WO2021237706A1 - 旁路侧风散热器及装置、车载台 - Google Patents

旁路侧风散热器及装置、车载台 Download PDF

Info

Publication number
WO2021237706A1
WO2021237706A1 PCT/CN2020/093386 CN2020093386W WO2021237706A1 WO 2021237706 A1 WO2021237706 A1 WO 2021237706A1 CN 2020093386 W CN2020093386 W CN 2020093386W WO 2021237706 A1 WO2021237706 A1 WO 2021237706A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
area
exchange area
main
wind
Prior art date
Application number
PCT/CN2020/093386
Other languages
English (en)
French (fr)
Inventor
樊丽花
雷卫强
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2020/093386 priority Critical patent/WO2021237706A1/zh
Publication of WO2021237706A1 publication Critical patent/WO2021237706A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to the field of radiators, in particular to a bypass side wind radiator and device, and a vehicle-mounted station.
  • Car audio host position (also called DIN position) refers to the standard installation space reserved for automotive electrical appliances in the center console of the car.
  • 1DIN refers to a standard space (width and height are fixed and the depth is not limited), and 2DIN is twice that of 1DIN Space (the width is the same as 1DIN, and the height is twice that of 1DIN, and the depth is also not limited). This location is often used for the installation of audio consoles, tuners, LCD displays, car stations and other products.
  • European models have a length of 183mm, a height of 50mm, and a depth of 153mm in accordance with the 1DIN standard.
  • Japanese models often use a 2DIN double-layer model with dimensions of 180mm in length, 100mm in height and 153mm in depth.
  • the vehicle-mounted station placed in the DIN position of the vehicle is difficult to meet the heat dissipation requirements at high temperatures. Due to the limitation of structural space, the fan is set upside down on the radiator substrate. However, according to this placement method, it is found that the high heat-generating area on the veneer corresponds to the upper heat-dissipating teeth with a small wind speed, which leads to a high temperature rise of the high-heating chip and the housing. Does not meet the requirements.
  • the technical problem to be solved by the present invention is to provide an improved bypass cross-wind heat dissipation in order to reduce the temperature of the components in the high heat-generating area of the single board under the restricted conditions of small structural space, large heat generation, and the need to use air cooling to dissipate heat.
  • the device, device, and vehicle-mounted station reduce system resistance to a certain extent, strengthen the heat dissipation capacity of the main chip, and reduce system noise at the same time.
  • the technical solution adopted by the present invention to solve its technical problem is to provide a bypass side wind radiator, which includes a base plate and a fan and heat sink assembly arranged on the base plate, and the fan side discharges air to the heat sink.
  • the heat sink assembly includes a plurality of fins parallel to each other and arranged on the base plate, and the wind blown by the fan enters from the inlet of the heat sink assembly, and flows through a plurality of channels formed by the fins To the outlet; all the fins on the heat sink assembly form a V-shaped structure near the fan.
  • the heat sink assembly is divided into an air guide area and a main convection heat exchange area according to the area, and the air guide area and the main convection heat exchange area are arranged in parallel along the side air outlet direction of the fan, so
  • the head end of the air guide area is in a stepped shape that is shortened along the side air outlet direction, and the head end of the air guide area is provided with a stepped baffle;
  • the head end of the main convective heat exchange area is air outlet along the side A stepwise elongated direction;
  • the wind guide area is used to guide the wind blown in by the fan to the main convection heat exchange area, and the main convection heat exchange area is used to introduce the wind blown in by the fan To the main convective heat exchange area and lead out to the outlet; part of the wind blown into the air guiding area is guided by the air guiding area to the main convective heat exchange area, and part of it passes through the air guiding area.
  • the passage formed by the fins flows to the
  • the heat sink assembly further includes a turbulent convective heat exchange zone, and a plurality of breakpoints are opened on a plurality of the fins on the turbulent convective heat exchange zone, and a slanted angle broken tooth structure is formed.
  • a part of the wind in the turbulent convective heat exchange zone convectively exchanges heat on the broken tooth structure, and a part flows to the outlet through the channel formed by the fins in the turbulent convective heat exchange zone.
  • the head end and the tail end of the main convection heat exchange area are respectively connected to the inlet and the outlet, the head end of the air guiding area is connected to the inlet, and the tail end is connected to the head end of the turbulent convection heat exchange area
  • the end of the turbulent convection heat exchange area is connected to the outlet; a part of the wind blown into the wind guide area flows to the turbulent convective heat exchange area.
  • the air guide area and the turbulent convection heat exchange area are located at the top end area of the heat sink assembly, the main convection heat exchange area is located at the bottom end area of the heat sink assembly, and the wind blown in by the fan Blow to the head end of the air guide area and the head end of the main convective heat exchange area successively along the side air outlet direction.
  • the air guide area and the turbulent convection heat exchange area include at least 3 rows of the fins, and the main convective heat exchange area includes at least 3 rows of the fins.
  • the tail end of the wind guide area is inclined at an angle of 30-75° to the direction of the fin;
  • the direction of the fins is 30-75°; and/or, the inclination angles of the tail end of the air guiding zone and the head end of the turbulent convection heat exchange zone are the same.
  • the plurality of broken teeth on the broken tooth structure are obliquely opened teeth, and the inclination direction of the obliquely opened teeth is 30-75° with the direction of the fins.
  • a bypass side wind heat dissipation device which includes a heating main board and the bypass side wind radiator; the back of the substrate is arranged in close contact with the heating main board, wherein the heating main board includes a main heating device and a secondary heating device.
  • the heating main board includes a main heating device and a secondary heating device.
  • the main convection heat exchange area corresponds to the position of the main heating device
  • the turbulent convection heat exchange area corresponds to the position of the secondary heating device.
  • a vehicle-mounted station which includes a vehicle-mounted station main board and a bypass side wind heat dissipation device arranged on the vehicle-mounted station main board, and the vehicle-mounted station main board includes the heating main board.
  • the beneficial effect of the implementation of the present invention is that in the bypass side wind radiator and device of the present invention, and the vehicle-mounted station, the flow is drained through the V-shaped structure on the heat sink assembly to improve the heat dissipation efficiency. Furthermore, the wind is introduced into the main convection heat exchange area and exported to the outlet through the air guide area and the main convective heat exchange area at the same time to reduce the wind resistance, increase the wind speed and air volume in the high heat generating area, and strengthen the heat dissipation.
  • a turbulent convection heat exchange area with a broken tooth structure is provided to increase turbulent flow disturbance, increase the air flow rate of the heat dissipation teeth, and improve the heat dissipation efficiency of the entire radiator.
  • Fig. 1 is a schematic structural diagram of a bypass side wind radiator in some embodiments of the present invention.
