WO2021237411A1 - 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用 - Google Patents

多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用 Download PDF

Info

Publication number
WO2021237411A1
WO2021237411A1 PCT/CN2020/092111 CN2020092111W WO2021237411A1 WO 2021237411 A1 WO2021237411 A1 WO 2021237411A1 CN 2020092111 W CN2020092111 W CN 2020092111W WO 2021237411 A1 WO2021237411 A1 WO 2021237411A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
expression
porous material
production
translation
Prior art date
Application number
PCT/CN2020/092111
Other languages
English (en)
French (fr)
Inventor
戴卓君
张曦
李鹏程
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/092111 priority Critical patent/WO2021237411A1/zh
Publication of WO2021237411A1 publication Critical patent/WO2021237411A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • This application relates to the technical field of protein synthesis in vitro, in particular to a method for co-production of a multi-protein system, a cyclic co-production system of a multi-protein system, and applications. Background technique
  • Cells are the basic structure and functional unit of life activities, and at the same time provide a place for biochemical reactions, and are called "cell factories".
  • the intracellular biochemical reaction network is complex, and artificial modification is likely to have adverse or unpredictable effects on cells, and ultimately lead to reduced cell viability and even loss of function, which greatly limits the application of cell factories. Therefore, how to break through the limitations of cell factories is a huge challenge for biosynthesis. Aiming at the limitations of cell factories, Cell-Free Protein Synthesis (CFPS) provides a good solution.
  • CFPS Cell-Free Protein Synthesis
  • a cell-free protein synthesis system is a biological technology that does not rely on intact cells for protein synthesis in vitro.
  • DNA or mRNA uses DNA or mRNA as a template and uses protein synthesis elements, protein folding factors and other related enzyme systems in cell extracts. Add amino acids, tRNA and energy substances to complete protein synthesis in vitro, simulate the life phenomenon of biological cells, and reproduce the transcription and translation process of intracellular proteins. The resulting protein can be used in downstream experiments such as protein function testing and structural analysis.
  • the modular cell-free protein synthesis system has clear and simple reaction components, easy control of the components, and short experiment period, providing an open and versatile reaction environment for many biochemical experiments.
  • the concentration is controllable, so it has many significant advantages: For example, the low-degrading enzyme environment greatly improves the stability of mRNA or protein; By manipulating the protein or protein in the system Substrate components can be easily designed for the protein to be synthesized (such as the insertion of unnatural amino acids, etc.), making the system highly modular and flexible. [0004] Although PURE has been commercialized since 2002, its high price limits the application of most laboratories. To prepare the PURE system by traditional methods, it is necessary to separately express and purify more than 30 proteins related to transcription and translation for mixing and proportioning. At present, large-scale biologics companies represented by NEB (New England Biolab) still use this method for mass production.
  • NEB New England Biolab
  • One of the objectives of the embodiments of the present application is to: provide a method for co-production of a multi-protein system, a cyclic co-production system of a multi-protein system, and applications, aiming to solve the low efficiency in the existing cell-free protein synthesis, It is difficult to control the ratio of each component in a multi-protein system. Solutions to problems Technical solutions
  • a method for co-production of a multi-protein system which includes the following steps:
  • co-expression strains and porous materials are provided, and each of the co-expression strains expresses one protein and bacteriolytic protein in the multi-protein system, and different co-expression strains express different proteins
  • Each of the co-expression strains is separately contained in the porous material to obtain a plurality of porous materials for containing the co-expression strains;
  • the multi-protein system includes proteins used for protein translation, energy regeneration, and/or enzymes that catalyze the synthesis of compounds;
  • the porous material has a three-dimensional network structure, and the pore diameter of each hole in the porous material is lm-5 nm D
  • a cyclic co-production system of a multi-protein system which includes:
  • the co-expression strain preparation unit is used to prepare a variety of co-expression strains, each of the co-expression strains expressing a protein in the multi-protein system and a bacteriolytic protein, and different co-expression strains express The proteins are different;
  • the porous material preparation unit is used to prepare a plurality of porous materials for accommodating co-expression strains, each of the porous materials for accommodating co-expression strains respectively accommodates one of the plurality of co-expression strains, and Different co-expression strains contained in the porous material containing co-expression strains are different;
  • the multi-protein system includes proteins used for protein translation, energy regeneration, and/or enzymes that catalyze the synthesis of compounds;
  • the porous material has a three-dimensional network structure, and the pore diameter of each hole in the porous material is lm-5 nm D
  • the beneficial effects of the multi-protein system co-production method provided by the examples of the application are: by co-transferring the vector expressing the lysoprotein and the vector expressing multiple proteins into the protein expression strain, the resulting co-expression strain expresses the corresponding Then, the co-expression strain is placed in a porous material with a three-dimensional network structure to obtain a porous material containing the co-expression strain.
  • the co-expression strains are restricted to The internal growth and reproduction of the porous material, along with the growth of the co-expression strain, the produced lysoprotein acts on the co-expression strain, causing it to autonomously lyse and release the expressed protein.
  • the molecular diameter of the protein is smaller than the pore diameter of the porous material.
  • the co-production method of the multi-protein system integrates the two steps of co-expression strain disruption and product separation, which can not only realize the co-cultivation of multiple co-expression strains and collect multiple proteins at one time, but also use porous material
  • the placement of co-expression strains can provide an independent growth environment for co-expression strains of different species, play a role of spatial isolation, and avoid interaction (especially competition) and influence between different bacterial groups; at the same time, co-expression
  • the strain is contained in the hole of the porous material, since the carrying capacity of the porous material determines the upper limit of the density of the co-expression strain in it, the quantity of the porous material containing different co-expression strains can be controlled according to actual needs.
  • the density of the flora decreases accordingly, and the concentration of quorum sensing effect molecules expressed by the flora decreases, and the number of copies of the plasmid expressing the bacteriolytic protein will follow.
  • the induction decreases, and then the amount of expressed bacteriolytic protein decreases, and the speed of bacterial colony lysis is also reduced, and then resumes growth, and the density of the bacterial colony gradually increases. In this way, the cyclic co-production of the multi-protein system is realized.
