WO2021237882A1 - 用于金属表面纳米化的金刚石涂层刀具装置及其制备方法 - Google Patents

用于金属表面纳米化的金刚石涂层刀具装置及其制备方法 Download PDF

Info

Publication number
WO2021237882A1
WO2021237882A1 PCT/CN2020/100535 CN2020100535W WO2021237882A1 WO 2021237882 A1 WO2021237882 A1 WO 2021237882A1 CN 2020100535 W CN2020100535 W CN 2020100535W WO 2021237882 A1 WO2021237882 A1 WO 2021237882A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
coated tool
tool
wedge
groove
Prior art date
Application number
PCT/CN2020/100535
Other languages
English (en)
French (fr)
Inventor
刘鲁生
梁晨
黄楠
李秀艳
姜辛
卢柯
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Publication of WO2021237882A1 publication Critical patent/WO2021237882A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/16Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped
    • B23B27/1625Cutting tools of which the bits or tips or cutting inserts are of special material with exchangeable cutting bits or cutting inserts, e.g. able to be clamped with plate-like cutting inserts of special shape clamped by a clamping member acting almost perpendicularly on the chip-forming plane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2200/00Details of cutting inserts
    • B23B2200/28Angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Definitions

  • the invention relates to the field of diamond film growth, in particular to a diamond-coated tool device used for nanometerization of metal surfaces and a preparation method thereof.
  • nanomaterials Since its inception, nanomaterials have attracted people’s attention for their unique excellent properties such as high strength, good plastic deformation ability, high specific heat, high thermal expansion coefficient and unique physical and chemical properties. Many engineering applications only need to be improved.
  • the surface properties of the material can improve the overall service performance and service life of the entire material.
  • the equipment used is the simplest, and it is a nanotechnology that can be industrialized in a short period of time.
  • the surface self-nanoization methods mainly include shot peening, deep rolling, ultrasonic mechanical shock surface strengthening, laser shock strengthening, surface mechanical grinding treatment (SMAT) and so on.
  • Shot peening, deep rolling, ultrasonic mechanical shock surface strengthening and laser shock strengthening methods can increase the surface hardness of metal materials and obtain a certain depth of residual compressive stress layer on the surface, which will effectively improve the fatigue properties of metal materials.
  • the above-mentioned method has limited improvement in the surface hardness of metal materials, and the residual compressive stress of the surface layer is easily released during the service process, which will greatly reduce the strengthening effect.
  • SMAT as a surface nanometering method, can obtain a certain depth of nanostructured layer on the surface of metal materials and improve the performance of metal materials.
  • the average Vickers hardness value of cemented carbide is 1500HV, which is affected by the hardness and wear resistance of traditional tool materials. Due to the influence of friction coefficient, the tool will deform in contact with the processed workpiece during use, and the increase in surface roughness will cause the surface roughness Ra of the workpiece to increase significantly, which limits the application field of SMAT surface nanotechnology.
  • the Vickers hardness value of diamond-coated tools is 10000HV, the wear resistance is 60 to 80 times that of cemented carbide, and the friction coefficient is low. The friction coefficient is 0.1. The tool will not deform when it comes in contact with the processed workpiece during use, which effectively guarantees The surface roughness requirements of the workpiece are improved, and the application field of SMAT surface nanotechnology is expanded.
  • the purpose of the present invention is to provide a diamond-coated tool device for metal surface nanocrystallization and a preparation method thereof.
  • the surface of the diamond-coated tool has a very high hardness (HV10000) and a very low friction coefficient of 0.1, so it is super hard Wear-resistant, super-lubricated, and anti-sticking is very good.
  • a diamond-coated tool device used for nanometerization of metal surfaces.
  • the device includes a diamond-coated tool assembly seat, a screw, and a diamond-coated tool.
  • the specific structure is as follows:
  • the diamond-coated tool assembly seat is a combined structure of the seat head and the left and right sides of the seat body.
  • the seat body is a rectangular parallelepiped strip structure.
  • the seat head is a double-sided symmetrical milling flat structure.
  • the outer end of the seat head is a groove with a lateral opening.
  • the inner lower surface is provided with a wedge-shaped pit, and the upper part of the groove is provided with a threaded through hole.
  • the threaded through hole corresponds to the wedge-shaped pit up and down and the center line is coaxial;
  • the diamond-coated tool is a combined structure of a cylindrical section and a wedge section.
  • the coated tool is installed in the groove of the seat head.
  • the wedge-shaped section of the diamond-coated tool corresponds to the wedge-shaped pit in the groove and is closely matched by the wedge surface.
  • the cylindrical section of the diamond-coated tool communicates with the thread of the groove.
  • the screw is installed in the threaded through hole of the groove, and the lower end of the screw passes through the threaded through hole of the groove and is supported on the upper surface of the cylindrical section of the diamond-coated tool to clamp and fix the diamond-coated tool.
  • One side of the cylindrical section of the tool protrudes from the groove.
