WO2021237964A1 - 一种基于自适应全阶位移观测器的直线振荡电机控制方法 - Google Patents

一种基于自适应全阶位移观测器的直线振荡电机控制方法 Download PDF

Info

Publication number
WO2021237964A1
WO2021237964A1 PCT/CN2020/111562 CN2020111562W WO2021237964A1 WO 2021237964 A1 WO2021237964 A1 WO 2021237964A1 CN 2020111562 W CN2020111562 W CN 2020111562W WO 2021237964 A1 WO2021237964 A1 WO 2021237964A1
Authority
WO
WIPO (PCT)
Prior art keywords
full
observer
motor
adaptive
displacement
Prior art date
Application number
PCT/CN2020/111562
Other languages
English (en)
French (fr)
Inventor
徐伟
王启哲
李想
廖凯举
唐一融
刘毅
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US17/298,600 priority Critical patent/US11356043B2/en
Publication of WO2021237964A1 publication Critical patent/WO2021237964A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors

Definitions

  • the invention belongs to the technical field of linear oscillation motor frequency control and position sensorless control, and more specifically, relates to a linear oscillation motor control method based on an adaptive full-order displacement observer.
  • the traditional reciprocating compressor is driven by a rotating motor through a crank connecting rod.
  • the new linear compressor is directly driven by a linear oscillating motor, eliminating the crank connecting rod mechanism, so it has many advantages such as small size, low noise, and high efficiency.
  • special control strategies and control techniques must be adopted for the operating characteristics of linear oscillation motors, the most important of which are resonant frequency tracking control strategies and position sensorless control techniques.
  • the mechanical part of the linear oscillation motor is a second-order damped oscillation system composed of a piston and a mechanical resonance spring, and there is a system resonance frequency point related to the overall equivalent spring coefficient of the system.
  • Theoretical analysis shows that when the motor operating frequency is equal to the system resonance frequency, the overall system efficiency is the highest, and the energy saving effect is the best.
  • the load carried by the linear compressor is a non-linear gas force.
  • Theoretical analysis and experiments show that the gas force load can be described by the gas equivalent spring coefficient of elasticity and the gas equivalent damping coefficient.
  • the piston stroke of the traditional reciprocating compressor is limited by the crank-connecting rod mechanism, while the linear compressor cancels the crank-connecting rod mechanism, and the piston can run freely, so the piston displacement information must be obtained in real time and controlled to control The compressor displacement and prevent the piston from hitting the cylinder.
  • the displacement sensor is used to obtain piston displacement information, it will not only increase the volume of the system and reduce the overall reliability, but also have problems such as difficulty in sensor installation. Therefore, accurate positionless sensor control technology must be used to calculate the displacement of the piston in real time based on voltage and current signals.
  • the current algorithm is mainly based on the displacement current phase difference, which is based on the characteristic that the phase difference between the current and the displacement is 90° in the steady state, and the system frequency is controlled in an indirect way.
  • the main problem is that the convergence speed is slow, and the control accuracy is affected by many factors.
  • this type of algorithm is based on the characteristics of the system in the steady state, and the resonant frequency tracking control must be started after the amplitude control system reaches the steady state, thus significantly reducing the response speed of the entire system.
  • the current algorithms mainly include back-EMF integration: since the back-EMF of the motor is proportional to the speed, the back-EMF is calculated by the voltage and current signals, and then the integral operation can be used to obtain the displacement. Signal.
  • this algorithm will bring about problems such as integration drift and the initial value of the integration, which will eventually lead to the saturation of the integrator.
  • the current overall motor control method simply combines the above two algorithms, that is, the back-EMF integration algorithm provides the displacement signal required by the resonant frequency tracking control algorithm.
  • the displacement signal is inaccurate, the frequency control will also appear. A certain deviation makes the reliability of the entire control system worse.
  • the present invention provides a linear oscillation motor control method based on an adaptive full-order displacement observer, which aims to solve the integral drift and inaccurate estimation problems existing in the current position sensorless algorithm , And the technical problems of slow convergence speed, poor accuracy, and slow system response in the resonant frequency tracking control algorithm.
  • the present invention provides a linear oscillating motor control method based on an adaptive full-order displacement observer, including:
  • step S3 constructing an error state equation based on the errors of the adjustable model and the reference model is specifically: subtracting the adjustable model equation from the linear oscillating motor state equation to obtain the error state equation.
  • the adaptive rate of the adjustable parameter expressed by the current error is:
  • k I represents the integral coefficient
  • k p represents the proportional coefficient
  • e i represents the current error
  • K(0) and C(0) represent the initial values of the parameters to be identified.
  • the full-order displacement observer has an open-loop structure, and its feedback matrix coefficients g 1 , g 2 , and g 3 are all zero.
  • the upper cut-off frequency for stable operation of the system is:
  • the full-order displacement observer has a closed-loop structure, and its feedback matrix coefficients are:
  • n is a scale factor greater than 1.
  • the poles of the full-order displacement observer are configured to be n times the poles of the motor itself, so that the upper limit cut-off frequency of the stable operation of the system is:
  • the present invention constructs an adjustable parameter adaptation rate. It only needs to use the current error and estimated displacement to quickly and accurately identify the equivalent spring coefficient of the current system, and obtain the resonant frequency after simple calculation. Relying on the steady-state relationship between displacement and current, the resonance frequency identification calculation can be completed before the amplitude control system reaches the steady state, thereby greatly improving the response speed of the system; for sensorless displacement control, the parameters constructed by the present invention are fully adaptive The first-order observer can directly output the observed displacement, there is no pure integration problem, and the algorithm has a fast convergence speed and high accuracy of the observed displacement.
  • the current resonant frequency tracking control algorithm needs to wait for the sensorless displacement control algorithm to provide the required displacement signal.