  • the beneficial effects of the cyclic co-production system of the multi-protein system are: the cyclic co-production system of the multi-protein system includes a co-expression strain preparation unit, a porous material preparation unit and a culture unit accommodating co-expression strains .
  • the co-expression strain preparation unit prepares multiple co-expression strains.
  • each co-expression strain separately expresses a protein and lysoprotein in the multi-protein system, under the action of the lysoprotein, the co-expression strain undergoes autonomous lysis and releases
  • the porous material preparation unit accommodating the co-expression strain the co-expression strain is accommodated in a porous material with a three-dimensional network structure to obtain a plurality of porous materials accommodating the co-expression strain.
  • the material provides an independent growth environment for co-expression strains of different species, plays a role of spatial isolation, and avoids the interaction (especially competition) and influence between different bacterial groups; at the same time, the co-expression strains are accommodated in porous materials.
  • the carrying capacity of the porous material determines the upper limit of the density of co-expression strains in it, the number of porous materials containing different co-expression strains can be controlled according to actual needs to realize the number of specific co-expression strains. The control, and then the content of various proteins in the harvested multi-protein system is consistent with the actual demand; On the other hand, the three-dimensional network structure of the porous material limits the size of the bacteria Movement. Compared with the protein, which is much smaller in size of bacterial cells, its movement is not restricted by the three-dimensional network of porous materials.
  • the produced bacteriolytic protein acts on the co-expression strain, causing it to autonomously lyse and release the expressed protein.
  • the protein enters the external culture environment of the porous material through the pores of the porous material to obtain a multi-protein system.
  • the growth density of the co-expression strain decreases due to the lysis of the co-expression strain, stops autonomous lysis and continues to grow and reproduce. When its growth density reaches the autonomous lysis density again, autonomous lysis occurs again, and so on, so that the co-production of the multi-protein system The system realizes cyclic co-production.
  • the cyclic co-production system of the multi-protein system separately accommodates multiple co-expression strains in a porous material with a three-dimensional network structure to obtain multiple porous materials that accommodate the co-expression strains, which are spatially isolated
  • the porous material provides a natural spatial isolation barrier for different co-expression strains, avoiding the interaction (especially competition) and influence between different bacterial groups during the co-cultivation process.
  • the cyclic co-production system of the multi-protein system provided in the examples of this application integrates the two steps of co-expression strain disruption and product separation, which is not only simpler, faster, more efficient, and more efficient. The cost is lower, and the content of various proteins in the produced multi-protein system can be accurately adjusted.
  • FIG. 1 is a schematic diagram of the effect of the co-production method of a multi-protein system provided by one of the embodiments of the application;
  • FIG. 2 is a cross-sectional electron micrograph of a chitosan microcapsule provided by one of the embodiments of the application;
  • FIG. 3 is a schematic diagram of the preparation process of the porous material containing co-expression strains provided in one of the embodiments of the application.
  • the weight of related components mentioned in the examples of this application can not only refer to the specific content of each component, but can also represent the weight ratio between the components. Therefore, as long as the content of the relevant components in the embodiments of the application is scaled up or down, it is within the scope of the disclosure of the application.
  • the weight described in the embodiments of the present application may be U g, mg, g, kg and other known mass units in the chemical industry.
  • the term “and/or” is regarded as a specific disclosure of each of the two specified features or components with or without the other. Therefore, the term “and/or” as used in phrases such as "A and/or B” in this document is intended to include A and B; A or B; A (alone); and B (alone). Likewise, the term “and/or” as used in phrases such as "A, B, and/or C” is intended to cover each of the following: A, B, and C; A, B, or C; A or C ; A or B; B or C; A and C; A and B; B and C; A (alone); B (alone); and C (alone).
  • vector includes plasmids, bacteriophages, viruses or other vectors.
  • the embodiments of the present application provide a method for co-production of a multi-protein system, which includes the following steps:
  • S1 Provide a variety of co-expression strains and porous materials. Each co-expression strain expresses one protein and bacteriolytic protein in a multi-protein system, and different co-expression strains express different proteins;
  • Each co-expression strain is separately contained in a porous material to obtain a plurality of porous materials containing the co-expression strain; [0036] S3. Co-cultivating all the porous materials containing the co-expression strains, under the action of the lysoprotein, the co-expression strains are lysed autonomously, and the proteins expressed by the co-expression strains are collected to obtain a multi-protein system;
  • the multi-protein system includes proteins used for protein translation, energy regeneration, and/or enzymes that catalyze the synthesis of compounds;
  • the porous material has a three-dimensional network structure, and the pore diameter of each hole in the porous material is lum-5um.
  • this application co-transforms the plasmid expressing the bacteriolytic protein and the plasmids expressing multiple proteins into the protein expression strain, the resulting co-expression strain expresses the corresponding protein and the bacteriolytic protein, and then the co-expression strain is placed in a container In the porous material with a three-dimensional network structure, the obtained porous material containing the co-expression strain provides a spatial isolation effect. Because the three-dimensional network structure in the porous material restricts the movement of the material of the size of the bacteria, it is relative to the bacterial cell The movement of proteins with much smaller sizes is not restricted by the three-dimensional network of porous materials.
  • the co-expression strains By restricting the co-expression strains to grow and multiply inside the porous materials, as the co-expression strains grow, the produced lysoproteins act on the co-expression
  • the strain causes autonomous lysis to release the expressed protein, and the protein enters the external culture environment of the porous material through the pores of the porous material to obtain a multi-protein system.
  • the co-production method of the multi-protein system of the present application integrates the two steps of co-expression strain disruption and product separation, which can not only realize the co-cultivation of multiple co-expression strains and collect multiple proteins at one time, but also store the co-expression strains through porous materials.
  • the expression strains can provide an independent growth environment for co-expression strains of different species, play a role of spatial isolation, and avoid interaction (especially competition) and influence between different bacterial groups; at the same time, the co-expression strain capacity
  • the quantity of the porous material containing different co-expression strains can be controlled according to actual needs to realize the The number of specific co-expression strains is controlled so that the content of various proteins in the harvested multi-protein system is consistent with actual requirements (as shown in Figure 1, where A represents the use of porous materials to spatially isolate different co-expression strains.