  • the wedge-shaped section of the diamond-coated tool is a combination of two-sided symmetrical inclined surfaces and the remaining cylindrical surfaces, and one end of the wedge-shaped section is integrally connected with the cylindrical section.
  • the diameter of the circle is the same as the diameter of the cylindrical section of the diamond-coated tool; the other end of the wedge-shaped section is a straight line with symmetrical slopes intersecting on both sides, and its length is the same as the diameter of the cylindrical section of the diamond-coated tool.
  • the diameter of the cylindrical section of the diamond-coated tool is 4-50mm
  • the height is 4-50mm
  • the included angle of the symmetrical slope of the wedge-shaped section is 40-140°.
  • the material of the diamond-coated tool assembly seat is No. 45 steel, and the surface is treated with blackening and anti-corrosion treatment after machining is completed.
  • the diamond-coated tool is a composite structure in which a diamond coating is deposited on the surface of a cemented carbide.
  • the cemented carbide is tungsten carbide and cobalt cemented carbide, and the thickness of the deposited diamond coating is 4-20 ⁇ m.
  • the screw is a hexagon socket flat-end set screw.
  • the method for preparing the diamond-coated cutting tool device for nano-metal surface nanocrystallization firstly, the carbide rod is used as the matrix, and the required tool matrix of various specifications and sizes is obtained through the wire cutting machine. One end is processed into a wedge surface to form a tool matrix with a cylindrical section and a wedge-shaped section up and down integrated structure; then, after surface treatment, the hot wire chemical vapor deposition method is used to deposit a polycrystalline diamond coating on the cylindrical surface of the tool base; After testing, trimming and polishing, a diamond-coated tool is made.
  • the tool matrix is subjected to surface corrosion treatment in acid and lye, and after ultrasonic cleaning with distilled water and alcohol, the tool matrix is installed in the hot wire CVD diamond deposition equipment;
  • the surface quality is further improved through precision trimming and polishing, so as to meet the requirements of the working conditions of the tool in the use environment of the metal surface nanometer;
  • the design idea of the present invention is:
  • the tool of the present invention organically combines the diamond material and the cemented carbide material, which can not only ensure that the surface of the tool has the excellent physical properties of diamond, but also ensure that the matrix is produced in large quantities and cheaply, and expands the surface nanometerization of SMAT The field of application of the technology.
  • the tool matrix of the present invention is tungsten carbide-cobalt cemented carbide, with a diamond coating grown on the outer surface, with high hardness and low friction coefficient. It can efficiently nano-process the surface of the gyrator workpiece and can effectively reduce the metal material after SMAT treatment.
  • the surface roughness Ra expands the application fields of SMAT surface nanotechnology.
  • the tool in the present invention is composed of a diamond-coated tool assembly seat and a diamond-coated tool, which can quickly replace diamond-coated tools of different sizes and models, and has a simple, firm and durable structure.
  • the tool matrix of the present invention is made of standard tungsten carbide cobalt cemented carbide rods by wire cutting and can be simply processed by wire cutting. The cost is low, it is suitable for mass production and manufacturing, and can be applied to large-scale industrial production and has high practical value. .
  • the diamond-coated tool of the present invention is a combined structure of a cylindrical section and a wedge-shaped section.
  • the diamond-coated tool is installed in the groove of the seat head of the diamond-coated tool assembly to replace other traditional material tools. Easy to use, just loosen the hexagon socket flat-end set screw to easily remove and install the tool.
  • Figure 1 is a front view of the structure of the present invention.
  • Figure 2 is a top view of the structure of the present invention.
  • Figure 3 is a side view of the structure of the present invention.
  • Fig. 4(a)-Fig. 4(c) are the outline dimensions of the three main types of diamond-coated cutting tools of the present invention. Among them, Figure 4 (a) is the first type, Figure 4 (b) is the second type, and Figure 4 (c) is the third type.
  • Figure 5 is a flow chart of the preparation of the diamond-coated tool of the present invention.
  • 1 diamond-coated tool assembly seat
  • 11 seat body
  • 12 seat head
  • 13 groove
  • 2 hexagon socket flat-end set screw
  • 3-diamond-coated tool Wedge section.
  • the diamond-coated tool device for nanometer metal surface of the present invention mainly includes: diamond-coated tool assembly seat 1, hexagonal flat end Set screw 2, diamond-coated tool 3, diamond-coated tool assembly seat 1 is a combined structure of the seat head 12 and the left and right sides of the seat body 11, the seat body 11 is a rectangular parallelepiped strip structure, and the seat head 12 is double-sided symmetrical milling Structure, the outer end of the seat head 12 is a groove 13 with lateral opening.
  • the lower surface of the groove 13 is provided with a wedge-shaped pit, and the upper part of the groove 13 is provided with a threaded through hole.
  • the threaded through hole corresponds to the wedge-shaped pit and has a center line Coaxial;
  • the diamond-coated tool 3 is a combined structure of a cylindrical section 31 and a wedge-shaped section 32.
  • the diamond-coated tool 3 is installed in the groove 13 of the seat 12, and the wedge section 32 and the groove of the diamond-coated tool 3
