WO2021237873A1 - 电机、压缩机和制冷设备 - Google Patents

电机、压缩机和制冷设备 Download PDF

Info

Publication number
WO2021237873A1
WO2021237873A1 PCT/CN2020/099643 CN2020099643W WO2021237873A1 WO 2021237873 A1 WO2021237873 A1 WO 2021237873A1 CN 2020099643 W CN2020099643 W CN 2020099643W WO 2021237873 A1 WO2021237873 A1 WO 2021237873A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
motor
stator
rotor
core
Prior art date
Application number
PCT/CN2020/099643
Other languages
English (en)
French (fr)
Inventor
陈超
张德金
邱小华
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Priority to KR1020217039014A priority Critical patent/KR20220002588A/ko
Priority to EP20937171.5A priority patent/EP3965265A4/en
Priority to JP2021572046A priority patent/JP2022537655A/ja
Publication of WO2021237873A1 publication Critical patent/WO2021237873A1/zh
Priority to US17/554,148 priority patent/US20220109338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • This application relates to the technical field of refrigeration equipment, and specifically to a motor, a compressor and a refrigeration equipment.
  • inverter motors have become the mainstream technology. Especially with the new national energy efficiency rating standards for household air conditioners in 2019, fixed-speed models have gradually withdrawn from the market, and the era of all inverters has arrived.
  • most of the permanent magnets used in current inverter motors are neodymium iron boron permanent magnets containing heavy rare earth elements and high coercivity.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the embodiment of the first aspect of the present application proposes a motor.
  • the embodiment of the second aspect of the present application proposes a compressor.
  • the embodiment of the third aspect of the present application proposes a refrigeration device.
  • an embodiment according to the first aspect of the present application provides a motor, including: a stator assembly, the stator assembly includes a stator core, the stator core is provided with a stator slot; a rotor assembly, the rotor assembly includes a rotor core And permanent magnets, one of the stator iron core and the rotor iron core is arranged outside the other, and the permanent magnet is arranged on the rotor iron core; wherein, in a section perpendicular to the axis of the rotor iron core, the stator iron core and the rotor iron core The distance between them is ⁇ mm, the length of the permanent magnet in its own magnetization direction is h mm; the number of stator slots is Q; the intrinsic coercivity of the permanent magnet is Hcj kA/m, and Hcj is less than or equal to 1800kA /m; the value of h satisfies: 80 ⁇ (43-Q)/Hcj ⁇ h ⁇ 1.6+ ⁇ .
  • the motor provided by the embodiment of the present application includes a stator assembly and a rotor assembly.
  • the stator assembly includes a stator iron core, the stator iron core is provided with a stator slot, the rotor assembly includes a rotor iron core and a permanent magnet, and the rotor iron core is provided with a permanent magnet.
  • the distance between the stator core and the rotor core as ⁇ mm
  • the length of the permanent magnet in its own magnetization direction is h mm
  • the number of stator slots is Q
  • the intrinsic coercivity of the permanent magnet is Hcj kA/m.
  • the motor can be energized.
  • the generated demagnetization reverse magnetic field strength that is, the reverse magnetic field strength generated by adjusting the windings of the motor to demagnetize the permanent magnet, and then the mass percentage of heavy rare earth elements in the permanent magnet is reduced, or the permanent magnet does not use heavy rare earth elements
  • the motor's anti-demagnetization ability cannot meet the requirements of the compressor, it can reduce the intensity of the demagnetization reverse magnetic field generated by the motor and increase the utilization rate of the permanent magnet.
  • the intrinsic coercivity Hcj of the permanent magnet is less than or equal to 1800, it indicates that the mass percentage of heavy rare earth elements in the permanent magnet is low, the manufacturing cost of the motor is lower, and the demagnetization resistance of the motor is reduced. Therefore, in the motor provided by the present application, by setting Q stator slots in the stator core, the distance between the stator core and the rotor core is set to ⁇ mm, and the length of the permanent magnet in the magnetization direction of the permanent magnet is h mm.
  • the range of values meets 80 ⁇ (43-Q)/Hcj ⁇ h ⁇ 1.6+ ⁇ , in order to reduce the demagnetization reverse magnetic field intensity generated by the motor energization, thereby improving the anti-magnetic demagnetization ability of the motor and make the anti-magnetic demagnetization ability of the motor It can meet the requirements of demagnetization resistance in the compressor operating range. At the same time, it reduces the use of high-cost heavy rare earth raw materials and improves the utilization rate of the permanent magnets of the motor. It also reduces the production cost of the motor. That is to say, the motor of the present application can reduce the use of heavy rare earth elements and reduce the cost Meet the requirements of the compressor and improve the cost-effectiveness of the motor.
  • the value of h satisfies: 80 ⁇ (45-Q)/Hcj ⁇ h ⁇ 1.3+ ⁇ .
  • the value range of the length h mm of the permanent magnet in the magnetization direction of the permanent magnet is further defined as: 80 ⁇ (45-Q)/Hcj ⁇ h ⁇ 1.3+ ⁇ .
  • the range of the number Q of stator slots is: 12 to 36; and/or the range of the distance ⁇ between the stator core and the rotor core is: 0.3 to 0.5 mm ; And/or the range of the residual magnetism Br of the permanent magnet is 1.28T to 1.45T.
  • the number of slots Q of the stator the distance ⁇ between the stator core and the rotor core, and the possible value range of the residual magnetism Br of the permanent magnet are respectively defined.
  • the number of stator slot gaps is 12 ⁇ Q ⁇ 36.
  • the distance between the stator iron core and the rotor iron core is 0.3mm ⁇ 0.5mm.
  • the remanence of the permanent magnet is 1.28T ⁇ Br ⁇ 1.45T, where the remanence refers to the surface field remaining after the permanent magnet is magnetized to technical saturation and the external magnetic field is removed. Br is the residual magnetic induction.
  • the mass percentage of dysprosium and/or terbium in the permanent magnet ranges from 0 to 0.5%, or the mass percentage of heavy rare earth elements in the permanent magnet ranges from 0 to 0.5%.
  • dysprosium and terbium are heavy rare earth elements, which are national strategic resources, the mass percentage of heavy rare earth elements in the permanent magnet is positively correlated with the intrinsic coercivity Hcj of the permanent magnet. Therefore, on the one hand, by limiting the mass percentage of dysprosium and/or terbium in the permanent magnet to 0 to 0.5%, it is beneficial to reduce the use of dysprosium and/or terbium while ensuring good demagnetization resistance of the motor. It is beneficial to reduce the manufacturing cost of the motor and improve the cost performance of the motor.
  • the motor further includes: punched sheets, the stator core is formed by stacking punched sheets, and/or the rotor core is formed by stacking punched sheets.
  • the motor also includes punching pieces.
  • the stator core is formed by stacking punching pieces; on the other hand, the rotor core is formed by stacking punching pieces.
  • the stator core and the rotor core All are stacked by punching sheets. The different construction methods of the stator core or the rotor core can meet the needs of different processing techniques for the stator assembly and the rotor assembly, and have a wide range of applications.
  • the stator core and the rotor core are both formed by stacking punched sheets.
  • the punched sheets stacked into the stator core are the same as the punched sheets stacked into the rotor core, which is beneficial to the mass production of punched sheets and reduces manufacturing cost.
  • the punches stacked into the stator core are different from the punches stacked into the rotor core. It is helpful to select the appropriate punches to form the rotor core and the stator core according to the performance requirements of the motor, thereby ensuring the good performance of the motor. performance. Further, the use of the stacked form of punching sheets realizes the magnetic permeability of the iron core and can fix the windings, which can effectively dissipate the motor and make the motor run more stable.
  • the punching sheet is a soft magnetic material punching sheet; and/or the punching sheet has a thickness of 0.2 mm to 0.35 mm.
  • soft magnetic materials can achieve greater magnetization with a smaller external magnetic field, and soft magnetic materials are selected as the raw material of the punch, so that the punch has high magnetic permeability, easy to magnetize and easy to demagnetize , It is beneficial to reduce the loss of the stator iron core and/or the rotor iron core, that is, to reduce the iron loss of the motor, which is beneficial to improve the performance of the motor.
  • the thickness of the specified punching sheet is within 0.2mm to 0.35mm, and setting the thickness of the punching sheet reasonably will help to effectively reduce the iron loss and improve the mechanical strength of the stator core and/or rotor core. Permeability, reasonable range setting can also meet the working requirements of different power motors.
  • the rotor core is provided with an installation groove, and the permanent magnet is arranged in the installation groove;
  • the installation groove is a V-shaped groove, a U-shaped groove, a W-shaped groove, a slot or an I-shaped groove.
  • the structure of the mounting groove is set to V-shaped groove, U-shaped groove, W-shaped groove, in-line groove or I-shaped groove, etc., which can correspondingly realize the installation of permanent magnets of different structures.
  • a compressor which includes a casing and a motor as in any of the above technical solutions, the motor being arranged inside the casing.
  • the compressor provided in the present application includes the motor of any of the above technical solutions, it has all the beneficial effects of the motor.
  • a refrigeration device including: a motor as in any of the above technical solutions; or a compressor as in any of the above technical solutions.
  • the refrigeration equipment provided in the present application includes the motor of any of the above technical solutions or the compressor of any of the above technical solutions, it has all the beneficial effects of the motor or the compressor, and will not be repeated here.
  • Fig. 1 shows a schematic diagram of the structure of the motor of the first embodiment of the present application
  • Figure 2 shows a schematic diagram of the structure of the motor of the second embodiment of the present application
  • Fig. 3 shows a partial enlarged schematic diagram of the position A of the embodiment shown in Fig. 2;
  • Fig. 4 shows a B-H curve diagram of a permanent magnet provided by an embodiment of the present application
  • Figure 5 shows the B-H curve diagrams of different permanent magnets provided by an embodiment of the present application.
  • stator components 100 motors, 102 stator components, 1022 stator cores, 1024 stator slots, 1026 windings, 1028 stator teeth, 104 rotor components, 1042 rotor cores, 1044 permanent magnets, 1046 mounting slots.
  • a motor 100 which includes a stator assembly 102 and a rotor assembly 104.
  • the stator assembly 102 includes a stator core 1022, the stator core 1022 is provided with a stator slot 1024, the rotor assembly 104 includes a rotor core 1042 and a permanent magnet 1044, and the rotor core 1042 is provided with permanent magnets. 1044.
  • the distance between the stator core 1022 and the rotor core 1042 is defined as ⁇ mm, and the length of the permanent magnet 1044 in its magnetization direction is h mm.
  • the number of stator slots 1024 is Q
  • the intrinsic coercivity of the permanent magnet 1044 is Hcj kA/m
  • the Hcj is less than or equal to 1800kA/m
  • the gap between the stator core 1022 and the rotor core 1042 is further defined
  • the relationship between the distance, the length of the permanent magnet 1044 in its own magnetization direction, the number of stator slots 1024, and the intrinsic coercivity of the permanent magnet can adjust the strength of the demagnetization reverse magnetic field generated by the motor 100 when it is energized, that is, The intensity of the reverse magnetic field generated by energizing the winding 1026 of the motor 100 to demagnetize the permanent magnet 1044 is adjusted.
  • the power generated by the motor 100 is reduced. Demagnetize the reverse magnetic field strength and improve the utilization rate of the permanent magnet 1044.
  • the intrinsic coercivity Hcj of the permanent magnet 1044 is less than or equal to 1800
  • the intrinsic coercivity of the permanent magnet is lower than that of the permanent magnet using heavy rare earth elements under the same environmental conditions, indicating that the heavy rare earth in the permanent magnet 1044
  • the mass percentage of the elements is lower, the manufacturing cost of the motor 100 is lower, and at the same time, the anti-demagnetization ability of the motor 100 is reduced.
