of movement of the first mass 200b can be further limited, so that the damper 1 applied by the integrated damping device 100 meets the requirements of vibration reduction, and can also prevent the damping body part 200 from being damped. Vibrating components such as the collision between the tower 2 cause damage to the tower 2 to ensure the safety of vibration damping.
  • the non-return limit member 50 includes an adjusting rod 51 extending along the length direction X and connected to the base 10, and the adjusting rod 51 extends at least partially into the The size of the cavity 10a and the adjusting rod 51 extending into the inner cavity 10a is adjustable.
  • the adjusting rod 51 can press against the surface of the adapter 22 away from the elastic member 21 to limit the displacement of the adapter 22 in the base 10 along the length direction X quantity.
  • the non-return limiting member 50 adopts the above structure, and the displacement of the adapter 22 in the length direction X in the base 10 can be restricted by changing the size of the adjusting rod 51 extending into the inner cavity 10a.
  • the adapter 22 is connected. By limiting the displacement of the adapter 22 in the length direction X, the maximum size of the first connector 30 protruding from the base 10 in the length direction X can be limited, thereby ensuring the safety of the damper 1.
  • a connecting hole penetrating along the length direction X may be provided on the end cap 12 through which the first connecting member 30 passes, and a lock nut 52 threadedly connected to the adjusting rod 51 may be provided at the same time.
  • the adjusting rod 51 can extend into the inner cavity 10a from the connecting hole and be locked to the relative position of the end cover 12 by locking nuts 52 arranged oppositely in the length direction X and distributed on both sides of the same end cover 12.
  • the adjusting rod 51 is moved to a predetermined position relative to the end cap 12 along the length direction X, and the lock nut 52 is tightened to complete the adjustment.
  • the operation is simple and easy to adjust. .
  • the adapter 22 is provided with a cushion 60 that can be deformed in the length direction X on the surface of the adapter 22 away from the elastic member 21, and the cushion 60 faces the stopper. Return to the limit component 50 setting.
  • the buffer pad 60 may be a rubber pad, a sponge pad, or the like, a buffer structure that can deform in the length direction X when stressed.
  • the adjusting rod 51 can also be made an elastic rod.
  • the adjusting rod 51 can be deformed by force in the length direction X, which can also make the non-return force not too large, and further ensure the damping integrated device 100 The applied damper 1 is safe to use.
  • the first connecting member 30 may be a rod member, and the first connecting member 30 adopts the above-mentioned form and has a simple structure. , It is easy to connect with the damping body part 200 and other devices, and the overall cost of the damping integrated device 100 can be reduced.
  • the first connecting member 30 and the damping body part 200 may be hinged to each other, and a spherical hinge or a Hooke hinge may be used.
  • a perforation 10b is provided on the base 10 where it fits with the first connecting member 30, and a second roller 70 is provided on the side wall surrounding the perforation 10b, and the base 10 rolls with the first connecting member 30 through the second roller 70 Cooperate.
  • the mating position of the first connecting member 30 and the base 10 is made by rolling friction, which can further ensure the smooth movement of the first connecting member 30 in the longitudinal direction X and optimize the vibration damping effect.
  • the first connecting member 30 is coaxially arranged with the cylinder 11 of the base body 10, so that the first connecting member 30 can evenly transmit the force to the frequency modulation when the first mass 200b of the damping body part 200 acts on the first connecting member 30.
  • the component 20 and the damping component 40 further better meet the frequency modulation and vibration reduction requirements of the damper 1 applied by the integrated damping device 100.
  • the above-mentioned perforation 10b may be provided on the end cover 12 where the base 10 and the first connecting member 30 are matched to ensure that the first connecting member 30 and the damping body part 200, as well as the frequency modulation component 20 and the damping Connection requirements between components 40.
  • the damping integrated device 100 provided by the foregoing embodiments further includes a second connecting piece 80, the second connecting piece 80 is arranged opposite to the first connecting piece 30 in the length direction X, and the second connecting piece The member 80 is connected to an end of the base 10 away from the first connecting member 30.
  • the connection requirement between the integrated damping device 100 and the component to be damped such as the tower 2 or other components of the damper 1
  • the rotational connection between the second connecting member 80 and other components to be damped such as the tower 2 or the damper 1
  • the second connecting member 80 may also be a rod member.
  • the second connecting member 80 may be coaxially arranged with the first connecting member 30 to optimize the performance of the integrated damping device 100.
  • the second connecting member 80 may be fixedly connected to the end cover 12 of the base body 10 away from the first connecting member 30.
  • the magnet 43 can be connected to the mounting member 41, and then the supporting member 42 can be mounted on the mounting member 41. Then connect the formed whole with the adapter 22.
  • the cushion 60 can be connected to the surface of the adapter 22 away from the mounting member 41 to form the whole to be installed, and the whole to be installed can be installed to the base.
  • the first connecting member 30 and the elastic member 21 can then be connected, and the corresponding end cap 12 can be provided.
  • the second roller 70 When the second roller 70 is included, the second roller 70 can be installed between the end cover 12 and the first connecting member 30, and the end cover 12 with the second roller 70 can be connected to the cylinder 11 of the base 10, The device is now assembled.
  • the first connecting member 30 of the integrated damping device 100 can be connected to the damping body portion 200 of the damper 1, and the end of the base 10 away from the first connecting member 30 can be connected to the fixed end of the wind turbine generator, such as a tower.
  • the inner wall of 2 includes the first opening 111 when in use, the adjustment and routine maintenance of the frequency modulation spring 211 can be performed through the first opening 111 on the side end surface of the main structure.
  • the damping component 40 including the mounting member 41, the support member 42 and the magnet 43, which is an optional implementation Way, but not limited to the above way.
  • the damping component 40 may also include a friction body 40a connected to the adapter 22, the friction body 40a is pressed against the cylinder 11, and the first connection member 30 can drive the friction body 40a through the adapter 22 It moves relative to the cylinder 11 to make the friction body 40a and the cylinder 11 friction fit.
  • the first connecting member 30 can be moved along the length direction X under the action of the damping body portion 200, and then the friction body 40a can be driven to move relative to the cylinder 11 under the action of the adapter 22, and is in contact with the cylinder 11
  • the mutual friction generates heat, and the kinetic energy of the first connecting member 30 is continuously absorbed and converted into the thermal energy of the cylinder 11, which can also meet the requirements of vibration reduction.
  • the friction body 40a may have a cylindrical structure and be arranged coaxially with the cylindrical body 11.
  • the friction contact area between the friction body 40a and the cylindrical body 11 can be increased, and the frictional contact area between the friction body 40a and the cylindrical body 11 can be increased.
  • the kinetic energy of a connecting piece 30 optimizes the damping effect.
  • the friction body 40a and the adaptor 22 can be integrated with the structure, the connection strength is high, and the damping integrated device 100 can be easily formed.
  • the damping component 40 adopts the above structure, it is also possible to provide a third opening (not shown in the figure) opposite to the first opening 111 provided on the cylinder 11 on the friction body 40a according to requirements, so as to better ensure the integrated damping device 100 heat dissipation requirements.
  • the damping component 40 may also include a receiving body 44 having a closed cavity 441 and a damping fluid 45 disposed in the closed cavity 441.