  • the wedge-shaped pits in 13 correspond and fit closely through the wedge surface.
  • the upper part of the cylindrical section 31 of the diamond-coated tool 3 corresponds to the threaded through hole of the groove 13.
  • the hexagon socket flat-end set screw 2 is installed on the thread of the groove 13 Through hole, the lower end of the hexagon socket flat-end set screw 2 passes through the threaded through hole of the groove 13 and is supported on the upper surface of the cylindrical section 31 of the diamond-coated tool 3 to clamp and fix the diamond-coated tool 3.
  • the diamond-coated tool One side of the cylindrical section 31 of 3 protrudes from the groove 13.
  • the diamond-coated tool 3 is a composite structure with a diamond coating deposited on the surface of the cemented carbide; one end of the rectangular parallelepiped strip structure is symmetrically milled on both sides to form a diamond coating with an integrated structure of the seat body 11 and the seat head 12
  • Tool assembly seat 1 diamond-coated tool assembly seat 1 is made of No. 45 steel, and the surface is treated with blackening and anti-corrosion after machining is completed.
  • the hexagon socket flat-end set screw 2 firmly fixes the diamond-coated tool 3 on the diamond-coated tool assembly seat 1 through the threaded through hole.
  • One side of the cylindrical section 31 protruding from the groove 13 corresponds to the workpiece to be processed, and the metal surface thereof is nanometerized.
  • the preparation method of the diamond-coated tool device used for nanometering of the metal surface is as follows:
  • a 10 ⁇ m polycrystalline diamond coating is deposited on the cylindrical surface of the tool substrate (that is, the surface of the working area) by using the hot wire chemical vapor deposition method. After analysis, testing, trimming and polishing, a diamond-coated tool is made.
  • the wedge section 32 of the diamond-coated tool is a two-sided symmetrical inclined surface and the rest of the cylindrical surface Assembled, one end of the wedge-shaped section 32 and the cylindrical section 31 are integrally connected with a circle, and its diameter is the same as the diameter of the cylindrical section 31 of the diamond-coated tool; the other end of the wedge-shaped section 32 is a two-sided symmetrical slope intersecting in a straight line , Its length is the same as the diameter of the cylindrical section 31 of the diamond-coated tool.
  • the diameter of the cylindrical section 31 is 8mm, 10mm, 12mm, and the height of the cylindrical section 31 is 6mm; the circular diameter of one end of the wedge section 32 is 8mm, 10mm, and 12mm, respectively, and the included angles of the symmetrical slopes of the wedge section 32 are all 120°. Therefore, the diamond-coated tool can be replaced according to the required size, and there is no need to open a mold for production like a spherical diamond tool, which saves a lot of costs, and has a smooth surface and low roughness.
  • the preparation process of the diamond coated tool of the present invention is as follows: (1) substrate processing ⁇ (2) substrate cleaning ⁇ (3) substrate pretreatment ⁇ (4) coating deposition ⁇ (5) substrate loading furnace ⁇ ( 6) Substrate pretreatment ⁇ (7) Analysis and testing ⁇ (8) Finishing and polishing ⁇ (9) Finished tool.
  • the processed tool matrix is sandblasted to remove surface contaminants and loose layers; then use distilled water and alcohol to clean in an ultrasonic cleaner; then perform surface corrosion treatment in the configured acid and lye, and use
  • the tool matrix is installed in the hot-wire CVD diamond deposition equipment.
  • Set the pressure in the reaction chamber of the hot wire CVD diamond deposition equipment to 3000 Pa, and pass in H 2 with a flow of 600 sccm and CH 4 with 50 sccm.
  • Polycrystalline diamond coating is used to make diamond-coated tools for nanometer metal surface.
  • the surface quality is further improved through precision trimming and polishing, so as to meet the requirements of the working conditions of the metal surface nanometer use environment for the tool.
  • different types of diamond-coated tool products are installed on the diamond-coated tool assembly seat.
  • the diamond-coated tool used in the metal surface nanometerization of the present invention and the surface of the hard alloy tool with the highest hardness among other traditional material tools are respectively tested for Vickers hardness.
  • the surface of the diamond-coated tool has a Vickers hardness value of 10000HV.
  • the Vickers hardness value of the tool surface is 1500HV, and the Vickers hardness of the diamond-coated tool surface is 6.6 times that of the carbide tool surface.
  • the present invention provides a diamond-coated tool for nanometering of metal surfaces, which has high hardness and low friction coefficient, and can efficiently nano-process the surface of the gyrator workpiece;
  • the tool matrix is made of standard tungsten carbide and cobalt hard
  • the alloy bar can be simply processed by wire cutting, which is low cost and suitable for mass production and manufacturing;
  • the tool consists of a diamond-coated tool assembly seat and a diamond-coated tool, which can quickly replace diamond-coated tools of different sizes and models, and has a simple structure strong and sturdy. Therefore, it can be applied to large-scale industrial production and has high practical value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种用于金属表面纳米化的金刚石涂层刀具装置及其制备方法。该装置包括:金刚石涂层刀具组件座(1)、螺钉(2)、金刚石涂层刀具(3),金刚石涂层刀具组件座(1)为座头(12)与座身(11)左右一体的组合结构,金刚石涂层刀具(3)为圆柱段(31)与楔形段(32)上下一体的组合结构,金刚石涂层刀具(3)安装于座头(12)的凹槽(13)内,金刚石涂层刀具(3)的楔形段(32)与凹槽(13)内的楔形凹坑相对应并通过楔面紧密配合,金刚石涂层刀具(3)的圆柱段(31)上方与凹槽(13)的螺纹通孔相对应,螺钉(2)安装于凹槽(13)的螺纹通孔,螺钉(2)的下端穿过凹槽的螺纹通孔顶持于金刚石涂层刀具(3)的圆柱段(31)上表面。该金刚石涂层刀具装置的刀具基体为碳化钨钴硬质合金,外表面生长金刚石涂层,可以高效地对回旋体的工件表面纳米化处理。