  • each co-expression strain expresses a protein and lysoprotein in the multi-protein system, and different co-expression strains express different proteins.
  • the following method is used to construct the co-expression strain: the plasmid expressing the bacteriolytic protein and the plasmid expressing multiple proteins are respectively co-transformed into the protein expression strain to obtain multiple co-expression strains; wherein, multiple expressions In the protein plasmid, each plasmid does not repeatedly express a protein in the multi-protein system.
  • a vector expressing bacteriolytic protein can be used to express bacteriolytic protein.
  • the bacteriolytic protein is a type of protein that inhibits the cell wall synthesis of the host cell through different ways, or directly destroys the cell wall of the host cell.
  • the copy number of the plasmid expressing the lysoprotein also increases correspondingly, leading to an increase in the expression level of the lysoprotein, and thereby causing autonomous lysis of the co-expression strain.
  • the plasmid ePop expressing bacteriophage 4 X174 E protein is selected as the vector for expressing lysoprotein.
  • ePop contains two main modules: A cell lysis module: This module is based on the gene from the bacteriophage 4) X174 E protein. Phage 4) X174 contains only 10 genes. Its lytic mechanism is to produce a single E protein. E protein can effectively inhibit peptidoglycan synthase MraY, thereby inhibiting peptidoglycan synthesis, and E protein can also inhibit peptidoglycan The precursor substance diaminoheptanoic acid enters the cell wall, thereby causing the lysis of the host cell.
  • the other module is the cell density sensor module, which is based on the mutant luxR gene and the gene derived from ColEl that lacks Rom/Ro P protein replication.
  • the use of plasmid ePop can achieve programmed autonomous lysis.
  • the E protein expression module By coupling the E protein expression module with the cell density sensor module, when the protein expression strain reaches a certain density during culture and reproduction, the plasmid ePop expressing phage 4>X174 E protein copies The number increases, the expression of E protein is also higher, This leads to autonomous lysis of co-expression strains.
  • the gene circuit can adjust the corresponding modules according to the functions that need to be performed. Therefore, the above example of selecting the plasmid ePop expressing the phage 4) X174 E protein is only one of the examples of this application, even if the gene is not used.
  • the circuit, the use of other gene circuits that can make cells produce autonomous lysis or induce lysis; or the technical solutions that can make the protein-expressing strains undergo autonomous lysis when the growth density reaches a higher level should all fall within the protection scope of this application.
  • a variety of protein-expressing plasmids are used to express a multi-protein system.
  • multiple protein expression vectors are constructed, and the number of protein expression vectors is equal to the number of protein types in the multi-protein system.
  • each protein expression vector does not repeatedly express one protein in the multi-protein system.
  • E. coli strains are selected as protein expression strains. Specifically, Escherichia coli strains include but are not limited to BL21 (DE3), MC4100, MG1655, NISSLE 1917 series of strains, and their mutant strains or derivative strains.
  • the co-expression strain is housed in a porous material with a three-dimensional network structure, so as to obtain a variety of porous materials for accommodating the co-expression strain.
  • the structure of the porous material is a sponge-like structure including a plurality of pores and/or a hollow sac-like structure including a hollow part; when the structure of the porous material is a sponge-like structure, the co-expression strain grows in three-dimensional cross-linking
  • the scaffold formed by the structure, or contained in the hole of the sponge-like structure such as sodium alginate hydrogel capsule and chitosan hydrogel capsule; when the structure of the porous material is a hollow sac-like structure, the co-expression strain is contained Inside the hollow part of the hollow sac-like structure, such as liposomes, micelles, etc.
  • chitosan microcapsules (as shown in FIG. 2) and/or alginate microcapsules are selected as the porous material.
  • the preparation method of chitosan microcapsules can be obtained by crosslinking chitosan and tripolyphosphate; the preparation method of alginate microcapsules can be obtained by crosslinking sodium alginate and calcium chloride. Since the pKa value of the aqueous solution of chitosan polymer is 6. 2-6. 8, it is a positively charged polymer material.
  • the combined co-expression strain will synchronously change the pH value in the culture environment during the culture process As well as ionic strength, when using chitosan microcapsules as a porous material, as the co-expression strain grows and multiplies, the chitosan microcapsules will shrink, which provides further power for the release of proteins to the outside of the microcapsules through the holes. Helps to transport protein from the inside of the microcapsules to the outside.
  • the method for preparing chitosan microcapsules and/or alginate microcapsules can also be achieved by various methods, specifically, it can be accomplished by an electrospray method.
  • the chitosan solution is mixed with a bacterial solution of a co-expression strain, the resulting mixture is put into a syringe, and the syringe is placed in an electrospray system equipped with a syringe pump
  • the anode of the electrospray system is connected to the needle of the syringe, and the cathode is connected to a sterile metal receiving container containing a cross-linking solution (tripolyphosphate).
  • a cross-linking solution tripolyphosphate
  • the pore diameter of each hole in the porous material is 1 ⁇ m-5 nm, and the cell diameter of the co-expression strain is about 1 ⁇ m.
  • the three-dimensional network structure of the porous material can confine the co-expression strain in the pores and limit the co-expression strain. Movement of the expression strain; at the same time, the pore size allows the passage of nutrients (such as culture medium, etc.) and protein molecules, so when the co-expression strain is lysed autonomously to release its expressed protein, the protein can leave the porous material through the hole , Into the culture environment outside the porous material and then be collected.
  • the diameter of the porous material determines its size, and also determines the number of co-expression strains it can contain. In some embodiments, the diameter of the porous material is 50 ⁇ m-5000 ⁇ m. In some embodiments, the diameter of the porous material is 100 nm -800 nm o At this time, the number of which can accommodate about 102 strains co-expressing 3 _10.