  • the supporting body 44 is in the shape of an annular cylinder and is arranged around the elastic member 21.
  • the supporting body 44 is connected to the adapter 22 and pressed against the cylinder 11, and the first connecting member 30 can drive the supporting body 44 to face each other through the adapter 22
  • the base body 10 moves so that the damping fluid 45 reciprocally flows along the length direction X.
  • the first connecting member 30 can be moved along the length direction X under the action of the damping body portion 200, and then under the action of the adapter 22, the supporting body 44 is driven to move relative to the cylinder 11, so that the damping liquid 45
  • the reciprocating flow along the length direction X absorbs and converts the kinetic energy of the first connecting member 30 into the kinetic energy of the damping liquid 45, which can also satisfy the damping effect.
  • the damping integrated device 100 provided by the foregoing embodiments is illustrated by taking the supporting member 42 including two or more first rollers 422 as an example.
  • the support 42 include more than two sliders 421, and the two or more sliders 421 are spaced apart and fixedly connected to the mounting member 41 respectively.
  • each slider 421 can be Supported between the mounting member 41 and the cylinder 11 can also ensure the formation requirements of the air gap 90.
  • the distribution manner of the sliding block 421 on the mounting member 41 may be the same as the distribution manner of the first roller 422 on the mounting member 41, which will not be repeated here.
  • the cross-sectional shape of the cylindrical body 11 in the longitudinal direction X is an example. It is understandable that this is an optional implementation, but it is not limited to the above.
  • the cross-section of the cylinder 11 in the length direction X may also be a polygon, which may be a regular polygon.
  • the shape of the mounting member 41 inside it can also match the shape of the cylinder 11.
  • the first opening 111 when the first opening 111 is provided on the cylinder 11, the first opening 111 can penetrate the side wall of the cylinder 11 in the direction intersecting the length direction X.
  • two More than one first opening 111 can also be distributed at intervals in the circumferential direction of the cylinder 11, for example, can be provided on different sidewall surfaces of the cylinder 11. All can meet the performance requirements of the integrated damping device 100.
  • the damping integrated device 100 is all based on the non-return limiting member 50 including an adjusting rod extending along the length direction X and connected to the base 10 51 is taken as an example for illustration, and this is an optional implementation.
  • the non-return limiting component 50 may include a friction plate 50a, which is located in the inner cavity 10a and is connected to the side of the base body 10 away from the elastic member 21 in the length direction X.
  • the friction plate 50a can be connected to The piece 22 is frictionally stopped. It can also meet the non-return limit requirements of the integrated damping device 100.
  • the friction plate 50a may be an annular plate and match the shape of the inner wall of the cylinder 11. It may be located inside the cylinder 11 and cooperate with the cylinder 11, which is easy to install and can also meet the requirements of non-return limit. .
  • the friction plate 50a can be detachably connected to the cylinder 11, and the different non-returns of the damper 1 applied by the damping integrated device 100 can be met by replacing the friction plate 50a with different friction coefficients. Limit demand.
  • the damping limiting device includes the base 10, the frequency modulating component 20, the first connecting piece 30, and the damping component 40.
  • the frequency modulating component 20 includes the elastic member 21 disposed in the inner cavity 10a of the base 10 And the adapter 22, the elastic member 21 is respectively connected to the base 10 and the adapter 22, and the adapter 22 is connected to the first connecting member 30, and the damping member 40 is also located in the inner cavity 10a of the base 10 and connected to The adapter 22 is pressed against the inner wall of the base 10.
  • the damping integrated device 100 When the damping integrated device 100 is in use, it can be connected to the main part of the damper 1 and the component to be damped, such as the tower 2, through the first connecting member 30 and the end of the base 10 away from the first connecting member 30 respectively.
  • the damping integrated device 100 Since the elastic member 21 and the damping member 40 are both connected to the first connecting member 30 through the adapter 22, and are respectively connected to the base body 10 or pressed against each other, the damping integrated device 100 has both frequency modulation and damping characteristics.
  • the frequency modulation component 20 and the damping component 40 are integrated in the cavity 10a inside the base body 10, and on the basis of meeting the frequency modulation and damping requirements, the damping integrated device 100 has a compact overall structure, easy maintenance, fewer interfaces, and strong versatility.
  • the damper 1 provided in the embodiments of the present application because it includes the integrated damping device 100 provided in the above embodiments, can not only meet the requirements of frequency modulation and damping, but also when the integrated damping device 100 includes the non-return limiting component 50, it is also located on the base body at the same time.
  • the non-return limit component 50 is integrated on the 10, and on the basis of meeting the vibration reduction requirements, it has fewer interfaces and is easy to maintain.
  • the damper 1 provided by the above-mentioned embodiments of the present application may be a swing damper, and the damping integrated device 100 included therein may be one or, of course, multiple damping devices.
  • the damping integrated device 100 may be connected to different surfaces of the first mass 200b.
  • multiple damping integrated devices 100 can also be connected to the same surface of the first mass 200b, as long as the performance requirements of the damper 1 can be met, and no specific details will be made here. limit.
  • the dampers 1 provided by the foregoing embodiments of the present application are all based on their damping body portion 200 including a swing arm 200a and a first mass 200b connected to the swing arm 200a, and a first connecting member 30 The part protruding from the base 10 is hinged to the first mass 200b.
  • the damping body 200 includes a base 200c, an arc-shaped slide rail 200d supported on the base 200c, and an arc-shaped slide rail 200d.
  • the second mass 200e is slidably connected to the arc-shaped sliding rail 200d, the part of the first connecting member 30 protruding from the base 10 is hinged to the second mass 200e, and the end of the base 10 away from the first connecting member 30 and the base 200c Articulated.
  • the damper 1 can also meet the damping limit requirements.
  • the damper 1 can be placed on a component to be damped, such as a tower 2 and connected to the component to be damped through the base 200c, which can also meet the demand for damping.
  • the base 200c may have a frame structure and have a concave part
  • the arc-shaped sliding rail 200d is located in the concave part of the base 200c and connected to the side wall of the base 200c
  • the arc-shaped sliding rail 200d protrudes toward the inner side of the concave part.
  • the second mass 200e can slide along the arc-shaped track of the arc-shaped slide rail 200d to absorb the kinetic energy of the component to be damped.
  • the first connecting member 30 is connected to the second mass 200e, the first connecting member 30 can move relative to the base 10 along the length direction of the integrated damping device 100.
  • the corresponding non-return limiting component 50 can limit the length of the first connecting member 30 protruding from the base 10, thereby limiting the second mass 200e in the arc shape
  • the maximum stroke of 200d on the slide rail ensures the safety of damping.
  • the wind turbine generators provided in the above embodiments of the present application are all exemplified by placing the damper 1 on the tower 2 as an example. This is an optional implementation. In some other examples, In this case, the damper 1 can also be placed in the nacelle 3 or other parts that need to be damped.
  • the wind turbine generator provided in the embodiments of the present application includes the damper 1 provided in the above embodiments, so it has a better vibration damping effect, high safety performance, and easy maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

