WO2021237530A1 - 显示设备及其制备方法 - Google Patents

显示设备及其制备方法 Download PDF

Info

Publication number
WO2021237530A1
WO2021237530A1 PCT/CN2020/092697 CN2020092697W WO2021237530A1 WO 2021237530 A1 WO2021237530 A1 WO 2021237530A1 CN 2020092697 W CN2020092697 W CN 2020092697W WO 2021237530 A1 WO2021237530 A1 WO 2021237530A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
light reflection
light emitting
area
Prior art date
Application number
PCT/CN2020/092697
Other languages
English (en)
French (fr)
Inventor
张朋月
黄嘉桦
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to PCT/CN2020/092697 priority Critical patent/WO2021237530A1/zh
Publication of WO2021237530A1 publication Critical patent/WO2021237530A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Definitions

  • the present disclosure relates to the field of semiconductor technology, and in particular to a display device and a manufacturing method thereof.
  • a light-emitting diode is a device that converts electrical signals into infrared rays, visible light beams, etc. by using the characteristics of compound semiconductors. LEDs are widely used in household appliances, remote controls, electronic display boards and various automation devices. As LEDs are used in a wide range of electronic devices, the use of LEDs is constantly evolving toward miniaturization technology, which also makes the requirements for LED display performance more and more stringent.
  • the light-emitting curves of RGB three-color light-emitting diodes have different degrees of red light and blue-green light, and the luminous efficiency of the three colors is not consistent.
  • the current practice is to change the driving current of different colors through the pixel circuit through the electric drive IC or the TFT method, so as to balance the luminous efficiency of the light-emitting diodes of different colors.
  • the electrical driver IC mainly uses algorithms to adjust the luminous efficiency of light-emitting diodes, while the pixel circuit mainly uses TFT, and each TFT component has a difference in ability, which makes it necessary to use a compensation circuit to overcome the process
  • the use of compensation circuit for TFT still has reliability problems. And driving IC to compensate, it will incur additional costs and increase the production cost.
  • the embodiments of the present disclosure provide a display device and a manufacturing method thereof, which at least partially solve the problems existing in the prior art.
  • an embodiment of the present disclosure provides a display device, the display device including a substrate, a light emitting diode, and a light reflecting part;
  • the light-emitting diodes include: red light-emitting diodes, green light-emitting diodes, and blue light-emitting diodes;
  • the light emitting diode is arranged on the substrate,
  • the light reflecting part is arranged around the light emitting diode
  • the light reflecting part includes a light reflecting area, and the light reflecting area is used to reflect the light beam emitted from the light emitting diode;
  • the reflection area of the light reflection area in the light reflection portion corresponding to the blue light emitting diode, the reflection area of the light reflection area in the light reflection portion corresponding to the red light emitting diode corresponds to the green light emitting diode
  • the reflection area of the light reflection area in the light reflection portion is set according to the luminous efficiency of each light-emitting diode.
  • the light reflection part includes a light reflection wall and a light reflection layer, the light reflection wall is located on the substrate, and the light reflection layer covers the light reflection wall.
  • area S B of the light reflecting layer corresponding to the blue light emitting diode in the light reflecting portion, corresponding to the red LED in the light reflecting portion The area S R of the light reflection layer and the area S G of the light reflection layer in the light reflection portion corresponding to the green light emitting diode satisfy the condition: where b is the luminous efficiency of the blue light emitting diode, r Is the luminous efficiency of the red light-emitting diode, and g is the luminous efficiency of the green light-emitting diode.
  • area S B of the light reflecting layer corresponding to the blue light emitting diode in the light reflecting portion is greater than the corresponding green LED in the light reflecting portion
  • the area S G of the light reflection layer; the area S R of the light reflection layer in the light reflection portion corresponding to the red light emitting diode is larger than that in the light reflection portion corresponding to the green light emitting diode
  • the area S G of the light reflection layer is greater than that in the light reflection portion corresponding to the green light emitting diode.
  • the height h B of the light reflection layer in the light reflection portion corresponding to the blue light emitting diode, and the height h B of the light reflection portion corresponding to the red light emitting diode is equal to the height h G of the light reflection layer in the light reflection portion corresponding to the green light emitting diode.
  • the height h B of the light reflection layer in the light reflection portion corresponding to the blue light emitting diode, and the height h B of the light reflection portion corresponding to the red light emitting diode satisfy the condition:.
  • the height h B of the light reflection layer in the light reflection portion corresponding to the blue light emitting diode is greater than the height h G of the light reflection layer in the light reflection portion corresponding to the green light emitting diode;
  • the height h R of the light reflecting layer in the light reflecting portion corresponding to the red light emitting diode is greater than the height h G of the light reflecting layer in the light reflecting portion corresponding to the green light emitting diode.
  • the light reflection wall is formed on the substrate according to a preset pattern through a development process.
  • the light reflection layer is formed on the light reflection wall by a coating process
  • the thickness of the light reflection layer is greater than or equal to 2000 angstroms.
  • the light reflection layer includes a light reflection material.
  • the light reflective material is a metal reflective material.
  • the light reflective material includes one or more of aluminum, silver, gold, aluminum oxide, and aluminum nitride.
  • the embodiments of the present disclosure provide a method for manufacturing a display device, and the manufacturing method includes the following steps:
  • the light emitting diode includes: a red light emitting diode, a green light emitting diode, and a blue light emitting diode;
  • the reflection area of the light reflection area in the light reflection portion corresponding to the blue light emitting diode, the reflection area of the light reflection area in the light reflection portion corresponding to the red light emitting diode, and the green light emission is set according to the luminous efficiency of each light-emitting diode.
  • the step of forming a light reflecting part in a preset pattern around the mounting position of the light emitting diode on the substrate includes:
  • the light reflecting part is formed around the light emitting diode according to the preset pattern.
  • the step of forming the light reflecting part around the light emitting diode according to the preset pattern includes:
  • a light reflection layer is plated on the light reflection wall.
  • the display device in the embodiment of the present disclosure balances the luminous efficiency of the light-emitting diodes of different colors by adjusting the reflection area of the light reflecting part, thereby balancing the brightness of the light-emitting diodes, and improving the display effect of the display device; and the present disclosure controls different colors
  • the luminous efficiency of the light-emitting diode is compensated by the physical phenomenon of optical reflection, which is more stable and cheaper than the existing method of driving IC and pixel circuit to compensate from the electrical point of view.
  • FIG. 1 is a cross-sectional view of a green LED sub-pixel in a display device provided by an embodiment of the disclosure
  • FIG. 2 is a cross-sectional view of a red LED sub-pixel in a display device provided by an embodiment of the disclosure
  • FIG. 3 is a cross-sectional view of a green LED sub-pixel in a display device according to another embodiment of the disclosure.
  • FIG. 4 is a cross-sectional view of a red LED sub-pixel in a display device provided by another embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a green LED sub-pixel in a display device according to another embodiment of the disclosure.
  • FIG. 6 is a cross-sectional view of a red LED sub-pixel in a display device provided by another embodiment of the disclosure.
  • FIG. 7 is a top view of a display device provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic flowchart of a method for manufacturing a display device provided by an embodiment of the disclosure.
  • the embodiment of the present disclosure provides a display device.
  • An exemplary embodiment of a display device may include a display unit and a driver, the display unit may include a plurality of pixels P arranged in a matrix on a substrate, the driver may include a scan driver and a data driver, the scan driver is used to apply scan signals to the connection To the scan line of the pixel P, the data driver is used to apply a data signal to the data line connected to the pixel P.
  • the driver may be arranged in a non-display area on the substrate, and the non-display area may surround the display area in which the pixels P are arranged.