  • the motor 100 provided by the present application, Q stator slots 1024 are provided in the stator core 1022, the distance between the stator core 1022 and the rotor core 1042 is set to ⁇ mm, and the permanent magnet 1044 is magnetized in itself
  • the value range of the length h mm in the direction satisfies 80 ⁇ (43-Q)/Hcj ⁇ h ⁇ 1.6+ ⁇ , so as to reduce the demagnetization reverse magnetic field intensity generated by the energization of the motor 100, thereby improving the anti-magnetic demagnetization ability of the motor 100 , So that the anti-demagnetization ability of the motor 100 can meet the requirements of the demagnetization resistance characteristics in the compressor operating range, while reducing the use of high-cost heavy rare earth materials and increasing the utilization rate of the permanent magnet 1044 of the motor 100, and also reducing the production of the motor 100 cost. That is to say, the motor 100 of the present application can reduce the use of heavy rare earth elements and reduce the cost, while meeting the requirements of the compressor and improving the
  • the intrinsic coercivity of the permanent magnet 1044 involved in the present application is the intrinsic coercivity of the permanent magnet 1044 at 20°C.
  • the intrinsic coercive force of the magnet when the sum of the microscopic magnetic dipole moment vector inside the permanent magnet 1044 is reduced to 0, the applied reverse magnetic field strength is called the intrinsic coercive force of the magnet.
  • the length of the permanent magnet 1044 in its own magnetization direction, that is, the thickness of the permanent magnet 1044, wherein the length of the permanent magnet 1044 in the axial direction of the rotor core is the length of the permanent magnet.
  • the BH curve of a permanent magnet is shown in Figure 4.
  • the working point of the permanent magnet 1044 is at the P point.
  • the reverse magnetic field is applied, the working point is along the The BH curve moves down to the W point position, the reverse magnetic field is removed, and the working point returns along the W point recovery line.
  • the Hcj of the permanent magnet 1044 determines the value of the inflection point D.
  • the greater the absolute value of Hcj the greater the H value (ie Hd) of the inflection point D, and the stronger the anti-demagnetization ability.
  • the smaller the absolute value of Hcj the smaller the Hd value of the inflection point D.
  • the intrinsic coercivity Hcj of the permanent magnet 1044 is positively correlated with the mass percentage of the heavy rare earth elements in the permanent magnet 1044, that is, the greater the mass percentage of the heavy rare earth elements in the permanent magnet 1044, the intrinsic coercivity of the permanent magnet 1044 The larger the Hcj, the smaller the mass percentage of the heavy rare earth elements in the permanent magnet 1044, and the smaller the intrinsic coercive force Hcj of the permanent magnet 1044.
  • the cost is relatively high. Therefore, by increasing the mass percentage of heavy rare earth elements in the permanent magnet 1044 to enhance the anti-demagnetization ability of the motor 100, it will consume the national strategic resources and increase the motor 100. The problem of manufacturing cost.
  • the intrinsic coercivity of the permanent magnet 1044 will be affected.
  • the intrinsic coercivity (Hcj ⁇ 1800kA/m) of permanent magnet without dysprosium and terbium is significantly smaller than that of permanent magnet containing dysprosium and terbium (Hcj ⁇ 1830kA/m), where the BH curve of permanent magnets without dysprosium and terbium and permanent magnets with dysprosium and terbium is shown in Figure 5.
  • the demagnetization capacity of the motor 100 is reduced by more than 40%, and the demagnetization capacity of the motor 100 cannot meet the requirements of the compressor.
  • the BH curve diagrams of permanent magnets containing dysprosium and terbium and permanent magnets containing dysprosium and terbium are shown in Figure 5.
  • the solid line in Figure 5 represents the demagnetization curve of F42SH permanent magnets, where F42SH is no heavy rare earth For permanent magnets, such as neodymium iron boron permanent magnets that do not contain dysprosium and terbium, the dashed line in Figure 5 represents the intrinsic demagnetization curve of F42SH permanent magnets, and the large dashed line in Figure 5 represents the demagnetization curve of N54SH permanent magnets, where N54SH For permanent magnets containing dysprosium and terbium, the small dotted line in Figure 5 represents the intrinsic demagnetization curve of the N54SH permanent magnet.
  • the abscissa in Fig. 5 represents the magnetic field intensity H in the permanent magnet
  • the unit is KOe, which is kilo Oersted
  • the ordinate represents the magnetic induction intensity B induced by the permanent magnet
  • the unit is KGs, which is kilogauss.
  • D1 in Figure 5 represents the inflection point of the demagnetization curve of the F42SH permanent magnet, the magnetic field intensity H(D1) corresponding to D1 is -8.177KOe, and N1 is the intersection point of the intrinsic demagnetization curve of the F42SH permanent magnet and the abscissa, where N1 is The corresponding magnetic field intensity H(N1) is -8.442KOe; D2 represents the inflection point of the demagnetization curve of the N54SH permanent magnet, the magnetic field intensity H(D2) corresponding to D2 is -11.085KOe, and N2 is the intrinsic demagnetization curve of the N54SH permanent magnet. The intersection of the abscissas, where the magnetic field intensity H(N2) corresponding to N2 is -11.454KOe.
  • the utilization rate of the permanent magnet 1044 is lower The highest point is when the working point of the permanent magnet 1044 is at the maximum magnetic energy product of the permanent magnet 1044. That is, the closer the working point of the permanent magnet 1044 is to the maximum magnetic energy product, the higher the utilization rate of the permanent magnet 1044.
  • the maximum magnetic energy product of the permanent magnet 1044 is usually the midpoint of the demagnetization curve of the permanent magnet 1044.
  • the distance between the stator core 1022 and the rotor core 1042 of the motor 100 (that is, the air gap between the stator assembly 102 and the rotor assembly 104 of the motor 100) ⁇ , also It will affect the amount of permanent magnet 1044.
  • the width of the permanent magnet 1044 is constant, the length h of the permanent magnet 1044 in its own magnetization direction is smaller.
  • the length h of the permanent magnet 1044 in the magnetization direction of the permanent magnet 1044 is large, the operating point of the permanent magnet 1044 is high, but the utilization rate of the permanent magnet 1044 is low, and h is small. High, but the permanent magnet 1044 has a low operating point and poor demagnetization resistance.
  • the present application enhances the anti-demagnetization ability of the motor 100 by reducing the strength of the demagnetization reverse magnetic field generated by the motor 100 when it is energized.
  • To reduce the intensity of the demagnetization reverse magnetic field generated by the energization of the motor 100 is mainly to reduce the number of turns of the winding 1026 in each stator slot 1024, because the number of serial turns per phase of the winding is equal to the number of turns per slot/2 (double-layer winding) Multiply it by the number of stator slots Q and then divide by the number of phases m, it can be known that increasing the number of slots Q of the stator can reduce the number of turns per slot of the winding, the number of turns per slot decreases, the reverse magnetic field strength is weakened, and the motor is resistant to demagnetization.
  • the number of turns per slot of the winding 1026 is related to the number of stator slots 1024, and the machining cost of the motor is also related to the utilization rate of the permanent magnet 1044.
  • the utilization rate of the permanent magnet 1044 is related to the magnetization direction of the permanent magnet.
  • the length is related to the distance between the stator core and the rotor core. Therefore, in this application, the relationship between the distance between the stator core 1022 and the rotor core 1042, the number of stator slots 1024, and the length of the permanent magnet 1044 in the magnetization direction of the permanent magnet 1044 is appropriately set to reduce the demagnetization reversal caused by the energization of the motor 100.
  • the strength of the magnetic field ensures the anti-demagnetization ability of the motor 100 and the utilization rate of the permanent magnet 1044 when the intrinsic coercivity of the permanent magnet 1044 is reduced, thereby helping to reduce the manufacturing cost of the motor 100 and improve the cost performance of the motor 100 , Suitable for promotion and application.
  • stator core 1022 is arranged on the outer side of the rotor core 1042, that is, the stator assembly 102 is located on the outer side of the rotor assembly 104.
  • the rotor core 1042 is arranged on the outside of the stator core 1022, that is, the rotor assembly 104 is located on the outside of the stator assembly 102.
  • stator core 1022 and the rotor core 1042 can meet the needs of different types of motors 100, so that for different types of motors 100, by being specifically defined in a section perpendicular to the axis of the rotor core 1042, the stator core 1022 and The distance between the rotor cores 1042, the length of the permanent magnet 1044 in its own magnetization direction, and the number of stator slots 1024 can all reduce the strength of the demagnetization reverse magnetic field generated by the motor 100 when energized, thereby enhancing the resistance of the motor 100 to demagnetization Ability to improve the performance of the motor 100, so that the motor 100 can meet the requirements of the compressor.
  • the motor 100 includes: a stator assembly 102 and a rotor assembly 104, wherein the stator assembly 102 includes a stator core 1022, and the stator core 1022 is provided with a stator slot 1024 Rotor assembly 104, rotor assembly 104 includes rotor core 1042 and permanent magnet 1044; further, the number of stator slot 1024 is Q; the intrinsic coercivity of permanent magnet 1044 is Hcj kA/m, and Hcj is less than or equal to 1800kA/m; the distance between the stator core 1022 and the rotor core 1042 is ⁇ mm; the length of the permanent magnet 1044 in its own magnetization direction is h mm; where the value of h satisfies: 80 ⁇ (45-Q)/ Hcj ⁇ h ⁇ 1.3+ ⁇ .
  • the numerical range of the length h mm of the permanent magnet 1044 in the magnetization direction of the permanent magnet 1044 is further defined as: 80 ⁇ (45-Q)/Hcj ⁇ h ⁇ 1.3+ ⁇ .
  • stator core 1022 is provided with a stator slot 1024 and a stator protruding tooth 1028. Any stator slot 1024 is provided between two adjacent stator protruding teeth 1028.
  • the stator assembly 102 also includes a coil, which crosses the stator protruding teeth. The teeth 1028 are located in the stator slot 1024 to form a winding 1026. The number of turns of the winding 1026 refers to the number of turns of the coil around the stator teeth 1028.
  • the range of the number Q of the stator slot 1024 is: 12 to 36; and/or the range of the distance ⁇ between the stator core 1022 and the rotor core 1042 is: 0.3 to 0.5 mm; and/or permanent
  • the remanence Br of the magnet ranges from 1.28T to 1.45T.
  • the number Q of the stator slot 1024, the distance ⁇ between the stator core 1022 and the rotor core 1042, and the possible value range of the residual magnetism Br of the permanent magnet 1044 are respectively defined.
  • the number of stator slots 1024 is 12 ⁇ Q ⁇ 36.
  • the number of stator slots 1024 it is beneficial to reduce the number of turns of the winding 1026 in each stator slot 1024, thereby reducing the energization of the motor 100
  • the generated demagnetization reverse magnetic field strength increases the anti-demagnetization ability of the motor 100.
  • the number of stator slots 1024 is 9, or 12, or 18, or 24, or 36.
  • the distance between the stator iron core 1022 and the rotor iron core 1042 is 0.3mm ⁇ 0.5mm.
  • the distance between the stator iron core 1022 and the rotor iron core 1042 it is helpful to ensure that the permanent magnet 1044 has In the case of a higher utilization rate, the amount of permanent magnets 1044 in the motor 100 is reduced, so that while the motor 100 has a higher anti-demagnetization ability, the manufacturing cost of the motor is reduced, and the cost-effectiveness of the motor is improved.
  • the distance between the stator core 1022 and the rotor core 1042 (that is, the air gap between the stator assembly and the rotor assembly) ⁇ is 0.3mm, 0.4mm, or 0.5mm.
  • the remanence of the permanent magnet 1044 is 1.28T ⁇ Br ⁇ 1.45T.
  • remanence refers to the surface field retained after the permanent magnet is magnetized to technical saturation and the external magnetic field is removed. Br is the residual magnetic induction intensity.
  • the value of the residual magnetism Br is greater
  • the remanence of the permanent magnet is 1.28T, or 1.32T, or 1.45T, where T is a unit of Tesla.
  • the range of the mass percentage of dysprosium and/or terbium in the permanent magnet is: 0 to 0.5%, or the mass percentage of heavy rare earth elements in the permanent magnet The range is: 0 to 0.5%.