  • Fig. 2 is a schematic diagram of the bypass side wind radiator in some other embodiments of the present invention.
  • Fig. 3 is a schematic diagram of the structure of a vehicle-mounted station in some embodiments of the present invention.
  • Fig. 4a is a front view of the vehicle-mounted radio in the first embodiment of the present invention.
  • Fig. 4b is a front view of the vehicle-mounted radio in the second embodiment of the present invention.
  • Fig. 4c is a front view of the vehicle-mounted radio in the third embodiment of the present invention.
  • Figure 5a is a perspective view of the vehicle-mounted radio in the first embodiment of the present invention.
  • Fig. 5b is a perspective view of the vehicle-mounted radio in the second embodiment of the present invention.
  • Fig. 5c is a perspective view of the vehicle-mounted radio in the third embodiment of the present invention.
  • FIGS 1-2 show the bypass side wind radiator in some embodiments of the present invention, which is used for dissipating heat by being arranged in the bypass by the fan 20 and side-exiting the wind to the heat sink assembly 30 for heat dissipation.
  • the bypass side wind radiator in some embodiments of the present invention includes a base plate 10, a fan 20 and a heat sink assembly 30.
  • the fan 20 and the heat sink assembly 30 are arranged on the substrate 10.
  • the wind blown by the fan 20 enters the inlet 308 of the heat sink assembly 30, and flows to the outlet 309 of the heat sink assembly 30 through several channels formed by the fins.
  • the heat sink assembly 30 is divided into an air guide area 301, a main convective heat exchange area 302, and a turbulent convective heat exchange area 303 according to the area. Part of the wind blown into the air guide area 301 by the fan 20 is guided.
  • Zone 301 leads to the main convective heat exchange zone 302, and a part of it flows to the outlet 309 through the channels formed by the fins on the air guiding zone 301; the wind blown into the main convective heat exchange zone 302 passes through the channels formed by the fins on the main convective heat exchange zone 302 Flow to the outlet 309; part of the wind blown into the turbulent convective heat exchange zone 303 convectively exchanges heat on the broken tooth structure, and part of the wind flows to the outlet 309 through the channels formed by the fins on the turbulent convective heat exchange zone 303.
  • the substrate 10 can be a common shape, such as a square, a rectangle, etc., or it can be a ring, a circle, and other unusual shapes that can be set according to specific matching conditions. There are no specific restrictions here, as long as the relevant functions can be implemented. Can.
  • the substrate 10 in order to match the space of the car stereo main unit (also called the DIN position), the substrate 10 is a rectangle that matches the DIN position.
  • the fan 20 is inverted on the substrate 10, and the side of the fan 20 discharges air to the heat sink assembly 30.
  • the fan 20 and the heat sink assembly 30 are respectively located at both ends of the rectangular substrate 10 in the longitudinal direction. Understandably, the direction of the wind from the fan 20 may be clockwise or counterclockwise.
  • the air outlet direction of the fan 20 is counterclockwise, the fan 20 is located at the right end of the base plate 10, and the heat sink assembly 30 is located at the left end of the base plate 10.
  • the heat sink assembly 30 is used to guide the wind blown in by the fan 20 to the outlet 309 to realize heat dissipation.
  • the heat sink assembly 30 includes several fins that are parallel to each other and stand on the substrate 10.
  • the wind blown by the fan 20 enters the inlet 308 of the heat sink assembly 30, and flows to the outlet 309 through several channels formed by the fins. All the fins on the heat sink assembly 30 form a V-shaped structure near the fan 20.
  • the advantage of this is that the V-shaped structure can guide wind and flow, reduce wind resistance, increase wind speed and volume, and reduce noise.
  • the heat sink assembly 30 is divided into an air guide area 301, a main convective heat exchange area 302, and a turbulent convective heat exchange area 303 according to the area.
  • the air guide area 301 is used to blow the wind blown into by the fan 20 Leading to the main convection heat exchange area 302, the main convection heat exchange area 302 is used to introduce the wind blown by the fan 20 into the main convection heat exchange area 302 and export it to the outlet 309; several fins on the turbulent convection heat exchange area 303
  • the air guide area 301 is used to guide the wind blown by the fan 20 to the main convective heat exchange area 302.
  • the head end of the air guiding area 301 is in a stepped shape that is sequentially shortened along the side air outlet direction, and the tail end of the air guiding area 301 is connected to the outlet 309. Understandably, the head end is the end close to the fan 20, and the tail end is the end close to the outlet 209.
  • the wind blown into the wind guide area 301 is directly blown in from the fan 20.
  • Part of the wind blown into the wind guide area 301 is guided by the wind guide area 301 to the main convection heat exchange area 302, and a part flows to the outlet 309 through the channel formed by the fins on the wind guide area 301.
  • the advantage of this is that the stepped heat dissipating teeth at the head end further play the role of reducing wind resistance, guiding air and strengthening heat dissipation, and improve the utilization rate of air volume.
  • the stepped structure and the traditional non-stepped heat dissipation gear have the air volume and wind speed of the former far better than the latter.
  • the tail end of the air guide area 301 may be directly connected to the outlet 309 or a distance from the outlet 309.
  • the turbulent convective heat exchange area 303 can be arranged between the tail end of the air guiding area 301 and the outlet 309.
  • the tail end of the air guiding area 301 may be arranged in a stepped shape, and the edge may be arranged at a right angle or inclined.
  • the tail end of the air guiding area 301 is arranged obliquely and is at an angle of 30-75° to the direction of the fins. It is understandable that the direction in which the end of the wind guide area 301 is inclined is clockwise, that is, it starts from the horizontal wind direction and rotates clockwise by 30-75°.
  • the wind flowing out of the wind guide area 301 includes three sources: 1. Diversion to the main convective heat exchange area 302; 2. Flow through the internal channel to the outlet 309 or turbulent convective heat exchange area 303; 3. Alongside The channel at the tail end of the air guiding area 301 diverts to the top of the air guiding area 301, and then flows to the outlet 309.
  • the head end of the heat sink assembly 30 has various implementations.
  • the heat sink assembly 30 itself is composed of several stepped fins. All the fins on the assembly 30 form a V-shaped structure near the fan 20, and no other arrangement is made at the head end of the heat sink assembly 30.
  • the air guide area 301 and the main convection heat exchange area 302 are divided from the heat sink assembly 30, and the head end of the air guide area 301 is also A stepped baffle 3011 is provided.
  • the stepped baffle 3011 is blocked between the fan 20 and the several stepped fins at the head end of the air guide area 301, and the stepped baffle 3011 corresponds to the stepped head ends of the several fins ⁇ Settings.
  • the wind of the fan 20 blows in the direction of the wind guide area 301, it is blocked by the stepped baffle 3011 and is directly guided to the main convective heat exchange area 302. The advantage of this is to improve the efficiency of diversion.
  • the main convective heat exchange area 302 is used to introduce the wind blown in by the fan 20 into the main convective heat exchange area 302 and export it to the outlet 309.
  • the head end of the main convective heat exchange zone 302 is connected to the inlet 308, and the head end is in a stepped shape extending along the side air outlet direction.
  • the tail end of the main convective heat exchange zone 302 is connected to the outlet 309, and the tail end is flush with the outlet 309.