  • the driver may include an integrated circuit chip directly mounted on a substrate on which a display unit is provided or mountable on a flexible printed circuit film.
  • the drive may be bonded to the substrate in the form of a tape carrier package (TCP), or may be directly formed on the substrate.
  • TCP tape carrier package
  • Each speed limit P may include a light emitting diode (LED) and a pixel circuit connected to the LED.
  • the pixel circuit may include a transistor (TFT) and a capacitor. The pixel circuit is connected to each of the scan line and the data line crossing each other.
  • the buffer layer can be provided on the substrate, and the TFT and LED can be provided on the buffer layer.
  • the substrate may include glass or plastic, and the buffer layer can effectively prevent impurity elements from penetrating into the substrate.
  • the TFT backplane 100 may include an active layer, a gate electrode, a source electrode, and a drain electrode.
  • the active layer may include a semiconductor material, and may have a source region, a drain region, and a channel region between the source region and the drain region of the active layer.
  • the gate electrode is disposed on the active layer corresponding to the channel region.
  • the source electrode and the drain electrode are electrically connected to the source region and the drain region of the active layer, respectively.
  • a first insulating layer including an inorganic insulating material is provided as a gate insulating layer between the active layer and the gate electrode.
  • the second insulating layer is provided as an interlayer insulating layer between the gate electrode and the source/drain electrode.
  • the third insulating layer is provided on the source electrode/drain electrode as a planarization layer.
  • the second insulating layer and the third insulating layer may include an organic insulating material or an inorganic insulating material.
  • the second insulating layer and the third insulating layer may have a single-layer structure including an organic insulating material or an inorganic insulating material.
  • the second insulating layer and the third insulating layer may have a multilayer structure of a layer including an organic insulating material and a layer including an inorganic insulating material.
  • the LED may include a p-n diode, a first contact electrode, and a second contact electrode.
  • the first contact electrode and/or the second contact electrode may include one or more layers, and may include a conductive material including a metal, a conductive oxide, or a conductive polymer.
  • the first contact electrode and the second contact electrode may optionally include a reflective layer, such as a silver layer.
  • the first contact electrode is electrically connected to the first electrode, and the second contact electrode is electrically connected to the second electrode.
  • the pn diode may include a p-doped layer 13, a quantum well layer 12, and an n-doped layer 11, an ITO layer 14, and a p-type electrode 15.
  • the p-doped layer 13 is located at the bottom of the pn diode, and the n-doped layer 11 is located at the pn diode In the upper part.
  • the p-doped layer 13 may be in the upper part of the p-n diode, and the n-doped layer 11 may be in the bottom of the p-n diode.
  • the p-n diode may have linear sidewalls, or tapered sidewalls that taper from top to bottom or from bottom to top.
  • the first electrode may include a reflective electrode and may include one or more layers.
  • the first electrode may include metal elements such as aluminum, molybdenum, titanium, tungsten, silver, gold, or alloys thereof.
  • the first electrode may include a transparent conductive layer including a conductive material, and a reflective layer.
  • the conductive material may include a carbon nanotube film, a transparent conductive polymer, or a transparent conductive oxide (TCO).
  • the TCO may include indium tin oxide (ITO), indium zinc oxide (IZO), ZnO, or In2O3.
  • the first electrode may have a three-layer structure including an upper transparent conductive layer, a lower transparent conductive layer, and a reflective layer between the upper transparent conductive layer and the lower transparent conductive layer.
  • the second electrode may include a transparent or semi-transparent electrode.
  • the second electrode may include the transparent conductive material described above, and may include selected from Ag, Al, Mg, Li, Ca, Cu, LiF/Ca, LiF/Al, MgAg, and CaAg. At least one.
  • the display device of the embodiment of the present disclosure further includes a light reflecting part 105, the light reflecting part 105 is arranged around the light emitting diode, the light reflecting part 105 can define a speed limit area, and can be made of a material that can reflect a part of light. To act as a light shielding unit.
  • the light reflecting part 105 is provided around the light emitting diode to effectively prevent light from traveling to adjacent pixels. Therefore, in such an embodiment, color relaxation and crosstalk between adjacent pixels are effectively prevented.
  • the light reflecting part 105 is arranged around the light emitting diode, and the display device can realize high brightness.
  • the light-emitting diodes include red light-emitting diodes, green light-emitting diodes, and blue light-emitting diodes.
  • the reflection area of the light reflection area in the light reflection portion and the reflection area of the light reflection area in the light reflection portion corresponding to the green light emitting diode are set according to the luminous efficiency of each light emitting diode.
  • the luminous efficiency of the red light-emitting diode is less than that of the green light-emitting diode, and the luminous efficiency of the green light-emitting diode is less than that of the blue light-emitting diode; as shown in FIGS. 1 and 2 , The comparison diagram of the light reflecting part of the green light emitting diode and the red light emitting diode.
  • the luminous efficiency of green light-emitting diodes is higher than that of red light-emitting diodes, so the reflective area of the light-reflecting part of green light-emitting diodes is smaller than that of the light-reflecting part of red light-emitting diodes.
  • Figure 1 is a cross-sectional view of a sub-pixel of a green LED
  • Figure 2 is a cross-sectional view of a sub-pixel of a red LED.
  • the luminous efficiency of the green LED is greater than the luminous efficiency of the red LED.
  • the area is larger than the reflection area of the light reflection portion 105 of the green LED.
  • the method of adjusting the luminous efficiency of light-emitting diodes of different colors in the embodiments of the present disclosure is to use the physical phenomenon of optical reflection to compensate, which is electrically compensated compared to the existing method of driving ICs and pixel circuits.
  • the method has better stability and lower cost.
  • the light reflection part 105 includes a light reflection wall 103 and a light reflection layer 104, the light reflection wall 103 is located on the substrate, and the light reflection layer 104 covers The light reflecting wall 103.
  • the light reflecting wall 103 is located on the substrate and arranged around the light emitting diode.
  • the light reflection wall 103 may be formed by various methods such as inkjet printing, screen printing, lamination, spin coating, photolithography, chemical vapor deposition (CVD), and the like.
  • the ink used to form the pixel separation layer may be loaded on the substrate. In such an embodiment, the loaded ink may be cured by thermal curing and/or UV curing to form light reflection.
  • the light reflective wall 103 can be etched by the yellow light development method, and the formed pattern of the light reflective wall 103 can be yellow light developed according to a preset pattern.
  • the light reflection wall 103 may include at least one selected from acrylic, photoresist, SiO 2 , SiN x , PMMA, BCB, polyimide, acrylate, epoxy resin, and polyester, but is not limited thereto .
  • the light reflection wall 103 may also include an insulating black matrix material, and the insulating black matrix material includes: resin and paste, including organic resin, glass paste, and the like.
  • the light reflection part 105 further includes a light reflection layer 104, and the light reflection layer 104 is disposed on the outer surface of the light reflection wall 103.
  • the light reflection layer 104 may be formed by, for example, inkjet printing, screen printing, lamination, spin coating, sputtering, CVD, or the like.
  • the light reflection layer 104 includes materials that can be used to reflect light, including metal materials, metal oxide materials, metal nitride materials, etc., such as aluminum, silver, gold, nickel, molybdenum, and their alloys, aluminum oxide , Chromium oxide, etc., or aluminum nitride, chromium nitride, etc.
  • area S B of the light reflecting layer corresponding to the blue light emitting diode in the light reflecting portion of the light corresponding to the red LED in the light reflecting portion The area S R of the reflective layer and the area S G of the light reflection layer in the light reflection portion corresponding to the green light emitting diode meet the following conditions: where b is the luminous efficiency of the blue light emitting diode and r is the red light emission The luminous efficiency of the diode, g is the luminous efficiency of the green light-emitting diode. It should be noted that the three values of 1, 2.1 and 6.9 are parameters adjusted due to process differences. Process differences include differences in CD loss and transfer processes, where differences in CD loss include differences in etching and exposure.