Description

用于金属表面纳米化的金刚石涂层刀具装置及其制备方法 技术领域
本发明涉及金刚石膜生长领域,尤其涉及一种用于金属表面纳米化的金刚石涂层刀具装置及其制备方法。
背景技术
纳米材料自问世以来,就以其独特的优异性能如高强度、良好的塑性变形能力、高比热、高热膨胀系数以及独特的理化性能等引起人们的高度重视,很多工程上的应用只需要改善材料的表面性能,就可以提高整个材料的综合服役性能和使用寿命。目前,材料表面纳米化主要有三种途径:①表面涂层或沉积,②表面自身纳米化,③混合法表面纳米化,其中第二种途径制备的纳米结构表层与基体无明显的界面、不易脱落、所用设备最为简单,是一种可在短期内实现工业化的纳米技术。
表面自身纳米化方法主要包括喷丸、深滚压、超声机械冲击表面强化、激光冲击强化、表面机械研磨处理(SMAT)等。喷丸、深滚压、超声机械冲击表面强化及激光冲击强化等方法可提高金属材料的表面硬度,并在其表面获得一定深度的残余压应力层,它将有效改善金属材料的疲劳性能。但是,上述方法对金属材料表面硬度提升的幅度有限,并且表层残余压应力在使役过程中容易释放,这将大大降低强化效果。SMAT作为一种表面纳米化方法,可在金属材料表面获得一定深度的纳米结构层,改善金属材料的性能。但是,使用传统材料的刀具对金属材料SMAT处理时,以传统材料中最新的材料硬质合金为例,硬质合金的平均维氏硬度值为1500HV,由于受传统刀具材料的硬度、耐磨性和摩擦系数的影响,刀具在使用过程中与处理工件接触处会发生变形、表面粗糙度升高造成工件表面粗糙度Ra显著增加,这限制了SMAT表面纳米化技术的应用领域。金刚石涂层刀具的维氏硬度值为10000HV,耐磨性好是硬质合金的60~80倍,摩擦系数低摩擦系数0.1,在刀具在使用过程中与处理工件接触处不会变形,有效保证了工件表面粗糙度要求,扩大了SMAT表面纳米化技术的应用领域。
发明内容
本发明的目的在于提供一种用于金属表面纳米化的金刚石涂层刀具装置及其制备方法,金刚石涂层刀具表面具有极高的高硬度(HV10000)、极低的摩擦系数0.1,所以超硬耐磨、超润滑,抗粘非常好。
本发明的技术方案是:
一种用于金属表面纳米化的金刚石涂层刀具装置,该装置包括:金刚石涂层刀具组件座、螺钉、金刚石涂层刀具,具体结构如下:
金刚石涂层刀具组件座为座头与座身左右一体的组合结构,座身为长方体条状结构,座头为双面对称铣扁结构,座头外端为侧向开口的凹槽,凹槽内的下表面开设楔形凹坑,凹槽的上部开设螺纹通孔,螺纹通孔与楔形凹坑上下对应且中心线同轴;金刚石涂层刀具为圆柱段与楔形段上下一体的组合结构,金刚石涂层刀具安装于座头的凹槽内,金刚石涂层刀具的 楔形段与凹槽内的楔形凹坑相对应并通过楔面紧密配合,金刚石涂层刀具的圆柱段上方与凹槽的螺纹通孔相对应,螺钉安装于凹槽的螺纹通孔,螺钉的下端穿过凹槽的螺纹通孔顶持于金刚石涂层刀具的圆柱段上表面,将金刚石涂层刀具夹持固定,金刚石涂层刀具的圆柱段一侧突出于凹槽。
所述的用于金属表面纳米化的金刚石涂层刀具装置,金刚石涂层刀具的楔形段为两侧对称的斜面与其余部分的圆柱面组合而成,楔形段的一端与圆柱段一体连接处为圆形,其直径与金刚石涂层刀具的圆柱段直径相同;楔形段的另一端为两侧对称的斜面相交于一条直线,其长度与金刚石涂层刀具的圆柱段直径相同。
所述的用于金属表面纳米化的金刚石涂层刀具装置,金刚石涂层刀具的圆柱段直径为4~50mm、高度为4~50mm,楔形段的对称斜面夹角为40~140°。
所述的用于金属表面纳米化的金刚石涂层刀具装置,金刚石涂层刀具组件座的材质为45号钢,机械加工完成后表面做发黑防腐处理。
所述的用于金属表面纳米化的金刚石涂层刀具装置,金刚石涂层刀具为硬质合金表面沉积金刚石涂层的复合结构。
所述的用于金属表面纳米化的金刚石涂层刀具装置,硬质合金为碳化钨钴硬质合金,沉积金刚石涂层的厚度为4~20μm。
所述的用于金属表面纳米化的金刚石涂层刀具装置,螺钉为内六角平端紧定螺钉。