  • the wind blowing into the main convection heat exchange zone 302 There are two sources of wind blowing into the main convection heat exchange zone 302: 1. The wind blown directly by the fan 20; The wind blown into the main convective heat exchange area 302 flows to the outlet 309 through the channels formed by the fins on the main convective heat exchange area 302, and the wind flowing out of the main convective heat exchange area 302 mainly flows to the outlet 309.
  • the stepped heat dissipating teeth at the head end of the main convection heat exchange zone 302 further play the role of reducing wind resistance, guiding air and strengthening heat dissipation, and improve the utilization rate of air volume.
  • the air volume and wind speed of the former is far better than the latter.
  • the design of the stepped structure at the head of the main convective heat exchange zone 302 is derived from Newton’s law of viscosity . This structure reduces the shear deformation speed of the incoming fluid, thereby reducing the incoming wind resistance and increasing the positive wind speed.
  • the air guiding area 301 and the main convection heat exchange area 302 are arranged in parallel along the side air outlet direction of the fan 20, and the head end of the air guiding area 301 is sequentially shortened along the side air outlet direction.
  • the head end of the main convective heat exchange area 302 is in a stepped shape extending in the direction of the side wind.
  • the closed air guiding structure namely the air guiding area 301
  • the open air guiding heat dissipation structure that is, the main convective heat exchange area 302 form a half-enclosed V-shaped stepped structure, the air guiding area 301 and the main convective heat exchange area 302 Both of them simultaneously drain, reduce wind resistance, increase wind speed and air volume in high heat-generating areas, and strengthen heat dissipation.
  • the diversion method of the air guide area 301 and the main convective heat exchange area 302 may also be other forms, which are not specifically limited here, as long as the relevant functions can be realized.
  • the turbulent convection heat exchange area 303 is used to increase the turbulence disturbance through the broken tooth structure.
  • the head end of the turbulent convection heat exchange area 303 is connected to the wind blown in by the fan 20, and the tail end of the turbulent convective heat exchange area 303 is connected to the outlet 309.
  • the several broken teeth on the broken tooth structure are obliquely opened teeth, and the inclination direction of the obliquely opened teeth is 30-75° with the fin direction, and the fin direction here is along the fin toward the outlet 309 direction.
  • the inclination direction of the oblique tooth is 45° with the fin direction.
  • the oblique opening structure of the oblique opening teeth also has a wind guiding effect and cannot be replaced by other structures.
  • the wind blown into the turbulent convective heat exchange area 303 mainly includes two sources: 1. The fan 20 blows directly in; 2. The wind flows out of the tail end of the air guiding area 301. Part of the wind blown into the turbulent convective heat exchange area 303 convectively exchanges heat on the broken tooth structure, and a part flows to the outlet 309 through the channels formed by the fins on the turbulent convective heat exchange area 303. Therefore, the wind includes two flow modes in the turbulent convection heat exchange area 303: 1. Flow along the channel; 2. Turbulent flow disturbance at the broken teeth.
  • the air guide area 301 and the turbulent convective heat exchange area 303 are connected end to end and are located at the top end, and the main convective heat exchange area 302 is located at the bottom end.
  • the head end and the tail end of the main convective heat exchange zone 302 are respectively connected to the inlet 308 and the outlet 309
  • the head end of the air guiding zone 301 is connected to the inlet 308, and the tail end is connected to the head end of the turbulent convective heat exchange zone 303
  • the turbulent convection The tail end of the heat exchange area 303 communicates with the outlet 309.
  • the air guide area 301 and the turbulent convection heat exchange area 303 are located at the top area of the heat sink assembly 30, and the main convective heat exchange area 302 is located at the bottom end area of the heat sink assembly 30.
  • the wind blown in by the fan 20 is in the side air outlet direction.
  • the head end of the wind guide area 301 and the head end of the main convection heat exchange area 302 are blown successively.
  • the air guide area 301 and the turbulent convection heat exchange area 303 include at least 3 rows of fins, and the main convective heat exchange area 302 includes at least 3 rows of fins.
  • the air guide area 301 and the turbulent convection heat exchange area 303 include 4 rows of fins, and the main convective heat exchange area 302 includes 5 rows of fins.
  • the turbulent convection heat exchange area 303 includes 4 rows of fins, no breakpoint is set on the first row of fins, one breakpoint is set on the second row of fins, and the third Two breakpoints are set on the fins in the fourth row and the fourth row respectively.
  • the inclination angles of the tail end of the air guiding area 301 and the head end of the turbulent convective heat exchange area 303 are the same.
  • the head end of the turbulent convective heat exchange area 303 is inclined at an angle of 30-75° to the direction of the fins. The advantage of this is that in the space between the tail end of the air guide area 301 and the head end of the turbulent convection heat exchange area 303, the wind can flow out to the outlet 309 more smoothly, reducing wind resistance and improving efficiency.
  • the turbulent convective heat exchange area 303 may or may not be provided. In the first and second embodiments as shown in Figures 4a and 5a, 4b and 5b, the turbulent convection heat exchange area 303 is not provided. The efficiency is low. In the third embodiment shown in Figs. 4c and 5c, a turbulent convective heat exchange zone 303 is provided.
  • the heat in the channel at the junction of the air guide area 301 and the main convective heat exchange area 302 is the largest, where the wind is divided by the broken tooth structure of the turbulent convective heat exchange area 303 and increases convection
  • the advantage of this is that it increases the turbulence disturbance and increases the air flow rate of the heat dissipating teeth, which can improve the heat dissipation efficiency of the entire radiator.
  • the bypass side wind radiator in some embodiments of the present invention can be applied to all air-cooled equipment where the fan is reversed on the radiator.
  • the heat dissipation capacity is higher when the fan performance is constant; In the case of a certain heat dissipation capacity, the air volume required by the fan should be small, and the noise and cost can be expected.
  • the back of the substrate 10 is attached to the heating main board.
  • the heating main board includes a main heating device and a secondary heating device.
  • the main convection heat exchange area 302 corresponds to the position of the main heating device
  • the turbulent convection heat exchange area 303 corresponds to the secondary heating device. s position.
  • the bypass side wind radiator is the same as that in the foregoing embodiment, and will not be repeated here.
  • other embodiments of the present invention further include a vehicle-mounted station 2, including a vehicle-mounted station main board and a bypass side wind provided on the main board of the vehicle-mounted station
  • the heat sink 1 the main board of the vehicle-mounted station includes a heat-generating main board.
  • the bypass crosswind heat dissipation device 1 is the same as that in the foregoing embodiment, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种旁路侧风散热器及装置、车载台,其中旁路侧风散热器包括基板(10)及设置在基板(10)上的风扇(20)和散热片组件(30),风扇(20)侧出风至散热片组件(30),散热片组件(30)包括数个相互平行并立设于基板(10)上的鳍片,风扇(20)吹入的风从散热片组件(30)的入口(308)进入,经过鳍片形成的数条通道流至散热片组件(30)的出口(309);散热片组件(30)上所有鳍片在靠近风扇(20)处形成一V形结构,通过散热片组件(30)上的V形结构引流,可以提高整个散热器的散热效率。