  • the adaptive full-order observer constructed by the present invention can control displacement and frequency at the same time. Greatly speed up the response speed of the system.
  • the self-adaptive full-order observer constructed by the present invention can adopt either an open-loop structure or a closed-loop structure, and when a closed-loop structure is adopted, the poles of the full-order displacement observer are configured through the feedback matrix, which can further speed up the observer Convergence speed, and increase the upper cut-off frequency of the stable operation of the system.
  • Figure 1 is a schematic diagram of the structure of the model reference adaptive system provided by the present invention.
  • Figure 2 is a schematic diagram of the error feedback system provided by the present invention.
  • Fig. 3 is a block diagram of the overall control system of a linear oscillation motor using an adaptive full-order displacement observer provided by the present invention
  • Figure 4 is a simulation result of the displacement observation effect provided by the present invention.
  • Fig. 5 is a simulation result of the resonant frequency tracking control effect provided by the present invention.
  • the embodiment of the present invention provides a linear oscillation motor control method based on an adaptive full-order displacement observer, including:
  • step S1 is:
  • S1.1 takes displacement x, speed v, and current i as state variables, voltage u as the input quantity, and current i as the output quantity.
  • the state equation of linear oscillating motor is listed as:
  • p represents the differential operator
  • k represents the equivalent spring coefficient of the system
  • c represents the equivalent damping coefficient
  • m represents the mass of the mover piston
  • L represents the motor stator inductance
  • R represents the motor stator resistance
  • k i represents the motor thrust coefficient
  • the observability discriminant matrix is:
  • the discriminant matrix is a full-rank matrix, so the linear oscillation motor system is completely observable, and the full-order state observer can be constructed as:
  • g 1 , g 2 , and g 3 represent the parameters of the observer feedback matrix.
  • the model reference adaptive system constructed by the present invention is shown in FIG. 1.
  • Step S4 mainly includes: (1) Construct an error feedback system based on Popov’s superstability theory; (2) derive the parameter adaptation rate of the parameter to be identified through Popov’s inequality; (3) Pass the error feedback system before The analysis of the positive realness of the transfer function to the link derives the upper cut-off frequency of the stable operation of the system; the specific implementation process is as follows:
  • an error feedback system is constructed using the error state equation.
  • the error feedback system is shown in Figure 2.
  • the system is composed of a linear forward path and a nonlinear feedback path.
  • the linear forward path The input is -w, and the output is y; the input of the nonlinear feedback path is y, and the output is w.
  • the error state equation (11) combined with the error feedback system diagram, we can get:
  • e x represents displacement error
  • e v represents velocity error
  • e i current error
  • Popov superstability theory: For the error feedback system organized into the aforementioned form, the input y and output w of the nonlinear feedback path satisfy the Popov’s integral inequality Under the premise of, the necessary and sufficient condition for the asymptotic stability of the whole system is that the transfer function of the linear time-invariant forward path is strictly positive and real.
  • the parameter adaptation rate of the parameter to be identified can be obtained:
  • the transfer function (31) must be a strictly positive real function. According to the definition of the positive realness of the function, we know:
  • Condition (1) is obviously satisfied.
  • the condition (2) is also satisfied.
  • the specific parameters of the feedback matrix should be derived using the n-fold pole configuration method based on linear control theory, so that the response speed of the full-order observer is greater than that of the motor;
  • the characteristic equation of the observer can be obtained as:
  • the positive realness condition (1) must be satisfied, and the Routh criterion can be used to prove that the forward link transfer function satisfies the positive realness condition (2) under the condition of the closed-loop observer.
  • the Routh criterion there are: if the following conditions are met: (1) the coefficients of the characteristic equation of the transfer function are all positive; (2) the coefficients in the first column of the Routh table are all positive, then the root of the characteristic equation, that is, the poles of the system are all at Left half plane.
  • Routh table For Routh criterion condition (2), the Routh table is listed as:
  • Routh criterion condition (2) is satisfied.
  • the function's positive realness condition (2) is satisfied.
  • the upper limit frequency of the stable operation of the closed-loop observer can be obtained as:
  • the feedback matrix can not only configure the poles of the observer to be n times the poles of the motor itself, and effectively accelerate the convergence speed of the observer, but also increase the upper cut-off frequency to n times that of the open-loop observer.
  • the observed displacement output by the closed-loop adaptive full-order observer is input into the amplitude control system as the displacement feedback signal, and the equivalent spring coefficient of the identified system is based on the formula Simple calculations can get the estimated resonant frequency, and input it as a frequency control signal into the frequency control system to realize the position sensorless resonant frequency tracking control of the linear oscillation motor.
  • the solid line is the actual displacement
  • the dashed line is the observed displacement.
  • the adjustable parameters are getting closer and closer to their actuals.
  • the error between the observed displacement and the actual displacement is getting smaller and smaller, and finally the observed displacement completely converges to the actual displacement.
  • the dashed line is the actual resonant frequency of the system 28.59Hz
  • the solid line is the change trend of the system operating frequency under the action of the MRAS algorithm.
  • the function makes the operating frequency of the system close to the resonant frequency continuously, and finally converges to the resonant frequency completely.
  • the simulation results prove the effectiveness of the proposed method and its advantages of high accuracy and fast system response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种基于自适应全阶位移观测器的直线振荡电机控制方法,属于直线振荡电机频率控制和无位置传感器控制领域。包括构建全阶位移观测器(S1);将系统等效弹簧弹性系数和等效阻尼系数作为待辨识参数,将全阶位移观测器作为可调模型,将电机本体作为参考模型(S2);根据可调模型和参考模型误差构建误差状态方程(S3);利用波波夫超稳定性理论,得到使误差状态方程收敛的运行上限截止频率和可调参数自适应率(S4);使电机低于上限截止频率运行,将运行过程中测量得到的电机电流和电压信号输入全阶位移观测器,实现频率跟踪和位移控制(S5)。该方法可快速准确地同时实现直线振荡电机的谐振频率跟踪控制和无位置传感器控制。