一种阻尼集成装置(100)、阻尼器(1)以及风力发电机组,阻尼集成装置(100)包括:基体(10),具有预定的长度且包括沿自身长度方向(X)延伸的内腔(10a);调频部件(20),设置于内腔(10a),调频部件(20)包括相互连接的弹性件(21)以及转接件(22),弹性件(21)在长度方向(X)的一端与基体(10)连接且另一端与转接件(22)连接;第一连接件(30),伸入内腔(10a)且在长度方向(X)至少部分凸出于基体(10),第一连接件(30)连接于转接件(22)且能够相对基体(10)运动,以使弹性件(21)在长度方向(X)伸缩;阻尼部件(40),设置内腔(10a),阻尼部件(40)连接于转接件(22)且至少部分抵压于基体(10)的内壁,阻尼部件(40)用于吸收第一连接件(30)的动能。阻尼集成装置(100)能够同时满足调频、阻尼等需求,且结构设计简单,易于维护。

Description

阻尼集成装置、阻尼器以及风力发电机组
相关申请的交叉引用
本申请要求享有于2020年05月28日提交的名称为“阻尼集成装置、阻尼器以及风力发电机组”的中国专利申请202010469339.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及阻尼技术领域,特别是涉及一种阻尼集成装置、阻尼器以及风力发电机组。
背景技术
阻尼器是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减振在航天、航空、军工、风电等行业中早已应用。
在风电技术领域,塔架是风力发电机组的支撑结构,其结构安全性与稳定性关系到风力发电机组整机的安全性能。随着风力发电机组容量的不断增加,塔架高度不断增加,塔架频率不断降低,这也使得塔架振动问题会越来越突出。为了保证塔架及整机的安全、平稳运行,需要在塔架上安装阻尼器,来抑制塔架的振动,保证风力发电机组的安全运行。
目前针对塔架减振的装置较多,调谐质量阻尼器技术成熟可靠,在高耸建筑、桥梁等领域应用广泛。其中高耸结构如风力发电机组的塔架,调谐质量阻尼器主要采用质量块作为主要减振体,通过塔架振动过程中质量块的摆动惯性力及其阻尼耗能装置达到机组减振的目的。该种阻尼器虽然能够达到减振的效果,但也存在相应的弊端,主要表现为其调频部件、阻尼部件等均为分开且彼此独立设计,分布于阻尼器的不同位置,与阻尼器所应用的环境如塔架之间存在各自的接口,结构设计较复杂,同时,调频部件、阻尼部件等部件分散在不同的位置等,不利于维护。
因此,亟需一种新的阻尼集成装置、阻尼器以及风力发电机组。
发明内容
本申请实施例提供一种阻尼集成装置、阻尼器以及风力发电机组,阻尼集成装置能够同时满足调频、阻尼需求,且结构设计简单,易于维护。
一方面,根据本申请实施例提出了一种阻尼集成装置,包括:基体,具有预定的长度且包括沿自身长度方向延伸的内腔;调频部件,设置于内腔,调频部件包括弹性件以及转接件,弹性件在长度方向的一端与基体连接且另一端与转接件连接;第一连接件,伸入内腔且在长度方向至少部分凸出于基体,第一连接件连接于转接件且能够相对基体运动,以使弹性件在长度方向伸缩;阻尼部件,设置于内腔,阻尼部件连接于转接件且至少部分抵压于基体的内壁,阻尼部件用于吸收第一连接件的动能。
根据本申请一方面的实施方式,弹性件包括两根以上间隔分布且分别沿长度方向延伸的弹簧,每根弹簧的一端连接于基体且另一端连接于转接件,至少一根弹簧与基体以及转接件分别可拆卸连接。
根据本申请一方面的前述任一实施方式,基体包括沿长度方向延伸的筒体以及分别设置于筒体在长度方向的两端的端盖,端盖与筒体共同围合形成内腔,在与长度方向相交的方向,筒体与调频部件之间形成有间隔腔,阻尼部件位于间隔腔内。
根据本申请一方面的前述任一实施方式,阻尼部件包括安装件、支撑件以及磁体,安装件在长度方向的一端连接于转接件,磁体面向筒体设置并与安装件连接,支撑件支撑于安装件以及筒体之间,以使磁体与筒体之间形成有气隙;第一连接件通过转接件能够带动磁体相对基体运动并在基体内产生感应电涡流。
根据本申请一方面的前述任一实施方式,安装件为筒状结构体并环绕弹性件设置,转接件与安装件的形状相匹配并连接且封闭安装件在长度方向的一端,磁体包括多个磁块;至少部分数量的磁块在长度方向间隔分布,和/或,至少部分数量的磁块沿安装件的外环面间隔分布。
根据本申请一方面的前述任一实施方式,支撑件包括两个以上滑块,两个以上滑块间隔分布并分别固定连接于安装件;或者,支撑件包括两个以上第一滚轮,两个以上第一滚轮间隔分布并分别转动连接于安装件。
根据本申请一方面的前述任一实施方式,筒体上设置有第一开口,第一开口与内腔连通,安装件上设置有第二开口,第二开口与第一开口相对设置。
根据本申请一方面的前述任一实施方式,阻尼部件包括连接于转接件的摩擦体,摩擦体抵压于筒体,第一连接件通过转接件能够带动摩擦体相对筒体运动,以使摩擦体与筒体摩擦配合;或者,阻尼部件包括具有封闭腔的承装体以及设置于封闭腔内的阻尼液,承装体呈环形筒状且环绕弹性件设置,承装体与转接件连接并抵压于筒体,第一连接件通过转接件能够带动承装体相对基体运动,以使阻尼液沿长度方向往复流动。
根据本申请一方面的前述任一实施方式,阻尼集成装置进一步包括止回限位部件,止回限位部件连接于基体在长度方向的一端,止回限位部件用于限制第一连接件在长度方向凸出于基体的最大尺寸。
根据本申请一方面的前述任一实施方式,止回限位部件包括沿长度方向延伸且连接于基体的调节杆,调节杆至少部分延伸入内腔且调节杆伸入内腔的尺寸可调,调节杆能够抵压于转接件远离弹性件的表面,以限制转接件在基体内沿长度方向的位移量;或者,止回限位部件包括摩擦板,摩擦板位于内腔并连接于基体在长度方向远离弹性件的一侧,摩擦板能够与转接件摩擦止动。
根据本申请一方面的前述任一实施方式,调节杆为弹性杆件,调节杆在长度方向能够受力形变。
根据本申请一方面的前述任一实施方式,转接件远离弹性件的表面设置有能够在长度方向受力形变的缓冲垫,缓冲垫面向止回限位部件设置。
根据本申请一方面的前述任一实施方式,第一连接件为杆件,基体上与第一连接件配合处设置有穿孔,围合形成穿孔的侧壁上设置有第二滚轮,基体通过第二滚轮与第一连接件滚动配合;和/或,阻尼集成装置还包括第二连接件,第二连接件在长度方向上与第一连接件相对设置,第二连 接件连接于基体远离第一连接件的一端。
另一方面,根据本申请实施例提出了一种阻尼器,包括:阻尼本体部;上述的阻尼集成装置,阻尼集成装置的第一连接件凸出于基体的部分与阻尼本体部转动连接。
根据本申请另一方面的实施方式,阻尼本体部包括摆臂以及连接于摆臂的第一质量块,第一连接件凸出于基体的部分与第一质量块铰接;或者,阻尼本体部包括基座、支撑于基座上的弧形滑轨以及设置于弧形滑轨并与弧形滑轨滑动连接的第二质量块,第一连接件凸出于基体的部分与第二质量块铰接,基体远离第一连接件的一端与基座铰接。
又一方面,根据本申请实施例提出了一种风力发电机组,包括如上述的阻尼器。
根据本申请实施例提供的阻尼集成装置,包括基体、调频部件、第一连接件以及阻尼部件,调频部件包括设置于基体内腔中的弹性件以及转接件,弹性件分别与基体以及转接件连接,转接件与第一连接件连接,阻尼部件同样位于基体的内腔中且连接于转接件并抵压于基体的内壁,当阻尼集成装置在使用时,可以通过第一连接件以及基体远离第一连接件的一端分别与阻尼器主体部分以及待减振部件连接,由于弹性件以及阻尼部件均通过转接件与第一连接件连接,同时分别与基体连接或者相抵压,能够通过调频部件调节阻尼器的频率,使其与待减振部件的频率相匹配,并通过阻尼部件吸收第一连接件的动能,进而达到减振的效果,阻尼集成装置同时具备调频、阻尼特性。调频部件以及阻尼部件集成于基体内部的内腔中,在满足调频、阻尼要求的基础上,使得阻尼集成装置整体结构紧凑,易于维护。并且,阻尼部件以及调频部件均是通过第一连接件以及基体与外部构件连接,接口少且通用性强。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的风力发电机组的结构示意图;
图2是图1中沿A-A方向的剖视图;
图3是本申请一个实施例的阻尼器的阻尼本体部的结构示意图;
图4是本申请一个实施例的阻尼集成装置的剖视结构示意图;
图5是本申请一个实施例的阻尼集成装置局部剖视结构示意图;
图6是本申请一个实施例的阻尼集成装置沿长度方向的横截面图;
图7是本申请另一个实施例的阻尼集成装置的剖视结构示意图;
图8是本申请另一个实施例的阻尼集成装置的侧视图;
图9是本申请又一个实施例的阻尼集成装置的剖视结构示意图;
图10是本申请再一个实施例的阻尼集成装置的剖视结构示意图;
图11是本申请又一个实施例的阻尼集成装置的剖视结构示意图;
图12是本申请再一个实施例的阻尼集成装置在长度方向上的横截面图;
图13是本申请再一个实施例的阻尼集成装置的剖视结构示意图;
图14是本申请另一个实施例的阻尼器的结构示意图;
图15是本申请再一个实施例的阻尼器的结构示意图。
其中:
1-阻尼器;
100-阻尼集成装置;