  • the mass percentage of heavy rare earth elements in the permanent magnet 1044 is positively correlated with the intrinsic coercivity Hcj of the permanent magnet 1044 . Therefore, on the one hand, by limiting the range of the mass percentage of dysprosium and/or terbium in the permanent magnet 1044 to 0 to 0.5%, it is beneficial to reduce the use of dysprosium and/or terbium while ensuring the good demagnetization resistance of the motor 100 In turn, it is beneficial to reduce the manufacturing cost of the motor 100 and improve the cost performance of the motor 100.
  • the manufacturing cost of the motor 100 improves the cost performance of the motor 100.
  • the mass percentage of dysprosium and/or terbium in the permanent magnet 1044 is 0.
  • the mass percentage of dysprosium in the permanent magnet 1044 is 0, that is, the permanent magnet 1044 does not contain the heavy rare earth element dysprosium, which reduces the pair of permanent magnets 1044.
  • the consumption of the heavy rare earth element dysprosium is conducive to energy saving.
  • the mass percentage of terbium in the permanent magnet 1044 is 0, that is, the permanent magnet 1044 does not contain the heavy rare earth element terbium, which reduces the consumption of the heavy rare earth element terbium by the permanent magnet 1044 and is beneficial to energy saving.
  • the sum of the mass percentages of dysprosium and terbium in the permanent magnet 1044 is 0, that is, the permanent magnet 1044 does not contain the heavy rare earth elements dysprosium and terbium, which reduces the consumption of the heavy rare earth elements dysprosium and terbium by the permanent magnet 1044, which is beneficial to The sustainable development of resources saves energy and is conducive to reducing the manufacturing cost of the motor 100, which is suitable for popularization and application.
  • the mass percentage of dysprosium and/or terbium in the permanent magnet 1044 can also be other values.
  • the mass percentage of dysprosium and/or terbium in the permanent magnet 1044 is 0.005%, 0.01%, 0.025%, etc.
  • the mass percentage of heavy rare earth elements in the permanent magnet 1044 is 0, that is, the permanent magnet 1044 does not contain heavy rare earth elements, which reduces the consumption of strategic resources, is conducive to the sustainable development of resources, and reduces the manufacturing cost of the motor 100 , Suitable for promotion and application. It is understandable that the mass percentage of heavy rare earth elements in the permanent magnet 1044 can also be other values. For example, the mass percentage of heavy rare earth elements in the permanent magnet 1044 is 0.005%, 0.01%, 0.025%, etc. Among them, the heavy rare earth elements can also include other elements that can become the 1044 component of the permanent magnet.
  • the permanent magnet 1044 is a neodymium iron boron permanent magnet.
  • the neodymium iron boron permanent magnet has excellent magnetic properties and can meet the requirements of the motor 100. It is understandable that the permanent magnet 1044 can also be other permanent magnets that meet the requirements. Magnet 1044.
  • the motor 100 further includes: punching pieces (not shown in the figure), the stator core 1022 is formed by stacking the punching pieces, and/or the rotor
  • the iron core 1042 is formed by stacking punching sheets (not shown in the figure).
  • the motor 100 further includes punching pieces.
  • the stator core 1022 is formed by stacking punching pieces; on the other hand, the rotor core 1042 is formed by stacking punching pieces.
  • the stator core 1022 and the rotor iron The cores 1042 are all stacked by punching sheets. The different configurations of the stator core 1022 or the rotor core 1042 can meet the requirements of different processing techniques of the stator assembly 102 and the rotor assembly 104, and have a wide range of applications.
  • the stator iron core 1022 and the rotor iron core 1042 are both formed by stacking punching pieces.
  • the punching pieces stacked into the stator iron core 1022 are the same as the punching pieces stacked into the rotor iron core 1042, which is beneficial to punching pieces. Mass production reduces manufacturing costs.
  • the punches stacked into the stator core 1022 are different from the punches stacked into the rotor core 1042, which facilitates the selection of suitable punches to form the rotor core 1042 and the stator core 1022 according to the performance requirements of the motor. Ensure the good performance of the motor 100.
  • the use of a stack of punches realizes the magnetic permeability of the iron core and can fix the winding 1026, which can effectively dissipate the motor 100 and make the motor 100 run more stable.
  • the punching sheet is a soft magnetic material punching sheet; and/or the punching sheet has a thickness of 0.2 mm to 0.35 mm.
  • soft magnetic materials can achieve greater magnetization with a smaller external magnetic field.
  • Soft magnetic materials are selected as the raw material of the punching sheet, so that the punching sheet has high magnetic permeability, easy to magnetize and easy to demagnetize, which is beneficial to reduce
  • the loss of the stator iron core 1022 and/or the rotor iron core 1042 reduces the iron loss of the motor 100, which is beneficial to improve the performance of the motor 100.
  • the thickness of the punching sheet is limited to 0.2mm to 0.35mm, and the thickness of the punching sheet is set reasonably, which is beneficial to effectively reduce the iron loss while ensuring the good mechanical strength of the stator core 1022 and/or the rotor core 1042 , Improve the permeability, and a reasonable range setting can also meet the working requirements of motors 100 of different powers.
  • the rotor core 1042 is provided with an installation slot 1046, and the permanent magnet 1044 is provided in the installation slot 1046;
  • the installation slot 1046 is a V-shaped groove, a U-shaped groove, a W-shaped groove, a straight groove or an I-shaped groove.
  • the structure of the mounting groove 1046 is set to V-shaped groove, U-shaped groove, W-shaped groove, in-line groove or I-shaped groove, etc., so that permanent magnets 1044 of different structures can be installed correspondingly, so that The manufacturing process of the motor 100 is more flexible, with more choices, can meet a variety of different application scenarios, and expand the use range of the product.
  • a compressor which includes a casing and a motor 100 as in any one of the above technical solutions, the motor 100 is arranged inside the casing.
  • the compressor since the compressor includes the motor 100 in any of the above embodiments, it has all the beneficial effects of the motor 100, and will not be repeated here.
  • the permanent magnet 1044 of the motor 100 is improved.
  • the demagnetization reverse magnetic field strength generated by the motor is reduced while the utilization rate of the motor is energized, so that the anti-magnetic demagnetization ability of the motor 100 can meet the requirements of the demagnetization resistance characteristics in the compressor operating range.
  • a refrigeration device which includes: the motor 100 in any of the foregoing embodiments; or the compressor in any of the foregoing embodiments.
  • the refrigeration equipment also includes a pipeline, which is connected to the compressor, and the refrigerant forms a circulation loop through the pipeline and the compressor to realize heat exchange and refrigeration.
  • the refrigeration equipment is an air conditioner
  • the air conditioner is a household inverter air conditioner.
  • the motor 100 includes a stator assembly 102 and a rotor assembly 104, and an air gap is provided between the rotor assembly 104 and the stator assembly 102, as shown in FIG. 3 ,
  • the width of the air gap is the distance ⁇ between the stator core and the rotor core in the section perpendicular to the axis of the rotor core.
  • the rotor assembly 104 is arranged opposite to the stator assembly 102 and can rotate relative to the stator assembly 102.
  • the rotor assembly 104 is coaxially arranged in the stator assembly 102.
  • the stator assembly 102 includes a stator core 1022 and a winding 1026.
  • the stator core 1022 is provided with a stator slot 1024, and the winding 1026 is provided in the stator slot 1024.
  • the rotor assembly 104 includes a rotor core 1042 and a permanent magnet.
  • the rotor core 1042 is provided with an installation slot 1046, and the permanent magnet 1044 is provided in the installation slot 1046.
  • the permanent magnet is a neodymium iron boron magnet. Specifically, the neodymium iron boron magnet does not contain heavy rare earth elements dysprosium and terbium.
  • the intrinsic coercivity of the permanent magnet at 20° C. is Hcj, and Hcj ⁇ 1800kA/m.
  • the air gap width is ⁇ mm
  • the thickness of the permanent magnet 1044 in the section perpendicular to the axis of the rotor core 1042 is h mm, that is, the length of the magnetization direction of the permanent magnet 1044 is h mm .
  • the working point of the permanent magnet 1044 is at the position of point P.
  • the working point moves down along the BH curve. Go to the W point position, remove the reverse magnetic field, and the working point will return along the W point return line.
  • Hcj determines the value of the inflection point D.
  • composition of the permanent magnet 1044 in the present application does not contain heavy rare earth elements such as dysprosium and terbium, that is, the weight percentage of heavy rare earth elements, or dysprosium and terbium in the permanent magnet is 0.
  • the intrinsic coercivity Hcj ⁇ 1800kA/m which is significantly smaller than the coercivity Hcj ⁇ 1830kA/m of the permanent magnets containing dysprosium and terbium.
  • the BH curves of different permanent magnets are shown in Figure 5.
  • the demagnetization capacity of the motor 100 will be reduced by more than 40%, and the demagnetization capacity of the motor will reach Not required.
  • the utilization rate of the permanent magnet 1044 can reduce the amount of the permanent magnet 1044, thereby reducing the cost of the motor 100.
  • the utilization rate of the permanent magnet 1044 is the highest, that is, the working point of the permanent magnet 1044 is at the maximum magnetic energy of the permanent magnet 1044. At the time of accumulation. In other words, the closer the working point of the permanent magnet 1044 is to the maximum magnetic energy product, the higher the utilization rate of the permanent magnet 1044.
  • the maximum magnetic energy product of the permanent magnet 1044 is usually the midpoint of the demagnetization curve of the permanent magnet 1044.
  • the magnetization direction length of the permanent magnet 1044 that is, the longer the length h of the permanent magnet in its own magnetization direction, the higher the operating point of the permanent magnet 1044.
  • the higher the operating point the greater the distance from the maximum magnetic energy.
  • the air gap width ⁇ between the stator core 1022 and rotor core 1042 of the motor will also affect the amount of permanent magnet 1044. The smaller the air gap width ⁇ , the less permanent magnet 1044 is used.
  • the length h of the permanent magnet 1044 in its own magnetization direction is smaller.
  • the lower the working point of the permanent magnet 1044 the poorer the anti-demagnetization ability.
  • this embodiment enhances the anti-demagnetization ability of the motor by reducing the reverse magnetic field strength of the permanent magnets generated by the energization of the windings of the motor 100, and reducing the reverse magnetic field strength is mainly to reduce each stator slot.
  • h, Q, ⁇ and Hcj can be designed according to the following relationship: 80 ⁇ (45-Q)/Hcj ⁇ h ⁇ 1.3+ ⁇ .
  • the number Q of the stator slot 1024 is ⁇ 12, and the air gap width ⁇ ⁇ 0.5 mm.
  • the remanence Br of the permanent magnet 1044 is greater than or equal to 1.28T.
  • the shape and distribution position of the mounting groove 1046 of the magnet 1044 can have various forms.
  • the mounting groove 1046 of the permanent magnet 1044 is a V-shaped groove, a U-shaped groove, a W-shaped groove, a straight groove or an I-shaped groove.
  • stator core 1022 and the rotor core 1042 are composed of soft magnetic material sheets, the soft magnetic material sheets are silicon steel sheets, and the thickness of the soft magnetic material sheets is 0.2 mm-0.35 mm.
  • the term “plurality” refers to two or more than two, unless clearly defined otherwise, the directions or positional relationships indicated by the terms “upper” and “lower” are based on the directions described in the drawings. Or the positional relationship is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the application; “Connected”, “installed”, “fixed”, etc. should all be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or through an intermediary. Indirectly connected.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本申请提供了一种电机、压缩机和制冷设备。其中,电机包括:定子组件,定子组件包括定子铁芯,定子铁芯设置有定子槽隙;转子组件,转子组件包括转子铁芯和永磁体,定子铁芯和转子铁芯中的一个围设于另一个的外侧,永磁体设于转子铁芯;其中,在垂直于转子铁芯轴线的截面内,定子铁芯和转子铁芯之间的距离为δ毫米、永磁体在自身的磁化方向上的长度为h毫米;定子槽隙的数量为Q个;永磁体的内禀矫顽力为Hcj kA/m,且Hcj小于等于1800kA/m;h的数值满足:80×(43-Q)/Hcj≤h≤1.6+δ。本申请提供的电机,在减少重稀土元素的使用、降低成本的同时,能够满足压缩机的使用要求,提高电机的性价比。