  • the timing of autonomous lysis of the co-expression strain can be controlled. Specifically, when the vector expressing the bacteriolytic protein is the expression phage 4>X174
  • the cell autonomous lysis module in the gene circuit of the ePop, so that when the growth density of the co-expressing strain reaches a certain value, the copy of the plasmid ePop expressing the phage 4>X174 E protein The number will increase significantly, and more lysoproteins will be expressed, and the co-expression of strains will be promoted Autonomous lysis occurs. It should be noted that the above method only provides a practical method that is more conducive to controlling the autonomous lysis of co-expression strains.
  • the co-expression strains themselves already express bacteriolytic proteins, even if the above-mentioned method of setting the gene circuit is not used, when During the cultivation process of the co-expression strain, when the expressed bacteriolytic protein reaches a certain concentration, the co-expression strain can also be lysed autonomously.
  • each co-expression strain before co-cultivating a plurality of porous materials containing co-expression strains, each co-expression strain is cultured separately, and then separately contained in porous materials for co-cultivation. By separately culturing each co-expression strain, the co-expression strain can be activated to achieve a better state. At this time, glucose is added to the environment where each co-expression strain is cultured separately to inhibit the autonomous lysis of the strain.
  • the various co-expression strains are separately contained in porous materials, and all the porous materials containing the co-expression strains are co-cultured to form a co-culture system.
  • no glucose is added.
  • the autonomous lysis circuit is opened, so that the co-expression strain in the porous material will automatically lyse when it grows to the density of autonomous lysis, and the expressed multiple proteins pass through the pores of the porous material and are released into the culture environment.
  • the final mass volume concentration of glucose in a culture environment (such as in a culture medium) is 0.5%-2%.
  • the multi-protein system includes proteins used for protein translation and energy regeneration and/or enzymes that catalyze the synthesis of compounds.
  • proteins necessary for energy regeneration include creatine kinase, myokinase, and nucleoside diphosphate kinase. And pyrophosphatase;
  • the multi-enzyme system composed of enzymes that catalyze the synthesis of compounds can realize the efficient synthesis of multiple target compounds, and is currently used in biology, chemical engineering, medical and other fields.
  • a polyketide synthase system and/or a non-ribosomal polypeptide synthetase system are selected as the target multi-protein system of the multi-protein system co-production method.
  • polyketides are a large class of natural products produced by bacteria, actinomycetes, fungi or plants, including macrolides, tetracyclines, anthracyclines, polyethers and other compounds. Since these natural products have various activities such as anti-infection, anti-fungal, anti-tumor, and immunosuppressive activities, it is of great significance in the medical field to provide a method for efficiently producing a polyketide synthase system.
  • Non-ribosomal peptide synthesis Enzymes are a special kind of enzymes that can synthesize special peptides using amino acids and other compounds (such as salicylic acid, picolinic acid, etc.) without ribosomes, mRNA as a template, and tRNA as a carrier. .
  • Bacteria and fungi can synthesize penicillin, vancomycin, actinomycin D, bacitracin, cyclosporin A, etc. through non-ribosomal peptide synthase in vivo. The efficient production of non-ribosomal peptide synthetase system will efficiently synthesize the above-mentioned drugs.
  • Compound provides more convenient conditions D
  • the recombinant element protein synthesis system is selected as the target multi-protein system for the co-production method of the multi-protein system.
  • the recombinant element protein synthesis system is also one of the multi-protein systems, and it includes a series of proteins. It is used to synthesize the target protein under in vitro conditions. Different from the non-ribosomal polypeptide synthetase system, in the process of synthesizing the target protein, the recombination element protein synthesis system requires the participation of ribosomes and amino acids. At the same time, DNA or mRNA is used as a template, and tRNA is used as a tool for carrying amino acids.
  • the recombination element protein synthesis system when mRNA is used as a template, includes translation initiation factor 1 (translational initiation factor 1, IF1), translation initiation factor 2 (translational initiation factor 2, IF2), and translation Initiation factor 3 (translational initiation factor 3, IF3), translation extension (translational elongation factor
  • translation elongation factor Tu translational elongation factor Tu, EF-Tu
  • translation elongation factor Ts translational elongation factor Ts, EF_Ts
  • translation elongation factor 4 translational elongation factor
  • translation release factor 1 translational release factor 1, RF1
  • translation release factor 2 translation release factor
  • 22 kinds of aminoacyl-tRNA synthetase specifically include: methionyl-tRNA synthetase (Met-tRN A-synthetase), threonyl-tRNA synthetase (Thr-tRNA-synthetase), glutamyl-tRNA Synthetase (Glu-tRNA-synthetase) Ala-tRNA-synthetase (Ala-tRNA-synthetase) Aspartyl-tRNA synthetase (Asp-tRNA-synthetase) Asparaginyl-tRNA synthetase (Asn-tRNA) -synthetase), half acid deaminase -tRNA synthetase (Cys-tRNA-synthetase), _ prolyl-tRNA synthetase (Pro-
  • Leu-tRNA-synthetase Leu-tRNA-synthetase, tryptophan-tRNA synthetase (Trp-tRNA-synthetase), phenylalanyl-tRNA synthetase B (Phe-tRNA-B synthetase), Seryl-tRNA-synthetase, Phe-tRNA-A synthetase, Arginyl-tRNA synthetase, Isoleucine Acyl-tRNA synthetase (I le-tRNA synthetase).
  • Trp-tRNA-synthetase tryptophan-tRNA synthetase
  • Phe-tRNA-B synthetase phenylalanyl-tRNA synthetase B
  • Seryl-tRNA-synthetase Phe-tRNA-A synthetase
  • the DNA encoding the target protein when used as a template, it is also necessary to add T7 RNA polymerase to the above-mentioned multi-protein system;
  • T7 RNA polymerase to the above-mentioned multi-protein system;
  • the addition of disulfide bond isomerase and/or molecular chaperone proteins to the multi-protein system can help improve the in vitro synthesis efficiency of such target proteins.