10-基体;10a-内腔;10b-穿孔;11-筒体;111-第一开口;12-端盖;
20-调频部件;21-弹性件;211-弹簧;22-转接件;20a-第一挂环;20b-第二挂环;20c-过渡板;
30-第一连接件;
40-阻尼部件;41-安装件;411-第二开口;42-支撑件;421-滑块;422-第一滚轮;43-磁体;431-磁块;44-承装体;441-封闭腔;45-阻尼液;40a-摩擦体;
50-止回限位部件;51-调节杆;52-锁紧螺母;50a-摩擦板;
60-缓冲垫;
70-第二滚轮;80-第二连接件;90-气隙;
200-阻尼本体部;200a-摆臂;200b-第一质量块;200c-基座;200d-弧形滑轨;200e-第二质量块;
2-塔架;3-机舱;4-发电机;5-叶轮;5a-轮毂;5b-叶片;
X-长度方向。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的阻尼集成装置、阻尼器以及风力发电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图15根据本申请实施例的阻尼集成装置、阻尼器以及风力发电机组进行详细描述。
请参阅图1至图3,本申请实施例提供一种风力发电机组,包括塔架2、机舱3、发电机4以及叶轮5,机舱3设置于塔架2的顶端,发电机4设置于机舱3,可以位于机舱3的内部,当然也可以位于机舱3的外部。叶轮5包括轮毂5a以及连接于轮毂5a上的多个叶片5b,叶轮5通过其轮毂5a与发电机4的转子连接。风力作用于叶片5b时,带动整个叶轮5以 及发电机4的转子转动,以将风能转化为电能。
为了保证风力发电机组的安全运行,本申请实施例提供的风力发电机组还包括阻尼器1,通过阻尼器1来抑制风力发电机组的塔架2等部件的振动,保证风力发电机组的安全运行。在一些可选的实施例中,阻尼器1可以设置于塔架2的内部。
请继续参阅图2及图3,本申请实施例还提供一种阻尼器1,阻尼器1包括阻尼本体部200以及阻尼集成装置100,阻尼集成装置100与阻尼本体部200连接。
一些可选的实施例中,阻尼本体部200可以包括摆臂200a以及连接于摆臂200a的第一质量块200b,可选的,摆臂200a的一端可以与第一质量块200b连接,另一端可以连接于塔架2,一些可选的示例中,摆臂200a的另一端可以连接于塔架2内部的塔架平台等结构,通过摆臂200a能够获取待减振部件如塔架2的振动的动能,进而带动第一质量块200b摆动。
由于阻尼器1需要向待减振部件如塔架2等提供调频、阻尼等需求,传统的阻尼器,实现调频功能的部件以及实现阻尼功能的部件均是独立设置的,并且分布于阻尼器的不同位置。由于塔架2内部空间狭小,传统的阻尼器的结构形式会引入更多干涉的可能。例如,阻尼器各部件之间及其与塔架内相关附件如爬梯等的干涉风险,导致阻尼器的结构设计较复杂。同时,调频部件、阻尼部件等部件分散在不同的位置等,与阻尼器所应用的环境如塔架2之间存在各自的接口,接口多且不利于维护。
基于此,本申请实施例还提供一种阻尼集成装置100,该阻尼集成装置100能够使得阻尼器1同时满足调频、阻尼需求,且结构设计简单,易于维护。同时,阻尼集成装置100可以作为独立的构件单独生产以及销售,当然,在有些示例中,该阻尼集成装置100还可以用于上述各实施例的阻尼器1并作为阻尼器1的组成部分。
请一并参阅图4至图6,本申请实施例提供的阻尼集成装置100,包括基体10、调频部件20、第一连接件30以及阻尼部件40,基体10具有预定的长度且包括沿自身长度方向X延伸的内腔10a。调频部件20设置于内腔10a,调频部件20包括弹性件21以及转接件22,弹性件21在长度方 向X的一端与基体10连接且另一端与转接件22连接。第一连接件30伸入内腔10a且在长度方向X至少部分凸出于基体10,第一连接件30连接于转接件22且能够相对基体10运动,以使弹性件21在长度方向X伸缩。阻尼部件40设置于内腔10a,阻尼部件40连接于转接件22且至少部分抵压于基体10的内壁,阻尼部件40用于吸收第一连接件30的动能。
本申请实施例提供的阻尼集成装置100,其包括调频部件20以及阻尼部件40,并将调频部件20以及阻尼部件40均集成于基体10的内腔10a中。当阻尼集成装置100在使用时,可以通过第一连接件30凸出于基体10的部分与阻尼本体部200转动连接,通过基体10远离第一连接件30的一端与待减振的部件如塔架2连接或者阻尼本体部200的其他部件连接。由于弹性件21以及阻尼部件40均通过转接件22与第一连接件30连接,同时分别与基体10连接或者相抵压,使得当待减振部件振动时,可以通过调频部件20调节阻尼器1的频率,并通过阻尼部件40吸收振动传递至第一连接件30的动能,达到减振效果。即,阻尼集成装置100同时具备调频、阻尼特性。调频部件20以及阻尼部件40集成于基体10内部的内腔10a中,在满足调频、阻尼要求的基础上,使得阻尼集成装置100整体结构紧凑,易于维护。同时,阻尼部件40以及调频部件20均是通过第一连接件30以及基体10与外部构件连接,接口少且通用性强。
作为一种可选的实施方式,上述各实施例提供的弹性件21包括两根以上间隔分布且分别沿长度方向X延伸的弹簧211,每根弹簧211的一端连接于基体10且另一端连接于转接件22。通过限制弹性件21包括两根以上间隔分布的弹簧211,使得弹性件21整体结构简单,更好的优化阻尼集成装置100的调频特性,使得阻尼集成装置100在应用至阻尼器1时,能够更好的保证阻尼器1的调频需求。
作为一种可选的实施方式,可以使得至少一根弹簧211分别与基体10以及转接件22可拆卸连接。通过上述设置,可以根据需要改变弹性件21所包括的弹簧211的数量,进而更好的保证阻尼集成装置100的调频要求,使其所应用的阻尼器1能够根据待减振部件如塔架2的频率调整弹簧211的数量,尽量使得二者频率保持一致,更好的优化减振效果。
作为一种可选的实施方式,可以使得转接件22在长度方向X上面向弹性件21的表面上设置有多个第一挂环20a,基体10的内腔10a面向转接件22的表面上设置有与第一挂环20a一一对应的第二挂环20b,弹簧211面向第一挂环20a的一端钩挂在第一挂环20a并可拆卸连接,弹簧211面向第二挂环20b的另一端钩挂在第二挂环20b并可拆卸连接。通过上述设置,能够保证更利于弹簧211的可拆卸连接。
在一些可选的实施例中,可以使得每根弹簧211分别与基体10以及转接件22可拆卸连接。通过上述设置,不仅能够更好的调整阻尼集成装置100所应用的阻尼器1与待减振部件的频率更加接近,保证减振效果。同时,上述设置,还能够利于对弹簧211的更换,进而保证弹簧211的弹性系数始终满足阻尼集成装置100的调频需求。
作为一种可选的实施方式,上述各实施例提供的阻尼集成装置100,还可以进一步包括过渡板20c,基体10可以通过过渡板20c与弹性件21的各弹簧211相连接。当包括过渡板20c时,第二挂环20b可以通过过渡板20c与基体10之间间接连接。过渡板20c的设置,更利于弹性件21的安装,同时,使得阻尼集成装置100整体易于加工以及装配,且能够减少对基体10的磨损。
可选的,过渡板20c以及转接件22均可以为板状结构且在长度方向X上相对设置,各弹簧211可以连接于过渡板20c以及转接件22之间。
请继续参阅图4至图6,作为一种可选的实施方式,本申请上述各实施例提供的阻尼集成装置100,基体10包括沿长度方向X延伸的筒体11以及分别设置于筒体11在长度方向X的两端的端盖12,端盖12与筒体11共同围合形成内腔10a。在与长度方向X相交的方向,可选为与长度方向X相互垂直的方向,筒体11与调频部件20之间形成有间隔腔,阻尼部件40位于间隔腔。通过上述设置,既能够更好的满足阻尼集成装置100的调频、阻尼需求,同时能够更好的利用基体10的内部空间,满足集成要求。
在一些可选的实施例中,在基体10的长度方向X,筒体11的横截面可以为圆环形,端盖12的形状与筒体11的形状相匹配,在长度方向X的 两个端盖12可以各自与筒体11之间可拆卸连接。当然,在有些示例中,可以使得其中一个端盖12与筒体11之间固定连接或者为一体式结构,另一个端盖12与筒体11之间可以采用可拆卸连接的方式。通过上述设置,能够便于调频部件20以及阻尼部件40的安装。可选的,可以使得其中一个端盖12与第一连接件30相配合,可选的,与第一连接件30相互配合的端盖12与筒体11之间可拆卸链接。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,阻尼部件40包括安装件41、支撑件42以及磁体43。安装件41在长度方向X的一端连接于转接件22,磁体43面向筒体11设置并与安装件41连接,支撑件42支撑于安装件41以及筒体11之间,以使磁体43与筒体11之间形成有气隙90。第一连接件30通过转接件22能够带动磁体43相对基体10沿着长度方向X运动并在基体10内产生感应电涡流。