Description

电机、压缩机和制冷设备
本申请要求于2020年05月26日提交中国专利局、申请号为“202010457449.6”、发明名称为“电机、压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制冷设备技术领域,具体而言,涉及到一种电机、一种压缩机和一种制冷设备。
背景技术
目前,在家用空调领域,变频电机已成主流技术,特别是随着2019年国家新颁布的家用空调能效等级标准,定速机型已逐步退出市场,全部变频化的时代已到来。为了满足空调系统的压缩机的使用需求,目前的变频电机所采用的永磁体大多为含有重稀土元素、矫顽力较高的钕铁硼永磁体,由于重稀土元素为国家战略型资源,且随着家用空调全部变频化的发展趋势,变频机型总量的逐年增加,所消耗的国家战略型资源重稀土元素(特别是镝和铽)也逐年增加,且含有重稀土元素的永磁体的成本很高,使得压缩机电机的制造成本加大。
为了减少战略资源的消耗,降低电机成本,可降低永磁体中重稀土元素的使用。但研究表明,永磁体中重稀土元素的含量减少,会使电机的抗退磁能力达不到使用要求。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请第一方面的实施例提出了一种电机。
本申请第二方面的实施例提出了一种压缩机。
本申请第三方面的实施例提出了一种制冷设备。
有鉴于此,根据本申请第一方面的一个实施例提供了一种电机,包括: 定子组件,定子组件包括定子铁芯,定子铁芯设置有定子槽隙;转子组件,转子组件包括转子铁芯和永磁体,定子铁芯和转子铁芯中的一个围设于另一个的外侧,永磁体设于转子铁芯;其中,在垂直于转子铁芯轴线的截面内,定子铁芯和转子铁芯之间的距离为δ毫米、永磁体在自身的磁化方向上的长度为h毫米;定子槽隙的数量为Q个;永磁体的内禀矫顽力为Hcj kA/m,且Hcj小于等于1800kA/m;h的数值满足:80×(43-Q)/Hcj≤h≤1.6+δ。
本申请的实施例提供的电机,包括定子组件和转子组件,定子组件包括定子铁芯,定子铁芯设置有定子槽隙,转子组件包括转子铁芯和永磁体,转子铁芯设置有永磁体。在垂直于转子铁芯轴线的截面内,定义定子铁芯和转子铁芯之间的距离为δ毫米、永磁体在自身的磁化方向上的长度为h毫米、定子槽隙的数量为Q个、永磁体的内禀矫顽力为Hcj kA/m。并通过限定定子铁芯和转子铁芯之间的距离、永磁体在自身的磁化方向上的长度、定子槽隙的数量、永磁体的内禀矫顽力之间的关系,能够调节电机通电所产生的退磁反向磁场强度,也即调节电机的绕组通电所产生的使永磁体退磁的反向磁场强度,进而在永磁体中的重稀土元素的质量百分比降低、或者永磁体不使用重稀土元素时,即在电机的抗退磁能力不能满足压缩机的使用要求时,来降低电机通电所产生的退磁反向磁场强度并提高永磁体的利用率。
具体地,当永磁体的内禀矫顽力Hcj≤1800时,说明永磁体中的重稀土元素的质量百分比较低,电机的制造成本较低,同时,电机的抗退磁能力下降。因此,本申请提供的电机通过在定子铁芯中设置Q个定子槽隙,设置定子铁芯和转子铁芯之间的距离为δ毫米,并使得永磁体在自身的磁化方向上的长度h毫米的数值范围满足80×(43-Q)/Hcj≤h≤1.6+δ,以减小电机通电所产生的退磁反向磁场强度,进而提高电机的抗磁退能力,使电机的抗磁退能力能够满足压缩机运行范围内耐退磁特性的要求。同时减少高成本的重稀土原材料的使用并提升电机的永磁体的利用率,还降低了电机的生产成本,也就是说,本申请的电机在减少重稀土元素的使用、降低成本的同时,能够满足压缩机的使用要求,提高电机的性价比。
另外,根据本申请提供的上述技术方案中的电机,还可以具有如下附加技术特征:
在上述任一技术方案中,进一步地,h的数值满足:80×(45-Q)/Hcj≤h≤1.3+δ。
在该技术方案中,进一步限定了永磁体在自身的磁化方向上的长度h毫米的数值范围为:80×(45-Q)/Hcj≤h≤1.3+δ。通过合理设置h与Q、Hcj、δ的关系,有利于在提高电机的永磁体的利用率的基础上,进一步地减小电机通电所产生的退磁反向磁场强度,提高电机的抗磁退能力,使得在提升电机永磁体的利用率、减少永磁体中重稀土元素的质量百分比而降低电机的制造成本的同时,电机的抗磁退能力也能够满足压缩机运行范围内耐退磁特性的要求,提高了电机的性价比。
在上述任一技术方案中,进一步地,定子槽隙的数量Q的范围为:12个至36个;和/或定子铁芯和转子铁芯之间的距离δ的范围为:0.3至0.5mm;和/或永磁体的剩磁Br的范围为1.28T至1.45T。
在该技术方案中,分别限定了定子槽隙的数量Q、定子铁芯和转子铁芯之间的距离δ、以及永磁体的剩磁Br的可取值范围。具体地,一方面,定子槽隙的数量12≤Q≤36,通过合理设置定子槽隙的数量,有利于减少每个定子槽隙内绕组的匝数,进而减小电机通电所产生的退磁反向磁场强度,增大电机的抗退磁能力。
另一方面,定子铁芯和转子铁芯之间的距离为0.3mm≤δ≤0.5mm,通过合理设置定子铁芯和转子铁芯之间的距离,有利于在保证永磁体具有较高的利用率的情况下,减少电机中的永磁体的用量,进而在保证电机具有较高的抗退磁能力的情况下,降低电机的制造成本降,提高电机的性价比。
再一方面,永磁体的剩磁1.28T≤Br≤1.45T,其中,剩磁是指永磁体经磁化至技术饱和,并去掉外磁场后所保留的表面场,Br为剩余磁感感应强度,通过合理设置剩磁,在相同磁负荷下,剩磁Br值越大永磁体的用量越少,进而降低电机的制造成本,同时,通过合理设置剩磁,有利于降低铁损,进而提高电机的效率。
在上述任一技术方案中,进一步地,永磁体中镝和/或铽的质量百分比的范围为:0至0.5%,或永磁体中重稀土元素的质量百分比的范围为:0至0.5%。
在该技术方案中,由于镝和铽属于重稀土元素,重稀土元素属于国家战略性资源,而永磁体中重稀土元素的质量百分比与永磁体的内禀矫顽力Hcj的大小正相关。因此,一方面,通过限定永磁体中镝和/或铽的质量百分比的范围为0至0.5%,有利于在保证电机良好的抗退磁能力的情况下,减少镝和/或铽的使用,进而有利于降低电机的制造成本,提高电机的性价比。另一方面,通过限定永磁体中重稀土元素的质量百分比的范围为0至0.5%,有利于在保证电机良好的抗退磁能力的情况下,减少重稀土元素的使用,进而有利于降低电机的制造成本,提高电机的性价比。
在上述任一技术方案中,进一步地,电机还包括:冲片,定子铁芯由冲片堆叠而成,和/或转子铁芯由冲片堆叠而成。
在该技术方案中,电机还包括冲片,一方面,定子铁芯由冲片堆叠而成,另一方面,转子铁芯由冲片堆叠而成,再一方面,定子铁芯和转子铁芯均由冲片堆叠而成。定子铁芯或转子铁芯的不同构成方式,能够满足定子组件和转子组件不同加工工艺的需求,适用范围广泛。
具体地,定子铁芯和转子铁芯均由冲片堆叠而成,其中,一方面,堆叠成定子铁芯的冲片和堆叠成转子铁芯的冲片相同,有利于冲片批量生产,降低制造成本。另一方面,堆叠成定子铁芯的冲片和堆叠成转子铁芯的冲片不同,有利于根据电机的性能要求选择合适的冲片以形成转子铁芯和定子铁芯,进而保证电机良好的性能。进一步地,采用冲片堆叠的形式实现了铁芯的导磁作用并可以固定绕组,能够有效对电机进行散热,使电机运转更加稳定。
在上述任一技术方案中,进一步地,冲片为软磁材料冲片;和/或冲片厚度为0.2mm至0.35mm。
在该技术方案中,一方面,软磁材料可以用较小的外磁场实现较大的磁化强度,选取软磁材料作为冲片的原材料,使冲片具备高磁导率,易于磁化也易于退磁,利于降低定子铁芯和/或转子铁芯的损耗,即降低电机的铁损,进而有利于提高电机的性能。
一方面,指定冲片厚度在0.2mm至0.35mm内,合理设置冲片的厚度,有利于在保证定子铁芯和、或转子铁芯良好的机械强度的情况下,有效地 降低铁损,提高导磁率,合理的范围设置还可满足不同功率电机的工作需求。
在上述任一技术方案中,进一步地,转子铁芯设置有安装槽,永磁体设置于安装槽;安装槽为V型槽、U型槽、W型槽、一字槽或I型槽。
在该技术方案中,将安装槽的结构设置为V型槽、U型槽、W型槽、一字槽或I型槽等多种不同样式,可以对应实现在其中安装不同结构的永磁体,使电机制造过程更加灵活,选择更多,可满足多种不同的应用场景,扩大产品的使用范围。
根据本申请第二方面的一个实施例提供了一种压缩机,包括:壳体,以及如上述任一技术方案的电机,电机设于壳体的内部。
本申请提供的压缩机,因包括上述任一技术方案的电机,因此具有该电机的全部有益效果。
根据本申请第三方面的一个实施例提供了一种制冷设备,包括:如上述任一技术方案的电机;或如上述任一技术方案的压缩机。
本申请提供的制冷设备,因包括上述任一技术方案的电机或上述任一技术方案的压缩机,因此具有该电机或压缩机的全部有益效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的第一个实施例的电机的结构示意图;
图2示出了本申请的第二个实施例的电机的结构示意图;
图3示出了图2所示实施例的A处的局部放大示意图;
图4示出了本申请的一个实施例提供的永磁体的B-H曲线图;
图5示出了本申请的一个实施例提供的不同永磁体的B-H曲线图;
其中,图1至图3中的附图标记与部件名称之间的对应关系为:
100电机,102定子组件,1022定子铁芯,1024定子槽隙,1026绕组, 1028定子凸齿,104转子组件,1042转子铁芯,1044永磁体,1046安装槽。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图5描述本申请提供的一些实施例的电机100、压缩机和制冷设备。
实施例一
如图1至图3所示,根据本申请第一方面的一个实施例提供了一种电机100,包括:定子组件102和转子组件104。
具体地,如图1所示,定子组件102包括定子铁芯1022,定子铁芯1022设置有定子槽隙1024,转子组件104包括转子铁芯1042和永磁体1044,转子铁芯1042设置有永磁体1044。如图3所示,在垂直于转子铁芯1042轴线的截面内,定义定子铁芯1022和转子铁芯1042之间的距离为δ毫米、永磁体1044在自身的磁化方向上的长度为h毫米,定子槽隙1024的数量为Q个,永磁体1044的内禀矫顽力为Hcj kA/m,且Hcj小于等于1800kA/m,并通过进一步限定定子铁芯1022和转子铁芯1042之间的距离、永磁体1044在自身的磁化方向上的长度、定子槽隙1024的数量、永磁体的内禀矫顽力之间的关系,能够调节电机100通电所产生的退磁反向磁场强度,也即调节电机100的绕组1026通电所产生的使永磁体1044退磁的反向磁场强度。进而在永磁体中的重稀土元素的质量百分比降低、或者永磁体1044不使用重稀土元素时,即在电机100的抗退磁能力不能满足压缩机的使用要求时,来降低电机100通电所产生的退磁反向磁场强度并提高永磁体1044的利用率。
具体地,当永磁体1044的内禀矫顽力Hcj≤1800时,在相同环境条件 下相较于使用重稀土元素的永磁体的内禀矫顽力偏低,说明永磁体1044中的重稀土元素的质量百分比较低,电机100的制造成本较低,同时,电机100的抗退磁能力下降。因此,本申请提供的电机100通过在定子铁芯1022中设置Q个定子槽隙1024,设置定子铁芯1022和转子铁芯1042之间的距离为δ毫米,并使得永磁体1044在自身的磁化方向上的长度h毫米的数值范围满足80×(43-Q)/Hcj≤h≤1.6+δ,以减小电机100通电所产生的退磁反向磁场强度,进而提高电机100的抗磁退能力,使电机100的抗退磁能力能够满足压缩机运行范围内耐退磁特性的要求,同时减少高成本的重稀土原材料的使用及提升电机100的永磁体1044的利用率,还降低了电机100的生产成本。也就是说,本申请的电机100在减少重稀土元素的使用、降低成本的同时,能够满足压缩机的使用要求,提高电机的性价比。
具体地,本申请涉及的永磁体1044的内禀矫顽力为永磁体1044在20℃时的内禀矫顽力。其中,使永磁体1044内部微观磁偶极矩矢量和降为0时,施加的反向磁场强度,称为磁铁的内禀矫顽力。永磁体1044在自身的磁化方向上的长度,即永磁体1044的厚度,其中,永磁体1044沿转子铁芯轴向长度为永磁体的长度。
具体地,永磁体(或稀土永磁材料)的B-H曲线如图4所示,当永磁体1044没有外加磁场时,永磁体1044工作点在P点位置,当施加反向磁场时,工作点沿B-H曲线下移到W点位置,移除反向磁场,工作点沿W点回复线回复。当W点位于B-H曲线拐点D之上时,即W点位于图4中Br1-D实线所示的任意位置时,此时,回复线与B-H曲线中的Br1-D实线重合,剩磁为Br1;当W点位于拐点D的下方时,即W点位于如图4所示的D-W实线所示的任意位置时,此时,W点回复线与Br1-D实线(即B-H曲线直线段)平行,如图4中的Br2-W虚线所示,此时,剩磁为Br2,产生不可逆退磁,即退磁损失为Br1与Br2之差。
由此可以看出,影响电机100抗退磁能力的因素有三个,分别是永磁体1044内禀矫顽力Hcj绝对值的大小、永磁体工作点的位置和反向磁场强度,其中,反方向磁场强度即为电机100的绕组通电所产生的使永磁体退磁的反向磁场强度。其中永磁体1044的Hcj决定拐点D值的大小,Hcj绝 对值越大,拐点D的H值(即Hd)越大,抗退磁能力越强,Hcj绝对值越小,拐点D的Hd值越小,抗退磁能力越弱。永磁体1044工作点的位置越高抗退磁能力越强;反向磁场强度决定工作点P下移到W的距离,工作点位置P不变,反向磁场越强,W点越低,抗退磁能力越弱。
而永磁体1044的内禀矫顽力Hcj的大小与永磁体1044中重稀土元素的质量百分比正相关,即永磁体1044中重稀土元素的质量百分比越大,永磁体1044的内禀矫顽力Hcj越大,永磁体1044中重稀土元素的质量百分比越小,永磁体1044的内禀矫顽力Hcj越小。但是,由于重稀土元素属于国家战略性资源,成本较高,因此,通过增大永磁体1044中重稀土元素的质量百分比来增强电机100的抗退磁能力,存在消耗国家战略性资源、增加电机100制造成本的问题。若降低永磁体1044中重稀土元素的质量百分比,或使永磁体1044中不含镝和铽等重金属元素来降低电机100的制造成本,会影响永磁体1044的内禀矫顽力。以不含镝和铽的永磁体1044为例,不含镝和铽的永磁体的内禀矫顽力(Hcj≤1800kA/m)明显小于含镝和铽的永磁体的矫顽力(Hcj≥1830kA/m),其中,不含镝和铽的永磁体和含镝和铽的永磁体的B-H曲线如图5所示,在压缩机领域,若直接将不含镝和铽的永磁铁应用到部分电机100(如9槽6极的电机),电机100的退磁能力下降40%以上,电机100的退磁能力达不到压缩机的使用要求。
具体地,不含镝和铽的永磁体和含镝和铽的永磁体的B-H曲线图如图5所示,图5中的实线代表F42SH永磁体的退磁曲线,其中,F42SH为无重稀土永磁体,如不含镝和铽的钕铁硼永磁体,图5中的点划线代表F42SH永磁体的内禀退磁曲线,图5中的大虚线代表N54SH永磁体的退磁曲线,其中,N54SH为含有镝和铽的永磁体,图5中的小虚线代表N54SH永磁体的内禀退磁曲线。其中,图5中的横坐标代表永磁体中磁场强度H,单位为KOe,即千奥斯特,纵坐标代表永磁体所感应的磁感应强度B,单位为KGs,即千高斯。图5中的D1表示F42SH永磁体的退磁曲线的拐点,D1所对应的磁场强度H(D1)为-8.177KOe,N1为F42SH永磁体的内禀退磁曲线与横坐标的交点,其中,N1所对应的磁场强度H(N1)为-8.442KOe;D2表示N54SH永磁体的退磁曲线的拐点,D2所对应的磁场强度H(D2) 为-11.085KOe,N2为N54SH永磁体的内禀退磁曲线与横坐标的交点,其中,N2所对应的磁场强度H(N2)为-11.454KOe。
由于变频电机100成本高于定速电机100的主要原因为永磁体1044的应用,提高永磁体1044的利用率可以减少永磁体1044的用量,节省电机100的成本,而永磁体1044的利用率的最高点,就是永磁体1044工作点处于永磁体1044最大磁能积处的时候。也就是说,永磁体1044工作点越靠近最大磁能积处,永磁体1044的利用率越高,永磁体1044的最大磁能积处通常为永磁体1044退磁曲线直线段的中点位置。经研究发现,一方面,在垂直于永磁体1044转轴的截面内,永磁体1044在自身的磁化方向上的长度h越长,永磁体1044的工作点越高,在B-H曲线上半段,工作点越高,离最大磁能积点越远,永磁体1044利用率越低。另一方面,在垂直于永磁体1044转轴的截面内,电机100定子铁芯1022和转子铁芯1042之间的距离(即电机100定子组件102和转子组件104之间的气隙)δ,也会影响永磁体1044的用量,气隙宽度δ越小,永磁体1044用量越少,永磁体1044宽度一定时,永磁体1044的在自身的磁化方向上的长度h越小。
换言之,在垂直于永磁体1044转轴的截面内,永磁体1044在自身的磁化方向上的长度h大,永磁体1044工作点高,但永磁体1044利用率低,h小,永磁体1044利用率高,但永磁体1044工作点低,抗退磁能力差。
因此,本申请通过减小电机100通电所产生的退磁反向磁场强度来增强电机100的抗退磁能力。由于减小电机100通电所产生的退磁反向磁场强度主要是要减少每个定子槽隙1024内绕组1026的匝数,由于绕组每相串联匝数等于每槽匝数/2(双层绕组)乘以定子槽隙的数量Q再除以相数m,可以得知,增加定子槽隙的数量Q,可以减少绕组每槽匝数,每槽匝数减少,反向磁场强度减弱,电机抗退磁能力增强。也就是说,绕组1026每槽匝数与定子槽隙1024的数量有关,而电机的加工成本还与永磁体1044的利用率有关,永磁体1044的利用率与永磁体在自身的磁化方向上的长度和定子铁芯和转子铁芯之间的距离有关。所以,本申请通过合理设置定子铁芯1022与转子铁芯1042的距离、定子槽隙1024的数量,永磁体1044在自身的磁化方向上的长度的关系来降低电机100通电所产生的退磁反向 磁场强度,并使得在永磁体1044的内禀矫顽力降低的情况下,保证电机100的抗退磁能力与永磁体1044的利用率,进而有利于降低电机100的制造成本,提高电机100的性价比,适于推广应用。
进一步地,一方面,定子铁芯1022围设于转子铁芯1042的外侧,即定子组件102位于转子组件104的外侧。另一方面,转子铁芯1042围设于定子铁芯1022的外侧,即转子组件104位于定子组件102的外侧。定子铁芯1022和转子铁芯1042的不同位置,能够满足不同电机100类型的需求,使得对于不同类型的电机100,通过具体限定在垂直于转子铁芯1042轴线的截面内,定子铁芯1022和转子铁芯1042之间的距离、永磁体1044在自身的磁化方向上的长度、定子槽隙1024的数量,都能降低电机100通电所产生的退磁反向磁场强度,进而增强电机100的抗退磁能力,提高电机100的性能,使得电机100能够满足压缩机的使用要求。