  • the present application provides a multi-protein system cyclic co-production system in some embodiments, which includes:
  • the co-expression strain preparation unit is used to prepare a variety of co-expression strains, each co-expression strain expresses one protein and bacteriolytic protein in the multi-protein system, and different co-expression strains express different proteins;
  • the porous material preparation unit is used to prepare a plurality of porous materials for accommodating co-expression strains, and each porous material for accommodating co-expression strains respectively accommodates one of the multiple co-expression strains, and has different accommodating The co-expression strains contained in the porous material of the co-expression strains are different;
  • a culture unit for cultivating co-expression strains in a porous material containing co-expression strains includes proteins used for protein translation, energy regeneration, and/or enzymes that catalyze the synthesis of compounds;
  • the porous material has a three-dimensional network structure, and the pore diameter of each hole in the porous material is 1 um to 5 um.
  • the beneficial effects of the cyclic co-production system of the multi-protein system are: the cyclic co-production system of the multi-protein system includes a co-expression strain preparation unit, a porous material preparation unit and a culture unit, and co-expression strain preparation The unit prepares multiple co-expression strains.
  • each co-expression strain separately expresses a protein and lysoprotein in the multi-protein system, under the action of the lysoprotein, the co-expression strain is lysed autonomously and releases a variety of proteins; another On the one hand, in the porous material preparation unit, the co-expression strain is contained in a porous material with a three-dimensional network structure to obtain a variety of porous materials containing the co-expression strain.
  • the porous material provides an independent growth environment for different co-expression strains.
  • the three-dimensional network structure of porous materials restricts the movement of bacteria in the size of the material, compared with the protein with a much smaller bacterial cell size, its movement is not affected by the three-dimensional network of porous materials. Therefore, by restricting the co-expression strain to grow and multiply inside the porous material, as the co-expression strain grows, the produced lysoprotein acts on the co-expression strain, causing it to autonomously lyse and release the expressed protein.
  • the protein enters the external culture environment of the porous material through the pores of the porous material to obtain a multi-system.
  • the growth density of the co-expression strain is reduced due to the lysis of the co-expression strain, the lysis is stopped and the growth and reproduction are stopped, and when the growth density reaches the autonomous lysis density again, the lysis occurs again, so that the co-production system of the multi-protein system is realized. Circular co-production.
  • each co-expression strain expresses one protein and bacteriolytic protein in the multi-protein system, and different co-expression strains express different proteins.
  • multiple protein expression vectors can be constructed first, and each protein expression vector does not repeatedly express one protein in the above-mentioned multi-protein system; by co-transforming these expression vectors and the vectors expressing lysoproteins, respectively Into the protein expression strains to obtain a variety of co-expression strains, each co-expression The strain does not repeatedly express a protein in the multi-protein system and the bacteriolytic protein.
  • the vector expressing lysoprotein can specifically select the plasmid ePop expressing phage 4) X174 E protein.
  • This plasmid also has the function of sensing cell density on the basis of expressing E protein. When the growth of the co-expressing strain reaches a certain density, it can further promote The increase in the copy number of the plasmid further promotes the expression of the E protein, accelerates the autonomous lysis of the co-expression strain, and also achieves the effect of controlling the autonomous lysis time.
  • a polyketide synthase system and/or a non-ribosomal polypeptide synthetase system are selected as the target multi-protein system of the co-production system of the multi-protein system. By synthesizing these two polyprotein systems, it is helpful to realize the efficient synthesis of a variety of pharmaceutical compounds.
  • the recombination element protein synthesis system is selected as the target system of the multi-protein system co-production system. By preparing the protein synthesis system of the recombination element, it is helpful to realize the efficient synthesis of the target protein in vitro.
  • translation initiation factor 1 when the mRNA encoding the target protein is used as a template, translation initiation factor 1, translation initiation factor 2, translation initiation factor 3, translation elongation factor G, translation elongation factor Tu, and translation are selected.
  • Elongation factor Ts translation elongation factor 4
  • translation release factor 1 translation release factor 2, translation release factor 3, ribosomal cycle factor, methionyl-tRNA formyl transferase, 22 aminoacyl-tRNA synthetases, creatine
  • the combination of kinase, myokinase, nucleoside diphosphate kinase, and pyrophosphatase serves as the target multi-protein system of the co-production system of the multi-protein system.
  • the in vitro synthesis of the target protein can be quickly and efficiently achieved.
  • the DNA encoding the target protein is used as a template, it is also necessary to add T7 RNA polymerase to the above-mentioned multi-protein system; when the target protein is some protein that is difficult to synthesize in vitro, by adding disulfide bonds to the above-mentioned multi-protein system Constitutive enzymes, molecular chaperone proteins, etc., help to improve the efficiency of in vitro synthesis of such target proteins.
  • each co-expression strain is separately contained in a porous material having a three-dimensional network structure, so as to obtain a plurality of porous materials containing the co-expression strain.
  • the structure of the porous material is a sponge-like structure including a plurality of pores and/or a hollow sac-like structure including a hollow part; when the structure of the porous material is a sponge-like structure, the co-expression strain is accommodated in a sponge-like structure. In the pores of the structure; when the structure of the porous material is a hollow sac-like structure, the co-expression strain is contained in the hollow part of the hollow sac-like structure.
  • chitosan microcapsules (as shown in FIG. 2) and/or alginate microcapsules are selected as Porous material.
  • the preparation method of chitosan microcapsules can be obtained by cross-linking chitosan and tripolyphosphate; the preparation method of alginate microcapsules can be obtained by cross-linking sodium alginate and calcium chloride. Since the pKa value of chitosan polymer is 6. 2-6. 8, it is a positively charged polymer material. Therefore, when the pH of the solution is lower than the pKa value of chitosan, the polymer chain is positively charged.
  • Chitosan microcapsules swell; conversely, chitosan microcapsules shrink.
  • the polymer chain collapses under the effect of charge shielding, and the chitosan microcapsules also shrink; conversely, the chitosan capsules swell.
  • the combined co-expression strain will synchronously change the pH value and ionic strength in the culture environment during the cultivation process.
  • chitosan microcapsules when used as porous materials, as the co-expression strain grows and reproduces, chitosan The microcapsules will shrink, which further provides power for the release of the enzyme protein to the outside of the porous material through the hole, and helps the collection of the enzyme protein.
  • the diameter of the porous material determines its size, and also determines the number of co-expression strains it can contain. In some embodiments, the diameter of the porous material is 50 ⁇ m-50 ⁇ m. If the diameter of the porous material is too large, it can hold too many co-expression strains, and the control effect on the number of co-expression strains will be relatively poor; if the diameter of the porous material is too small, it will limit the number of co-expression strains that can multiply inside it , Which in turn affects the protein content of the enzyme expressed
  • the diameter of the porous material is 200 um to 800 um. At this time, the number of co-expression strains that can be accommodated is about 10 2 _10 3 .
  • the condition test for co-cultivating multiple porous materials containing co-expression strains in the culture unit involves culture medium, culture temperature, culture humidity, culture time, auxiliary additives, light conditions, etc. Many aspects. Among them, after repeated experiments, it is found that when the medium is M9 and/or LB medium, the comprehensive effect of shrinking chitosan microcapsules can be further promoted. Specifically, an LB medium with dual resistance to kanamycin and chloramphenicol was selected to separately culture the co-expression strains, and glucose was added in advance to inhibit the autonomous lysis of the strains, so that the co-expression strains could reproduce smoothly to a certain extent.
  • the cyclic co-production system of the multi-protein system may also include a protein purification unit for purifying the multi-protein system released and collected after the co-expression strain is lysed autonomously, to remove excess cell debris and Impurity protein.
  • the purification method can use common protein purification methods in the art, or it can be fused with recombinant protein purification tags such as His tags during the construction of the protein expression vector, so that the subsequent protein purification process is faster and more convenient.
  • the His tag can realize metal chelation affinity chromatography and is a commonly used tag for protein purification.
  • the protein purification method in the embodiments of the present application can also use any tag suitable for protein purification other than the His tag.
  • the application of the cyclic co-production system of the multi-protein system in the synthesis of proteins and/or compounds in vitro is provided.
  • the cyclic co-production system of the multi-protein system separately accommodates multiple co-expression strains in porous materials to obtain multiple porous materials that accommodate co-expression strains, which are separated by space. Isolation of co-expression strains to avoid interaction (especially competition) and influence between different bacterial groups.
  • the cyclic co-production system of the multi-protein system of the present application integrates the two steps of co-expression strain disruption and product separation, which is not only simpler, faster, more efficient, and less costly, but also It can also realize the accurate adjustment of the ratio of various proteins in the produced multi-protein system.
  • step (3) The chitosan microcapsules obtained in step (3) were combined with M9 medium (dual resistance to kanamycin and chloramphenicol, with IPTG at a final concentration of 0.1 mM) according to the capsule volume and medium The volume was mixed at a volume ratio of 1:10. After culturing for 24 hours on a 37° C shaker at 200rpm, centrifuged at 4 ° C for 20 minutes at 500g centrifugal force, collected the supernatant and purified it on a nickel column to collect 38 mixed proteins;
  • M9 medium residual resistance to kanamycin and chloramphenicol, with IPTG at a final concentration of 0.1 mM
  • step (4) The 38 mixed proteins obtained in step (4) were dialysis-concentrated with a 3.5kDa dialysis bag, and the concentrated mixed protein was added to ribosomes, energy buffer, and a DNA template expressing the red fluorescent protein mRFP. React in a metal bath at 37 °C for 4 hours.
  • Fluorescence signal is detected (mRFP excitation: 580nm, emission: 610nm, as shown in Table 1); among them, the energy buffer consists of potassium L-glutamate, a mixture of 20 amino acids, HEPES-K0H buffer, spermidine, It is formulated with magnesium acetate, creatine phosphate, dithiothreitol, formyl folate, NTPs, IPTG, tRNA, T7 RNA polymerase, RNase inhibitor, and sterile water.
  • the energy buffer consists of potassium L-glutamate, a mixture of 20 amino acids, HEPES-K0H buffer, spermidine, It is formulated with magnesium acetate, creatine phosphate, dithiothreitol, formyl folate, NTPs, IPTG, tRNA, T7 RNA polymerase, RNase inhibitor, and sterile water.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供了多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用。

Description

多蛋 白体 系的共 生产 方法 、 多蛋白体 系的 循环 共生产 系 统及 应用 技 术领域
[0001] 本申请涉及蛋白体外合成技术领域, 具体涉及一种多蛋白体系的共生产方法、 多蛋白体系的循环共生产系统及应用。 背 景技术
[0002] 细胞是生命活动的基本结构和功能单位, 同时也为生化反应提供了场所, 有着 “细胞工厂”之称。 但是, 细胞内生化反应网络复杂, 人为地改造容易对细胞 产生不利或不可预测的影响, 最终导致细胞活性降低甚至功能丧失, 极大程度 上限制了细胞工厂的应用。 因此, 如何突破细胞工厂的局限是生物合成所面临 的巨大挑战。 针对细胞工厂的局限, 无细胞蛋白合成系统 ( Cell- Free P rotein Synthesis, CFPS)提供了很好的解决途径。 无细胞蛋白合成系统是不依 赖于完整的细胞在体外进行蛋白质合成的生物学技术, 它以 DNA或 mRNA为模板, 利用细胞提取物中的蛋白合成元件、 蛋白折叠因子及其他相关酶系, 通过添加 氨基酸、 tRNA和能量物质等, 在体外完成蛋白质合成, 模拟生物细胞的生命现 象, 重现胞内蛋白转录翻译过程, 产生的蛋白可用于蛋白质功能检测、 结构分 析等下游实验。 与活细胞体系相比, 模块化的无细胞蛋白质合成系统反应成分 明确简单, 组分易操控, 实验周期短, 为众多生化实验提供了一个开放通用的 反应环境。
[0003] 无细胞蛋白质合成系统目前主要分为两种类型: 一种是直接来源于细胞裂解物 (WCE: Whole-Cell Extracts), 另一种则只含有 DNA转录和蛋白质翻译的必需成 分, 即重组元件蛋白质合成系统 PURE (Protein synthesis Using Recombinant Elements) 。 不同于 WCE系统, PURE系统所有添加物完全已知并浓度可控, 因而 具有多种显著优势: 例如低降解酶环境使得 mRNA或蛋白质的稳定性得到了极大 提高; 通过操纵系统中的蛋白或底物组分, 可以便捷的对要合成的蛋白质进行 设计 (如非天然氨基酸的插入等) , 使得系统高度模块化并具有灵活性等。 [0004] 虽然 PURE自 2002年已经商业化, 但其昂贵价格限制了绝大部分实验室的应用。 通过传统的方法制备 PURE系统, 需要分别表达并纯化 30多种与转录翻译有关的 蛋白进行混合配比, 目前以 NEB (New England Biolab) 为代表的大型生物制剂 企业仍是采用该种方法进行大量生产, 其产品昂贵的价格严重限制了其使用范 围和推广范围。 2018年有研究者试图通过 30多种菌的共同培养到共同纯化来减 少工作量, 但是由于共培养过程中不同菌株生长速率不同, 生长快速的菌株会 抢夺营养成为菌群的主导, 导致多蛋白体系的最终组分比例与初始菌种接种比 例呈现复杂且不可控的关系, 这使得单纯利用合成功能菌群无法控制最终多蛋 白体系的成分组成, 进而导致了 PUI?E系统等一系列多蛋白体系的效率的下降。 发 明概述 技 术问题
[0005] 本申请实施例的目的之一在于: 提供一种多蛋白体系的共生产方法、 多蛋白体 系的循环共生产系统及应用, 旨在解决现有无细胞蛋白质合成中存在的效率低 、 难以控制多蛋白体系中各成分的比例等问题。 问题的解决方案 技 术解决方案
[0006] 为解决上述技术问题, 本申请实施例采用的技术方案是:
[0007] 第一方面, 提供了多蛋白体系的共生产方法, 其包括如下步骤:
[0008] 提供多种共表达菌株、 多孔材料, 每种所述共表达菌株分别表达所述多蛋白体 系 中的一种蛋白以及溶菌蛋白, 且不同的所述共表达菌株表达的蛋白各不相同
[0009] 将每种所述共表达菌株分别容置于所述多孔材料中, 得到多种容置共表达菌株 的多孔材料;
[0010] 将全部的所述容置共表达菌株的多孔材料进行共培养, 在所述溶菌蛋白的作用 下, 所述共表达菌株发生自主裂解, 收集所述共表达菌株表达的蛋白, 得到所 述多蛋白体系;
[0011] 其中, 所述多蛋白体系包括用于蛋白质翻译、 能量再生的蛋白质和 /或催化合 成化合物的酶; [0012] 所述多孔材料具有三维网络结构, 且所述多孔材料中各孔洞的孔径为 l u m-5 n mD
[0013] 第二方面, 提供了多蛋白体系的循环共生产系统, 其包括:
[0014] 共表达菌株制备单元, 用于制备多种共表达菌株, 每种所述共表达菌株分别表 达所述多蛋白体系中的一种蛋白以及溶菌蛋白, 且不同的所述共表达菌株表达 的蛋白各不相同;