Description

一种基于自适应全阶位移观测器的直线振荡电机控制方法 【技术领域】
本发明属于直线振荡电机频率控制和无位置传感器控制技术领域,更具体地,涉及一种基于自适应全阶位移观测器的直线振荡电机控制方法。
【背景技术】
传统往复式压缩机由旋转电机通过曲柄连杆驱动,与其相比,新型直线压缩机由直线振荡电机直接驱动,取消了曲柄连杆机构,因而具有体积小、噪声小、效率高等众多优点。而要充分发挥这些优势,必须针对直线振荡电机的运行特性,采用特殊的控制策略和控制技术,其中最重要的是谐振频率跟踪控制策略和无位置传感器控制技术。
在谐振频率控制上,直线振荡电机的机械部分是活塞与机械谐振弹簧所组成的二阶阻尼振荡系统,存在一个与系统整体等效弹簧弹性系数相关的系统谐振频率点。理论分析表明,当电机运行频率等于系统谐振频率时,系统整体效率最高,节能效果最好。另外,直线压缩机所带负载为非线性的气体力,理论分析和实验均表明,该气体力负载可用气体等效弹簧弹性系数以及气体等效阻尼系数描述。当负载变化时,系统整体的弹簧弹性系数将发生改变,进而导致系统谐振频率变化,因此,必须采用谐振频率跟踪控制,以使工作频率始终等于当前系统谐振频率。
在行程控制上,传统往复式压缩机的活塞行程受到曲柄连杆机构的限制,而直线压缩机取消了曲柄连杆机构,活塞可自由运行,故必须实时获取活塞位移信息并加以控制,以控制压缩机排气量并防止活塞撞缸。但是如果使用位移传感器获取活塞位移信息,不仅会增大系统体积,降低整体可靠性,同时还存在传感器安装困难等问题。因此,必须运用精确的无位 置传感器控制技术,以电压和电流信号为基础,实时计算出活塞的位移大小。
对于直线振荡电机的谐振频率跟踪控制,目前的算法主要基于位移电流相位差,其依据是稳态下电流和位移之间相位差为90°的特性,以间接方法控制系统频率。其主要问题在于收敛速度慢,控制精度受多种因素影响。同时,该类算法依据的是系统稳态时的特性,必须在振幅控制系统达到稳态后,再开始谐振频率跟踪控制,因而明显降低了整个系统的响应速度。而对于直线振荡电机的无位置传感器控制,目前的算法主要有反电势积分法:由于电机反电势与速度成正比,故通过电压和电流信号计算出反电势后,再采用积分运算即可获得位移信号。但是,因含有纯积分环节,该算法会带来积分漂移和积分初值等问题,最终会导致积分器饱和现象。
此外,目前的电机整体控制方法是将上述两种算法简单地结合起来,即由反电势积分算法提供谐振频率跟踪控制算法所需的位移信号,当位移信号不准时,其频率控制也将会出现一定的偏差,从而使得整个控制系统的可靠性变差。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于自适应全阶位移观测器的直线振荡电机控制方法,其目的在于解决目前无位置传感器算法存在的积分漂移和估算不准问题,以及谐振频率跟踪控制算法存在的收敛速度慢、精度差、系统响应慢的技术问题。
为实现上述目的,本发明提供了一种基于自适应全阶位移观测器的直线振荡电机控制方法,包括:
S1.构建全阶位移观测器;所述全阶位移观测器用于观测直线振荡电机动子位移;
S2.将系统等效弹簧弹性系数和等效阻尼系数作为可调参数,代入全阶位移观测器构建可调模型,并将电机本体作为参考模型;
S3.根据可调模型和参考模型的误差,构建误差状态方程;
S4.利用波波夫超稳定性理论,得到使误差状态方程收敛的系统稳定运行上限截止频率和可调参数自适应率;所述可调参数自适应率以电流误差表示;
S5.使电机低于上限截止频率运行,将运行过程中测量得到的电机电流和电压信号输入全阶位移观测器,利用全阶位观测器输出的观测位移对电机位移进行闭环控制,将观测器输出的观测谐振频率作为系统运行频率。
进一步地,可调模型方程为:
Figure PCTCN2020111562-appb-000001
其中,p表示微分算子,
Figure PCTCN2020111562-appb-000002
表示位移观测值、
Figure PCTCN2020111562-appb-000003
表示速度观测值、
Figure PCTCN2020111562-appb-000004
表示电流观测值,
Figure PCTCN2020111562-appb-000005
表示由参数自适应率计算得到的系统等效弹簧弹性系数估算值,
Figure PCTCN2020111562-appb-000006
表示由参数自适应率计算得到的系统等效阻尼系数估算值,m表示动子活塞质量,L表示电机定子电感,R表示电机定子电阻,k i表示电机推力系数,u表示输入电压,i表示定子电流,g 1、g 2、g 3表示观测器反馈矩阵系数。
进一步地,步骤S3所述根据可调模型和参考模型的误差,构建误差状态方程,具体为:以直线振荡电机状态方程减去可调模型方程,得到误差状态方程。
进一步地,以电流误差表示的可调参数自适应率为:
Figure PCTCN2020111562-appb-000007
Figure PCTCN2020111562-appb-000008
其中,k I表示积分系数,k p表示比例系数,e i表示电流误差,K(0)和C(0)表示待辨识参数的初值。
进一步地,全阶位移观测器为开环结构,其反馈矩阵系数g 1、g 2、g 3均为0。
进一步地,系统稳定运行的上限截止频率为:
Figure PCTCN2020111562-appb-000009
进一步地,全阶位移观测器为闭环结构,其反馈矩阵系数为:
Figure PCTCN2020111562-appb-000010
Figure PCTCN2020111562-appb-000011
Figure PCTCN2020111562-appb-000012
其中,n为大于1的比例系数。
进一步地,采用上述反馈矩阵系数,将全阶位移观测器极点配置为电机自身极点的n倍,使得系统稳定运行上限截止频率为:
Figure PCTCN2020111562-appb-000013
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果。