实施例二
如图1至图3所示,根据本申请的一个实施例,电机100包括:定子组件102和转子组件104,其中,定子组件102包括定子铁芯1022,定子铁芯1022设置有定子槽隙1024;转子组件104,转子组件104包括转子铁芯1042和永磁体1044;进一步地,定子槽隙1024的数量为Q个;永磁体1044的内禀矫顽力为Hcj kA/m,且Hcj小于等于1800kA/m;定子铁芯1022和转子铁芯1042之间的距离为δ毫米;永磁体1044在自身的磁化方向上的长度h毫米;其中,h的数值满足:80×(45-Q)/Hcj≤h≤1.3+δ。
在该实施例中,如图3所示,进一步限定了永磁体1044在自身的磁化方向上的长度h毫米的数值范围为:80×(45-Q)/Hcj≤h≤1.3+δ。通过合理设置h与Q、Hcj、δ的关系,有利于在提高电机100的永磁体1044的利用率的基础上,进一步地减小电机100通电所产生的退磁反向磁场强度,提高电机100的抗磁退能力,使得在提升永磁体1044的利用率、减少永磁体1044中重稀土元素的质量百分比而降低电机100的制造成本的同时,电机100的抗磁退能力也能够满足压缩机运行范围内抗退磁特性的要求,提高了电机100的性价比。
进一步地,定子铁芯1022设置有定子槽隙1024和定子凸齿1028,任 一定子槽隙1024设置于相邻两个定子凸齿1028之间,定子组件102还包括线圈,线圈跨过定子凸齿1028而位于定子槽隙1024中以形成绕组1026,绕组1026的匝数指是指线圈环绕定子凸齿1028的圈数。
进一步地,定子槽隙1024的数量Q的范围为:12个至36个;和/或定子铁芯1022和转子铁芯1042之间的距离δ的范围为:0.3至0.5mm;和/或永磁体的剩磁Br的范围为1.28T至1.45T。
在该实施例中,分别限定了定子槽隙1024的数量Q、定子铁芯1022和转子铁芯1042之间的距离δ、及永磁体1044的剩磁Br的可取值范围。具体地,一方面,定子槽隙1024的数量12≤Q≤36,通过合理设置定子槽隙1024的数量,有利于减少每个定子槽隙1024内绕组1026的匝数,进而减小电机100通电所产生的退磁反向磁场强度,增大电机100的抗退磁能力。具体地,定子槽隙1024的数量为9个、或12个、或18个、或24个、或36个。
另一方面,定子铁芯1022和转子铁芯1042之间的距离0.3mm≤δ≤0.5mm,通过合理设置定子铁芯1022和转子铁芯1042之间的距离,有利于在保证永磁体1044具有较高的利用率的情况下,减少电机100中的永磁体1044的用量,进而在保证电机100具有较高的抗退磁能力的情况下,降低电机的制造成本降,提高电机的性价比。具体地,在垂直于转子铁芯1042轴线的截面内,定子铁芯1022和转子铁芯1042之间的距离(即定子组件和转子组件之间的气隙)δ为0.3mm、0.4mm、或0.5mm。
永磁体1044的剩磁1.28T≤Br≤1.45T。其中,剩磁是指永磁体经磁化至技术饱和,并去掉外磁场后所保留的表面场,Br为剩余磁感感应强度,通过合理设置剩磁,在相同磁负荷下,剩磁Br值越大永磁体的用量越少,进而降低电机的制造成本,同时,通过合理设置剩磁,有利于降低铁损,进而提高电机的效率。具体地,永磁体的剩磁为1.28T、或1.32T、或1.45T,其中,T为单位特斯拉。
实施例三
如图1至图3所示,在上述任一实施例中,进一步地,永磁体中镝和/或铽的质量百分比的范围为:0至0.5%,或永磁体中重稀土元素的质量百 分比的范围为:0至0.5%。
在该实施例中,由于镝和铽属于重稀土元素,重稀土元素属于国家战略性资源,而永磁体1044中重稀土元素的质量百分比与永磁体1044的内禀矫顽力Hcj的大小正相关。因此,一方面,通过限定永磁体1044中镝和/或铽的质量百分比的范围为0至0.5%,有利于在保证电机100良好的抗退磁能力的情况下,减少镝和/或铽的使用,进而有利于降低电机100的制造成本,提高电机100的性价比。另一方面,通过限定永磁体1044中重稀土元素的质量百分比的范围为0至0.5%,有利于在保证电机100良好的抗退磁能力的情况下,减少重稀土元素的使用,进而有利于降低电机100的制造成本,提高电机100的性价比。
具体地,永磁体1044中镝和/或铽的质量百分比为0,一方面,永磁体1044中镝的质量百分比为0,即永磁体1044中不含重稀土元素镝,降低了永磁体1044对重稀土元素镝的消耗,有利于节约能源。另一方面,永磁体1044中铽的质量百分比为0,即永磁体1044中不含重稀土元素铽,降低了永磁体1044对重稀土元素铽的消耗,有利于节约能源。再一方面,永磁体1044中镝和铽的质量百分比之和为0,即永磁体1044中不含重稀土元素镝和铽,降低了永磁体1044对重稀土元素镝和铽的消耗,有利于资源的可持续发展,节约能源,并有利于降低电机100的制造成本,适于推广应用。
可以理解的是,永磁体1044中镝和/或铽的质量百分比也可以为其他数值,例如,永磁体1044中镝和/或铽的质量百分比为0.005%、0.01%、0.025%等。
具体地,永磁体1044中重稀土元素的质量百分比为0,即永磁体1044中不含重稀土元素,减少对战略资源的消耗,有利于资源的可持续发展,并降低了电机100的制造成本,适于推广应用。可以理解的是,永磁体1044中重稀土元素的质量百分比也可以为其他数值,例如,永磁体1044中重稀土元素的质量百分比为0.005%、0.01%、0.025%等。其中,重稀土元素还可以包括其他可以成为永磁体1044组份的元素。
进一步地,永磁体1044为钕铁硼永磁磁铁,钕铁硼永磁磁铁具有优异的磁性能,能够满足电机100的使用需求,可以理解的是,永磁体1044也 可以为满足要求的其他永磁体1044。
实施例四
如图1至图3所示,在上述任一实施例中,进一步地,电机100还包括:冲片(图中未示出),定子铁芯1022由冲片堆叠而成,和/或转子铁芯1042由冲片(图中未示出)堆叠而成。
具体地,电机100还包括冲片,一方面,定子铁芯1022由冲片堆叠而成,另一方面,转子铁芯1042由冲片堆叠而成,再一方面,定子铁芯1022和转子铁芯1042均由冲片堆叠而成。定子铁芯1022或转子铁芯1042的不同构成方式,能够满足定子组件102和转子组件104不同加工工艺的需求,适用范围广泛。
具体地,定子铁芯1022和转子铁芯1042均由冲片堆叠而成,其中,一方面,堆叠成定子铁芯1022的冲片和堆叠成转子铁芯1042的冲片相同,有利于冲片批量生产,降低制造成本。另一方面,堆叠成定子铁芯1022的冲片和堆叠成转子铁芯1042的冲片不同,有利于根据电机的性能要求选择合适的冲片以形成转子铁芯1042和定子铁芯1022,进而保证电机100良好的性能。进一步地,采用冲片堆叠的形式实现了铁芯的导磁作用并可以固定绕组1026,能够有效对电机100进行散热,使电机100运转更加稳定。
进一步地,冲片为软磁材料冲片;和/或冲片厚度为0.2mm至0.35mm。
具体地,一方面,软磁材料可以用较小的外磁场实现较大的磁化强度,选取软磁材料作为冲片的原材料,使冲片具备高磁导率,易于磁化也易于退磁,利于降低定子铁芯1022和/或转子铁芯1042的损耗,即降低电机100的铁损,进而有利于提高电机100的性能。一方面,限定冲片厚度在0.2mm至0.35mm内,合理设置冲片的厚度,有利于在保证定子铁芯1022和/或转子铁芯1042良好的机械强度的情况下,有效地降低铁损,提高导磁率,合理的范围设置还可满足不同功率电机100的工作需求。
进一步地,转子铁芯1042设置有安装槽1046,永磁体1044设置于安装槽1046;安装槽1046为V型槽、U型槽、W型槽、一字槽或I型槽。
具体地,将安装槽1046的结构设置为V型槽、U型槽、W型槽、一字槽或I型槽等多种不同样式,可以对应实现在其中安装不同结构的永磁 体1044,使电机100制造过程更加灵活,选择更多,可满足多种不同的应用场景,扩大产品的使用范围。
实施例四
根据本申请第二方面的一个实施例提供了一种压缩机,包括:壳体,以及如上述任一技术方案的电机100,电机100设于壳体的内部。
在该实施例中,因压缩机包括上述任一实施例中的电机100,因此具有该电机100的全部有益效果,在此不再赘述。
具体地,通过在电机100中使用不含镝和铽的永磁体1044、或使用显著降低镝和铽等其他重稀土元素的质量百分比的永磁体1044,减少了国家战略型资源重稀土元素的消耗,且显著降低了电机100的制造成本。并通过对于永磁体1044在自身的磁化方向上的长度h、定子槽隙1024的数量Q、及定子铁芯1022和转子铁芯1042之间的距离δ的设置,在提高电机100的永磁体1044的利用率的同时,减小电机通电所产生的退磁反向磁场强度,使电机100的抗磁退能力能够满足压缩机运行范围内耐退磁特性的要求。
实施例五
根据本申请第三方面的一个实施例提供了一种制冷设备,包括:如上述任一实施例中的电机100;或如上述任一实施例中的压缩机。
在该实施例中,因包括上述任一实施例中的电机100或上述任一实施例的压缩机,因此具有该电机100或压缩机的全部有益效果,在此不再赘述。