所述的用于金属表面纳米化的金刚石涂层刀具装置的制备方法,首先,以硬质合金棒为基体,经过线切割机加工得到需要的各种规格尺寸刀具基体,将硬质合金棒的一端加工成楔面,形成圆柱段与楔形段上下一体组合结构的刀具基体;然后,经过表面处理,采用热丝法化学气相沉积的方法,在刀具基体圆柱面沉积多晶金刚石涂层;经分析测试、修整抛光后,制成金刚石涂层刀具。
所述的用于金属表面纳米化的金刚石涂层刀具装置的制备方法,具体步骤如下:
(1)将加工好的刀具基体进行喷砂处理,去除表面的污染物和疏松层;
(2)使用蒸馏水、酒精在超声波清洗机中对刀具基体进行清洗;
(3)刀具基体在酸、碱液中进行表面腐蚀处理,并采用蒸馏水、酒精超声清洗完毕后,将刀具基体装入热丝CVD金刚石沉积设备中;
(4)将热丝CVD金刚石沉积设备反应腔体内的压强设定为1000~9000Pa,通入流量为100~800sccm的H 2、10~200sccm的CH 4,将热丝加热到2000~2600℃,使刀具基体圆柱段表面沉积多晶金刚石涂层,制成用于金属表面纳米化的金刚石涂层刀具;
(5)经过分析测试后,通过精密修整抛光进一步提高表面质量,从而满足金属表面纳米化使用环境对刀具的工况要求;
(6)按结构要求将不同型号的金刚石涂层刀具成品安装在金刚石涂层刀具组件座上,金刚石涂层刀具放到座头的凹槽内,内六角平端紧定螺钉通过螺纹通孔将金刚石涂层刀具牢固地固定在金刚石涂层刀具组件座上,圆柱段突出于凹槽的一侧与待加工件对应,对其进行金 属表面纳米化。
本发明的设计思想是:
本发明刀具将金刚石材料与硬质合金材料有机地结合在了一起,既可以保证刀具表面具有金刚石的各项优异的物理性质,又可以保证基体大量、廉价地生产制造,扩大了SMAT表面纳米化技术的应用领域。
本发明具有以下优点及有益效果:
1、本发明的刀具基体为碳化钨钴硬质合金,外表面生长金刚石涂层,硬度高、摩擦系数低,可以高效地对回旋体的工件表面纳米化处理,可有效降低金属材料SMAT处理之后表面粗糙度Ra,扩大了SMAT表面纳米化技术的应用领域。
2、本发明中刀具由金刚石涂层刀具组件座和金刚石涂层刀具组成,可以快捷更换不同尺寸型号的金刚石涂层刀具,结构简单坚固耐用。
3、本发明的刀具基体由标准碳化钨钴硬质合金棒材通过线切割简单加工即可完成,成本低、适合大批量生产制造,可应用于大规模的工业化生产,具有很高的实用价值。
4、本发明金刚石涂层刀具为圆柱段与楔形段上下一体的组合结构,金刚石涂层刀具安装于金刚石涂层刀具组件座座头的凹槽内,用以替代其他传统材料刀具,其装卸和使用方便,只需松紧内六角平端紧定螺钉即可轻松拆卸和安装上刀具。
附图说明
图1为本发明的结构主视图。
图2为本发明的结构俯视图。
图3为本发明的结构侧视图。
图4(a)-图4(c)为本发明金刚石涂层刀具3种主要型号的外形尺寸图。其中,图4(a)为第一种,图4(b)为第二种,图4(c)为第三种。
图5为本发明金刚石涂层刀具制备流程图。
图中:1—金刚石涂层刀具组件座;11—座身;12—座头;13—凹槽;2—内六角平端紧定螺钉;3—金刚石涂层刀具;31—圆柱段;32—楔形段。
具体实施方式
下面,结合附图和实施例对本发明的具体实施方式作进一步详细的说明。对于这些实施例的详细描述,应该理解为本领域的技术人员可以通过本发明来实践,并可以通过使用其它实施例,在不脱离所附权利要求书的精神和本发明范畴的情况下,对所示实例进行更改和/或改变。此外,虽然在实施例中公布本发明的特定特征,但是这种特定特征可以适当进行更改,实现本发明的功能。
如图1-图3、图4(a)-图4(c)所示,本发明用于金属表面纳米化的金刚石涂层刀具装置,主要包括:金刚石涂层刀具组件座1、内六角平端紧定螺钉2、金刚石涂层刀具3,金刚石涂层刀具组件座1为座头12与座身11左右一体的组合结构,座身11为长方体条状结构,座头12为双面对称铣扁结构,座头12外端为侧向开口的凹槽13,凹槽13内的下表面开设 楔形凹坑,凹槽13的上部开设螺纹通孔,螺纹通孔与楔形凹坑上下对应且中心线同轴;金刚石涂层刀具3为圆柱段31与楔形段32上下一体的组合结构,金刚石涂层刀具3安装于座头12的凹槽13内,金刚石涂层刀具3的楔形段32与凹槽13内的楔形凹坑相对应并通过楔面紧密配合,金刚石涂层刀具3的圆柱段31上方与凹槽13的螺纹通孔相对应,内六角平端紧定螺钉2安装于凹槽13的螺纹通孔,内六角平端紧定螺钉2的下端穿过凹槽13的螺纹通孔顶持于金刚石涂层刀具3的圆柱段31上表面,将金刚石涂层刀具3夹持固定,金刚石涂层刀具3的圆柱段31一侧突出于凹槽13。