Description

旁路侧风散热器及装置、车载台 技术领域
本发明涉及散热器领域,尤其涉及一种旁路侧风散热器及装置、车载台。
背景技术
汽车音响主机位(又叫DIN位)是指汽车中控台预留给汽车电器用品的标准安装空间,1DIN指一个标准空间(宽度和高度固定而深度不限),2DIN则是1DIN的两倍空间(宽度与1DIN相同,而高度是1DIN的两倍,深度同样不限),这里位置常用于音响主机、调谐器、LCD显示屏、车载台等产品的安装。欧洲车型按1DIN标准规定长183mm、高50mm、深153mm,日本车型多用2DIN双层形式尺寸长180mm、高100mm、深153mm。
放在车上DIN位内的车载台,高温下很难满足散热要求。由于结构空间限制,设置了风扇倒扣在散热器基板上,但按照这种放置方式,发现单板上高发热区域对应上方散热齿的风速很小,导致高发热芯片和外壳温升很高,不满足要求。
技术问题
本发明要解决的技术问题在于,在结构空间小、发热量大、需要利用风冷散热等限制条件下,为了降低单板上高发热区域的器件温度,提供一种改进的旁路侧风散热器及装置、车载台,一定程度上降低系统阻力,强化主芯片散热能力,同时也降低系统噪声。
技术解决方案
本发明解决其技术问题所采用的技术方案是:提供一种旁路侧风散热器,包括基板及设置在所述基板上的风扇和散热片组件,所述风扇侧出风至所述散热片组件,所述散热片组件包括数个相互平行并立设于所述基板上的鳍片,所述风扇吹入的风从所述散热片组件入口进入,经过所述鳍片形成的数条通道流至出口;所述散热片组件上所有鳍片在靠近所述风扇处形成一V形结构。
优选地,所述散热片组件按区域分为导风区和主要对流换热区,所述导风区和所述主要对流换热区依次沿所述风扇的侧出风方向平行排列设置,所述导风区头端呈沿所述侧出风方向依次缩短的阶梯状,且所述导风区头端设置阶梯状挡板;所述主要对流换热区头端呈沿所述侧出风方向依次伸长的阶梯状;所述导风区用于将所述风扇吹入的风导向所述主要对流换热区,所述主要对流换热区用于将所述风扇吹入的风引入至所述主要对流换热区、并导出至所述出口;吹入所述导风区的风一部分被所述导风区导向所述主要对流换热区,一部分经所述导风区上所述鳍片形成的通道流至所述出口;吹入所述主要对流换热区的风经所述主要对流换热区上所述鳍片形成的通道流至所述出口。
优选地,所述散热片组件还包括紊流对流换热区,所述紊流对流换热区上的若干个所述鳍片上开有若干个断点、并形成倾斜角度断齿结构,吹入所述紊流对流换热区的风一部分在所述断齿结构上对流换热,一部分经所述紊流对流换热区上所述鳍片形成的通道流至所述出口。
优选地,所述主要对流换热区头端和尾端分别连通所述入口和所述出口,所述导风区头端连通所述入口、尾端与所述紊流对流换热区头端相连通,所述紊流对流换热区尾端与所述出口相连通;吹入所述导风区的风还有一部分流向所述紊流对流换热区。
优选地,所述导风区和所述紊流对流换热区位于所述散热片组件顶端区域,所述主要对流换热区位于所述散热片组件底端区域,所述风扇吹入的风沿所述侧出风方向先后吹向所述导风区头端和所述主要对流换热区头端。
优选地,所述导风区和所述紊流对流换热区包括至少3排所述鳍片,所述主要对流换热区包括至少3排所述鳍片。
优选地,所述导风区的尾端倾斜设置,且与所述鳍片方向呈30-75°;和/或,所述紊流对流换热区的头端倾斜设置,且与所述鳍片方向呈30-75°;和/或,所述导风区尾端和所述紊流对流换热区头端的倾斜角度相一致。
优选地,所述断齿结构上的若干个断齿为斜开齿,所述斜开齿的倾斜方向与所述鳍片方向呈30-75°。
还提供一种旁路侧风散热装置,包括发热主板和所述旁路侧风散热器;所述基板背面与所述发热主板贴合设置,其中,所述发热主板上包括主发热器件和次发热器件,所述主要对流换热区对应于所述主发热器件的位置,所述紊流对流换热区对应于所述次发热器件的位置。
还提供一种车载台,包括一车载台主板和设置在所述车载台主板上的旁路侧风散热装置,所述车载台主板包括所述发热主板。
有益效果
实施本发明的有益效果是:本发明的旁路侧风散热器及装置、车载台中,通过散热片组件上的V形结构引流,提高散热效率。还进一步通过导风区和主要对流换热区同时引流,将风扇吹入的风引入至主要对流换热区、并导出至出口,降风阻,增大高发热区域的风速和风量,强化散热。另外还设置了具有断齿结构的紊流对流换热区,增加紊流扰动,增加散热齿过风量,提高整个散热器的散热效率。
附图说明
下面将结合附图及实施例对本发明作进一步说明。
图1是本发明一些实施例中旁路侧风散热器的结构示意图。
图2是本发明另一些实施例中旁路侧风散热器的结构示意图。
图3是本发明一些实施例中车载台的结构示意图。
图4a是本发明第一实施例中车载台的正视图。
图4b是本发明第二实施例中车载台的正视图。
图4c是本发明第三实施例中车载台的正视图。
图5a是本发明第一实施例中车载台的立体图。
图5b是本发明第二实施例中车载台的立体图。
图5c是本发明第三实施例中车载台的立体图。
本发明的最佳实施方式
图1-2示出了本发明一些实施例中的旁路侧风散热器,用于通过风扇20设置在旁路并侧出风至散热片组件30从而散热。本发明一些实施例中的旁路侧风散热器包括基板10、风扇20和散热片组件30。风扇20和散热片组件30设置在基板10上,风扇20吹入的风从散热片组件30的入口308进入,经过鳍片形成的数条通道流至散热片组件30的出口309。结合图1和2所示,散热片组件30按区域分为导风区301、主要对流换热区302和紊流对流换热区303,风扇20吹入导风区301的风一部分被导风区301导向主要对流换热区302,一部分经导风区301上鳍片形成的通道流至出口309;吹入主要对流换热区302的风经主要对流换热区302上鳍片形成的通道流至出口309;吹入紊流对流换热区303的风一部分在在断齿结构上对流换热,一部分经紊流对流换热区303上鳍片形成的通道流至出口309。
基板10可以为常见的形状,例如正方形、长方形等,或者,也可以为环形、圆形等不常见、可根据具体匹配情况设置的其他形状,此处不做具体限制,只要可以实现相关功能即可。优选地,在一些实施例中,为了与汽车音响主机位(又叫DIN位)的空间相匹配,基板10为与DIN位相适配的长方形。
风扇20倒扣于基板10上,且风扇20侧出风至散热片组件30。优选地,在基板10为长方形的情况下,风扇20和散热片组件30分别位于长方形基板10长度方向的两端。可以理解地,风扇20的出风方向可以为顺时针或者逆时针。优选地,在如图1-2所示的实施例中,风扇20的出风方向为逆时针,且风扇20位于基板10右端,散热片组件30位于基板10左端。
再如图1所示,散热片组件30用于将风扇20吹入的风导出至出口309、从而实现散热。散热片组件30包括数个相互平行并立设于基板10上的鳍片,风扇20吹入的风从散热片组件30的入口308进入,经过鳍片形成的数条通道流至出口309。散热片组件30上所有鳍片在靠近所述风扇20处形成一V形结构,这样的好处是,V形结构可以导风引流,降风阻,增大风速风量,降噪。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
结合图1和图2所示,散热片组件30按区域分为导风区301、主要对流换热区302和紊流对流换热区303,导风区301用于将风扇20吹入的风导向主要对流换热区302,主要对流换热区302用于将风扇20吹入的风引入至主要对流换热区302、并导出至出口309;紊流对流换热区303上的若干个鳍片上开有若干个断点、并形成倾斜角度断齿结构,断齿结构使得风紊流扰动、增加对流。
其中,导风区301用于将风扇20吹入的风导向主要对流换热区302。导风区301头端呈沿侧出风方向依次缩短的阶梯状,导风区301的尾端连通出口309。可以理解地,头端为靠近风扇20的一端,尾端为靠近出口209的一端。
可以理解地,吹入导风区301的风来自风扇20直接吹入。吹入导风区301的风一部分被导风区301导向主要对流换热区302,一部分经导风区301上鳍片形成的通道流至出口309。这样的好处是,位于头端的阶梯型散热齿进一步发挥降低风阻、导风和强化散热的作用,提高了风量的利用率。同等风量,阶梯型结构和传统非阶梯型散热齿相比,前者的过风量和风速远胜于后者。利用导风区301头端阶梯结构导风,不仅将导风区301头端附近区域的风量引流到主要对流换热区302头端区域,增大主要对流换热区302的风量和风速;同时又保留了一定散热面积。作为选择,导风区301的尾端可以直接连通出口309或者距离出口309一段距离。当导风区301的尾端距离出口309一段距离时,紊流对流换热区303可设置在导风区301的尾端于出口309之间。导风区301的尾端可以呈阶梯状设置,其边缘可呈直角或者倾斜设置。优选地,导风区301的尾端倾斜设置,且与鳍片方向呈30-75°。可以理解地,导风区301尾端倾斜的方向为顺时针方向,即从水平出风方向开始、顺时针旋转30-75°。这样当风扇20吹入的风一部分被导向至导风区301底部时,这部分风可沿着尾端的倾斜结构顺次导向导风区301顶端的通道,从而直接导出到出口309,减小风阻、提高风量。
可以理解地,从导风区301流出的风包括三个出处:1、导流至主要对流换热区302;2.经内部通道流至出口309或紊流对流换热区303;3.沿导风区301尾端处的通道导流至导风区301顶端、再流至出口309。
在不同实施例中,散热片组件30头端的设置有多种实施方式,在如图4a和5a所示的第一实施例中,散热片组件30本身由数条阶梯状鳍片构成,散热片组件30上所有鳍片在靠近风扇20处形成一V形结构,散热片组件30头端并不做其他设置。在如图4b、4c和5b、5c所示的第二实施例、第三实施例中,从散热片组件30划分出导风区301和主要对流换热区302,导风区301头端还设置阶梯状挡板3011,阶梯状挡板3011挡在风扇20与导风区301头端的数条阶梯状鳍片之间,且阶梯状挡板3011与数条鳍片的阶梯状头端相对应地设置。当风扇20的风吹向导风区301方向时,被阶梯状挡板3011阻挡并直接导流至主要对流换热区302。这样的好处是,提高导流效率。
主要对流换热区302用于将风扇20吹入的风引入至主要对流换热区302、并导出至出口309。主要对流换热区302头端连通入口308,且头端呈沿侧出风方向依次伸长的阶梯状,主要对流换热区302的尾端连通出口309,且尾端与出口309平齐。
吹入主要对流换热区302的风来源有二:1、风扇20直接吹入的风;2、导风区301导流至主要对流换热区302头端的风。吹入主要对流换热区302的风经主要对流换热区302上鳍片形成的通道流至出口309,从主要对流换热区302流出的风主要流向出口309。主要对流换热区302头端的阶梯型散热齿进一步发挥降低风阻、导风和强化散热的作用,提高了风量的利用率。同等风量,阶梯型结构和传统非阶梯型散热齿相比,前者的过风量和风速远胜于后者。主要对流换热区302头端的阶梯型结构设计来源于牛顿粘性定律理论 此结构使得来流流体剪切力方向变形速度减小,从而减小来流风阻,增大正向风量风速。
优选地,结合图1和图2所示,导风区301和主要对流换热区302依次沿风扇20的侧出风方向平行排列设置,导风区301头端呈沿侧出风方向依次缩短的阶梯状,主要对流换热区302头端呈沿侧出风方向依次伸长的阶梯状。这样的好处是,利用封闭式导风结构即导风区301和开放式导风散热结构即主要对流换热区302形成一半包围的V型阶梯结构,导风区301和主要对流换热区302二者同时引流,降风阻,增大高发热区域的风速和风量,强化散热。作为选择,导风区301和主要对流换热区302的引流方式也可以为其他形式,此处不做具体限制,只要可以实现相关功能即可。
紊流对流换热区303用于通过断齿结构增加紊流扰动。紊流对流换热区303头端连通风扇20吹入的风,紊流对流换热区303尾端连通出口309。在一些实施例中,断齿结构上的若干个断齿为斜开齿,斜开齿的倾斜方向与鳍片方向呈30-75°,此处的鳍片方向为沿鳍片朝向出口309的方向。优选地,斜开齿的倾斜方向与鳍片方向呈45°。这样的好处是,增加紊流扰动,增加散热齿过风量,增加对流换热面积,增强对流换热能力,可以提高整个散热器的散热效率。优选地,斜开齿的斜开结构也具有导风作用,不能用其他结构替代。
吹入紊流对流换热区303的风主要包括两个来源:1、风扇20直接吹入;2.导风区301尾端流出的风。吹入紊流对流换热区303的风一部分在在断齿结构上对流换热,一部分经紊流对流换热区303上鳍片形成的通道流至出口309。因此,风在紊流对流换热区303内部包括两种流动方式:1、沿通道流动;2、在断齿处紊流扰动。
进一步地,在如图1-2所示的实施例中,导风区301和紊流对流换热区303头尾相接并位于顶端,主要对流换热区302位于底端。具体地,主要对流换热区302头端和尾端分别连通入口308和出口309,导风区301头端连通入口308、尾端与紊流对流换热区303头端相连通,紊流对流换热区303尾端与出口309相连通。在导风区301和紊流对流换热区303头尾相接的情况下,吹入导风区301的风除了导向主要对流换热区302、流至出口309这两部分以外,还有一部分流向紊流对流换热区303。
可以理解地,导风区301和紊流对流换热区303位于散热片组件30顶端区域,主要对流换热区302位于散热片组件30底端区域,风扇20吹入的风沿侧出风方向先后吹向导风区301头端和主要对流换热区302头端。导风区301和紊流对流换热区303包括至少3排鳍片,主要对流换热区302包括至少3排鳍片。在具体实施例中,导风区301和紊流对流换热区303包括4排鳍片,主要对流换热区302包括5排鳍片。在如图2所示的实施例中,紊流对流换热区303包括4排鳍片的情况下,第一排鳍片上不设置断点,第二排鳍片上设置1个断点,第三排和第四排鳍片上分别设置2个断点。
在一些优选实施例中,导风区301尾端和紊流对流换热区303头端的倾斜角度相一致。优选地,紊流对流换热区303的头端倾斜设置,且与鳍片方向呈30-75°。这样的好处是,在导风区301尾端和紊流对流换热区303头端的空间处可使风更加流畅地流出至出口309,减小风阻,提高效率。
在不同实施例中,紊流对流换热区303可以设置,也可以不设置。在如图4a和5a、4b和5b所示的第一、第二实施例中,紊流对流换热区303不设置,在这样的情况下,风扇20吹入的不经紊流扰动,散热效率较低。在如图4c和5c所示的第三实施例中,设置紊流对流换热区303。当风扇20的风吹入时,在导风区301和主要对流换热区302交界处的通道中的热量最大,此处的风被紊流对流换热区303的断齿结构分流并增加对流,这样的好处是,增加紊流扰动,增加散热齿过风量,可以提高整个散热器的散热效率。
经实验验证,本发明一些实施例中的旁路侧风散热器中,散热齿和原传统散热齿相比,高发热区域器件温度从103度降低到88.8度,降低了14.2度,降幅13.7%。效果明显。
工业实用性
本发明一些实施例中的旁路侧风散热器可应用在风扇倒扣在散热器上的所有风冷设备,与传统散热齿相比,在风扇性能一定的情况下,散热能力要更高;在散热能力一定的情况下,风扇所需的风量要小,噪声和成本可期。
本发明另一些实施例中还包括一种旁路侧风散热装置,包括发热主板和旁路侧风散热器。基板10背面与发热主板贴合设置,其中,发热主板上包括主发热器件和次发热器件,主要对流换热区302对应于主发热器件的位置,紊流对流换热区303对应于次发热器件的位置。此处旁路侧风散热器与前述实施例中的一致,不再赘述。
结合图3、4a、4b、4c、5a、5b和5c所示,本发明另一些实施例中还包括一种车载台2,包括一车载台主板和设置在车载台主板上的旁路侧风散热装置1,车载台主板包括发热主板。此处旁路侧风散热装置1与前述实施例中的一致,不再赘述。
序列表自由内容
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干个改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种旁路侧风散热器,其特征在于,包括基板(10)及设置在所述基板(10)上的风扇(20)和散热片组件(30),所述风扇(20)侧出风至所述散热片组件(30),所述散热片组件(30)包括数个相互平行并立设于所述基板(10)上的鳍片,所述风扇(20)吹入的风从所述散热片组件(30)的入口(308)进入,经过所述鳍片形成的数条通道流至所述散热片组件(30)的出口(309);所述散热片组件(30)上所有鳍片在靠近所述风扇(20)处形成一V形结构。
  2. 根据权利要求1所述的旁路侧风散热器,其特征在于,所述散热片组件(30)按区域分为导风区(301)和主要对流换热区(302),所述导风区(301)和所述主要对流换热区(302)依次沿所述风扇(20)的侧出风方向平行排列设置,所述导风区(301)头端呈沿所述侧出风方向依次缩短的阶梯状,且所述导风区(301)头端设置阶梯状挡板(3011);所述主要对流换热区(302)头端呈沿所述侧出风方向依次伸长的阶梯状;所述导风区(301)用于将所述风扇(20)吹入的风导向所述主要对流换热区(302),所述主要对流换热区(302)用于将所述风扇(20)吹入的风引入并导出至所述出口(309);吹入所述导风区(301)的风一部分被所述导风区(301)导向所述主要对流换热区(302),一部分经所述导风区(301)上所述鳍片形成的通道流至所述出口(309);吹入所述主要对流换热区(302)的风经所述主要对流换热区(302)上所述鳍片形成的通道流至所述出口(309)。
  3. 根据权利要求2所述的旁路侧风散热器,其特征在于,所述散热片组件(30)还包括紊流对流换热区(303),所述紊流对流换热区(303)上的若干个所述鳍片上开有若干个断点、并形成倾斜角度断齿结构,吹入所述紊流对流换热区(303)的风一部分在所述断齿结构上对流换热,一部分经所述紊流对流换热区(303)上所述鳍片形成的通道流至所述出口(309)。
  4. 根据权利要求3所述的旁路侧风散热器,其特征在于,所述主要对流换热区(302)头端和尾端分别连通所述入口(308)和所述出口(309),所述导风区(301)头端连通所述入口(308)、尾端与所述紊流对流换热区(303)头端相连通,所述紊流对流换热区(303)尾端与所述出口(309)相连通;吹入所述导风区(301)的风还有一部分流向所述紊流对流换热区(303)。
  5. 根据权利要求4所述的旁路侧风散热器,其特征在于,所述导风区(301)和所述紊流对流换热区(303)位于所述散热片组件(30)顶端区域,所述主要对流换热区(302)位于所述散热片组件(30)底端区域,所述风扇(20)吹入的风沿所述侧出风方向先后吹向所述导风区(301)头端和所述主要对流换热区(302)头端。
  6. 根据权利要求5所述的旁路侧风散热器,其特征在于,所述导风区(301)和所述紊流对流换热区(303)包括至少3排所述鳍片,所述主要对流换热区(302)包括至少3排所述鳍片。
  7. 根据权利要求1-6任一项所述的旁路侧风散热器,其特征在于,所述导风区(301)的尾端倾斜设置,且与所述鳍片方向呈30-75°;和/或,所述紊流对流换热区(303)的头端倾斜设置,且与所述鳍片方向呈30-75°;和/或,所述导风区(301)尾端和所述紊流对流换热区(303)头端的倾斜角度相一致。
  8. 根据权利要求1-6任一项所述的旁路侧风散热器,其特征在于,所述断齿结构上的若干个断齿为斜开齿,所述斜开齿的倾斜方向与所述鳍片方向呈30-75°。
  9. 一种旁路侧风散热装置,其特征在于,包括发热主板和如权利要求1-8任一项的所述旁路侧风散热器;所述基板(10)背面与所述发热主板贴合设置,其中,所述发热主板上包括主发热器件和次发热器件,所述主要对流换热区(302)对应于所述主发热器件的位置,所述紊流对流换热区(303)对应于所述次发热器件的位置。
  10. 一种车载台,其特征在于,包括一车载台主板和设置在所述车载台主板上的、如权利要求9所述的旁路侧风散热装置,所述车载台主板包括所述发热主板。
PCT/CN2020/093386 2020-05-29 2020-05-29 旁路侧风散热器及装置、车载台 WO2021237706A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093386 WO2021237706A1 (zh) 2020-05-29 2020-05-29 旁路侧风散热器及装置、车载台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093386 WO2021237706A1 (zh) 2020-05-29 2020-05-29 旁路侧风散热器及装置、车载台