进一步地,制冷设备还包括管路,管路与压缩机相连通,冷媒经管路、压缩机构成循环回路以实现换热制冷。具体地,制冷设备为空调器,空调器为家用变频空调器。
具体实施例
根据本申请的实施例提供的电机100,如图1、图2所示,电机100包括定子组件102和转子组件104,转子组件104与定子组件102之间设置有气隙,如图3所示,气隙的宽度即为在垂直于转子铁芯轴线的截面内,定子铁芯与转子铁芯之间的距离δ。转子组件104与定子组件102相对设置,并可与定子组件102发生相对转动,转子组件104同轴设置在定子组件102 内。
定子组件102包括定子铁芯1022和绕组1026,定子铁芯1022设置有定子槽隙1024,绕组1026设置于定子槽隙1024内。
转子组件104包括转子铁芯1042和永磁铁,转子铁芯1042设置有安装槽1046,永磁体1044设置在安装槽1046内。永磁铁为钕铁硼磁铁,具体地,钕铁硼磁铁不含重稀土元素镝和铽,永磁铁在20℃时内禀矫顽力为Hcj,Hcj≤1800kA/m。
通过限定定子槽隙1024的数量为Q个,气隙宽度为δ毫米,在垂直于转子铁芯1042轴线的截面内永磁体1044的厚度为h毫米,即永磁体1044的磁化方向长度为h毫米。经研究发现,当h的数值满足80×(43-Q)/Hcj≤h≤1.6+δ时,电机100的永磁体1044的利用率较高,电机100成本低,且抗退磁能力满足压缩机运行范围内耐退磁特性的要求,提高了电机的性价比。
具体而言,如图4所示的永磁体的B-H曲线图,当永磁体1044没有外加磁场时,永磁体1044工作点在P点位置,当施加反向磁场时,工作点沿B-H曲线下移到W点位置,移除反向磁场,工作点沿W点回复线回复。当W点位于B-H曲线拐点D之上时,回复线与B-H曲线重合(如图4所示的Br1-D实线);当W点超过拐点D时,W点回复线与B-H曲线直线段平行,此时的回复线如图4所示的Br2-W虚线,产生不可逆退磁。
由此可知,影响电机100的抗退磁能力的因素有三个,分别是永磁体1044工作点的位置、永磁体1044内禀矫顽力Hcj绝对值的大小、反向磁场强度。其中Hcj决定拐点D值的大小,Hcj绝对值越大,拐点D的Hd值越大,抗退磁能力越强,Hcj绝对值越小,拐点D的Hd值越小,抗退磁能力越弱;永磁体1044工作点的位置越高抗退磁能力越强;反向磁场强度决定工作点P下移到W的距离,工作点位置P不变,反向磁场越强,W点越低,抗退磁能力越弱。
进一步地,本申请中的永磁体1044的组份中不含镝和铽等重稀土元素,即永磁体中重稀土元素、或镝和铽的质量百分比为0,在20℃时,永磁体的内禀矫顽力Hcj≤1800kA/m,明显小于含镝和铽的永磁体的矫顽力 Hcj≥1830kA/m,其中,不同永磁体的B-H曲线如图5所示。在压缩机领域,若直接将不含镝和铽的永磁体1044应用到现有技术下(如9槽6极的槽极配合),电机100的退磁能力下降40%以上,电机的退磁能力达不到要求。
对于电机的成本,提高永磁体1044的利用率可以减少永磁体1044的用量,进而降低电机100的成本,而永磁体1044利用率最高时,即为永磁体1044的工作点处于永磁体1044最大磁能积处的时候。换句话说,永磁体1044工作点越靠近最大磁能积处,则永磁体1044的利用率越高,永磁体1044的最大磁能积处通常为永磁体1044退磁曲线直线段的中点位置。经研究发现,永磁体1044磁化方向长度,即永磁体在自身的磁化方向上的长度h越长,永磁体1044的工作点越高,在B-H曲线上半段,工作点越高,离最大磁能积点越远,永磁体1044利用率越低。另一方面,电机定子铁芯1022和转子铁芯1042间的气隙宽度δ,也会影响永磁体1044的用量,气隙宽度δ越小,永磁体1044用量越少,永磁体1044宽度一定时,永磁体1044在自身的磁化方向上的长度h越小。
换言之,永磁体的h越大,永磁体1044工作点越高,但永磁体1044利用率越低;反之,磁体的h越小,永磁体1044工作点越低,永磁体1044利用率越高,但永磁体1044工作点越低,抗退磁能力差。
基于以上原因,本实施例通过减小电机100的绕组通电所产生的使永磁体退磁的反向磁场强度来增强电机的抗退磁能力,而减小反向磁场强度主要是要减少每个定子槽隙1024内绕组1026的匝数。由电机学可知,绕组每相串联匝数等于每槽匝数/2(双层绕组)乘以定子槽隙的数量Q再除以相数m,可以看出,增加定子槽隙1024的数量Q,可以减少绕组1026每槽匝数,每槽匝数减少,反向磁场强度减弱,电机抗退磁能力增强。进而当永磁体在自身的磁化方向的长度h,满足80×(43-Q)/Hcj≤h≤1.6+δ时,电机100的永磁体1044利用率最高、电机100成本低,且抗退磁能力强。
进一步地,h、Q、δ和Hcj之间可以按照下列关系式进行设计:80×(45-Q)/Hcj≤h≤1.3+δ。
进一步地,定子槽隙1024的数量Q≥12个,气隙宽度δ≤0.5mm。
进一步地,永磁体1044的剩磁Br≥1.28T。
进一步地,磁体1044的安装槽1046的形状和分布位置可以有多种形式,永磁体1044的安装槽1046为V型槽、U型槽、W型槽、一字槽或I型槽。
进一步地,定子铁芯1022和转子铁芯1042由软磁材料片组成,软磁材料片为硅钢片,软磁材料片的厚度为0.2mm-0.35mm。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种电机,其中,包括:
    定子组件,所述定子组件包括定子铁芯,所述定子铁芯设置有定子槽隙;
    转子组件,所述转子组件包括转子铁芯和永磁体,所述定子铁芯和所述转子铁芯中的一个围设于另一个的外侧,所述永磁体设于所述转子铁芯;
    其中,在垂直于所述转子铁芯轴线的截面内,所述定子铁芯和所述转子铁芯之间的距离为δ毫米、所述永磁体在自身的磁化方向上的长度为h毫米;
    所述定子槽隙的数量为Q个;
    所述永磁体的内禀矫顽力为Hcj kA/m,且Hcj小于等于1800kA/m;
    所述h的数值满足:80×(43-Q)/Hcj≤h≤1.6+δ。
  2. 根据权利要求1所述的电机,其中,
    所述h的数值满足:80×(45-Q)/Hcj≤h≤1.3+δ。
  3. 根据权利要求1所述的电机,其中,
    所述定子槽隙的数量Q的范围为:12个至36个;和/或
    所述定子铁芯和所述转子之间的距离δ的范围为:0.3至0.5mm;和/或
    所述永磁体的剩磁Br的范围为:1.28T至1.45T。
  4. 根据权利要求1至3中任一项所述的电机,其中,
    所述永磁体中镝和/或铽的质量百分比的范围为:0至0.5%,或
    所述永磁体中重稀土元素的质量百分比的范围为:0至0.5%。
  5. 根据权利要求1至3中任一项所述的电机,其中,还包括:
    冲片,所述定子铁芯由所述冲片堆叠而成,和/或
    所述转子铁芯由所述冲片堆叠而成。
  6. 根据权利要求5所述的电机,其中,
    所述冲片为软磁材料冲片;和/或
    所述冲片厚度为0.2mm至0.35mm。
  7. 根据权利要求1至3中任一项所述的电机,其中,
    所述转子铁芯设置有安装槽,所述永磁体设置于所述安装槽;
    所述安装槽为V型槽、U型槽、W型槽、一字槽或I型槽。
  8. 一种压缩机,其中,包括:
    壳体,以及
    如权利要求1至7中任一项所述的电机,所述电机设于所述壳体的内部。
  9. 一种制冷设备,其中,包括:
    如权利要求1至7中任一项所述的电机;或
    如权利要求8所述的压缩机。
PCT/CN2020/099643 2020-05-26 2020-07-01 电机、压缩机和制冷设备 WO2021237873A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217039014A KR20220002588A (ko) 2020-05-26 2020-07-01 모터, 압축기 및 제냉 설비
EP20937171.5A EP3965265A4 (en) 2020-05-26 2020-07-01 ELECTRIC MOTOR, COMPRESSOR AND REFRIGERATOR
JP2021572046A JP2022537655A (ja) 2020-05-26 2020-07-01 モータ、圧縮機、及び冷凍装置
US17/554,148 US20220109338A1 (en) 2020-05-26 2021-12-17 Motor, compressor and refrigeration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010457449.6A CN111555480B (zh) 2020-05-26 2020-05-26 电机、压缩机和制冷设备
CN202010457449.6 2020-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/554,148 Continuation US20220109338A1 (en) 2020-05-26 2021-12-17 Motor, compressor and refrigeration device