(1)针对谐振频率跟踪控制,本发明构建了可调参数自适应率,只需利用电流误差以及估算位移可快速准确地辨识出当前系统等效弹簧弹性系数,简单计算后得到谐振频率,无需依赖于位移和电流间稳态关系,能够在振幅控制系统尚未达到稳态时就完成谐振频率辨识计算,从而大大提高系统的响应速度;针对无传感器位移控制,本发明构建的参数自适应的全 阶观测器可直接输出观测位移,不存在纯积分问题,且算法收敛速度快,观测位移精度高。
(2)目前谐振频率跟踪控制算法需等待无传感器位移控制算法提供所需的位移信号,相比之下,本发明所构建的自适应全阶观测器,能够同时控制位移和频率,从整体上大大加快了系统的响应速度。
(3)本发明所构建的自适应全阶观测器既可采用开环结构,也可采用闭环结构,且当采用闭环结构时,通过反馈矩阵配置全阶位移观测器极点,能进一步加快观测器的收敛速度,并提升系统稳定运行的上限截止频率。
【附图说明】
图1是本发明提供的模型参考自适应系统结构示意图;
图2是本发明提供的误差反馈系统示意图;
图3是本发明提供的采用自适应全阶位移观测器的直线振荡电机整体控制系统框图;
图4是本发明提供的位移观测效果仿真结果;
图5是本发明提供的谐振频率跟踪控制效果仿真结果。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明实施例提供了一种基于自适应全阶位移观测器的直线振荡电机控制方法,包括:
S1.构建全阶位移观测器;全阶位移观测器用于观测直线振荡电机动子位移;
具体地,步骤S1的具体实施方式为:
S1.1以位移x、速度v、电流i为状态变量,电压u为输入量,电流i为输出量,列出直线振荡电机状态方程为:
Figure PCTCN2020111562-appb-000014
px=Ax+Bu        (2)
其中,p表示微分算子,k表示系统等效弹簧弹性系数,c表示等效阻尼系数,m表示动子活塞质量,L表示电机定子电感,R表示电机定子电阻,k i表示电机推力系数。
输出方程为:
Figure PCTCN2020111562-appb-000015
y=Cx         (4)
S1.2依据状态方程和输出方程列出可观性判别矩阵,依据判别矩阵之秩判断直线振荡电机系统可观性,可观性判别矩阵为:
Figure PCTCN2020111562-appb-000016
显然判别矩阵为满秩矩阵,故直线振荡电机系统完全可观,可构造全阶状态观测器为:
Figure PCTCN2020111562-appb-000017
Figure PCTCN2020111562-appb-000018
其中,
Figure PCTCN2020111562-appb-000019
表示位移观测值、
Figure PCTCN2020111562-appb-000020
表示速度观测值、
Figure PCTCN2020111562-appb-000021
表示电流观测值,g 1、g 2、g 3表示观测器反馈矩阵参数。
S2.对于基本全阶位移观测器式(6),一般默认其中的所有系数都是已知的恒定常数,然而实际上系统等效弹簧弹性系数k和等效阻尼系数c都是随着系统负载变化而变换的时变参数,因此依据模型参考自适应(Model Reference Adaptive System,MRAS)理论,将系统等效弹簧弹性系数k和等效阻尼系数c作为可调参数,为计算方便起见,将
Figure PCTCN2020111562-appb-000022
Figure PCTCN2020111562-appb-000023
整体定义为可调参数
Figure PCTCN2020111562-appb-000024
Figure PCTCN2020111562-appb-000025
代入全阶位移观测器构建可调模型,并将电机本体作为参考模型。可调模型方程为:
Figure PCTCN2020111562-appb-000026
Figure PCTCN2020111562-appb-000027
本发明构建的模型参考自适应系统如图1所示。
S3.根据可调模型和参考模型的误差,构建误差状态方程;
具体地,以电机原始状态方程式(2)减去构建的可调模型方程式(9),可得误差状态方程式(11):
Figure PCTCN2020111562-appb-000028
Figure PCTCN2020111562-appb-000029
由式(1)减式(8)可得误差状态方程式(11)中各矩阵具体表达式:
Figure PCTCN2020111562-appb-000030
Figure PCTCN2020111562-appb-000031
S4.利用波波夫超稳定性理论,得到使误差状态方程收敛的系统稳定运行上限截止频率和可调参数自适应率;其中,可调参数自适应率以电流误差表示;
步骤S4主要包括:(1)基于波波夫超稳定性理论,构造误差反馈系统;(2)通过波波夫不等式推导出待辨识参数的参数自适应率;(3)通过对误差反馈系统前向环节传递函数正实性的分析,推导出系统稳定运行的上限截止频率;具体实施过程如下:
01.依据波波夫超稳定性理论的要求,利用误差状态方程构建误差反馈系统,该误差反馈系统如图2所示,该系统由线性前向通路和非线性反馈通路组成,线性前向通路之输入为-w,输出为y;非线性反馈通路之输入为y,输出为w。依据误差状态方程式(11)结合误差反馈系统图示可得:
y=e=[e x e v e i] T         (14)
Figure PCTCN2020111562-appb-000032
Figure PCTCN2020111562-appb-000033
其中,e x表示位移误差,e v表示速度误差,e i表示电流误差。
02.依据波波夫超稳定性理论,将式(14)(16)代入波波夫不等式,可推导出参数自适应率。
波波夫超稳定性理论:对于整理成前述形式的误差反馈系统,在非线性反馈通路的输入y和输出w满足波波夫积分不等式
Figure PCTCN2020111562-appb-000034
的前提下,整个系统渐进稳定的充要条件是线性定常前向通路的传递函数为严格正实的。
03.将前述y和w代入波波夫积分不等式,可得待辨识参数的参数自适应率为:
Figure PCTCN2020111562-appb-000035
Figure PCTCN2020111562-appb-000036
04.由于参考模型为电机本身,只能输出电流,故将电流误差与速度误差之关系代入原本参数自适应率(17)(18),得到以电流误差表示的参数自适应率。
以实际电机电压方程(19)减观测器电压方程(20)可得电流误差与速度误差关系式(21):
u=Ri+Lpi+k iv        (19)
Figure PCTCN2020111562-appb-000037
Figure PCTCN2020111562-appb-000038
将式(21)代入式(17)(18),并将系数整合进比例系数k P,积分系数k I中,微分系数k D中,可得:
Figure PCTCN2020111562-appb-000039
Figure PCTCN2020111562-appb-000040
为简化运算,以微分系数为0,即可得PI形式的以电流误差表示的参数自适应率:
Figure PCTCN2020111562-appb-000041
Figure PCTCN2020111562-appb-000042
05.依据最终所得以电流误差表示的参数自适应率,以线性前向环节输出为电流误差e i,输入为
Figure PCTCN2020111562-appb-000043
将误差状态方程展开可得:
Figure PCTCN2020111562-appb-000044
将式(26)转到s域,整理可得:
Figure PCTCN2020111562-appb-000045
Figure PCTCN2020111562-appb-000046
将式(27)(28)代入式(26)中第二式,整理可得:
Figure PCTCN2020111562-appb-000047
式(29)中系数为:
Figure PCTCN2020111562-appb-000048
06.如全阶观测器为开环结构,则反馈矩阵为0,可得线性前向环节传递函数为:
Figure PCTCN2020111562-appb-000049
依据波波夫超稳定性理论,必须使传递函数(31)为严格正实函数,依据函数正实性的定义,可知:
关于复变量s=σ+jω的有理函数G(s)=N(s)/D(s)为严格正实函数,需要满足条件:(1)当s为实数时G(s)有定义;(2)G(s)在右半闭平面上没有极点;(3)对于-∞<ω<∞均有Re[G(jω)]>0。
条件(1)显然满足,对传递函数(31)利用劳斯判据可知条件(2)同样满足,对条件(3),代入s=jw可得:
Figure PCTCN2020111562-appb-000050
显然要满足条件(3),必须使式(32)的分子大于0,由此可推出系统稳定运行的上限截止频率为:
Figure PCTCN2020111562-appb-000051
07.如全阶观测器采用闭环结构,应依据线性控制理论,利用n倍极点配置法推导出反馈矩阵的具体参数,使全阶观测器的响应速度大于电机;
列出电机自身的特征方程:
Figure PCTCN2020111562-appb-000052
设电机自身极点为r 1,r 2,r 3,则对应特征方程为:
Figure PCTCN2020111562-appb-000053
若要将观测器极点配置为电机自身极点的n倍,即观测器极点为nr 1,nr 2,nr 3,可得观测器特征方程为:
Figure PCTCN2020111562-appb-000054
联立式(34)(35),可得:
Figure PCTCN2020111562-appb-000055
观测器实际特征方程为:
Figure PCTCN2020111562-appb-000056
联立式(37)(38),可得反馈矩阵参数为:
Figure PCTCN2020111562-appb-000057
08.利用得到的反馈矩阵参数,在开环自适应观测器的基础上构建闭环自适应观测器,并利用函数正实性的定义分析得到闭环自适应观测器系统的稳定性;
正实性条件(1)必然满足,利用劳斯判据可证明闭环观测器条件下,前向环节传递函数满足正实性条件(2)。依据劳斯判据,有:若满足以下条件:(1)传递函数特征方程之系数全部为正;(2)劳斯表第一列系数全部为正,则特征方程之根即系统极点全部在左半平面。
由传递函数表达式(29)和系数表达式(30)可知,要满足劳斯判据条件(1),则反馈矩阵必须使式(30)中的系数全部大于0,将反馈矩阵内系数代入式(30)可得:
A=n(mR+cL)         (40)
Figure PCTCN2020111562-appb-000058
C=n 3kR         (42)
由于反馈矩阵将观测器极点配置到电机极点左边,必有n>1,故ABC系数均大于0,劳斯判据条件(1)满足。
对劳斯判据条件(2),列出劳斯表为:
Figure PCTCN2020111562-appb-000059
故要满足劳斯判据条件(2),必须使式(43)最后一行为正,代入(40)-(42)可得:
Figure PCTCN2020111562-appb-000060
故劳斯判据条件(2)满足,综上,函数正实性条件(2)满足。
由函数正实性条件(3),经过类似上述开环观测器下系统稳定运行上限频率的推导过程,可得闭环观测器的稳定运行上限频率为:
Figure PCTCN2020111562-appb-000061
代入反馈矩阵参数可得:
Figure PCTCN2020111562-appb-000062
通过反馈矩阵不仅能将观测器极点配置为电机自身极点的n倍,有效加快观测器的收敛速度,还可将上限截止频率提升为开环观测器的n倍。
S5.使电机低于上限截止频率运行,将运行过程中测量得到的电机电流和电压信号输入全阶位移观测器,利用全阶位观测器输出的观测位移对电机位移进行闭环控制,将观测器输出的观测谐振频率作为系统运行频率。
如图3所示,将闭环自适应全阶观测器输出的观测位移作为位移反馈信号输入振幅控制系统,对辨识所得系统等效弹簧弹性系数根据公式
Figure PCTCN2020111562-appb-000063
作简单计算即可得到估算谐振频率,将其作为频率控制信号输入频率控制系统,即可实现直线振荡电机的无位置传感器谐振频率跟踪控制。
本发明实施例以定子永磁型双定子直线振荡电机为例对上述方法进行验证,其额定功率为120W,额定工作频率为30Hz,定子电阻为18Ω,定子电感为0.59H,推力系数为47.08N/A,动子活塞质量为0.93kg;系统实际等效阻尼系数c=20N/(m/s)、系统实际等效弹簧弹性系数k=30kN/m。
如图4所示,实线为实际位移,虚线为观测位移,在系统刚启动时实际位移与观测位移之间有一定误差,随着MRAS算法开始起作用,可调参数越来越接近其实际值,同时观测位移与实际位移之间的误差也越来越小,最终观测位移完全收敛于实际位移。如图5所示,虚线为系统实际谐振频率28.59Hz,实线为MRAS算法作用下系统工作频率变化趋势,可见在系统刚启动而振幅尚未达到给定值时,谐振频率跟踪控制系统即可发挥作用,使得系统工作频率不断接近谐振频率,最终完全收敛于谐振频率。仿真结果证明了所提出方法的有效性以及其精度高,系统响应速度快的优点。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,包括:
    S1.构建全阶位移观测器;所述全阶位移观测器用于观测直线振荡电机动子位移;
    S2.模型参考自适应参数辨识方法,将系统等效弹簧弹性系数和等效阻尼系数作为待辨识参数,代入全阶位移观测器构建可调模型,并将电机本体作为参考模型;
    S3.根据可调模型和参考模型的误差,构建误差状态方程;
    S4.利用波波夫超稳定性理论,得到使误差状态方程收敛的系统稳定运行上限截止频率和可调参数自适应率;所述可调参数自适应率以电流误差表示;
    S5.使电机低于上限截止频率运行,将运行过程中测量得到的电机电流和电压信号输入全阶位移观测器,利用全阶位观测器输出的观测位移对电机位移进行闭环控制,将观测器输出的观测谐振频率作为系统运行频率。
  2. 根据权利要求1所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,可调模型方程为:
    Figure PCTCN2020111562-appb-100001
    其中,p表示微分算子,
    Figure PCTCN2020111562-appb-100002
    表示位移观测值、
    Figure PCTCN2020111562-appb-100003
    表示速度观测值、
    Figure PCTCN2020111562-appb-100004
    表示电流观测值,
    Figure PCTCN2020111562-appb-100005
    表示由参数自适应率计算得到的系统等效弹簧弹性系数估算值,
    Figure PCTCN2020111562-appb-100006
    表示由参数自适应率计算得到的系统等效阻 尼系数估算值,m表示动子活塞质量,L表示电机定子电感,R表示电机定子电阻,k i表示电机推力系数,u表示输入电压,i表示定子电流,g 1、g 2、g 3表示观测器反馈矩阵系数。
  3. 根据权利要求1或2所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,步骤S3所述根据可调模型和参考模型的误差,构建误差状态方程,具体为:以直线振荡电机状态方程减去可调模型方程,得到误差状态方程。
  4. 根据权利要求2或3所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,以电流误差表示的可调参数自适应率为:
    Figure PCTCN2020111562-appb-100007
    Figure PCTCN2020111562-appb-100008
    其中,k I表示积分系数,k p表示比例系数,e i表示电流误差,K(0)和C(0)表示待辨识参数的初值。
  5. 根据权利要求2-4任一项所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,全阶位移观测器为开环结构,其反馈矩阵系数g 1、g 2、g 3均为0。
  6. 根据权利要求5所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,系统稳定运行的上限截止频率为:
    Figure PCTCN2020111562-appb-100009
  7. 根据权利要求2-4任一项所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,全阶位移观测器为闭环结构,其反馈矩阵系数为:
    Figure PCTCN2020111562-appb-100010
    Figure PCTCN2020111562-appb-100011
    Figure PCTCN2020111562-appb-100012
    其中,n为大于1的比例系数。
  8. 根据权利要求7所述的一种基于自适应全阶位移观测器的直线振荡电机控制方法,其特征在于,采用所述反馈矩阵系数,将全阶位移观测器极点配置为电机自身极点的n倍,使得系统稳定运行上限截止频率为:
    Figure PCTCN2020111562-appb-100013
PCT/CN2020/111562 2020-05-25 2020-08-27 一种基于自适应全阶位移观测器的直线振荡电机控制方法 WO2021237964A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/298,600 US11356043B2 (en) 2020-05-25 2020-08-27 Linear oscillatory machine control method based on adaptive full-order displacement observer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010450210.6 2020-05-25
CN202010450210.6A CN111564995B (zh) 2020-05-25 2020-05-25 一种基于自适应全阶位移观测器的直线振荡电机控制方法

Publications (1)

Publication Number Publication Date
WO2021237964A1 true WO2021237964A1 (zh) 2021-12-02

Family

ID=72072360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111562 WO2021237964A1 (zh) 2020-05-25 2020-08-27 一种基于自适应全阶位移观测器的直线振荡电机控制方法

Country Status (3)

Country Link
US (1) US11356043B2 (zh)
CN (1) CN111564995B (zh)
WO (1) WO2021237964A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564995B (zh) * 2020-05-25 2021-11-19 华中科技大学 一种基于自适应全阶位移观测器的直线振荡电机控制方法
CN113131822B (zh) * 2021-04-13 2022-05-13 无锡威孚高科技集团股份有限公司 无位置传感器矢量控制永磁同步电机速度开环切换闭环控制方法和装置
CN113630052A (zh) * 2021-07-29 2021-11-09 华中科技大学 一种直线振荡电机无位置传感器控制方法及装置
CN114061734B (zh) * 2021-11-11 2024-06-07 中国航发沈阳黎明航空发动机有限责任公司 一种测量振荡活塞位移量的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094286A (ja) * 1996-09-19 1998-04-10 Matsushita Electric Ind Co Ltd 動力発生装置
JP2012016224A (ja) * 2010-07-02 2012-01-19 Sinfonia Technology Co Ltd リニアアクチュエータ駆動装置
CN106357183A (zh) * 2016-09-22 2017-01-25 东南大学 一种直线振荡电机的谐振频率跟踪控制方法
CN106374808A (zh) * 2016-09-22 2017-02-01 东南大学 一种压缩机用直线振荡电机控制方法
CN107592051A (zh) * 2017-09-22 2018-01-16 西南交通大学 一种直线牵引电机励磁电感在线参数辨识仿真方法
CN108880372A (zh) * 2018-07-06 2018-11-23 西南交通大学 一种基于滑模观测器的直线牵引电机无速度传感器控制方法
CN110912483A (zh) * 2019-11-04 2020-03-24 华中科技大学 一种直线振荡电机的谐振频率辨识及控制方法
CN111564995A (zh) * 2020-05-25 2020-08-21 华中科技大学 一种基于自适应全阶位移观测器的直线振荡电机控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182311B2 (ja) * 1999-11-11 2008-11-19 株式会社安川電機 リニアモータの制御方法とその装置
FR2873514B1 (fr) * 2004-07-20 2006-11-17 Virax Sa Actionneur portatif lineaire et procede de limitation de l'effort maximal d'un moteur d'un tel actionneur
BRPI1001388A2 (pt) * 2010-05-05 2011-12-27 Whirlpool Sa sistema de controle para pistço de compressor linear ressonante, mÉtodo de controle para pistço de compressor linear ressonante e compressor linear ressonante
CN103001567B (zh) * 2012-11-13 2015-06-17 江苏科技大学 六相永磁同步直线电机调速系统的多模逆模型辨识方法
CN103501151B (zh) * 2013-10-15 2016-04-27 东南大学 一种永磁直线电机用无位置传感器
CN104539209B (zh) * 2015-01-29 2017-02-22 南车株洲电力机车研究所有限公司 一种直线感应电机控制方法及系统
US20170133966A1 (en) * 2015-11-09 2017-05-11 Qualcomm Incorporated Resonant frequency search for resonant actuators
CN106411217B (zh) * 2016-08-31 2018-11-02 歌尔股份有限公司 主动控制线性马达的方法、装置、系统及电子设备
JP6965048B2 (ja) * 2017-07-06 2021-11-10 日立Astemo株式会社 リニアモータシステム
CN108258946A (zh) * 2018-03-08 2018-07-06 青岛大学 一种永磁同步直线电机的无速度传感器控制方法
CN110995110B (zh) * 2019-12-18 2021-04-09 浙江大学 一种单相永磁直线压缩机抗扰动控制系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1094286A (ja) * 1996-09-19 1998-04-10 Matsushita Electric Ind Co Ltd 動力発生装置