  • the form of defining the reflection area of the light reflection area of the light reflection portion includes: defining the reflection area of the light emission area of the light reflection portion by limiting the size of the area of the light reflection layer of the light reflection portion. Specifically, the area S B of the light reflection layer in the light reflection portion corresponding to the blue light emitting diode is larger than the area S of the light reflection layer in the light reflection portion corresponding to the green light emitting diode. G ; the area S R of the light reflection layer in the light reflection portion corresponding to the red light emitting diode is greater than the area S of the light reflection layer in the light reflection portion corresponding to the green light emitting diode G.
  • the reflection area of the light reflection part 105 around the light emitting diodes with different luminous efficiencies is adjusted.
  • the height of the light reflection layer in the light reflection portion corresponding to the red light emitting diode, the blue light emitting diode, and the green light emitting diode may be the same or different.
  • the blue LED is defined corresponding to the area S B of the light-reflecting layer is larger than the light reflecting layer corresponding to the green LED of the light reflecting portion
  • the area S G ; the area S R of the light reflecting layer in the light reflecting portion corresponding to the red light emitting diode is larger than the light reflecting layer in the light reflecting portion corresponding to the green light emitting diode
  • the area S G of the blue light emitting diode, the red light emitting diode, and the green light emitting diode respectively correspond to the light reflecting layer of the same height.
  • the defined area S B of the light reflecting layer corresponding to the blue light-emitting diode is greater than the reflecting portion of the light reflecting layer corresponding to the green LED of the light reflecting portion
  • the area S G ; the area S R of the light reflecting layer in the light reflecting portion corresponding to the red light emitting diode is larger than the light reflecting layer in the light reflecting portion corresponding to the green light emitting diode the area S G, and the red light emitting diode corresponding to the height of the light-reflecting portion 105 is greater than the height of the green light emitting diode corresponding to the light reflecting portion 105 corresponding to the blue light of the light emitting diode
  • the height of the reflection portion 105 is greater than the height of the light reflection portion 105 corresponding to the green light emitting diode.
  • the area of the light reflecting layer 104 of the green light emitting diode is smaller than the area of the light reflecting layer 104 of the red light emitting diode ,
  • the light emitting layer corresponding to the red light emitting diode spreads to the installation position of the light emitting diode.
  • the form of defining the reflection area of the light reflection area of the light reflection portion includes: defining the reflection area of the light emission area of the light reflection portion by defining the height of the light reflection layer of the light reflection portion.
  • the height h B of the light reflecting layer in the light reflecting portion corresponding to the blue light emitting diode, and the height h of the light reflecting layer in the light reflecting portion corresponding to the red light emitting diode R and the height h G of the light reflection layer in the light reflection portion corresponding to the green light emitting diode satisfy the condition:.
  • the height h B of the light reflection layer in the light reflection portion corresponding to the blue light emitting diode is greater than the height h of the light reflection layer in the light reflection portion corresponding to the green light emitting diode G ;
  • the height h R of the light reflection layer in the light reflection portion corresponding to the red light emitting diode is greater than the height h of the light reflection layer in the light reflection portion corresponding to the green light emitting diode G.
  • the height of the light reflecting part corresponding to the red light emitting diode is greater than the height of the light reflecting part corresponding to the green light emitting diode.
  • the luminous efficiency of the light-emitting diodes is not completely the same.
  • the luminous efficiency of red light is the lowest, and the luminous efficiency of blue is the highest.
  • a preset value is set for the luminous efficiency.
  • the light-reflecting part 105 provided around the LED with a set value is the first-area light-reflecting part
  • the light-reflecting part 105 provided around the light-emitting diode with a luminous efficiency lower than the preset value is the second-area light-reflecting part.
  • the reflection area of the light reflection portion 105 is inversely proportional to the luminous efficiency.
  • the height of the light reflecting portion in the first area is smaller than the height of the light reflecting portion in the second area to reduce the reflection area of the light reflecting portion in the first area.
  • the first area light reflection portion represents the light reflection portion 105 around the green LED
  • the second area light reflection portion represents the light reflection portion 105 around the red LED.
  • the height of the light reflecting part in the first zone is smaller than the height of the light reflecting part in the second zone.
  • the height of the light reflecting wall 103 of the light reflecting part in the first zone is smaller than the height of the light reflecting wall 103 in the light reflecting part of the second zone.
  • the way of changing the area of the light reflecting part 105 by adjusting the height of the light reflecting wall 103 is in contrast to the way of changing the reflecting area of the reflecting part 105 by adjusting the reflecting area of the light reflecting layer 104 covered on the light reflecting wall 103.
  • a half-tone mask photomask needs to be used in the process, and the cost is relatively higher.
  • the method of changing the area of the light reflecting portion 105 can be adjusted by changing the area of the light reflecting layer 104 covering the light reflecting wall 103, or it can be adjusted by adjusting the height of the light reflecting wall 103 to reduce or increase the coverage.
  • the light-emitting diodes with different luminous efficiency can be adjusted by adjusting the shape of the light reflecting wall. Specifically, by adjusting the surface area of the light reflecting wall 103, the area of the light reflecting wall 103 covering the light reflecting wall 103 is further adjusted. Specifically, light reflecting walls 103 of different shapes can be generated by different developing methods, and the light reflecting walls 103 of different shapes correspond to different surface areas. By changing the surface area of the light reflecting wall 103, the area of the light reflecting layer 104 covering the light reflecting wall 103 can be adjusted. It should be noted that the adjustment of the surface area of the light reflection wall 103 may be performed on the basis of the same or different heights of the light reflection wall.
  • an embodiment of the present disclosure also provides a method for manufacturing a display device, and the method for manufacturing includes the following steps:
  • Step S10 reserve a position for installing the light-emitting diode on the substrate
  • Step S20 forming a light reflecting portion 105 on the substrate surrounding the mounting position of the light emitting diode according to a preset pattern
  • the reflection area of the light reflection area in the light reflection portion corresponding to the blue light emitting diode, the reflection area of the light reflection area in the light reflection portion corresponding to the red light emitting diode, and the green light emission is set according to the luminous efficiency of each light-emitting diode.
  • the step of forming the light reflecting part 105 according to a preset pattern around the mounting position of the light emitting diode on the substrate includes:
  • the light reflecting part 105 is formed around the light emitting diode according to the preset pattern.
  • the step of forming the light reflecting portion 105 around the light emitting diode according to the preset pattern includes:
  • a light reflection layer 104 is plated on the light reflection wall 103.
  • a flip-chip packaged LED chip 102 is soldered to the TFT backplane 100N, P electrode to make it work
  • a layer of light reflection layer 104 is coated on the light reflection wall 103 by sputtering coating method.
  • the light source When the LED emits light, the light source will be emitted from all directions. At this time, the light reflecting part 105 is used to reflect the side light back, blocking the side light from affecting the LED next to the wall and causing color mixing.
  • the light reflecting part 105 is used to reflect the side light back, blocking the side light from affecting the LED next to the wall and causing color mixing.
  • the light is reflected by these metals with different refractive indexes Later, due to the change of the phase angle, constructive interference will be formed, and the light intensity will be increased after combining with each other, which can reduce the operating voltage and reduce the power consumption.
  • the method shown in FIG. 8 can correspondingly execute the content in the above method embodiment.
  • parts that are not described in detail in this embodiment refer to the content recorded in the above method embodiment, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)

Abstract

本申请属于半导体技术领域,其提供了一种显示设备及其制备方法。该显示设备包括基底、发光二极管和光反射部;该发光二极管设置于该基底上,该光反射部围绕该发光二极管设置;该光反射部的反射面积根据该发光二极管的发光效率设定。该显示设备通过调控光反射部的反射面积来平衡不同颜色的发光二极管的发光效率,平衡了发光二极管的亮度,提高了显示设备的显示效果;且调控不同颜色的发光二极管的发光效率的方式是运用光学反射物理现象去做补偿,相较于现有的驱动IC和画素电路的方法从电学角度去做补偿的方式而言稳定性更好,成本更低。

Description

显示设备及其制备方法 技术领域
本公开涉及半导体技术领域,尤其涉及一种显示设备及其制备方法。
背景技术
发光二极管(LED)是通过利用化合物半导体特性将电信号转换为红外线、可见光束等的形式的装置。LED广泛用于家用电器、遥控器、电子显示板和各种自动化装置。随着LED应用于广泛范围的电子装置中,LED的使用领域正在向微型化技术不断发展,这也使得对LED的显示效能要求也越来越严苛的情况下。
不同颜色的发光二极管存在区别,RGB三种颜色的发光二极管的发光曲线中红光与蓝绿光线性度不一样,并且三种颜色的发光效率都不一致。目前做法都是从电性驱动IC或是用TFT方式透过画素电路去变更不同颜色的驱动电流,从而平衡不同颜色发光二极管的发光效率。电性驱动IC主要是通过做演算法运用去调整发光二极管的发光效率,而画素电路主要使用TFT,而TFT的元器件每一颗都会存在着能力的差异,这使得必须使用补偿电路才能克服工艺造成的缺陷,但TFT运用补偿电路又还会有可靠性的问题存在。而驱动IC来进行补偿,则主要是会衍生额外成本,提高了制作成本。
技术问题
有鉴于此,本公开实施例提供一种显示设备及其制备方法,至少部分解决现有技术中存在的问题。
技术解决方案
第一方面,本公开实施例提供了一种显示设备,所述显示设备包括基底、发光二极管和光反射部;
所述发光二极管包括:红光发光二极管、绿光发光二极管和蓝光发光二极管;
所述发光二极管设置于所述基底上,
所述光反射部围绕所述发光二极管设置;
所述光反射部包括光反射区域,所述光反射区域用于反射从所述发光二极管出射的光束;
所述蓝光发光二极管对应的所述光反射部中的光反射区域的反射面积、所述红光发光二极管对应的所述光反射部中的光反射区域的反射面积和所述绿光发光二极管对应的所述光反射部中的光反射区域的反射面积根据各个发光二极管的发光效率来设定。
根据本公开实施例的一种具体实现方式,所述光反射部包括光反射墙和光反射层,所述光反射墙位于所述基底上,所述光反射层覆盖在所述光反射墙上。
根据本公开实施例的一种具体实现方式,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B、所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G满足条件:,其中b为蓝光发光二极管的发光效率,r为红光发光二极管的发光效率,g为绿光发光二极管的发光效率。
根据本公开实施例的一种具体实现方式,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G;所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G
根据本公开实施例的一种具体实现方式,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B、所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G相等。
根据本公开实施例的一种具体实现方式,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B、所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G满足条件:。
所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G;所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G
根据本公开实施例的一种具体实现方式,所述光反射墙在所述基底上按照预设图案通过显影工艺形成。
根据本公开实施例的一种具体实现方式,所述光反射层在所述光反射墙上通过镀膜工艺形成,
根据本公开实施例的一种具体实现方式,所述光反射层的厚度大于或者等于2000埃米。
根据本公开实施例的一种具体实现方式,所述光反射层包括光反射材料。
根据本公开实施例的一种具体实现方式,所述光反射材料为金属反射材料。
根据本公开实施例的一种具体实现方式,所述光反射材料包括铝、银、金、氧化铝、氮化铝中的一种或多种。
第二方面,本公开实施例提供了一种显示设备的制备方法,所述制备方法包括如下步骤:
在所述基底上预留安装所述发光二极管的位置,所述发光二极管包括:红光发光二极管、绿光发光二极管和蓝光发光二极管;
在所述基底上围绕所述发光二极管的安装位置按照预设图案形成光反射部;
其中,所述蓝光发光二极管对应的所述光反射部中的光反射区域的反射面积、所述红光发光二极管对应的所述光反射部中的光反射区域的反射面积和所述绿光发光二极管对应的所述光反射部中的光反射区域的反射面积根据各个发光二极管的发光效率来设定。
根据本公开实施例的一种具体实现方式,所述在所述基底上围绕所述发光二极管的安装位置按照预设图案形成光反射部的步骤包括:
根据所述发光二极管的发光效率生成围绕所述发光二极管的光反射部的预设图案;
根据所述预设图案围绕所述发光二极管形成所述光反射部。
根据本公开实施例的一种具体实现方式,所述根据所述预设图案围绕所述发光二极管形成所述光反射部的步骤包括:
根据所述预设图案围绕所述发光二极管形成光反射墙;
根据所述发光二极管的发光效率确定所述光反射部中的光反射层的反射面积;
在所述光反射墙上镀光反射层。
有益效果
本公开实施例中的显示设备,通过调控光反射部的反射面积来平衡不同颜色的发光二极管的发光效率,进而平衡了发光二极管的亮度,提高了显示设备的显示效果;且本公开调控不同颜色的发光二极管的发光效率的方式是运用光学反射物理现象去做补偿,相较于现有的驱动IC和画素电路的方法从电学角度去做补偿的方式而言稳定性更好,成本更低。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本公开实施例提供的一种显示设备中绿光LED子像素的剖面图;
图2为本公开实施例提供的一种显示设备中红光LED子像素的剖面图;
图3为本公开另一实施例提供的一种显示设备中绿光LED子像素的剖面图;
图4为本公开另一实施例提供的一种显示设备中红光LED子像素的剖面图;
图5为本公开另一实施例提供的一种显示设备中绿光LED子像素的剖面图;
图6为本公开另一实施例提供的一种显示设备中红光LED子像素的剖面图;
图7为本公开实施例提供的一种显示设备的俯视图;
图8为本公开实施例提供的一种显示设备的制备方法的流程示意图。
附图标记汇总:
100-TFT背板,102-LED芯片,103-光反射墙,104-光反射层,105-光反射部,11-n掺杂层,12-量子阱层,13-p掺杂层,14-ITO层,15-P型电极。
本发明的最佳实施方式
下面结合附图对本公开实施例进行详细描述。
以下通过特定的具体实例说明本公开的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本公开的其他优点与功效。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。本公开还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本公开的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本公开,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目个方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本公开的基本构想,图式中仅显示与本公开中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
本公开实施例提供一种显示设备。
显示设备的示例性实施例可以包括显示单元和驱动器,显示单元可以包括以矩阵形式布置在基底上的多个像素P,驱动器可以包括扫描驱动器和数据驱动器,扫描驱动器用于将扫描信号施加到连接到像素P的扫描线,数据驱动器用于将数据信号施加到连接到像素P的数据线。驱动器可以布置在基底上的非显示区域中,非显示区域可以围绕其中布置有像素P的显示区域。驱动器可以包括直接安装在其上设置有显示单元的基底上或者可安装在柔性印刷电路膜上的集成电路芯片。可替代地,驱动器可以按带载封装(TCP)的形式粘结到基底,或者可以直接形成在基底上。
每个限速P可以包括发光二极管(LED)和连接到LED的像素电路。像素电路可以包括晶体管(TFT)和电容器。像素电路连接到彼此交叉的扫描线和数据线中的每个。
缓冲层可以设置在基底上,TFT和LED可以设置在缓冲层上。
其中,基底可以包括玻璃或者塑料,缓冲层可以有效地防止杂质元素渗入到基底,
TFT背板100可以包括有源层、栅电极、源电极以及漏电极。有源层可以包括半导体材料,并且可以具有源区、漏区以及在有源层的源区和漏区之间的沟道区。栅电极与沟道区对应地设置在有源层上。源电极和漏电极分别电连接到有源层的源区和漏区。包括无机绝缘材料的第一绝缘层作为栅极绝缘层设置在有源层和栅电极之间。第二绝缘层作为层间绝缘层设置在栅电极和源电极/漏电极之间。第三绝缘层作为平坦化层设置在源电极/漏电极上。第二绝缘层和第三绝缘层可以包括有机绝缘材料或无机绝缘材料。在一个示例性实施例中,例如,第二绝缘层和第三绝缘层可以具有包括有机绝缘材料或无机绝缘材料的单层结构。可替代地,第二绝缘层和第三绝缘层可以具有包括有机绝缘材料的层和包括无机绝缘材料的层的多层结构。
LED可以包括p-n二极管、第一接触电极和第二接触电极。第一接触电极和/或第二接触电极可以包括一个或更多个层,并且可以包括导电材料,所述导电材料包括金属、导电氧化物或导电聚合物。第一接触电极和第二接触电极可以选择地包括反射层,例如银层。第一接触电极电连接到第一电极,第二接触电极电连接到第二电极。p-n二极管可以包括p掺杂层13、量子阱层12以及n掺杂层11、ITO层14、P型电极15,p掺杂层13位于p-n二极管的底部中,n掺杂层11位于p-n二极管的上部中。根据可替代的示例性实施例,p掺杂层13可以在p-n二极管的上部中,n掺杂层11可以在p-n二极管的底部中。p-n二极管可以具有线性侧壁、或者从顶部至底部或从底部至顶部逐渐变细的锥形侧壁。
第一电极可以包括反射电极并且可以包括一个或更多个层。在一个示例性实施例中,例如,第一电极可以包括诸如铝、钼、钛、钨、银、金的金属元素或它们的合金。第一电极可以包括包含导电材料的透明导电层、以及反射层。导电材料可以包括碳纳米管膜、透明导电聚合物或透明导电氧化物(TCO)。TCO可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、ZnO或In2O3。根据示例性实施例,第一电极可以具有三层结构,所述三层结构包括上透明导电层、下透明导电层以及在上透明导电层和下透明导电层之间的反射层。第二电极可以包括透明或半透明电极。在一个示例性实施例中,例如,第二电极可以包括上述透明导电材料,并且可以包括从Ag、Al、Mg、Li、Ca、Cu、LiF/Ca、LiF/Al、MgAg和CaAg中选择的至少一种。
本公开实施例的显示设备还包括光反射部105,所述光反射部105围绕所述发光二极管设置,所述的光反射部105可以限定限速区域,并且可以通过包括能够反射一部分光的材料来充当光屏蔽单元。通过在发光二极管的周围设置光反射部105,以有效地防止光行进到相邻像素。因此,在这样的实施例中,有效地防止了相邻像素之间的颜色缓和和串扰。在发光二极管的周围设置光反射部105,显示设备可以实现高亮度。
此外,所述发光二极管包括红光发光二极管、绿光发光二极管和蓝光发光二极管,所述蓝光发光二极管对应的所述光反射部中的光反射区域的反射面积、所述红光发光二极管对应的所述光反射部中的光反射区域的反射面积和所述绿光发光二极管对应的所述光反射部中的光反射区域的反射面积根据各个发光二极管的发光效率来设定。
一般地,所述红光发光二极管的发光效率小于所述绿光发光二极管的发光效率,所述绿光发光二极管的发光效率小于所述蓝光发光二极管的发光效率;如图1和图2所示,绿光发光二极管和红光发光二极管的光反射部的对比图。绿光发光二极管的发光效率要比红光发光二极管的发光效率高,所以绿光发光二极管的光反射部的反射面积要小于红光发光二极管的光反射部的反射面积。如图1为绿光LED的子像素剖面图,图2为红光LED的子像素剖面图,绿光LED的发光效率大于红光LED的发光效率,则红光LED的光反射部105的反射面积大于绿光LED的光反射部105的反射面积。
相比之下,本公开实施例调控不同颜色的发光二极管的发光效率的方式是运用光学反射物理现象去做补偿,相较于现有的驱动IC和画素电路的方法从电学角度去做补偿的方式稳定性更好,成本更低。
在另一公开实施例中,如图1所示,所述光反射部105包括光反射墙103和光反射层104,所述光反射墙103位于所述基底上,所述光反射层104覆盖在所述光反射墙103上。光反射墙103位于所述基底上,且围绕所述发光二极管设置。可以通过诸如喷墨印刷、丝网印刷、层压、旋涂、光刻、化学气相沉积(CVD)等的各种方法来形成光反射墙103。在一实施例中,可以将用于形成像素分离层的墨装在到基底上,在这样的实施例中,可以通过热固化和/或UV固化来使所装载的墨固化,以形成光反射墙103。在另一实施例中,可以通过黄光显影的方法来蚀刻出光反射墙103,所形成的光反射墙103的图案可以按照预先设定图案进行黄光显影。
光反射墙103可以包括从亚克力、光致抗蚀剂、SiO 2、SiN x 、PMMA、BCB、聚酰亚胺、丙烯酸酯、环氧树脂和聚酯中选择的至少一种,但不限于此。光反射墙103还可以包括绝缘黑矩阵材料,所述绝缘黑矩阵材料包括:树脂和膏,包括有机树脂、玻璃膏等等。
所述光反射部105还包括光反射层104,光反射层104设置在光反射墙103的外表面。可以通过诸如喷墨印刷、丝网印刷、层压、旋涂、溅射、CVD等来形成光反射层104。所述光反射层104包括可以用来对光进行反射的材料,包括金属材料、金属氧化物材料、金属氮化物材料等等,例如铝、银、金、镍、钼以及他们的合金,氧化铝、氧化铬等,或者氮化铝、氮化铬等等。
在另一公开实施例中,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B、所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G满足条件:,其中b为蓝光发光二极管的发光效率,r为红光发光二极管的发光效率,g为绿光发光二极管的发光效率。需要说明的是,1、2.1、6.9这三个数值为因工艺差异原因调整的参数。工艺差异包括CD loss差异以及转移工艺,其中CD loss差异又包括刻蚀差异和曝光差异。
限定光反射部的光反射区域的的反射面积的形式包括:通过限定光反射部的光反射层的面积的大小来限定光反射部的光发射区域的反射面积。具体为,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G;所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G
通过改变光反射部105中的光反射层104的面积来调整不同发光效率的发光二极管周边的光反射部105的反射面积。在这种情况下,红光发光二极管、蓝光发光二极管、绿光发光二极管分别对应的光反射部中的光反射层的高度可以相同也可以为不相同。
在其中一实施例中,限定蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G;所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G,并且蓝光发光二极管和红光发光二极管以及绿光发光二极管分别对应的光反射部的光反射层的高度均相同。
在另一实施例中,限定蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G;所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G,并且所述红光发光二极管对应的所述光反射部105的高度大于所述绿光发光二极管对应的所述光反射部105的高度,所述蓝光发光二极管对应的所述光反射部105的高度大于所述绿光发光二极管对应的所述光反射部105的高度。
参见图5和图6,由于红光发光二极管的发光效率要低于绿光发光二极管的发光效率,则绿光发光二极管的光反射层104的面积小于红光发光二极管的光反射层104的面积,红光发光二极管对应的光发射层蔓延至发光二极管安装位。
在另一优选实施例中,限定光反射部的光反射区域的的反射面积的形式包括:通过限定光反射部的光反射层的高度的大小来限定光反射部的光发射区域的反射面积。
具体地,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B、所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G满足条件:。
进一步地,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G;所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G
如图3和图4所示,所述红光发光二极管对应的所述光反射部的高度大于所述绿光发光二极管对应的所述光反射部的高度。
本公开实施例中,所述发光二极管的发光效率不全然相同,例如,红光的发光效率最低,蓝色的发光效率最高,则对发光效率设定一预设值,当发光效率高于预设值的的发光二极管其周围设置的光反射部105为第一区光反射部,而发光效率低于预设值的发光二极管其周围设置的光反射部105则为第二区光反射部。为了平衡发光二极管的发光效率,则光反射部105的反射面积与发光效率成反比。则在此实施例中,参见图3和4,采用将第一区光反射部的高度小于第二区光反射部的高度的方式来减小第一区光反射部的反射面积。此时,第一区光反射部表示绿光LED周边的光反射部105,第二区光反射部则表示红光LED周边的光反射部105。具体地,第一区光反射部的高度小于第二区光反射部的高度为第一区光反射部的光反射墙103的高度要小于第二区光反射部的光反射墙103的高度。
通过调整光反射墙103的高度来改变光反射部105的面积的方式相对于通过调整光反射层104覆盖在光反射墙103上的反射面积来改变反射部105的反射面积的方式而言,在工艺上需要使用到半色调掩模光罩,成本相对更高。
综合而言,改变光反射部105的面积的方法可以是通过改变光反射层104覆盖在光反射墙103上的面积来调控,也可以是通过调控光反射墙103的高度来减小或者增加覆盖在其上的光反射层104的面积。
又或者,在另一公开实施例中,通过调整光反射墙的形状来对不同发光效率的发光二极管进行调控。具体地通过对光反射墙103的表面积进行调控,进而调控覆盖在光反射墙103上的光反射墙103的面积。具体可以通过不同的显影方法生成不同形状的光反射墙103,不同形状的光反射墙103对应不同的表面积。通过改变光反射墙103的表面积,进而使得覆盖在光反射墙103上的光反射层104的面积得到调控。需要说明的是,光反射墙103的表面积的调控可以是基于光反射墙的高度相同或者是不同的基础上进行。
与上面的方法实施例相对应,参见图8,本公开实施例还提供了一种显示设备的制备方法,所述制备方法包括如下步骤:
步骤S10,在所述基底上预留安装所述发光二极管的位置;
步骤S20,在所述基底上围绕所述发光二极管的安装位置按照预设图案形成光反射部105;
其中,所述蓝光发光二极管对应的所述光反射部中的光反射区域的反射面积、所述红光发光二极管对应的所述光反射部中的光反射区域的反射面积和所述绿光发光二极管对应的所述光反射部中的光反射区域的反射面积根据各个发光二极管的发光效率来设定。
其中,所述在所述基底上围绕所述发光二极管的安装位置按照预设图案形成光反射部105的步骤包括:
根据所述发光二极管的发光效率生成围绕所述发光二极管的光反射部105的预设图案;
根据所述预设图案围绕所述发光二极管形成所述光反射部105。
进一步地,所述根据所述预设图案围绕所述发光二极管形成所述光反射部105的步骤包括:
根据所述预设图案围绕所述发光二极管形成光反射墙103;
根据所述发光二极管的发光效率确定所述光反射部105中的光反射层104的反射面积;
在所述光反射墙103上镀光反射层104。
将一个倒装封装LED芯片102,焊到TFT背板100N,P电极上使其运作
使用TFT背板100现有工艺有机物平坦化层,利用黃光显影方式制作出堤岸结构的光反射墙103
在所述光反射墙103上采用溅射镀膜的方法镀一层光反射层104。
当LED发光時候,光源会从各方向发射出去,這时候使用光反射部105将侧向的光反射回去,阻挡侧向光影响到隔壁的LED造成混色,当光经过這些不同折射率的金属反射后,因相位角的改变会形成相长干涉,然后互相结合后增加光强度,可降低操作电压減少消耗功率。
图8所示方法可以对应的执行上述方法实施例中的内容,本实施例未详细描述的部分,参照上述方法实施例中记载的内容,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (1)

  1. 一种显示设备,其特征在于,所述显示设备包括基底、发光二极管和光反射部;
    所述发光二极管包括:红光发光二极管、绿光发光二极管和蓝光发光二极管;
    所述发光二极管设置于所述基底上,
    所述光反射部围绕所述发光二极管设置;
    所述光反射部包括光反射区域,所述光反射区域用于反射从所述发光二极管出射的光束;
    所述蓝光发光二极管对应的所述光反射部中的光反射区域的反射面积、所述红光发光二极管对应的所述光反射部中的光反射区域的反射面积和所述绿光发光二极管对应的所述光反射部中的光反射区域的反射面积根据各个发光二极管的发光效率来设定。
    2、根据权利要求1所述的显示设备,其特征在于,所述光反射部包括光反射墙和光反射层,所述光反射墙位于所述基底上,所述光反射层覆盖在所述光反射墙上。
    3、根据权利要求2所述的显示设备,其特征在于,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B、所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G满足条件:,其中b为蓝光发光二极管的发光效率,r为红光发光二极管的发光效率,g为绿光发光二极管的发光效率。
    4、根据权利要求3所述的显示设备,其特征在于,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的面积S B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G;所述红光发光二极管对应的所述光反射部中的所述光反射层的面积S R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的面积S G
    5、根据权利要求4所述的显示设备,其特征在于,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B、所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G相等。
    6、根据权利要求2所述的显示设备,其特征在于,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B、所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R和所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G满足条件:。
    7、根据权利要求5所述的显示设备,其特征在于,所述蓝光发光二极管对应的所述光反射部中的所述光反射层的高度h B大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G;所述红光发光二极管对应的所述光反射部中的所述光反射层的高度h R大于所述绿光发光二极管对应的所述光反射部中的所述光反射层的高度h G
    8、根据权利要求1至7任一项所述的显示设备,其特征在于,所述光反射墙在所述基底上按照预设图案通过显影工艺形成。
    9、根据权利要求1至7任一项所述的显示设备,其特征在于,所述光反射层在所述光反射墙上通过镀膜工艺形成,
    10、根据权利要求1至7任一项所述的显示设备,其特征在于,所述光反射层的厚度大于或者等于2000埃米。
    11、根据权利要求1至7任一项所述的显示设备,其特征在于,所述光反射层包括光反射材料。
    12、根据权利要求1至7任一项所述的显示设备,其特征在于,所述光反射材料为金属反射材料。
    13、根据权利要求11所述的显示设备,其特征在于,所述光反射材料包括铝、银、金、氧化铝、氮化铝中的一种或多种。
    14、一种用于制备如权利要求1至13任一项所述的显示设备的制备方法,其特征在于,所述制备方法包括如下步骤:
    在所述基底上预留安装所述发光二极管的位置,所述发光二极管包括:红光发光二极管、绿光发光二极管和蓝光发光二极管;
    在所述基底上围绕所述发光二极管的安装位置按照预设图案形成光反射部;
    其中,所述蓝光发光二极管对应的所述光反射部中的光反射区域的反射面积、所述红光发光二极管对应的所述光反射部中的光反射区域的反射面积和所述绿光发光二极管对应的所述光反射部中的光反射区域的反射面积根据各个发光二极管的发光效率来设定。
    15、根据权利要求14所述的显示设备的制备方法,其特征在于,所述在所述基底上围绕所述发光二极管的安装位置按照预设图案形成光反射部的步骤包括:
    根据所述发光二极管的发光效率生成围绕所述发光二极管的光反射部的预设图案;
    根据所述预设图案围绕所述发光二极管形成所述光反射部。
    16、根据权利要求15所述的显示设备的制备方法,其特征在于,所述根据所述预设图案围绕所述发光二极管形成所述光反射部的步骤包括:
    根据所述预设图案围绕所述发光二极管形成光反射墙;
    根据所述发光二极管的发光效率确定所述光反射部中的光反射层的反射面积;
    在所述光反射墙上镀所述光反射层。
PCT/CN2020/092697 2020-05-27 2020-05-27 显示设备及其制备方法 WO2021237530A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092697 WO2021237530A1 (zh) 2020-05-27 2020-05-27 显示设备及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092697 WO2021237530A1 (zh) 2020-05-27 2020-05-27 显示设备及其制备方法