Publications (1)

Publication Number Publication Date
WO2021237873A1 true WO2021237873A1 (zh) 2021-12-02

Family

ID=72008541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099643 WO2021237873A1 (zh) 2020-05-26 2020-07-01 电机、压缩机和制冷设备

Country Status (6)

Country Link
US (1) US20220109338A1 (zh)
EP (1) EP3965265A4 (zh)
JP (1) JP2022537655A (zh)
KR (1) KR20220002588A (zh)
CN (1) CN111555480B (zh)
WO (1) WO2021237873A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243628A1 (ja) * 2022-06-13 2023-12-21 東ソー株式会社 焼結体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555479B (zh) * 2020-05-26 2021-08-31 安徽美芝精密制造有限公司 电机、压缩机和制冷设备
CN113328543A (zh) * 2021-06-19 2021-08-31 江苏聚磁电驱动科技有限公司 一种具有多层绕组结构的高牌号永磁电机
CN117955273A (zh) * 2022-10-21 2024-04-30 广东美芝制冷设备有限公司 永磁电机、压缩机和制冷设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380584A (zh) * 2012-06-26 2015-02-25 三菱电机株式会社 永久磁铁嵌入式电动机、压缩机和制冷空调装置
CN104901456A (zh) * 2015-06-19 2015-09-09 广东美芝制冷设备有限公司 电机和具有其的压缩机
CN109301958A (zh) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 电机转子结构及永磁电机
JP2019068577A (ja) * 2017-09-29 2019-04-25 日産自動車株式会社 可変磁力モータ
CN210167867U (zh) * 2019-08-26 2020-03-20 安徽美芝精密制造有限公司 定子、电机、压缩机和制冷设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679624B2 (ja) * 1998-09-28 2005-08-03 株式会社日立製作所 永久磁石式回転電機
JP2009153356A (ja) * 2007-12-25 2009-07-09 Hitachi Ltd 自己始動式永久磁石同期電動機
US8638017B2 (en) * 2009-09-18 2014-01-28 Shin-Etsu Chemical Co., Ltd. Rotor for permanent magnet rotating machine
US8987965B2 (en) * 2010-03-23 2015-03-24 Shin-Etsu Chemical Co., Ltd. Rotor and permanent magnet rotating machine
WO2013114542A1 (ja) * 2012-01-30 2013-08-08 三菱電機株式会社 永久磁石埋込型電動機の回転子、及びこの回転子を備えた電動機、及びこの電動機を備えた圧縮機、及びこの圧縮機を備えた空気調和機
CN203574521U (zh) * 2013-11-08 2014-04-30 佛山市顺德区进乐磁材有限公司 三相无刷直流电机
CN104410234A (zh) * 2014-04-17 2015-03-11 西北工业大学 一种车床用宽调速范围主轴同步电机
JP6661939B2 (ja) * 2015-09-29 2020-03-11 ダイキン工業株式会社 ロータ
CN105375657A (zh) * 2015-12-14 2016-03-02 广东美芝制冷设备有限公司 电机和具有其的压缩机
US10916989B2 (en) * 2016-08-10 2021-02-09 Mitsubishi Electric Corporation Motor, compressor, refrigerating and air conditioning apparatus, and method for manufacturing motor
CN106787281B (zh) * 2016-12-16 2019-03-12 东南大学 一种不改变绕组排布的分数槽集中绕组变极记忆电机
EP3730593A4 (en) * 2017-12-18 2021-10-27 Daikin Industries, Ltd. REFRIGERATION OIL FOR REFRIGERANT OR REFRIGERANT COMPOSITION, METHOD OF USING REFRIGERATION OIL, AND REFRIGERATION OIL USE
EP4358369A2 (en) * 2018-06-27 2024-04-24 Mitsubishi Electric Corporation Motor, fan, and air conditioner
CN109831084A (zh) * 2019-04-08 2019-05-31 哈尔滨工业大学 内置式双v型串并联混合磁路可调磁通永磁同步电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380584A (zh) * 2012-06-26 2015-02-25 三菱电机株式会社 永久磁铁嵌入式电动机、压缩机和制冷空调装置
CN104901456A (zh) * 2015-06-19 2015-09-09 广东美芝制冷设备有限公司 电机和具有其的压缩机
JP2019068577A (ja) * 2017-09-29 2019-04-25 日産自動車株式会社 可変磁力モータ
CN109301958A (zh) * 2018-11-08 2019-02-01 珠海格力电器股份有限公司 电机转子结构及永磁电机
CN210167867U (zh) * 2019-08-26 2020-03-20 安徽美芝精密制造有限公司 定子、电机、压缩机和制冷设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965265A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243628A1 (ja) * 2022-06-13 2023-12-21 東ソー株式会社 焼結体

Also Published As

Publication number Publication date
US20220109338A1 (en) 2022-04-07
CN111555480B (zh) 2021-04-30
EP3965265A4 (en) 2022-09-14
JP2022537655A (ja) 2022-08-29
KR20220002588A (ko) 2022-01-06
CN111555480A (zh) 2020-08-18
EP3965265A1 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2021237873A1 (zh) 电机、压缩机和制冷设备
Tahanian et al. Ferrite permanent magnets in electrical machines: Opportunities and challenges of a non-rare-earth alternative
CN111555478B (zh) 电机、压缩机和制冷设备
CN104756366B (zh) 永久磁铁嵌入型电动机、压缩机以及制冷空调装置
CN111555481A (zh) 电机、压缩机和制冷设备
CN104578659B (zh) 一种磁通切换型并联混合永磁记忆电机
EP2866336B1 (en) Electric motor having embedded permanent magnet, compressor, and cooling/air-conditioning device
CN104823357A (zh) 永磁体埋入型电动机及具有该永磁体埋入型电动机的冷冻空调装置
KR20130051895A (ko) 모터 및 압축기
CN110649732B (zh) 混合励磁转子及混合励磁表贴式永磁电机
EP4178081A1 (en) Electric motor rotor and electric motor
JP5334295B2 (ja) 永久磁石電動機及び密閉型圧縮機
CN105429409B (zh) 组合磁极式轴向磁通永磁同步电机
CN103384097A (zh) 永磁电机及其制作方法
WO2021237890A1 (zh) 电机、压缩机和制冷设备
JPH1075542A (ja) 圧縮機駆動用電動機
CN114785081A (zh) 一种交替极串联磁路混合永磁记忆电机
CN112003401A (zh) 转子、电机、压缩机及空调器、车辆
CN220692892U (zh) 电机、压缩机以及制冷设备
CN111555477A (zh) 电机、压缩机和制冷设备
CN219181252U (zh) 一种无磁场涡流损耗的同步磁阻电机定、转子结构
CN216599168U (zh) 一种铁氧体电机
WO2024099043A1 (zh) 一种转子结构、永磁电机和应用
CN221042429U (zh) 转子、电机、压缩机和制冷设备
CN216904472U (zh) 新型电机磁铁结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20217039014

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021572046

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020937171

Country of ref document: EP

Effective date: 20211130

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE