WO2021237568A1 - 一种巨量转移装置及巨量转移方法 - Google Patents

一种巨量转移装置及巨量转移方法 Download PDF

Info

Publication number
WO2021237568A1
WO2021237568A1 PCT/CN2020/092913 CN2020092913W WO2021237568A1 WO 2021237568 A1 WO2021237568 A1 WO 2021237568A1 CN 2020092913 W CN2020092913 W CN 2020092913W WO 2021237568 A1 WO2021237568 A1 WO 2021237568A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mass transfer
transfer device
telescopic
scan signal
Prior art date
Application number
PCT/CN2020/092913
Other languages
English (en)
French (fr)
Inventor
蒋光平
许时渊
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2020/092913 priority Critical patent/WO2021237568A1/zh
Priority to US17/347,273 priority patent/US20210376189A1/en
Publication of WO2021237568A1 publication Critical patent/WO2021237568A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/001Counterbalanced structures, e.g. surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49353Control of output power of tool, laser beam

Definitions

  • the present invention relates to the field of LED technology, and more specifically, it relates to a mass transfer device and a mass transfer method.
  • Micro-Light Emitting Diode is a new generation of display technology. Compared with the existing Organic Light-Emitting Diode (OLED) technology, it has higher brightness and better luminous effect, but it consumes more power. Low.
  • Micro-LED technology that is, LED miniaturization and matrix technology, refers to a high-density micro-sized miniature version integrated on a chip, which reduces the pixel point distance from millimeters to micrometers.
  • the miniaturized LED manufacturing process includes firstly thinning, miniaturizing and arraying the LED structure design to make the size around 1 ⁇ 250um, and then miniaturizing the red, green, and blue LEDs.
  • the micro components are transferred to the circuit substrate in batches, and then the protective layer and the upper electrode are completed by the physical deposition method, and finally the upper substrate is packaged. Among them, the step of batch transfer of LED micro-components to the circuit substrate is particularly critical.
  • the laser lift-off technology is generally used to carry out the massive transfer of Micro-LEDs.
  • the LED component to be transferred includes a release layer, an adhesive layer, an LED chip, a first temporary substrate, and a second temporary substrate. Imide, etc. to form.
  • the laser selectively irradiates the release layer at the position of the LED to be transferred to lose its viscosity or vaporize directly, so that the LED to be transferred is peeled off from the first temporary substrate and adheres to the second temporary substrate.
  • the laser lift-off technology currently used in Micro-LED is a galvanometer scanning method, which controls the position of the light spot by controlling the X-axis and Y-axis mirrors. It is particularly sensitive to external vibration, stress and the accuracy of the motor, so it is very It is difficult to accurately control the trajectory of the light spot.
  • the purpose of the present invention is to provide a mass transfer device and a mass transfer method.
  • the coaxial focusing structure is controlled by a motor and a retractable slide bar to realize a spiral laser scanning trajectory and control the movement trajectory of the laser scanning in a high-precision manner , Thereby improving the transfer efficiency and yield of Micro-LED.
  • the present invention provides a mass transfer device, which includes a laser, a coupling unit, an optical fiber, a ceramic ferrule, and a coaxial focusing structure that are connected in sequence, and the laser output from the laser is coupled into the laser through the coupling unit.
  • the coaxial focusing structure is fixed on the end of the ceramic ferrule, and the end of the optical fiber is inserted into the ceramic ferrule.
  • the coupling unit includes: a lens component; the lens component is a component composed of a single or multiple lenses.
  • the coaxial focusing structure is used to focus the laser beam propagating in the optical fiber to a point on the substrate carrying the LED to be peeled off.
  • the outer side of the coaxial focusing structure is provided with a first support rod and a second support rod that are perpendicular to each other.
  • the second support rod is vertically fixed, and the other end of the telescopic sliding rod is vertically fixed to the rotating rod of the motor.
  • the telescopic slide bar includes a telescopic drive assembly, and the length of the telescopic slide bar is adjusted by the telescopic drive assembly.
  • the mass transfer device further includes a processor, and the laser, the retractable sliding rod and the motor are respectively connected to the processor;
  • the processor is configured to send a first scan signal to the motor, so as to control the rotation speed of the motor through the first scan signal;
  • the processor is further configured to send a second scan signal to the telescopic slide bar, so as to adjust its length through the second scan signal, thereby adjusting the radius of the spiral rotation of the coaxial focusing structure;
  • the processor is further configured to send a laser pulse signal to the laser to control the laser to emit laser light through the laser pulse signal.
  • the laser is an electrically controlled laser.
  • the present invention also provides a mass transfer method based on the mass transfer device, wherein the mass transfer method includes the following steps:
  • the laser pulse signal is sent to the laser of the mass transfer device in cooperation with the first scan signal, and the laser pulse signal is used to control the laser to emit laser light.
  • the adjusting the radius of the spiral rotation of the coaxial focusing structure in the mass transfer device by the second scanning signal specifically includes:
  • the second scanning signal is used to control the telescopic drive assembly of the telescopic slide bar to perform telescopic movement, drive the telescopic slide bar to slide, and adjust the spiral rotation radius of the coaxial focusing structure in the mass transfer device.
  • the method further includes the following steps:
  • the laser beam propagating in the optical fiber is focused on the substrate carrying the LED to be stripped through the coaxial focusing structure of the mass transfer device.
  • the invention controls the coaxial focusing structure through the motor and the retractable sliding rod to realize the spiral laser scanning trajectory, thereby controlling the motion trajectory of the laser scanning in a high-precision manner, and improving the transfer efficiency and yield of the Micro-LED.
  • FIG. 1 is a schematic diagram of the mass transfer of Micro-LEDs using laser lift-off technology in the prior art.
  • Fig. 2 is a schematic diagram of the overall structure of a mass transfer device in a preferred embodiment of the present invention.
  • Fig. 3 is a flowchart of a method for mass transfer in a preferred embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the laser scanning trajectory when the length of the retractable slide bar is gradually changed in the preferred embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the laser scanning trajectory when the length of the retractable sliding rod is continuously changed in the preferred embodiment of the present invention.
  • First substrate 3. Micro-LED; 4. Second substrate; 5. Masking plate; 6. Adhesive layer; 8. Release layer; 9. Laser; 100, laser; 200, coupling unit; 300, optical fiber; 400, ceramic ferrule; 500, coaxial focusing structure; 510, focusing lens; 610, first support rod; 620, second support rod; 700, retractable sliding rod; 800, motor; 810, rotation Axis; 900, the substrate to be peeled off.
  • first”, “second”, and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first”, “second”, and “third” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed”, “set” and other terms should be understood in a broad sense, unless otherwise clearly defined and limited.
  • it can be a fixed connection or a fixed connection. It can be detachably connected or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can also be the internal communication of two components or the interaction relationship between two components .
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the release layer 8 is made of fluorine coating, silicone resin, water-soluble adhesive (for example: PVA ) And a peelable layer formed of polyimide.
  • the laser 9 can be selectively irradiated on the release layer 8 where the MICRO-LED is to be transferred, so that the The release layer 8 loses its viscosity or vaporizes directly, so that the MICRO-LED to be transferred is peeled off from the first substrate 1 and adhered to the second substrate 4 to realize the massive transfer of the MICRO-LED.
  • the scanning method usually used is the galvanometer scanning method.
  • the position of the laser spot is controlled by controlling the XY scanning mirror.
  • the scanning mirror X and the scanning mirror Y are two reflections.
  • the requirements for external vibration, stress, and motor accuracy are particularly high, so it is difficult to accurately control the trajectory of the laser spot.
  • this embodiment provides a mass transfer device, which includes a laser 100, a coupling unit 200, an optical fiber 300, a ceramic ferrule 400, and a coaxial focusing structure 500 connected in sequence; Wherein, the coaxial focusing structure 500 is fixed on the end of the ceramic ferrule 400, and the end of the optical fiber 300 is inserted into the ceramic ferrule 400.
  • the laser 100 is an electronically controlled laser transmitter, which can control the magnitude of the beam energy output by the laser 100 through a corresponding electrical signal; the laser light output by the laser 100 passes through the coupling unit
  • the coupling effect of 200 enters the optical fiber 300; then, it enters the coaxial focusing structure 500 through the conduction of the optical fiber 300, and uses the focusing effect of the coaxial focusing structure 500 to make the laser 100 emit
  • the laser is focused on the substrate 900 carrying the MICRO-LED to be peeled off, so that the laser emitted by the laser 100 is used to realize the massive transfer of the MICRO-LED.
  • the coupling unit 200 includes: a lens assembly (not shown); wherein, the lens assembly may be a single spherical lens or an assembly composed of multiple spherical mirrors; the lens assembly may also It is a single aspheric mirror or a component composed of multiple aspheric mirrors; the lens component and its composition method are in the prior art, so it will not be repeated.
  • the lens assembly may be a single spherical lens or an assembly composed of multiple spherical mirrors; the lens assembly may also It is a single aspheric mirror or a component composed of multiple aspheric mirrors; the lens component and its composition method are in the prior art, so it will not be repeated.
  • the coaxial focusing structure 500 includes: a focusing lens 510, which can be used to focus the laser beam propagating in the optical fiber 300 on the substrate 900 to be peeled off carrying the MICRO-LED In order to transfer the MICRO-LED at a point on the substrate 900 to be peeled off.
  • a focusing lens 510 which can be used to focus the laser beam propagating in the optical fiber 300 on the substrate 900 to be peeled off carrying the MICRO-LED In order to transfer the MICRO-LED at a point on the substrate 900 to be peeled off.
  • a first support rod 610 and a second support rod 620 are provided on the outer side of the coaxial focusing structure 500, and the first support rod 610 and the second support rod 620 are perpendicular to each other.
  • the motor 800 can be used to drive the coaxial focusing structure 500 to perform spiral rotation. At the same time, during the spiral rotation of the coaxial focusing structure 500, by adjusting the length of the telescopic sliding rod 700, the The radius of the spiral rotation of the coaxial focusing structure 500.
  • the retractable sliding rod 700 includes: a retractable drive assembly (not shown), the retractable drive assembly may be a retractable motor; by controlling the rotation of the retractable motor, the retractable The slide bar 700 performs telescopic movement, thereby adjusting the length of the telescopic slide bar 700; when the telescopic slide bar 700 is telescopic, the telescopic slide bar 700 can be used to adjust the coaxial focusing structure The radius of 500 spiral rotation.
  • the mass transfer device further includes a processor (not shown), and the laser 100, the retractable sliding rod 700, and the motor 800 are respectively connected to the processor; wherein The processor may be used to send a first scan signal to the motor 800 to control the rotation speed of the motor 800 through the first scan signal, so as to control the spiral rotation speed of the coaxial focusing structure 500.
  • the processor is further configured to send a second scan signal to the telescopic motor (ie, the telescopic drive assembly) of the telescopic slide bar 700, so as to control the rotation of the telescopic motor through the second scan signal , And then drive the telescopic slide bar 700 to perform telescopic movement, adjust the length of the telescopic slide bar 700, so that when the telescopic slide bar 700 is telescopic, the telescopic slide bar 700 is used to adjust The radius of the spiral rotation of the coaxial focusing structure 500.
  • a second scan signal to the telescopic motor (ie, the telescopic drive assembly) of the telescopic slide bar 700, so as to control the rotation of the telescopic motor through the second scan signal , And then drive the telescopic slide bar 700 to perform telescopic movement, adjust the length of the telescopic slide bar 700, so that when the telescopic slide bar 700 is telescopic, the telescopic slide bar 700 is used to adjust
  • the processor is further configured to send a laser pulse signal to the laser 100 to control the laser 100 to emit laser light through the laser pulse signal; while the processor sends the first scan signal , In conjunction with the first scanning signal, output the laser pulse signal.
  • the laser pulse signal is used to control the laser 100 to light up and emit the laser beam, so that the MICRO-LED chip to be transferred is separated from the substrate; when the laser track moves When reaching other MICRO-LED chip positions that do not need to be transferred, stop sending the laser pulse signal, and turn off the laser 100, so that the MICRO-LED chip that does not need to be transferred can remain on the substrate.
  • the focus position of the laser output is only determined by the motor 800.
  • the position accuracy of the laser output is also determined by the accuracy of the motor 800.
  • the accuracy of the drive motor 800 is Meet the position accuracy requirements of stripping MICRO-LED chips.
  • the diameter of the output head of the coaxial focusing structure 500 is less than 5 mm or less than 10 mm.
  • the light-weight coaxial focusing structure 500 is easier to control its movement trajectory.
  • This embodiment directly inserts the end of the optical fiber into the ceramic ferrule, and by mechanically controlling the movement trajectory of the output light spot of the ceramic ferrule, the movement trajectory of the laser scanning can be precisely controlled; moreover, this embodiment uses a motor, a support rod and a lens And other components, to achieve laser convergence and circular motion, and use the retractable slider to control the radius of circular motion, so as to realize the spiral trajectory of laser scanning and achieve the ideal motion effect.
  • this embodiment provides a mass transfer method based on the mass transfer device described in Embodiment 1, wherein the mass transfer method includes the following steps:
  • Step S100 sending a first scan signal to the motor of the mass transfer device, and controlling the rotation speed of the motor through the first scan signal;
  • Step S200 sending a second scan signal to the telescopic slide bar of the mass transfer device, and adjust the spiral rotation radius of the coaxial focus structure in the mass transfer device through the second scan signal;
  • step S300 a laser pulse signal is sent to the laser of the mass transfer device in cooperation with the first scanning signal, and the laser is controlled to emit laser light through the laser pulse signal.
  • the second scan signal can be sent to the telescopic drive assembly of the telescopic slide bar, and the second scan signal is used to control the
  • the telescopic drive assembly of the telescopic slide rod performs telescopic motion, and then drives the telescopic slide rod to slide (telescopic motion) to adjust the length of the telescopic slide rod, thereby adjusting the coaxiality in the mass transfer device
  • the radius of the helical rotation of the focusing structure can be sent to the telescopic drive assembly of the telescopic slide bar, and the second scan signal is used to control the
  • the telescopic drive assembly of the telescopic slide rod performs telescopic motion, and then drives the telescopic slide rod to slide (telescopic motion) to adjust the length of the telescopic slide rod, thereby adjusting the coaxiality in the mass transfer device
  • the radius of the helical rotation of the focusing structure is adjusted.
  • the first scan signal and the second scan signal can be sent at the same time, that is, when the rotation speed of the motor is controlled, the movement radius of the coaxial focusing structure can be adjusted at the same time.
  • the telescopic slider of the mass transfer device gradually becomes longer.
  • the laser spot The motion track on the substrate of the MICRO-LED to be peeled off is a spiral motion track.
  • the first scan signal and the second scan signal can also be sent alternately, that is, after controlling the rotation speed of the motor, stop controlling the rotation of the motor, and output the second scan signal .
  • the first scan signal is first output to control the rotation of the motor, and when the motor completes a rotation period (that is, the laser scan track is A circular motion track), stop outputting the first scan signal, and output the second scan signal to control the retractable slider to change the length; at this time, the movement track of the laser spot on the substrate to be stripped of the MICRO-LED It is a circular motion trajectory.
  • the laser can be coupled by the coupling unit of the mass transfer device, and the coupled laser is transmitted into the optical fiber of the mass transfer device Then, the laser beam propagating in the optical fiber is focused on the substrate carrying the MICRO-LED to be stripped through the coaxial focusing structure of the mass transfer device.
  • the laser pulse signal is used to control the laser to light up and emit the laser beam, so that the MICRO-LED chip to be transferred is separated from the substrate; when the laser track moves to When other MICRO-LED chip positions that do not need to be transferred, stop sending the laser pulse signal, and turn off the laser, so that the MICRO-LED chip that does not need to be transferred can remain on the substrate.
  • the present invention controls the coaxial focusing structure through the motor and the retractable slide bar to realize the spiral laser scanning track, thereby controlling the laser scanning movement track in a high-precision manner, and improving the transfer efficiency and efficiency of the Micro-LED Yield rate.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种巨量转移装置及巨量转移方法,其中,所述巨量转移装置包括依次连接的激光器(100)、耦合单元(200)、光纤(300)、陶瓷插芯(400)以及同轴聚焦结构(500),所述激光器(100)输出的激光经所述耦合单元(200)耦入所述光纤(300)中,所述同轴聚焦结构(500)固定在所述陶瓷插芯(400)的端头上,所述光纤(300)的端头插入所述陶瓷插芯(400)中。通过电机(800)及可伸缩滑杆(700)控制同轴聚焦结构(500),实现螺旋式的激光扫描轨迹,从而以高精度的方式控制激光扫描的运动轨迹,提高了Micro-LED的转移效率和良品率。

Description

一种巨量转移装置及巨量转移方法 技术领域
本发明涉及LED技术领域,更具体地说,它涉及一种巨量转移装置及巨量转移方法。
背景技术
微发光二极管(Micro Light Emitting Diode,Micro-LED)是新一代显示技术,比现有的有机电激光显示(Organic Light-Emitting Diode,OLED)技术亮度更高、发光效果更好,但功耗更低。Micro-LED技术,即LED微缩化和矩阵化技术,指的是在一个芯片上集成的高密度微小尺寸的微缩版,将像素点距离从毫米级降低至微米级。然而在Micro-LED技术中,微型化LED制程包括首先将LED结构设计进行薄膜化、微小化和阵列化,使其尺寸在1~250um左右,随后将微型化红、绿、蓝三色的LED微元件批量式转移至电路基板上,再利用物理沉积方法完成保护层与上电极,最后进行上基板的封装。在这其中将LED微元件批量式转移至电路基板上的步骤尤为关键。
目前一般利用激光剥离技术进行Micro-LED巨量转移。待转移的LED组件包括释放层、粘合层、LED芯片、第一临时基板和第二临时基板,释放层可以通过使用例如氟涂层、硅树脂、水溶性粘合剂(例如PVA)、聚酰亚胺等来形成。激光选择性地照射待转移LED位置的释放层,使之失去粘性或直接气化,从而使得待转移LED从第一临时基板剥离出来,黏附于第二临时基板上。
目前用在Micro-LED的激光剥离技术为振镜扫描方式,通过控制X轴和Y轴两轴的反射镜来控制光斑的位置,其对外界的震动、应力及马达的精度特别敏感,故很难实现精确控制光斑的轨迹。
因此,如何提高激光剥离技术中光斑控制的精确度是目前亟需解决的问题。
发明内容
本发明的目的是提供一种巨量转移装置及巨量转移方法,通过电机及可伸缩滑杆控制同轴聚焦结构,实现螺旋式的激光扫描轨迹,以高精度的方式控制激光 扫描的运动轨迹,从而提高Micro-LED的转移效率和良品率。
本发明的上述技术目的是通过以下技术方案得以实现的:
第一方面,本发明提供一种巨量转移装置,其中,包括依次连接的激光器、耦合单元、光纤、陶瓷插芯以及同轴聚焦结构,所述激光器输出的激光经所述耦合单元耦入所述光纤中,所述同轴聚焦结构固定在所述陶瓷插芯的端头上,所述光纤的端头插入所述陶瓷插芯中。
进一步地,所述耦合单元包括:透镜组件;所述透镜组件为单片或多片镜片组成的组件。
进一步地,所述同轴聚焦结构用于将光纤中传播的激光束聚焦于载有待剥离led的基板上的一点。
进一步地,所述同轴聚焦结构的外侧设置有相互垂直的第一支撑杆和第二支撑杆,所述第二支撑杆的末端连接有可伸缩滑杆,所述可伸缩滑杆的一端与所述第二支撑杆垂直固定,所述可伸缩滑杆的另一端与电机的旋转杆垂直固定。
进一步地,所述可伸缩滑杆包括:伸缩驱动组件,所述可伸缩滑杆通过所述伸缩驱动组件调节其长度。
进一步地,所述的巨量转移装置,还包括:处理器,所述激光器、所述可伸缩滑杆及所述电机分别与所述处理器连接;
所述处理器用于向所述电机发送第一扫描信号,以通过所述第一扫描信号控制所述电机的转速;
所述处理器还用于向所述可伸缩滑杆发送第二扫描信号,以通过所述第二扫描信号调节其长度,从而调节同轴聚焦结构螺旋转动的半径;
所述处理器还用于向所述激光器发送激光脉冲信号,以通过所述激光脉冲信号控制所述激光器发射激光。
进一步地,所述激光器为电控激光器。
第二方面,本发明还提供一种基于所述巨量转移装置的巨量转移方法,其中,所述巨量转移方法包括以下步骤:
向巨量转移装置的电机发送第一扫描信号,并通过所述第一扫描信号控制所述电机的转速;
向所述巨量转移装置的可伸缩滑杆发送第二扫描信号,并通过所述第二扫描 信号调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径;
配合所述第一扫描信号向所述巨量转移装置的激光器发送激光脉冲信号,并通过所述激光脉冲信号控制所述激光器发射激光。
进一步地,所述通过所述第二扫描信号调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径,具体包括:
通过所述第二扫描信号控制所述可伸缩滑杆的伸缩驱动组件进行伸缩运动,带动所述可伸缩滑杆进行滑动,调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径。
进一步地,所述通过所述激光脉冲信号控制所述激光器发射激光,之后还包括以下步骤:
通过所述巨量转移装置的耦合单元对所述激光进行耦合,并将耦合后的所述激光传入所述巨量转移装置的光纤中;
通过所述巨量转移装置的同轴聚焦结构将所述光纤中传播的激光束聚焦于载有待剥离led的基板上。
本发明采用上述技术方案具有以下有益效果:
本发明通过电机及可伸缩滑杆控制同轴聚焦结构,实现螺旋式的激光扫描轨迹,从而以高精度的方式控制激光扫描的运动轨迹,提高了Micro-LED的转移效率和良品率。
附图说明
图1是现有技术中采用激光剥离技术进行Micro-LED巨量转移的示意图。
图2是本发明较佳实施例中巨量转移装置的整体结构示意图。
图3是本发明较佳实施例中巨量转移方法的流程图。
图4是本发明较佳实施例中渐变可伸缩滑杆长度时激光扫描轨迹示意图。
图5是本发明较佳实施例中断续改变可伸缩滑杆长度时激光扫描轨迹示意图。
图中:1、第一基板;3、Micro-LED;4、第二基板;5、遮掩板;6、粘合层;8、释放层;9、激光;100、激光器;200、耦合单元;300、光纤;400、陶瓷插芯;500、同轴聚焦结构;510、聚焦透镜;610、第一支撑杆;620、第二支 撑杆;700、可伸缩滑杆;800、电机;810、旋转轴;900、待剥离基板。
具体实施方式
以下结合附图对本发明作进一步详细说明。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
实施例一:
如图1所示,在现有技术中,常规的利用激光剥离技术进行MICRO-LED巨量转移的技术中,释放层8是通过氟涂层、硅树脂、水溶性粘合剂(例如:PVA)以及聚酰亚胺等形成的可剥离层,当需要转移第一基板1上的MICRO-LED时,可选择性地将激光9照射在待转移MICRO-LED位置的释放层8,使所述释放层8失去粘性或直接气化,从而将待转移MICRO-LED从第一基板1剥离出来,黏附于第二基板4上,实现MICRO-LED巨量转移。
目前,在MicroLED的激光剥离技术中,通常采用的扫描方式为振镜扫描方式,通过控制XY两轴的扫描镜来控制激光光斑的位置,其中,扫描镜X和扫瞄镜Y是两块反射镜,分别通过振镜X和振镜Y控制两块反射镜的反射角度,从而达到控制入射光束到场镜的角度,以及达到改变打标件上聚焦点的位置;然而,这种振镜扫描方式对外界的振动、应力及马达的精度要求特别高,故很难实现精确控制激光光斑的轨迹。
如图2所示,为了精确控制激光光斑的轨迹,本实施例提供一种巨量转移装置,包括依次连接的激光器100、耦合单元200、光纤300、陶瓷插芯400以及同轴聚焦结构500;其中,所述同轴聚焦结构500固定在所述陶瓷插芯400的端头上,所述光纤300的端头插入所述陶瓷插芯400中。
在本实施例中,所述激光器100为电控式的激光发射器,可通过相应的电信号控制所述激光器100所输出的光束能量的大小;所述激光器100输出的激光经所述耦合单元200的耦合作用,进入所述光纤300中;然后,经过所述光纤300的传导,进入所述同轴聚焦结构500,利用所述同轴聚焦结构500的聚焦作用,使得所述激光器100发射的激光聚焦在载有MICRO-LED的待剥离基板900上,从而利用所述激光器100发射的激光实现实现MICRO-LED巨量转移。
具体地,在本实施例中,所述耦合单元200包括:透镜组件(未图示);其中,所述透镜组件可以为单片球面镜,或多片球面镜组成的组件;所述透镜组件也可以为单片非球面镜,或多片非球面镜组成的组件;所述透镜组件及其组成方式为现有技术,故不赘述。
具体地,在本实施例中,所述同轴聚焦结构500包括:聚焦透镜510,所述聚焦透镜510可用于将光纤300中传播的激光束聚焦于载有MICRO-LED的待剥离基板900上的一点,从而对所述待剥离基板900上的一点处的MICRO-LED进行转移。
具体地,在本实施例中,在所述同轴聚焦结构500的外侧设置有第一支撑杆610和第二支撑杆620,所述第一支撑杆610和所述第二支撑杆620相互垂直设置;在所述第二支撑杆620的末端连接有可伸缩滑杆700;所述可伸缩滑杆700的一端与所述第二支撑杆620垂直固定,所述可伸缩滑杆700的另一端与电机800的旋转轴810垂直固定。
所述电机800可用于驱动所述同轴聚焦结构500进行螺旋转动,同时,在所述同轴聚焦结构500螺旋转动的过程当中,通过调节所述可伸缩滑杆700的长度,可调节所述同轴聚焦结构500螺旋转动的半径。
具体地,在本实施例中,所述可伸缩滑杆700包括:伸缩驱动组件(未图示),所述伸缩驱动组件可为伸缩电机;通过控制所述伸缩电机转动,带动所述可伸缩滑杆700进行伸缩运动,从而调节所述可伸缩滑杆700的长度;在所述可伸缩滑杆700进行伸缩运动的情况下,可利用所述可伸缩滑杆700调节所述同轴聚焦结构500螺旋转动的半径。
在本实施例中,所述的巨量转移装置还包括:处理器(未图示),所述激光器100、所述可伸缩滑杆700及所述电机800分别与所述处理器连接;其中,所述处理器可用于向所述电机800发送第一扫描信号,以通过所述第一扫描信号控制所述电机800的转速,从而控制所述同轴聚焦结构500螺旋转动的速度。
在本实施例中,所述处理器还用于向所述可伸缩滑杆700的伸缩电机(即伸缩驱动组件)发送第二扫描信号,以通过所述第二扫描信号控制所述伸缩电机转动,进而带动所述可伸缩滑杆700进行伸缩运动,调节所述可伸缩滑杆700的长度,从而在所述可伸缩滑杆700进行伸缩运动的情况下,利用所述可伸缩滑杆700调节所述同轴聚焦结构500螺旋转动的半径。
在本实施例中,所述处理器还用于向所述激光器100发送激光脉冲信号,以通过所述激光脉冲信号控制所述激光器100发射激光;在所述处理器发送第一扫描信号的同时,配合所述第一扫描信号,输出所述激光脉冲信号。
当激光轨迹运动到待转移的MICRO-LED芯片位置时,通过所述激光脉冲信号控制所述激光器100点亮及发射激光光束,使得所述待转移的MICRO-LED芯片脱离基板;当激光轨迹运动到其他不需要转移的MICRO-LED芯片位置时,停止发送所述激光脉冲信号,关闭所述激光器100,使得不需要转移的MICRO-LED芯片可以继续留在基板上。
在本实施例中,激光输出的聚焦点位置只由所述电机800决定,同样地,激光输出的位置精度也由所述电机800的精度决定,正常情况下,所述驱动电机800的精度已满足剥离MICRO-LED芯片的位置精度需求。
所述同轴聚焦结构500输出头的直径小于5mm或小于10mm,当控制所述 同轴聚焦结构500的螺旋运动时,轻质量的所述同轴聚焦结构500更容易控制其运动轨迹。
本实施例直接将光纤端头插入陶瓷插芯中,通过机械控制陶瓷插芯的输出光点的运动轨迹,可精准地控制激光扫描的运动轨迹;而且,本实施例利用电机、支撑杆以及透镜等组件,实现激光的汇聚和圆周运动,并利用可伸缩滑杆控制圆周运动的半径,从而实现激光扫描的螺旋化轨迹,达到理想的运动效果。
实施例二:
如图3所示,本实施例提供一种巨量转移方法,所述巨量转移方法基于实施例一所述的巨量转移装置,其中,所述巨量转移方法包括以下步骤:
步骤S100,向巨量转移装置的电机发送第一扫描信号,并通过所述第一扫描信号控制所述电机的转速;
步骤S200,向所述巨量转移装置的可伸缩滑杆发送第二扫描信号,并通过所述第二扫描信号调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径;
步骤S300,配合所述第一扫描信号向所述巨量转移装置的激光器发送激光脉冲信号,并通过所述激光脉冲信号控制所述激光器发射激光。
在本实施例中,在调节所述同轴聚焦结构螺旋转动的半径时,可将所述第二扫描信号发送至所述可伸缩滑杆的伸缩驱动组件,通过所述第二扫描信号控制所述可伸缩滑杆的伸缩驱动组件进行伸缩运动,进而带动所述可伸缩滑杆进行滑动(伸缩运动),以调节所述可伸缩滑杆的长度,从而调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径。
在本实施例中,所述第一扫描信号和所述第二扫描信号可同时发送,即在控制所述电机的转动速度时,可同时调整所述同轴聚焦结构的运动半径。
如图4所示,在持续输出所述第一扫描信号的情况下,当持续输出所述第二扫描信号时,所述巨量转移装置的可伸缩滑杆逐渐变长,此时,激光光斑在待剥离MICRO-LED的基板上的运动轨迹为螺旋形状的运动轨迹。
在本实施例中,所述第一扫描信号和所述第二扫描信号还可交替发送,即在控制所述电机的转动速度后,停止控制所述电机转动,并输出所述第二扫描信号。
如图5所示,当交替输出所述第一扫描信号和所述第二扫描信号时,即先输出所述第一扫描信号控制电机转动,待电机完成一个转动周期时(即激光扫描轨 迹为一个圆周运动轨迹),停止输出所述第一扫描信号,并输出所述第二扫描信号,以控制可伸缩滑杆改变长度;此时,激光光斑在待剥离MICRO-LED的基板上的运动轨迹为圆形的运动轨迹。
在本实施例中,在所述激光器发射激光之后,可通过所述巨量转移装置的耦合单元对所述激光进行耦合,并将耦合后的所述激光传入所述巨量转移装置的光纤中;然后,通过所述巨量转移装置的同轴聚焦结构将所述光纤中传播的激光束聚焦于载有待剥离MICRO-LED的基板上。
当激光轨迹运动到待转移的MICRO-LED芯片位置时,通过所述激光脉冲信号控制所述激光器点亮及发射激光光束,使得所述待转移的MICRO-LED芯片脱离基板;当激光轨迹运动到其他不需要转移的MICRO-LED芯片位置时,停止发送所述激光脉冲信号,关闭所述激光器,使得不需要转移的MICRO-LED芯片可以继续留在基板上。
综上所述,本发明通过电机及可伸缩滑杆控制同轴聚焦结构,实现螺旋式的激光扫描轨迹,从而以高精度的方式控制激光扫描的运动轨迹,提高了Micro-LED的转移效率和良品率。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种巨量转移装置,其特征在于,包括依次连接的激光器、耦合单元、光纤、陶瓷插芯以及同轴聚焦结构,所述激光器输出的激光经所述耦合单元耦入所述光纤中,所述同轴聚焦结构固定在所述陶瓷插芯的端头上,所述光纤的端头插入所述陶瓷插芯中。
  2. 根据权利要求1所述的巨量转移装置,其特征在于,所述耦合单元包括:透镜组件;所述透镜组件为单片或多片镜片组成的组件。
  3. 根据权利要求1所述的巨量转移装置,其特征在于,所述同轴聚焦结构用于将光纤中传播的激光束聚焦于载有待剥离led的基板上的一点。
  4. 根据权利要求3所述的巨量转移装置,其特征在于,所述同轴聚焦结构的外侧设置有相互垂直的第一支撑杆和第二支撑杆,所述第二支撑杆的末端连接有可伸缩滑杆,所述可伸缩滑杆的一端与所述第二支撑杆垂直固定,所述可伸缩滑杆的另一端与电机的旋转杆垂直固定。
  5. 根据权利要求4所述的巨量转移装置,其特征在于,所述可伸缩滑杆包括:伸缩驱动组件,所述可伸缩滑杆通过所述伸缩驱动组件调节其长度。
  6. 根据权利要求4所述的巨量转移装置,其特征在于,所述的巨量转移装置,还包括:处理器,所述激光器、所述可伸缩滑杆及所述电机分别与所述处理器连接;
    所述处理器用于向所述电机发送第一扫描信号,以通过所述第一扫描信号控制所述电机的转速;
    所述处理器还用于向所述可伸缩滑杆发送第二扫描信号,以通过所述第二扫描信号调节其长度,从而调节同轴聚焦结构螺旋转动的半径;
    所述处理器还用于向所述激光器发送激光脉冲信号,以通过所述激光脉冲信号控制所述激光器发射激光。
  7. 根据权利要求1所述的巨量转移装置,其特征在于,所述激光器为电控激光器。
  8. 一种基于权利要求1-7任一项所述巨量转移装置的巨量转移方法,其特征在于,所述巨量转移方法包括以下步骤:
    向巨量转移装置的电机发送第一扫描信号,并通过所述第一扫描信号控制所述电机的转速;
    向所述巨量转移装置的可伸缩滑杆发送第二扫描信号,并通过所述第二扫描信号调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径;
    配合所述第一扫描信号向所述巨量转移装置的激光器发送激光脉冲信号,并通过所述激光脉冲信号控制所述激光器发射激光。
  9. 根据权利要求8所述的巨量转移方法,其特征在于,所述通过所述第二扫描信号调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径,具体包括:
    通过所述第二扫描信号控制所述可伸缩滑杆的伸缩驱动组件进行伸缩运动,带动所述可伸缩滑杆进行滑动,调节所述巨量转移装置中同轴聚焦结构螺旋转动的半径。
  10. 根据权利要求8所述的巨量转移方法,其特征在于,所述通过所述激光脉冲信号控制所述激光器发射激光,之后还包括以下步骤:
    通过所述巨量转移装置的耦合单元对所述激光进行耦合,并将耦合后的所述激光传入所述巨量转移装置的光纤中;
    通过所述巨量转移装置的同轴聚焦结构将所述光纤中传播的激光束聚焦于载有待剥离led的基板上。
PCT/CN2020/092913 2020-05-28 2020-05-28 一种巨量转移装置及巨量转移方法 WO2021237568A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/092913 WO2021237568A1 (zh) 2020-05-28 2020-05-28 一种巨量转移装置及巨量转移方法
US17/347,273 US20210376189A1 (en) 2020-05-28 2021-06-14 Mass transfer device, mass transfer method, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092913 WO2021237568A1 (zh) 2020-05-28 2020-05-28 一种巨量转移装置及巨量转移方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/347,273 Continuation US20210376189A1 (en) 2020-05-28 2021-06-14 Mass transfer device, mass transfer method, and storage medium

Publications (1)

Publication Number Publication Date
WO2021237568A1 true WO2021237568A1 (zh) 2021-12-02

Family

ID=78705467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092913 WO2021237568A1 (zh) 2020-05-28 2020-05-28 一种巨量转移装置及巨量转移方法

Country Status (2)

Country Link
US (1) US20210376189A1 (zh)
WO (1) WO2021237568A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664221A (zh) * 2012-05-18 2012-09-12 杭州士兰明芯科技有限公司 Led衬底的剥离方法
CN103675984A (zh) * 2012-08-31 2014-03-26 三星钻石工业股份有限公司 光纤、光纤装置及激光加工装置
US20140102643A1 (en) * 2010-12-07 2014-04-17 Ipg Microsystems Llc Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
CN103904558A (zh) * 2014-04-12 2014-07-02 中山新诺科技股份有限公司 一种新型的蓝紫激光光源
CN106994557A (zh) * 2017-04-20 2017-08-01 武汉铱科赛科技有限公司 一种激光焦点位置动态可控的激光加工系统及方法
CN108431949A (zh) * 2015-12-30 2018-08-21 国际商业机器公司 用于半导体模具的处理器粘合与剥离
CN108565248A (zh) * 2018-04-25 2018-09-21 大族激光科技产业集团股份有限公司 激光加工系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238470A (zh) * 2018-10-30 2019-01-18 合肥京东方视讯科技有限公司 温度测试装置、温度测试系统及温度测试方法
JP7299090B2 (ja) * 2019-07-18 2023-06-27 富士フイルムヘルスケア株式会社 ガイドワイヤコネクタ、超音波撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140102643A1 (en) * 2010-12-07 2014-04-17 Ipg Microsystems Llc Laser lift off systems and methods that overlap irradiation zones to provide multiple pulses of laser irradiation per location at an interface between layers to be separated
CN102664221A (zh) * 2012-05-18 2012-09-12 杭州士兰明芯科技有限公司 Led衬底的剥离方法
CN103675984A (zh) * 2012-08-31 2014-03-26 三星钻石工业股份有限公司 光纤、光纤装置及激光加工装置
CN103904558A (zh) * 2014-04-12 2014-07-02 中山新诺科技股份有限公司 一种新型的蓝紫激光光源
CN108431949A (zh) * 2015-12-30 2018-08-21 国际商业机器公司 用于半导体模具的处理器粘合与剥离
CN106994557A (zh) * 2017-04-20 2017-08-01 武汉铱科赛科技有限公司 一种激光焦点位置动态可控的激光加工系统及方法
CN108565248A (zh) * 2018-04-25 2018-09-21 大族激光科技产业集团股份有限公司 激光加工系统及方法

Also Published As

Publication number Publication date
US20210376189A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2018036161A1 (zh) 一种用于光栅耦合的激光器结构及封装方法
US8705906B2 (en) Photoelectric conversion module
CN112198600B (zh) 用于光通信的多通道光接收组件及其光路耦合方法
TW202201057A (zh) 光學收發模組及光纖纜線模組
WO2020024240A1 (zh) 激光二极管封装模块及距离探测装置、电子设备
WO2023115610A1 (zh) 键合系统和键合补偿方法
CN107300741A (zh) 一种边耦合光器件与光纤的直接光耦合结构
JP6310737B2 (ja) 光学サブアセンブリとその製造方法
US7270488B2 (en) Optoelectronic transmission and/or reception arrangement
WO2021237568A1 (zh) 一种巨量转移装置及巨量转移方法
CN112967946B (zh) 一种巨量转移装置及巨量转移方法
JP2011513774A (ja) 光伝送装置の製造方法及び光伝送装置
CN112967975B (zh) 一种巨量转移装置和巨量转移方法
JP2721047B2 (ja) 半導体デバイス用サブマウントおよび半導体光デバイスモジュール
JP2005250480A (ja) 光結合システム
US9588310B2 (en) Method and apparatus for aligning of opto-electronic components
GB2229856A (en) Electro-optic transducer and sheet-metal microlens holder
JP2002156562A (ja) 半導体レーザモジュール及びその製造方法
US20210367095A1 (en) Mass transfer apparatus, mass transfer system, and control method for mass transfer
JP6500336B2 (ja) 光導波路型モジュール装置および製造方法
WO2021253332A1 (zh) 一种巨量转移装置和巨量转移方法
US6874948B2 (en) System, method and apparatus for fiber bonding procedure for optoelectronic packaging
CN112992665B (zh) 巨量转移装置、系统及其控制方法
KR102328180B1 (ko) 라이다 모듈용 기판의 접합 방법
CN215340444U (zh) 一种高粘接强度的光纤耦合组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937595

Country of ref document: EP

Kind code of ref document: A1