阻尼部件40采用上述结构形式,使其所应用的待减振部件如塔架2产生振动时,由于第一连接件30与阻尼本体部200的第一质量块200b连接,待减振部件的振动使得第一质量块200b带动第一连接件30沿着长度方向X运动,进而使得磁体43相对筒体11运动,使得筒体11的内部产生感应电涡流,以吸收第一连接件30的动能并将其转化为热能,进而降低待减振部件的振动。并且,在此过程中,调频部件的各弹簧211随第一连接件30的运动而被拉伸或者压缩,以调节阻尼器1的频率。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,安装件41为筒状结构体并环绕弹性件21设置,转接件22与安装件41的形状相匹配并连接且封闭安装件41在长度方向X的一端。磁体43包括多个磁块431,至少部分数量的磁块431在长度方向X间隔分布。通过上述设置,能够使得阻尼集成装置100在满足调频需求以及阻尼需求的基础上,结构更加紧凑,并且能够更好的调整阻尼器1的频率并消耗第一质量块200b作用于第一连接件30的动能,保证减振效果。
作为一种可选的实施方式,根据减振需求,可以使得至少部分数量的磁块431沿安装件41的外环面间隔分布。
在一些可选的实施例中,安装件41与转接件22可以为一体式结构, 连接强度高,且易于安装。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,其安装件41整体可以与基体10的筒体11同轴设置。使得安装件41在随第一连接件30相对筒体11运动时,筒体11上产生的电涡流更加均匀,能够更好的将第一连接件30的动能转换为筒体11上的热能,保证阻尼减振效果。
作为一种可选的实施方式,上述各实施例提供的阻尼集成装置100,支撑件42包括两个以上第一滚轮422,两个以上第一滚轮422间隔分布并分别转动连接于安装件41。支撑件42采用上述结构形式,既能够保证磁体43与筒体11之间气隙90的形成,同时,上述设置还能够使得支撑件42与基体10的内壁之间为滚动摩擦,能够保证第一连接件30带动安装件41运动的顺畅性,进而更好的将第一连接件30的动能吸收,保证阻尼集成装置100及其所用的阻尼器1的减振效果。
可选的,磁体43在长度方向X的两端分别设置有第一滚轮422。可选的,在安装件41的周向上,设置有两个以上间隔分布的第一滚轮422,能够进一步保证磁体43与筒体11之间各处形成的气隙90的均匀性要求。
一些可选的实施方式,可以在筒体11的外周表面设置有凹陷(图未示),以使得第一滚轮422的至少部分伸入凹陷内并通过转轴等转动件与筒体11之间转动连接。
请继续参阅图4至图6,作为一种可选的实施方式,上述各实施例提供的阻尼集成装置100,筒体11上设置有第一开口111,第一开口111与内腔10a连通。由于阻尼部件40能够使得筒体11上产生电涡流,以将第一连接件30的动能转换为筒体11的热能。通过在筒体11上设置第一开口111,能够便于阻尼集成装置100充分散热,保证阻尼集成装置100的阻尼效果。同时上述设置,还能够利于对阻尼集成装置100内部结构的维护,例如,可以便于拆装以及更换弹性件21的弹簧211等。
可选的,第一开口111的尺寸不做具体数量限定,其可以为一个,当然也可以为两个以上,当为两个以上时,两个以上第一开口111在筒体11的周向上间隔分布。可选的,第一开口111在筒体11的径向上贯穿筒体 11的侧壁并与内腔10a连通。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,安装件41上设置有第二开口411,第二开口411与第一开口111相对设置,能够更好的保证阻尼集成装置100的散热要求以及维护需求。
可选的,第二开口411与第一开口111能够是在与长度方向X上相交的方向相对设置,一些可选的示例中,第二开口411与第一开口111能够在筒体11的径向上相对设置。
请一并参阅图2至图8,作为一种可选的实施方式,本申请上述各实施例提供的阻尼集成装置100,进一步包括止回限位部件50,止回限位部件50连接于基体10在长度方向X的一端,止回限位部件50用于限制第一连接件30在长度方向X凸出于基体10的最大尺寸。通过上述设置,使得阻尼集成装置100还同时具备止回限位功能,由于第一连接件30可以与阻尼本体部200的第一质量块200b连接,通过限制第一连接件30在长度方向X凸出于基体10的最大尺寸,能够进一步限定第一质量块200b的运动幅度,使得阻尼集成装置100所应用的阻尼器1在满足减振要求的基础上,还能够避免其阻尼本体部200对待减振部件如塔架2之间发生碰撞导致塔架2发生损伤,保证减振的安全性。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,其止回限位部件50包括沿长度方向X延伸且连接于基体10的调节杆51,调节杆51至少部分延伸入内腔10a且调节杆51伸入内腔10a的尺寸可调,调节杆51能够抵压于转接件22远离弹性件21的表面,以限制转接件22在基体10内沿长度方向X的位移量。
止回限位部件50采用上述结构,可以通过改变调节杆51伸入内腔10a中的尺寸,来限制转接件22在基体10内沿长度方向X的位移量,由于第一连接件30与转接件22连接,通过限制转接件22在长度方向X上的位移量,进而能够限定第一连接件30在长度方向X凸出于基体10的最大尺寸,保证阻尼器1的安全性。
作为一种可选的实施例方式,可以在第一连接件30所穿过的端盖12上设置有沿着长度方向X贯穿的连接孔,同时设置与调节杆51螺纹连接 的锁紧螺母52,调节杆51能够由连接孔伸入内腔10a中并通过在长度方向X上相对设置并分布于同一端盖12两侧锁紧螺母52锁定于端盖12的相对位置。在需要改变调节杆51伸入内腔10a中的尺寸时,通过使得调节杆51沿着长度方向X相对端盖12运动至预定位置,拧紧锁紧螺母52即可完成调节,操作简单且易于调节。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,转接件22远离弹性件21的表面设置有能够在长度方向X受力形变的缓冲垫60,缓冲垫60面向止回限位部件50设置。通过上述设置,使得转接件22在与止回限位部件50接触时,可以为柔性接触,使得止回力不会太大,进一步保证阻尼集成装置100所应用的阻尼器1的使用安全。可选的,缓冲垫60可以为橡胶垫、海绵垫等在受力时能够在长度方向X产生形变的缓冲结构。
当然,在有些示例中,也可以使得调节杆51为弹性杆件,可选的,调节杆51在长度方向X能够受力形变,同样可以使得止回力不会太大,进一步保证阻尼集成装置100所应用的阻尼器1的使用安全。
请继续参阅图2至图8,作为一种可选的实施方式,上述各实施例提供的阻尼集成装置100,第一连接件30可以为杆件,第一连接件30采用上述形式,结构简单,易于与阻尼本体部200等器件进行连接,且能够降低阻尼集成装置100的整体成本。在一些可选的实施例中,第一连接件30可以与阻尼本体部200相互铰接,可选采用球铰或者虎克铰。
可选的,基体10上与第一连接件30配合处设置有穿孔10b,围合形成穿孔10b的侧壁上设置有第二滚轮70,基体10通过第二滚轮70与第一连接件30滚动配合。通过上述设置,使得第一连接件30与基体10的配合处为滚动摩擦,能够进一步保证第一连接件30在长度方向X上运动的顺畅性,优化减振效果。
可选的,第一连接件30与基体10的筒体11同轴设置,使得第一连接件30在受的阻尼本体部200的第一质量块200b作用时,能够将力均匀的传递至调频部件20以及阻尼部件40,进而更好的满足阻尼集成装置100所应用的阻尼器1的调频、减振要求。
一些可选的示例中,可以在基体10与第一连接件30配合的端盖12上设置上述所提及的穿孔10b,以保证第一连接件30与阻尼本体部200以及调频部件20和阻尼部件40之间的连接需求。
在一些可选的实施例中,上述各实施例提供的阻尼集成装置100,还包括第二连接件80,第二连接件80在长度方向X上与第一连接件30相对设置,第二连接件80连接于基体10远离第一连接件30的一端。通过设置第二连接件80,能够便于阻尼集成装置100与待减振部件如塔架2或者阻尼器1其他部件之间的连接需求,以满足其所应用的阻尼器1的减振需求。可选的,第二连接件80与待减振部件如塔架2或者阻尼器1其他部件之间的转动连接,可选采用球铰或者虎克铰。
在一些可选的实施例中,第二连接件80同样可以为杆件,可选的,第二连接件80可以与第一连接件30同轴设置,以优化阻尼集成装置100的性能。可选的,第二连接件80可以固定连接于基体10远离第一连接件30的端盖12上。
本申请实施例提供的阻尼集成装置100,在成型时,可以将磁体43连接于安装件41上,接着在安装件41上安装支撑件42。然后将形成的整体与转接件22连接,当包括缓冲垫60时,可以在转接件22远离安装件41的表面上连接缓冲垫60并形成待安装整体,可以将待安装整体安装至基体10的内腔10a中,然后可以连接第一连接件30以及弹性件21,并设置相应的端盖12。当包括第二滚轮70时,可以在端盖12与第一连接件30之间安装第二滚轮70,并将带有第二滚轮70的端盖12与连接至基体10的筒体11上,至此装置装配完毕。在使用时,可以将阻尼集成装置100的第一连接件30连接于阻尼器1的阻尼本体部200,而将基体10远离第一连接件30的一端连接于风力发电机组固定端,如塔架2的内壁,在使用时,当包括第一开口111时,可以通过主体结构侧端面的第一开口111进行调频弹簧211的调节和日常维护。