JP2012016224A (ja) * 2010-07-02 2012-01-19 Sinfonia Technology Co Ltd リニアアクチュエータ駆動装置
CN106357183A (zh) * 2016-09-22 2017-01-25 东南大学 一种直线振荡电机的谐振频率跟踪控制方法
CN106374808A (zh) * 2016-09-22 2017-02-01 东南大学 一种压缩机用直线振荡电机控制方法
CN107592051A (zh) * 2017-09-22 2018-01-16 西南交通大学 一种直线牵引电机励磁电感在线参数辨识仿真方法
CN108880372A (zh) * 2018-07-06 2018-11-23 西南交通大学 一种基于滑模观测器的直线牵引电机无速度传感器控制方法
CN110912483A (zh) * 2019-11-04 2020-03-24 华中科技大学 一种直线振荡电机的谐振频率辨识及控制方法
CN111564995A (zh) * 2020-05-25 2020-08-21 华中科技大学 一种基于自适应全阶位移观测器的直线振荡电机控制方法

Also Published As

Publication number Publication date
US20220123674A1 (en) 2022-04-21
CN111564995A (zh) 2020-08-21
CN111564995B (zh) 2021-11-19
US11356043B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2021237964A1 (zh) 一种基于自适应全阶位移观测器的直线振荡电机控制方法
Zhang et al. A third-order super-twisting extended state observer for dynamic performance enhancement of sensorless IPMSM drives
CN102969968A (zh) 一种永磁同步电机控制方法
CN110912483B (zh) 一种直线振荡电机的谐振频率辨识及控制方法
CN108964563B (zh) 一种基于非光滑控制技术的感应电机直接转矩控制方法
CN110995102A (zh) 一种永磁同步电机直接转矩控制方法及系统
CN107979316A (zh) 一种基于迭代学习的pmsm转速波动抑制方法
CN109617485A (zh) 一种基于Tabu和DOB的永磁直线电机推力波动复合抑制方法
CN110176889B (zh) 一种永磁同步电机无速度传感器控制方法和系统
CN116317792A (zh) 考虑参数失配的永磁同步电机预测电流控制方法及系统
CN111585488A (zh) 一种永磁电机无速度传感器控制方法及系统
Xia et al. Optimal online resonance suppression in a drive system based on a multifrequency fast search algorithm
CN111404438B (zh) 一种直线振荡电机的谐振频率跟踪控制方法及系统
CN113037161A (zh) 一种基于超扭曲滑模算法的模型参考自适应永磁同步电机无位置传感器矢量控制方法
Liu et al. Speed estimation and Parameters Identification simultaneously of PMSM based on MRAS
CN113395028B (zh) 基于电压电流混合模型的磁链观测器的形成方法
Liao et al. Improved position sensorless resonant frequency tracking control method for linear oscillatory machine
Wang et al. Adaptive integral backstepping control of PMSM with differential terms based on parameters fuzzy self-tuning
Ortombina et al. Magnetic model identification for synchronous reluctance motors including transients
Chen et al. DEA-tuning of Reduced-order Extended Luenberger Sliding Mode Observers (ELSMO) for Sensorless Control of High-speed SPMSM
CN111211718A (zh) 一种用于永磁同步电机矢量控制的自抗扰控制器参数自动调节系统
Liao et al. Position sensor-less piston stroke estimation method for linear oscillatory machines based on sliding mode observer
CN117498740A (zh) 永磁同步电机低速抗扰动控制方法、设备及存储介质
Comanescu et al. A sliding mode adaptive MRAS speed estimator for induction motors
Gong et al. Improved Resonant Frequency Tracking Strategy based on Load Parameter Prediction for Linear Oscillatory Machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937425

Country of ref document: EP

Kind code of ref document: A1