本发明中,金刚石涂层刀具3为硬质合金表面沉积金刚石涂层的复合结构;将长方体条状结构的一端双面对称铣扁,形成座身11与座头12一体组合结构的金刚石涂层刀具组件座1,金刚石涂层刀具组件座1的材质为45号钢,机械加工完成后表面做发黑防腐处理。使用时,将金刚石涂层刀具3放到座头12的凹槽13内,内六角平端紧定螺钉2通过螺纹通孔将金刚石涂层刀具3牢固地固定在金刚石涂层刀具组件座1上,圆柱段31突出于凹槽13的一侧与待加工件对应,对其进行金属表面纳米化。
下面,通过实施例对本发明进一步详细阐述。
实施例
本实施例中,用于金属表面纳米化的金刚石涂层刀具装置的制备方法如下:
首先,以YG6硬质合金精磨圆棒为基体,经过线切割机加工得到需要的各种规格尺寸刀具基体,将YG6硬质合金精磨圆棒的一端加工成楔形段,该楔形段的一端与圆柱段一体连接处为圆形,楔形段的另一端为两侧对称的斜面相交于圆棒一端的直径处形成尖端,形成圆柱段与楔形段上下一体组合结构的刀具基体。然后,经过表面处理,采用热丝法化学气相沉积的方法,在刀具基体圆柱面(即工作区域表面)沉积10μm的多晶金刚石涂层。经分析测试、修整抛光后,制成金刚石涂层刀具。
如图4(a)-图4(c)所示,金刚石涂层刀具3种主要型号的外形尺寸图,其中:金刚石涂层刀具的楔形段32为两侧对称的斜面与其余部分的圆柱面组合而成,楔形段32的一端与圆柱段31一体连接处为圆形,其直径与金刚石涂层刀具的圆柱段31直径相同;楔形段32的另一端为两侧对称的斜面相交于一条直线,其长度与金刚石涂层刀具的圆柱段31直径相同。圆柱段31直径分别为8mm、10mm、12mm,圆柱段31的高度均为6mm;楔形段32的一端圆形直径分别为8mm、10mm、12mm,楔形段32的对称斜面夹角均为120°。从而,可以根据需要的尺寸更换金刚石涂层刀具,不需要像球形金刚石刀具那样开模具生产,节约了大量的成本,且表面光洁、粗糙度低。
如图5所示,本发明金刚石涂层刀具制备流程如下:(1)基体加工→(2)基体清洗→(3)基体前处理→(4)涂层沉积→(5)基体装炉→(6)基体预处理→(7)分析测试→(8)修整抛光→(9)刀具成品。
先将加工好的刀具基体进行喷砂处理,去除表面的污染物和疏松层;再使用蒸馏水、酒精在超声波清洗机中清洗;然后在配置好的酸、碱液中进行表面腐蚀处理,并采用蒸馏水、 酒精超声清洗完毕后,将刀具基体装入热丝CVD金刚石沉积设备中。将热丝CVD金刚石沉积设备反应腔体内的压强设定为3000Pa,通入流量为600sccm的H 2、50sccm的CH 4,将热丝加热到2400℃,使刀具基体圆柱段表面沉积厚度约10μm的多晶金刚石涂层,制成用于金属表面纳米化的金刚石涂层刀具。经过分析测试后,通过精密修整抛光进一步提高表面质量,从而满足金属表面纳米化使用环境对刀具的工况要求。最后,按图1、图2和图3的结构要求将不同型号的金刚石涂层刀具成品安装在金刚石涂层刀具组件座上。
将本发明用于金属表面纳米化的金刚石涂层刀具与其他传统材料刀具中硬度最高的硬质合金刀具表面分别做维氏硬度测试,金刚石涂层刀具表面维氏硬度值为10000HV,硬质合金刀具表面维氏硬度值为1500HV,金刚石涂层刀具表面维氏硬度是硬质合金刀具表面维氏硬度的6.6倍。
实施例结果表明,本发明提供种用于金属表面纳米化的金刚石涂层刀具,硬度高、摩擦系数低,可以高效地对回旋体的工件表面纳米化处理;刀具基体由标准碳化钨钴硬质合金棒材通过线切割简单加工即可完成,成本低、适合大批量生产制造;刀具由金刚石涂层刀具组件座和金刚石涂层刀具组成,可以快捷更换不同尺寸型号的金刚石涂层刀具,结构简单坚固耐用。从而,可应用于大规模的工业化生产,具有很高的实用价值。
以上所述的仅是本发明所列举的最优实施方式。需要指出,对于本技术领域的所有技术人员,在不脱离所附权利要求书的精神和本发明所示原理的范畴情况下,还可以对所示实例进行更改和/或改变,这些改变也应被视为本发明的权利保护范围。

Claims (9)

  1. 一种用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,该装置包括:金刚石涂层刀具组件座、螺钉、金刚石涂层刀具,具体结构如下:
    金刚石涂层刀具组件座为座头与座身左右一体的组合结构,座身为长方体条状结构,座头为双面对称铣扁结构,座头外端为侧向开口的凹槽,凹槽内的下表面开设楔形凹坑,凹槽的上部开设螺纹通孔,螺纹通孔与楔形凹坑上下对应且中心线同轴;金刚石涂层刀具为圆柱段与楔形段上下一体的组合结构,金刚石涂层刀具安装于座头的凹槽内,金刚石涂层刀具的楔形段与凹槽内的楔形凹坑相对应并通过楔面紧密配合,金刚石涂层刀具的圆柱段上方与凹槽的螺纹通孔相对应,螺钉安装于凹槽的螺纹通孔,螺钉的下端穿过凹槽的螺纹通孔顶持于金刚石涂层刀具的圆柱段上表面,将金刚石涂层刀具夹持固定,金刚石涂层刀具的圆柱段一侧突出于凹槽。
  2. 按照权利要求1所述的用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,金刚石涂层刀具的楔形段为两侧对称的斜面与其余部分的圆柱面组合而成,楔形段的一端与圆柱段一体连接处为圆形,其直径与金刚石涂层刀具的圆柱段直径相同;楔形段的另一端为两侧对称的斜面相交于一条直线,其长度与金刚石涂层刀具的圆柱段直径相同。
  3. 按照权利要求2所述的用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,金刚石涂层刀具的圆柱段直径为4~50mm、高度为4~50mm,楔形段的对称斜面夹角为40~140°。
  4. 按照权利要求1所述的用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,金刚石涂层刀具组件座的材质为45号钢,机械加工完成后表面做发黑防腐处理。
  5. 按照权利要求1所述的用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,金刚石涂层刀具为硬质合金表面沉积金刚石涂层的复合结构。
  6. 按照权利要求5所述的用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,硬质合金为碳化钨钴硬质合金,沉积金刚石涂层的厚度为4~20μm。
  7. 按照权利要求1所述的用于金属表面纳米化的金刚石涂层刀具装置,其特征在于,螺钉为内六角平端紧定螺钉。
  8. 一种权利要求1至7之一所述的用于金属表面纳米化的金刚石涂层刀具装置的制备方法,其特征在于,首先,以硬质合金棒为基体,经过线切割机加工得到需要的各种规格尺寸刀具基体,将硬质合金棒的一端加工成楔面,形成圆柱段与楔形段上下一体组合结构的刀具基体;然后,经过表面处理,采用热丝法化学气相沉积的方法,在刀具基体圆柱面沉积多晶金刚石涂层;经分析测试、修整抛光后,制成金刚石涂层刀具。
  9. 按照权利要求8所述的用于金属表面纳米化的金刚石涂层刀具装置的制备方法,其特征在于,具体步骤如下:
    (1)将加工好的刀具基体进行喷砂处理,去除表面的污染物和疏松层;
    (2)使用蒸馏水、酒精在超声波清洗机中对刀具基体进行清洗;
    (3)刀具基体在酸、碱液中进行表面腐蚀处理,并采用蒸馏水、酒精超声清洗完毕后,将刀具基体装入热丝CVD金刚石沉积设备中;
    (4)将热丝CVD金刚石沉积设备反应腔体内的压强设定为1000~9000Pa,通入流量为100~800sccm的H 2、10~200sccm的CH 4,将热丝加热到2000~2600℃,使刀具基体圆柱段表面沉积多晶金刚石涂层,制成用于金属表面纳米化的金刚石涂层刀具;
    (5)经过分析测试后,通过精密修整抛光进一步提高表面质量,从而满足金属表面纳米化使用环境对刀具的工况要求;
    (6)按结构要求将不同型号的金刚石涂层刀具成品安装在金刚石涂层刀具组件座上,金刚石涂层刀具放到座头的凹槽内,内六角平端紧定螺钉通过螺纹通孔将金刚石涂层刀具牢固地固定在金刚石涂层刀具组件座上,圆柱段突出于凹槽的一侧与待加工件对应,对其进行金属表面纳米化。
PCT/CN2020/100535 2020-05-26 2020-07-07 用于金属表面纳米化的金刚石涂层刀具装置及其制备方法 WO2021237882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010456004.6 2020-05-26
CN202010456004.6A CN113714525A (zh) 2020-05-26 2020-05-26 用于金属表面纳米化的金刚石涂层刀具装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2021237882A1 true WO2021237882A1 (zh) 2021-12-02