请一并参阅图9,可以理解的是,本申请上述各实施例,均是以阻尼部件40包括安装件41、支撑件42以及磁体43为例进行举例说明,其为一种可选的实施方式,但不限于上述方式。在一些其他的示例中,还可以 使得阻尼部件40包括连接于转接件22的摩擦体40a,摩擦体40a抵压于筒体11,第一连接件30通过转接件22能够带动摩擦体40a相对筒体11运动,以使摩擦体40a与筒体11摩擦配合。通过上述设置,可以使得第一连接件30在阻尼本体部200的作用下沿着长度方向X运动,进而在转接件22的作用下带动摩擦体40a相对筒体11运动,与筒体11之间相互摩擦生热,将第一连接件30的动能不断的吸收并转换为筒体11的热能,同样能够满足减振要求。
可选的,摩擦体40a可以为筒状结构并与筒体11之间同轴设置,通过上述设置,能够增加摩擦体40a与筒体11之间的摩擦接触面积,进而能够更好的吸收第一连接件30的动能,优化减振效果。
在一些可选的实施例中,摩擦体40a可以与转接件22为一体时结构,连接强度高,且易于阻尼集成装置100的成型。当阻尼部件40采用上述结构时,也可以根据需求,在摩擦体40a上设置于筒体11上的第一开口111相对设置的第三开口(图未示),以更好的保证阻尼集成装置100的散热需求。
请一并参阅图10,可选的,在有些示例中,也可以使得阻尼部件40包括具有封闭腔441的承装体44以及设置于封闭腔441内的阻尼液45。承装体44呈环形筒状且环绕弹性件21设置,承装体44与转接件22连接并抵压于筒体11,第一连接件30通过转接件22能够带动承装体44相对基体10运动,以使阻尼液45沿长度方向X往复流动。通过上述设置,可以使得第一连接件30在阻尼本体部200的作用下沿着长度方向X运动,进而在转接件22的作用下带动承装体44相对筒体11运动,使得阻尼液45沿长度方向X往复流动,将第一连接件30的动能吸收并转换为阻尼液45的动能,同样可以满足阻尼效果。
请一并参阅图11,可以理解的是,上述各实施例提供的阻尼集成装置100,均是以支撑件42包括两个以上第一滚轮422为例进行举例说明,在一些其他的示例中,也可以使得支撑件42包括两个以上滑块421,两个以上滑块421间隔分布并分别固定连接于安装件41,通过限定支撑件42包括两个以上滑块421,可以通过各个滑块421支撑在安装件41以及筒体 11之间,同样能够保证气隙90的形成要求。同时,滑块421在安装件41的分布方式可以与第一滚轮422在安装件41上的分布方式相同,在此不重复赘述。
请一并参阅图12,上述各实施例,均是以筒体11在长度方向X的截面形状为圆环形为例。可以理解的是,此为一种可选的实施方式,但不限于上述方式,在一些其他的示例中,也可以使得筒体11在长度方向X的横截面为多边形,可选为正多边形,此时,其内部的安装件41的形状同样可以与筒体11的形状相配合。并且,当筒体11上设置第一开口111时,第一开口111可以在与长度方向X相交的方向上贯穿筒体11的侧壁,当第一开口111的数量为两个以上时,两个以上第一开口111同样可以在筒体11的周向上间隔分布,例如可以设置在筒体11的不同的侧壁表面上。均可以满足阻尼集成装置100的性能要求。
请一并参阅图13,作为一种可选的实施方式,上述各实施例提供的阻尼集成装置100,均是以止回限位部件50包括沿长度方向X延伸且连接于基体10的调节杆51为例进行举例说明,此为一种可选的实施方式。在一些其他的示例中,止回限位部件50可以包括摩擦板50a,摩擦板50a位于内腔10a并连接于基体10在长度方向X远离弹性件21的一侧,摩擦板50a能够与转接件22摩擦止动。同样可以满足阻尼集成装置100的止回限位要求。
可选的,摩擦板50a可以为环形板并与筒体11的内壁形状相匹配,其可以位于筒体11的内部并与筒体11相互配合,易于安装,且同样可以满足止回限位要求。
在一些可选的实施例中,摩擦板50a可以与筒体11之间可拆卸连接,可以通过更换具有不同摩擦系数的摩擦板50a来满足阻尼集成装置100所应用的阻尼器1的不同止回限位需求。
由此,本申请实施例提供的阻尼限位装置,因其包括基体10、调频部件20、第一连接件30以及阻尼部件40,调频部件20包括设置于基体10内腔10a中的弹性件21以及转接件22,弹性件21分别与基体10以及转接件22连接,且转接件22与第一连接件30连接,并且,阻尼部件40同 样位于基体10的内腔10a中且连接于转接件22并抵压于基体10的内壁。当阻尼集成装置100在使用时,可以通过第一连接件30以及基体10远离第一连接件30的一端分别与阻尼器1主体部分以及待减振部件如塔架2连接。由于弹性件21以及阻尼部件40均通过转接件22与第一连接件30连接,并分别与基体10连接或者相抵压,使得阻尼集成装置100同时具备调频、阻尼特性。调频部件20以及阻尼部件40集成于基体10内部的内腔10a中,在满足调频、阻尼要求的基础上,使得阻尼集成装置100整体结构紧凑,易于维护,且接口少、通用性强。
本申请实施例提供的阻尼器1,因其包括上述各实施例提供的阻尼集成装置100,不仅能够满足调频、阻尼要求,当阻尼集成装置100包括止回限位部件50时,其同时在基体10上集成有止回限位部件50,满足减振要求的基础上,接口少,易于维护。
请一并参阅图14,可以理解的是,本申请上述各实施例所提供的阻尼器1,可以为摆动阻尼器,其所包括的阻尼集成装置100可以为一个,当然,也可以为多个,当为多个时,多个阻尼集成装置100可以连接于第一质量块200b的不同表面。当然,在有些示例中,如图14所示,多个阻尼集成装置100也可以连接于第一质量块200b的同一个表面,只要能够满足阻尼器1的性能要求均可,此处不做具体限制。
请一并参阅图15,本申请上述各实施例所提供的阻尼器1,均是以其阻尼本体部200包括摆臂200a以及连接于摆臂200a的第一质量块200b,第一连接件30凸出于基体10的部分与第一质量块200b铰接。此为一种可选的实施方式,但不限于上述方式,在有些示例中,阻尼本体部200包括基座200c、支撑于基座200c上的弧形滑轨200d以及设置于弧形滑轨200d并与弧形滑轨200d滑动连接的第二质量块200e,第一连接件30凸出于基体10的部分与第二质量块200e铰接,基体10远离第一连接件30的一端与基座200c铰接。通过上述设置,使得阻尼器1同样可以满足阻尼限位要求。并且,当阻尼本体部200采用上述结构时,可以将阻尼器1放置于待减振的部件如塔架2上并通过基座200c与待减振部件连接,同样可以满足减振需求。
可选的,基座200c可以为框架结构且具有凹部,弧形滑轨200d位于基座200c的凹部内并与基座200c的侧壁连接,弧形滑轨200d向凹部的内侧凸出,第二质量块200e能够沿着弧形滑轨200d的弧形轨迹滑动,以吸收待减振部件的动能。当第二质量块200e相对弧形滑轨200d运动时,由于第一连接件30与第二质量块200e连接,使第一连接件30能够沿着阻尼集成装置100自身的长度方向相对基体10运动,进而带动调频部件20以及阻尼部件40实现调频以及阻尼功能,相应设置的止回限位部件50能够限制第一连接件30凸出于基体10的长度,进而限制第二质量块200e在弧形滑轨200d上的最大行程,保证阻尼安全。
可以理解的是,本申请上述各实施例提供的风力发电机组,均是以将阻尼器1放置于塔架2为例进行举例说明,此为一种可选的实施方式,在一些其他的示例中,也可以将阻尼器1放置于机舱3内或者其他需要减振的部件中均可。
本申请实施例提供的风力发电机组,因其包括上述各实施例提供的阻尼器1,因此具有更好的减振效果,安全性能高且易于维护。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种阻尼集成装置(100),其中,包括:
    基体(10),具有预定的长度且包括沿自身长度方向(X)延伸的内腔(10a);
    调频部件(20),设置于所述内腔(10a),所述调频部件(20)包括弹性件(21)以及转接件(22),所述弹性件(21)在所述长度方向(X)的一端与所述基体(10)连接且另一端与所述转接件(22)连接;
    第一连接件(30),伸入所述内腔(10a)且在所述长度方向(X)至少部分凸出于所述基体(10),所述第一连接件(30)连接于所述转接件(22)且能够相对所述基体(10)运动,以使所述弹性件(21)在所述长度方向(X)伸缩;
    阻尼部件(40),设置于所述内腔(10a),所述阻尼部件(40)连接于所述转接件(22)且至少部分抵压于所述基体(10)的内壁,所述阻尼部件(40)用于吸收所述第一连接件(30)的动能。