Publications (1)

Publication Number Publication Date
WO2021237706A1 true WO2021237706A1 (zh) 2021-12-02

Family

ID=78745464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093386 WO2021237706A1 (zh) 2020-05-29 2020-05-29 旁路侧风散热器及装置、车载台

Country Status (1)

Country Link
WO (1) WO2021237706A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268603A (zh) * 2022-07-22 2022-11-01 深圳市安卓微科技有限公司 一种迷你电脑主机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956176A (zh) * 2005-10-27 2007-05-02 王训忠 整流装置
US20110277969A1 (en) * 2007-09-28 2011-11-17 Neng Tyi Precision Industries Co., Ltd. Heat dissipation device which is pre-built with an air vent structure
CN103597591A (zh) * 2011-06-15 2014-02-19 丰田自动车株式会社 半导体元件的冷却构造
JP2014204606A (ja) * 2013-04-08 2014-10-27 株式会社日立産機システム 電力変換装置および冷却フィン
CN104869784A (zh) * 2014-02-20 2015-08-26 海能达通信股份有限公司 一种散热装置以及通信设备
CN105431013A (zh) * 2015-12-15 2016-03-23 肥东凯利电子科技有限公司 一种紊流型电机控制器散热底板
US20160282065A1 (en) * 2015-03-23 2016-09-29 Nec Corporation Heat sink, cooling structure, and apparatus
CN207969291U (zh) * 2018-04-15 2018-10-12 石狮市康索特电器有限公司 一种散热性能优异的通信设备
CN110856420A (zh) * 2019-11-22 2020-02-28 珠海格力电器股份有限公司 控制器盒、压缩机、空调器、车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1956176A (zh) * 2005-10-27 2007-05-02 王训忠 整流装置
US20110277969A1 (en) * 2007-09-28 2011-11-17 Neng Tyi Precision Industries Co., Ltd. Heat dissipation device which is pre-built with an air vent structure
CN103597591A (zh) * 2011-06-15 2014-02-19 丰田自动车株式会社 半导体元件的冷却构造
JP2014204606A (ja) * 2013-04-08 2014-10-27 株式会社日立産機システム 電力変換装置および冷却フィン
CN104869784A (zh) * 2014-02-20 2015-08-26 海能达通信股份有限公司 一种散热装置以及通信设备
US20160282065A1 (en) * 2015-03-23 2016-09-29 Nec Corporation Heat sink, cooling structure, and apparatus
CN105431013A (zh) * 2015-12-15 2016-03-23 肥东凯利电子科技有限公司 一种紊流型电机控制器散热底板
CN207969291U (zh) * 2018-04-15 2018-10-12 石狮市康索特电器有限公司 一种散热性能优异的通信设备
CN110856420A (zh) * 2019-11-22 2020-02-28 珠海格力电器股份有限公司 控制器盒、压缩机、空调器、车辆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268603A (zh) * 2022-07-22 2022-11-01 深圳市安卓微科技有限公司 一种迷你电脑主机

Similar Documents

Publication Publication Date Title
CN108932039B (zh) 导风罩及散热系统
WO2023071021A1 (zh) 散热装置及通信机柜
US5810072A (en) Forced air cooler system
CN100421052C (zh) 散热装置
CN111338448B (zh) 一种电子设备及散热系统
CN202561920U (zh) 空调室外机的电器盒及具有该电器盒的空调室外机
WO2021237706A1 (zh) 旁路侧风散热器及装置、车载台
CN100456205C (zh) 散热装置
JP4797954B2 (ja) 放熱フィンの冷却構造
WO2022193669A1 (zh) 一种头戴显示设备及其散热机构
CN103423816A (zh) 空调室外机的电器盒及具有该电器盒的空调室外机
WO2012119440A1 (zh) 单板散热方法、散热装置及通信设备
CN206533386U (zh) 一种快速散热的防尘路由器
CN105722370A (zh) 散热模块
CN111741647B (zh) 旁路侧风散热器及装置、车载台
CN212544428U (zh) 一种散热装置及通信设备
CN208090843U (zh) 散热片和具有该散热片的空调器
CN209016921U (zh) 一种具有散热通风结构的电气设备
CN210042701U (zh) 散热结构及具有该散热结构的功率变换器
CN2715345Y (zh) 散热器
TW201124691A (en) Heat dissipation device
CN105392344A (zh) 散热器
CN217540686U (zh) 一种散热器及发光设备
CN214505603U (zh) 电池组
CN115087310B (zh) 高效率壳体散热装置及域控制器主机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938057

Country of ref document: EP

Kind code of ref document: A1