Family

ID=78672090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100535 WO2021237882A1 (zh) 2020-05-26 2020-07-07 用于金属表面纳米化的金刚石涂层刀具装置及其制备方法

Country Status (2)

Country Link
CN (1) CN113714525A (zh)
WO (1) WO2021237882A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306805A (ja) * 1987-06-09 1988-12-14 Kyocera Corp ダイヤモンド被覆切削工具
CN206047125U (zh) * 2016-08-26 2017-03-29 山东华云机电科技有限公司 一种用于异形金属内孔工件表面纳米化加工的刀具头及超声加工刀具
CN206305476U (zh) * 2016-11-08 2017-07-07 济南豪能创新管理咨询合伙企业(有限合伙) 一种纳米化加工刀头
CN107740068A (zh) * 2017-11-27 2018-02-27 浙江工业大学 一种在不锈钢表面沉积金刚石薄膜的新方法
CN110369741A (zh) * 2019-08-12 2019-10-25 深圳市鑫明辉钻石刀具有限公司 可调式车刀
CN110605403A (zh) * 2019-08-05 2019-12-24 香港理工大学深圳研究院 一种超精密加工技术制备梯度纳米结构金属材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306805A (ja) * 1987-06-09 1988-12-14 Kyocera Corp ダイヤモンド被覆切削工具
CN206047125U (zh) * 2016-08-26 2017-03-29 山东华云机电科技有限公司 一种用于异形金属内孔工件表面纳米化加工的刀具头及超声加工刀具
CN206305476U (zh) * 2016-11-08 2017-07-07 济南豪能创新管理咨询合伙企业(有限合伙) 一种纳米化加工刀头
CN107740068A (zh) * 2017-11-27 2018-02-27 浙江工业大学 一种在不锈钢表面沉积金刚石薄膜的新方法
CN110605403A (zh) * 2019-08-05 2019-12-24 香港理工大学深圳研究院 一种超精密加工技术制备梯度纳米结构金属材料的方法
CN110369741A (zh) * 2019-08-12 2019-10-25 深圳市鑫明辉钻石刀具有限公司 可调式车刀

Also Published As

Publication number Publication date
CN113714525A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
Tyagi et al. A critical review of diamond like carbon coating for wear resistance applications
Vereschaka et al. Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions
CN102534455B (zh) 一种注塑机螺杆表面的热喷涂复合梯度涂层及其制备方法
US9371576B2 (en) Coated tool and methods of making and using the coated tool
JP3590579B2 (ja) ダイヤモンド被覆部材およびその製造方法
CN106544641B (zh) 制备硬质合金基体金刚石涂层的预处理方法
WO2011078976A1 (en) Protective coatings for petrochemical and chemical industry equipment and devices
CN108385085B (zh) 一种低应力cvd金刚石复合涂层及其制备方法
Bin et al. Application of ultra-smooth composite diamond film coated WC–Co drawing dies under water-lubricating conditions
Almeida et al. Nanocrystalline CVD diamond coatings for drilling of WC-Co parts
Barletta Progress in abrasive fluidized bed machining
WO2004072357A3 (en) Fiber and sheet equipment wear surfaces of extended resistance and methods for their manufacture
Zhang et al. Effect of mechanical pretreatment on nucleation and growth of HFCVD diamond films on cemented carbide tools with a complex shape
Yan et al. Machining performance of hard-brittle materials by multi-layer micro-nano crystalline diamond coated tools
WO2021237882A1 (zh) 用于金属表面纳米化的金刚石涂层刀具装置及其制备方法
JP4394050B2 (ja) 低摩擦性、耐摩耗性を向上させた金属板の製造方法
CN101318839A (zh) 碳化硅陶瓷和金刚石复合拉拔模具制备方法
CN110885968B (zh) 金刚石涂层的制备方法及其制得的金刚石涂层、刀具
US20130216777A1 (en) Nanostructured Multi-Layer Coating on Carbides
JP2012115928A (ja) ダイヤモンド被覆切削工具
TW202000991A (zh) 金屬模具成型面之表面材料及金屬模具成型面之表面處理方法
Valleti et al. Efficacy of TiCrN/DLC coatings for service life enhancement of stamping dies
JP4392719B2 (ja) 母材表面の下地処理方法及びこの方法により下地処理された表面を持つ母材及び製品
CN212310868U (zh) 一种用于金属表面纳米化的金刚石涂层刀具装置
JP5482603B2 (ja) 炭化タングステン基超硬合金製切削インサートおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937420

Country of ref document: EP

Kind code of ref document: A1