  2. 根据权利要求1所述的阻尼集成装置(100),其中,所述弹性件(21)包括两根以上间隔分布且分别沿所述长度方向(X)延伸的弹簧(211),每根所述弹簧(211)的一端连接于所述基体(10)且另一端连接于所述转接件(22),至少一根所述弹簧(211)与所述基体(10)以及所述转接件(22)分别可拆卸连接。
  3. 根据权利要求1所述的阻尼集成装置(100),其中,所述基体(10)包括沿所述长度方向(X)延伸的筒体(11)以及分别设置于所述筒体(11)在所述长度方向(X)的两端的端盖(12),所述端盖(12)与所述筒体(11)共同围合形成所述内腔(10a),在与所述长度方向(X)相交的方向,所述筒体(11)与所述调频部件(20)之间形成有间隔腔,所述阻尼部件(40)位于所述间隔腔内。
  4. 根据权利要求3所述的阻尼集成装置(100),其中,所述阻尼部件(40)包括安装件(41)、支撑件(42)以及磁体(43),所述安装件(41)在所述长度方向(X)的一端连接于所述转接件(22),所述磁体 (43)面向所述筒体(11)设置并与所述安装件(41)连接,所述支撑件(42)支撑于所述安装件(41)以及所述筒体(11)之间,以使所述磁体(43)与所述筒体(11)之间形成有气隙(90);
    所述第一连接件(30)通过所述转接件(22)能够带动所述磁体(43)相对所述基体(10)运动并在所述基体(10)内产生感应电涡流。
  5. 根据权利要求4所述的阻尼集成装置(100),其中,所述安装件(41)为筒状结构体并环绕所述弹性件(21)设置,所述转接件(22)与所述安装件(41)的形状相匹配并连接且封闭所述安装件(41)在所述长度方向(X)的一端,所述磁体(43)包括多个磁块(431);
    至少部分数量的所述磁块(431)在所述长度方向(X)间隔分布,和/或,至少部分数量的所述磁块(431)沿所述安装件(41)的外环面间隔分布。
  6. 根据权利要求4所述的阻尼集成装置(100),其中,所述支撑件(42)包括两个以上滑块(421),两个以上所述滑块(421)间隔分布并分别固定连接于所述安装件(41)。
  7. 根据权利要求4所述的阻尼集成装置(100),其中,所述支撑件(42)包括两个以上第一滚轮(422),两个以上所述第一滚轮(422)间隔分布并分别转动连接于所述安装件(41)。
  8. 根据权利要求4所述的阻尼集成装置(100),其中,所述筒体(11)上设置有第一开口(111),所述第一开口(111)与所述内腔(10a)连通,所述安装件(41)上设置有第二开口(411),所述第二开口(411)与所述第一开口(111)相对设置。
  9. 根据权利要求3所述的阻尼集成装置(100),其中,所述阻尼部件(40)包括连接于所述转接件(22)的摩擦体(40a),所述摩擦体(40a)抵压于所述筒体(11),所述第一连接件(30)通过所述转接件(22)能够带动所述摩擦体(40a)相对所述筒体(11)运动,以使所述摩擦体(40a)与所述筒体(11)摩擦配合。
  10. 根据权利要求3所述的阻尼集成装置(100),其中,所述阻尼 部件(40)包括具有封闭腔(441)的承装体(44)以及设置于所述封闭腔(441)内的阻尼液(45),所述承装体(44)呈环形筒状且环绕所述弹性件(21)设置,所述承装体(44)与所述转接件(22)连接并抵压于所述筒体(11),所述第一连接件(30)通过所述转接件(22)能够带动所述承装体(44)相对所述基体(10)运动,以使所述阻尼液(45)沿所述长度方向(X)往复流动。
  11. 根据权利要求1至10任意一项所述的阻尼集成装置(100),其中,所述阻尼集成装置(100)进一步包括止回限位部件(50),所述止回限位部件(50)连接于所述基体(10)在所述长度方向(X)的一端,所述止回限位部件(50)用于限制所述第一连接件(30)在所述长度方向(X)凸出于所述基体(10)的最大尺寸。
  12. 根据权利要求11所述的阻尼集成装置(100),其中,所述止回限位部件(50)包括沿所述长度方向(X)延伸且连接于所述基体(10)的调节杆(51),所述调节杆(51)至少部分延伸入所述内腔(10a)且所述调节杆(51)伸入所述内腔(10a)的尺寸可调,所述调节杆(51)能够抵压于所述转接件(22)远离所述弹性件(21)的表面,以限制所述转接件(22)在所述基体(10)内沿所述长度方向(X)的位移量。
  13. 根据权利要求11所述的阻尼集成装置(100),其中,所述止回限位部件(50)包括摩擦板(50a),所述摩擦板(50a)位于所述内腔(10a)并连接于所述基体(10)在所述长度方向(X)远离所述弹性件(21)的一侧,所述摩擦板(50a)能够与所述转接件(22)摩擦止动。
  14. 根据权利要求11所述的阻尼集成装置(100),其中,所述转接件(22)远离所述弹性件(21)的表面设置有能够在所述长度方向(X)受力形变的缓冲垫(60),所述缓冲垫(60)面向所述止回限位部件(50)设置。
  15. 根据权利要求1至10任意一项所述的阻尼集成装置(100),其中,所述第一连接件(30)为杆件,所述基体(10)上与所述第一连接件(30)配合处设置有穿孔(10b),围合形成所述穿孔(10b)的侧壁上设 置有第二滚轮(70),所述基体(10)通过所述第二滚轮(70)与所述第一连接件(30)滚动配合。
  16. 根据权利要求1至10任意一项所述的阻尼集成装置(100),所述阻尼集成装置(100)还包括第二连接件(80),所述第二连接件(80)在所述长度方向(X)上与所述第一连接件(30)相对设置,所述第二连接件(80)连接于所述基体(10)远离所述第一连接件(30)的一端。
  17. 一种阻尼器(1),其中,包括:
    阻尼本体部(200);
    如权利要求1至16任意一项所述的阻尼集成装置(100),所述阻尼集成装置(100)的所述第一连接件(30)凸出于所述基体(10)的部分与所述阻尼本体部(200)转动连接。
  18. 根据权利要求17所述的阻尼器(1),其中,所述阻尼本体部(200)包括摆臂(200a)以及连接于所述摆臂(200a)的第一质量块(200b),所述第一连接件(30)凸出于所述基体(10)的部分与所述第一质量块(200b)铰接。
  19. 根据权利要求17所述的阻尼器(1),其中,所述阻尼本体部(200)包括基座(200c)、支撑于所述基座(200c)上的弧形滑轨(200d)以及设置于所述弧形滑轨(200d)并与所述弧形滑轨(200d)滑动连接的第二质量块(200e),所述第一连接件(30)凸出于所述基体(10)的部分与所述第二质量块(200e)铰接,所述基体(10)远离所述第一连接件(30)的一端与所述基座(200c)铰接。
  20. 一种风力发电机组,其中,包括如权利要求17至19任意一项所述的阻尼器(1)。
PCT/CN2020/114523 2020-05-28 2020-09-10 阻尼集成装置、阻尼器以及风力发电机组 WO2021237979A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2020450114A AU2020450114A1 (en) 2020-05-28 2020-09-10 Damping integrated device, damper, and wind power generator set
US17/999,210 US11746749B2 (en) 2020-05-28 2020-09-10 Damping integrated device, damper and wind turbine
EP20937209.3A EP4130466A4 (en) 2020-05-28 2020-09-10 INTEGRATED DAMPING DEVICE, DAMPER, AND WIND GENERATOR ASSEMBLY
CA3178315A CA3178315A1 (en) 2020-05-28 2020-09-10 Damping integrated device, damper and wind turbine
BR112022023894A BR112022023894A2 (pt) 2020-05-28 2020-09-10 Dispositivo integrado de amortecimento, amortecedor e turbina eólica
ZA2022/12075A ZA202212075B (en) 2020-05-28 2022-11-04 Damping integrated device, damper and wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010469339.1 2020-05-28
CN202010469339.1A CN113738602B (zh) 2020-05-28 2020-05-28 阻尼集成装置、阻尼器以及风力发电机组