Publications (1)

Publication Number Publication Date
WO2021237530A1 true WO2021237530A1 (zh) 2021-12-02

Family

ID=78745507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092697 WO2021237530A1 (zh) 2020-05-27 2020-05-27 显示设备及其制备方法

Country Status (1)

Country Link
WO (1) WO2021237530A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172347A (zh) * 2022-06-30 2022-10-11 湖北长江新型显示产业创新中心有限公司 一种显示面板、显示装置及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290441A (ja) * 1999-02-26 2001-10-19 Sanyo Electric Co Ltd カラー表示装置
CN1638571A (zh) * 2004-01-07 2005-07-13 精工爱普生株式会社 电光学装置
TW201246653A (en) * 2011-03-29 2012-11-16 Toppan Printing Co Ltd Organic electroluminescent device and method of manufacturing the same
CN103605234A (zh) * 2013-11-29 2014-02-26 Tcl集团股份有限公司 一种量子点彩色滤光片及液晶显示装置
CN104952899A (zh) * 2015-06-16 2015-09-30 友达光电股份有限公司 发光二极管显示器及其制造方法
CN107665905A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 显示装置
CN109188781A (zh) * 2018-11-23 2019-01-11 厦门天马微电子有限公司 背光模组及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290441A (ja) * 1999-02-26 2001-10-19 Sanyo Electric Co Ltd カラー表示装置
CN1638571A (zh) * 2004-01-07 2005-07-13 精工爱普生株式会社 电光学装置
TW201246653A (en) * 2011-03-29 2012-11-16 Toppan Printing Co Ltd Organic electroluminescent device and method of manufacturing the same
CN103605234A (zh) * 2013-11-29 2014-02-26 Tcl集团股份有限公司 一种量子点彩色滤光片及液晶显示装置
CN104952899A (zh) * 2015-06-16 2015-09-30 友达光电股份有限公司 发光二极管显示器及其制造方法
CN107665905A (zh) * 2016-07-29 2018-02-06 乐金显示有限公司 显示装置
CN109188781A (zh) * 2018-11-23 2019-01-11 厦门天马微电子有限公司 背光模组及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172347A (zh) * 2022-06-30 2022-10-11 湖北长江新型显示产业创新中心有限公司 一种显示面板、显示装置及制备方法

Similar Documents

Publication Publication Date Title
US20190258346A1 (en) Display Device
KR20200025618A (ko) 발광 표시 장치
KR102520955B1 (ko) 유기발광 표시장치
US12029065B2 (en) Display device and manufacturing method thereof and driving substrate
CN108885848A (zh) 显示装置和电子设备
TWI663744B (zh) 發光二極體顯示器
KR20120039874A (ko) 유기전계 발광소자
KR20180000177A (ko) 발광소자 패키지 및 이를 포함하는 표시장치
US20220059808A1 (en) Method for preparing organic electroluminescent device, and organic electroluminescent device and display apparatus
TWI836775B (zh) 顯示裝置
CN109300944A (zh) 显示面板及其制造方法、显示装置
US20220262853A1 (en) Display device and manufacturing method of the display device
CN114156306B (zh) 显示面板的制作方法、显示面板以及显示装置
CN113451488B (zh) 显示设备及其制备方法
WO2021237530A1 (zh) 显示设备及其制备方法
WO2021142716A1 (zh) 一种高压倒装半导体发光元件
CN112713165B (zh) 显示面板及其制作方法、电子设备
TW201838171A (zh) 頂部發光型微發光二極體顯示器與底部發光型微發光二極體顯示器及其形成方法
KR20180077856A (ko) 전계발광 표시장치
TW202310391A (zh) 微型發光二極體顯示裝置
US11980081B2 (en) Display device, method for manufacturing display device, heat dissipation layer, and electronic device
CN117063627A (zh) 显示基板及其制备方法、显示装置
CN113811942A (zh) 显示面板和显示装置
KR101433589B1 (ko) 유기전계발광표시장치 및 그 제조방법
WO2023100672A1 (ja) 表示装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938302

Country of ref document: EP

Kind code of ref document: A1