Publications (1)

Publication Number Publication Date
WO2021237979A1 true WO2021237979A1 (zh) 2021-12-02

Family

ID=78724241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114523 WO2021237979A1 (zh) 2020-05-28 2020-09-10 阻尼集成装置、阻尼器以及风力发电机组

Country Status (9)

Country Link
US (1) US11746749B2 (zh)
EP (1) EP4130466A4 (zh)
CN (1) CN113738602B (zh)
AU (1) AU2020450114A1 (zh)
BR (1) BR112022023894A2 (zh)
CA (1) CA3178315A1 (zh)
CL (1) CL2022003283A1 (zh)
WO (1) WO2021237979A1 (zh)
ZA (1) ZA202212075B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290096A1 (de) * 2022-06-09 2023-12-13 Wölfel Engineering GmbH & Co. KG. Schwingungstilgeranordnung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113464384A (zh) * 2020-03-31 2021-10-01 北京金风科创风电设备有限公司 阻尼装置及风力发电机组
CN114607646A (zh) * 2022-03-02 2022-06-10 豪派福风机科技(苏州)有限公司 一种用于工业风机的动力吸振器
CN115030981B (zh) * 2022-05-18 2023-03-24 广东明阳电气股份有限公司 减震拉杆以及具有该减震拉杆的变压器
CN115820292B (zh) * 2022-12-09 2024-07-12 扬州东方吊架有限公司 一种直立容器阻尼导向装置及环形导向结构
CN117662675B (zh) * 2024-01-29 2024-04-16 江苏盐城海风科技有限公司 一种风力发电设备用的减振装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746483A1 (de) * 2012-12-21 2014-06-25 Wölfel Beratende Ingenieure GmbH & Co. KG Schwingungstilgeranordnurg
CN103994169A (zh) * 2014-05-21 2014-08-20 苏州云白环境设备制造有限公司 调频止晃弹簧装置
CN105351419A (zh) * 2015-11-27 2016-02-24 北京工业大学 具有复阻尼特征的板式向心摩擦阻尼器
CN105673353A (zh) * 2016-03-10 2016-06-15 苏州科技学院 一种利用涡激共振发电的自立式高耸结构
CN107575526A (zh) * 2017-10-20 2018-01-12 四川嘉义索隐科技有限公司 一种复合式减震装置
CN108374330A (zh) * 2018-05-07 2018-08-07 湖南科技大学 半主动电磁谐振式调谐质量阻尼器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924714A (en) * 1991-06-11 1999-07-20 Cannondale Corporation Bicycle suspension system
US5720369A (en) * 1995-04-19 1998-02-24 Lord Corporation Adjustable, lockable devices
DK174404B1 (da) 1998-05-29 2003-02-17 Neg Micon As Vindmølle med svingningsdæmper
KR100569072B1 (ko) * 2003-10-01 2006-04-07 현대자동차주식회사 자동차용 쇽업소버 장치
CN102720209B (zh) * 2012-06-29 2015-02-04 北京金风科创风电设备有限公司 可伸缩阻尼装置以及海上漂浮式风机基础
CN203783823U (zh) * 2014-04-24 2014-08-20 大唐巴彦淖尔风力发电有限责任公司 一种风力发电机组振动阻尼器
CN204961173U (zh) * 2015-08-11 2016-01-13 广东明阳风电产业集团有限公司 风力发电机组柔性塔架用的弹簧式主动阻尼调节连杆机构
TWI604141B (zh) * 2016-11-07 2017-11-01 財團法人工業技術研究院 減振器及應用其之半主動式減振方法
CN106381941B (zh) * 2016-11-09 2018-08-28 河南理工大学 一种含有碰撞阻尼耗能装置的形状记忆合金弹簧吸振器
CN206770863U (zh) * 2017-02-03 2017-12-19 北京华德创业环保设备有限公司 调节型流体脉动阻尼器
EP3586000B1 (en) * 2017-02-21 2020-11-25 Vestas Wind Systems A/S Tower vibration damper
CN106895108B (zh) * 2017-03-28 2019-06-18 北京金风科创风电设备有限公司 动力吸振装置、塔架和风力发电机组
EP3396195A1 (en) * 2017-04-28 2018-10-31 Winterthur Gas & Diesel Ltd. Tunable mass damper and mounting component
CN207919795U (zh) 2018-01-23 2018-09-28 上海路博减振科技股份有限公司 一种电涡流阻尼支撑
CN108561487A (zh) * 2018-05-31 2018-09-21 北京金风科创风电设备有限公司 用于风力发电机组的塔筒的阻尼器及风力发电机组的塔筒
US10948043B2 (en) 2018-10-02 2021-03-16 Hiroshi Kurabayashi Damping device for structure
CN209671522U (zh) 2019-02-27 2019-11-22 江苏海力风电设备科技股份有限公司 一种适用于塔架顶段的阻尼装置
CN110080952B (zh) * 2019-06-05 2020-07-07 重庆大学 一种海上风电机基础装置
CN210422890U (zh) * 2019-08-21 2020-04-28 北京金风科创风电设备有限公司 阻尼装置及风力发电机组
CN111043215B (zh) * 2019-12-09 2022-04-05 南京航空航天大学 一种压电式智能动力吸振器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746483A1 (de) * 2012-12-21 2014-06-25 Wölfel Beratende Ingenieure GmbH & Co. KG Schwingungstilgeranordnurg
CN103994169A (zh) * 2014-05-21 2014-08-20 苏州云白环境设备制造有限公司 调频止晃弹簧装置
CN105351419A (zh) * 2015-11-27 2016-02-24 北京工业大学 具有复阻尼特征的板式向心摩擦阻尼器
CN105673353A (zh) * 2016-03-10 2016-06-15 苏州科技学院 一种利用涡激共振发电的自立式高耸结构
CN107575526A (zh) * 2017-10-20 2018-01-12 四川嘉义索隐科技有限公司 一种复合式减震装置
CN108374330A (zh) * 2018-05-07 2018-08-07 湖南科技大学 半主动电磁谐振式调谐质量阻尼器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130466A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4290096A1 (de) * 2022-06-09 2023-12-13 Wölfel Engineering GmbH & Co. KG. Schwingungstilgeranordnung
WO2023237536A1 (de) * 2022-06-09 2023-12-14 Wölfel Engineering Gmbh + Co. Kg Schwingungstilgeranordnung

Also Published As

Publication number Publication date
CL2022003283A1 (es) 2023-02-03
AU2020450114A1 (en) 2022-12-08
EP4130466A4 (en) 2023-11-01
CN113738602B (zh) 2022-08-23
ZA202212075B (en) 2024-01-31
CN113738602A (zh) 2021-12-03
US20230193875A1 (en) 2023-06-22
EP4130466A1 (en) 2023-02-08
CA3178315A1 (en) 2021-12-02
BR112022023894A2 (pt) 2022-12-27
US11746749B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2021237979A1 (zh) 阻尼集成装置、阻尼器以及风力发电机组
CN209324914U (zh) 阻尼器及风力发电机组
CN114086806B (zh) 一种二维偏心旋转非线性能量阱装置及吸振、耗能方法
CN111287916B (zh) 一种用于风机的调谐碰撞惯容质量阻尼装置
CN115163723B (zh) 一种磁流变可变阻尼减振耗能装置
CN110203030B (zh) 一种阻尼减震机构及导向轮及圆轨机器人
CN109707777B (zh) 阻尼器、风力发电机组以及安装方法
CN116906498B (zh) 一种阻尼可调的压电分流-干摩擦阻尼器
CN117759676A (zh) 一种用于海上风电塔筒的减振装置
WO2024093024A1 (zh) 一种用于风力发电机的减振装置
CN218599219U (zh) 带有减震底座的汽轮机设备
CN217713486U (zh) 一种应用于风力发电机组的双导轨tmd耗能减振装置
CN114370478B (zh) 一种非线性刚度可调的惯容型非线性能量阱减振系统
CN214543861U (zh) 一种发电机整体支架结构
CN114933025A (zh) 集二自由度机翼减振与俘能功能的一体化风洞试验装置
CN208858841U (zh) 一种高效稳定的风力发电机组
CN114893531A (zh) 一种可调频率可调阻尼的弹簧吸振装置
CN214330817U (zh) 一种自激式热声发动机
CN117738854B (zh) 一种塔架阻尼器
CN110822000B (zh) 减振频段可调的吸振器及空调机组
CN212838238U (zh) 一种减震空压机
CN212656929U (zh) 调谐质量阻尼装置及风力发电机组
CN221170575U (zh) 一种空气压缩机隔振装置
CN213331538U (zh) 一种螺杆式空气压缩机电动传动架构防护组件
CN221728060U (zh) 一种发电机机座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3178315

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020937209

Country of ref document: EP

Effective date: 20221104

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023894

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020450114

Country of ref document: AU

Date of ref document: 20200910

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022023894

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221123

NENP Non-entry into the national phase

Ref country code: DE