[0015] 多孔材料制备单元, 用于制备多种容置共表达菌株的多孔材料, 每种所述容置 共表达菌株的多孔材料分别容置所述多种共表达菌株中的一种, 且不同的所述 容置共表达菌株的多孔材料容置的共表达菌株各不相同;
[0016] 培养单元, 用于培养所述容置共表达菌株的多孔材料中的共表达菌株;
[0017] 其中, 所述多蛋白体系包括用于蛋白质翻译、 能量再生的蛋白质和 /或催化合 成化合物的酶;
[0018] 所述多孔材料具有三维网络结构, 且所述多孔材料中各孔洞的孔径为 l u m-5 n mD
[0019] 第三方面, 提供了多蛋白体系的循环共生产系统在体外合成蛋白质和 /或化合 物 中的应用。 发 明的有益效 果 有 益效果
[0020] 本申请实施例提供的多蛋白体系的共生产方法的有益效果在于: 通过将表达溶 菌蛋白的载体和多种表达蛋白的载体共转入到蛋白表达菌株中, 所得共表达菌 株表达相应的蛋白及溶菌蛋白, 然后将共表达菌株容置于具有三维网络结构的 多孔材料中, 得到容置共表达菌株的多孔材料。 由于多孔材料中交联网络的三 维结构限制了细菌尺寸大小物质的运动, 而相对于细菌菌体尺寸小很多的蛋白 质等, 其运动不受多孔材料三维网络的限制, 因此将共表达菌株限制在多孔材 料的内部生长繁殖, 随着共表达菌株的生长, 产生的溶菌蛋白作用于共表达菌 株, 使其发生自主裂解, 释放出其表达的蛋白, 蛋白的分子直径小于多孔材料 各孔洞的孔径, 可以经过孔洞离开多孔材料, 最终菌体裂解后释放的蛋白通过 多孔材料的孔洞进入多孔材料的外部培养环境中, 即得到多蛋白体系。 本申请 实施例提供的多蛋白体系的共生产方法集成了共表达菌株破碎与产物分离这两 个步骤, 不仅可以实现多种共表达菌株的共同培养并一次性收集获得多种蛋白 , 而且通过多孔材料容置共表达菌株, 可以分别为不同种共表达菌株提供一个 独立生长的环境, 起到了空间隔离的作用, 避免不同菌群之间的相互作用 (尤 其是竞争作用)和影响; 同时, 将共表达菌株容置于多孔材料的孔洞中时, 由 于多孔材料的搭载能力决定了共表达菌株在其中密度的上限, 因此可以根据实 际需求对容置有不同种共表达菌株的多孔材料的数量进行控制, 实现对特定共 表达菌株的数量的控制, 继而使收获的多蛋白体系中各种蛋白的含量与实际需 求一致。 最后, 本申请实施例提供的多蛋白体系的共生产方法中, 由于共表达 菌株随着生长密度升高, 使菌群表达的群体感应效应分子浓度升高, 进而促进 表达溶菌蛋白的质粒拷贝数增高, 随之表达的溶菌蛋白量增加, 菌群开始发生 裂解, 随着菌群的裂解, 菌群密度相应降低, 菌群表达的群体感应效应分子浓 度降低, 表达溶菌蛋白的质粒拷贝数随之感应下降, 进而表达的溶菌蛋白量降 低, 菌群裂解的速度也降低, 然后恢复生长, 菌群的密度逐渐升高, 如此往复 , 实现多蛋白体系的循环式共生产。
[0021] 本申请实施例提供的多蛋白体系的循环共生产系统的有益效果在于: 多蛋白体 系的循环共生产系统包括共表达菌株制备单元、 容置共表达菌株的多孔材料制 备单元和培养单元。 一方面, 共表达菌株制备单元制备多种共表达菌株, 由于 每种共表达菌株分别表达多蛋白体系中的一种蛋白及溶菌蛋白, 在溶菌蛋白的 作用下, 共表达菌株发生自主裂解, 释放出多种蛋白; 另一方面, 在容置共表 达菌株的多孔材料制备单元中, 将共表达菌株容置于具有三维网络结构的多孔 材料中得到多种容置共表达菌株的多孔材料, 多孔材料为不同种共表达菌株提 供 了独立的生长环境, 起到了空间隔离的作用, 避免不同菌群之间的相互作用 (尤其是竞争作用)和影响; 同时, 共表达菌株容置于多孔材料的孔洞中, 由 于多孔材料的搭载能力决定了共表达菌株在其中密度的上限, 因此可以根据实 际需求对容置有不同种共表达菌株的多孔材料的数量进行控制, 实现对特定共 表达菌株的数量的控制, 继而使收获的多蛋白体系中各种蛋白的含量与实际需 求一致; 再一方面, 由于多孔材料的三维网络结构限制了细菌尺寸大小物质的 运动, 而相对于细菌菌体尺寸小很多的蛋白质等, 其运动不受多孔材料三维网 络的限制, 因此, 通过将共表达菌株限制在多孔材料的内部生长繁殖, 随着共 表达菌株的生长, 产生的溶菌蛋白作用于共表达菌株, 使其发生自主裂解, 释 放 出其表达的蛋白, 蛋白通过多孔材料的孔洞进入多孔材料的外部培养环境中 , 得到多蛋白体系。 最后一方面, 由于共表达菌株的裂解导致其生长密度降低 , 停止自主裂解并继续生长繁殖, 当其生长密度再次达到自主裂解密度时又再 次发生自主裂解, 如此往复, 使多蛋白体系的共生产系统实现循环式共生产。 [0022] 本申请实施例提供的多蛋白体系的循环共生产系统将多种共表达菌株分别容置 于具有三维网络结构的多孔材料中, 得到多种容置共表达菌株的多孔材料, 空 间隔离多孔材料为不同种共表达菌株提供了一个天然的空间隔离屏障, 避免了 在共培养过程中不同菌群之间的相互作用 (尤其是竞争作用)和影响。 与现有 制备无细胞蛋白合成系统的方法相比, 本申请实施例提供的多蛋白体系的循环 共生产系统集成了共表达菌株破碎与产物分离这两个步骤, 不仅更加简便、 快 速、 高效、 成本更低, 而且还可以实现对所生产的多蛋白体系中各种蛋白的含 量进行准确调配。 对 附图的简要说 明 附图说明
[0023] 图 1为本申请其中一个实施例提供的多蛋白体系的共生产方法的效果示意图; [0024] 图 2为本申请其中一个实施例提供的壳聚糖微胶囊的剖面电镜图;
[0025] 图 3为本申请其中一个实施例提供的容置有共表达菌株的多孔材料的制备过程 示意图。 发 明实施例 本 发明的实施方式
[0026] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下实施例, 对本申请 进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以解释本申请 , 并不用于限定本申请。 结合本申请中的实施例, 本领域普通技术人员在没有 做 出创造性劳动前提下所获得的所有其它实施例, 都属于本申请保护的范围。 实施例中未注明具体条件者, 按照常规条件或制造商建议的条件进行; 所用试 剂或仪器未注明生产厂商者, 均为可以通过市售购买获得的常规产品。
[0027] 在本申请的描述中, 需要理解的是, 本申请实施例中所提到的相关成分的重量 不仅仅可以指代各组分的具体含量, 也可以表示各组分间重量的比例关系, 因 此, 只要是按照本申请实施例相关组分的含量按比例放大或缩小均在本申请公 开的范围之内。 具体地, 本申请实施例中所述的重量可以是 U g、 mg、 g、 kg等 化工领域公知的质量单位。
[0028] 另外, 除非上下文另外明确地使用, 否则词的单数形式的表达应被理解为包含 该词的复数形式。 术语 “包括”或 “具有” 旨在指定特征、 数量、 步骤、 操作 、 元件、 部分或者其组合的存在, 但不用于排除存在或可能添加一个或多个其 它特征、 数量、 步骤、 操作、 元件、 部分或者其组合。
[0029] 在本申请的描述中, 术语“和 /或”视为具有或不具有另一个的两个指定特征 或组分中的每一个的具体公开。 因此, 如在本文中的短语例如 “A和 /或 B” 中所 使用的术语“ 和 /或” 旨在包括 A和 B; A或 B; A(单独); 和 B(单独)。 同样地, 如 在短语例如 “A、 B和 /或 C” 中所使用的术语 “和 /或” 旨在涵盖以下方面的每一 个: A、 B和 C; A、 B或 C; A或 C; A或 B; B或 C; A和 C; A和 B; B和 C; A(单独); B( 单独); 和 C(单独)。
[0030] 除非本申请另有定义, 否则本申请内容中使用的术语应具有本领域普通技术人 员通常理解的含义。 例如, 本申请实施例中的细胞与组织培养、 分子生物学、 免疫学、 微生物学、 遗传学以及蛋白质和核酸有关的任何术语和技术都是本领 域众所周知的和常用的。 在任何潜在歧义的情况下, 本申请提供的定义优先于 任何词典或外部定义。
[0031] 在本申请的描述中, 术语 “载体 ”包括质粒、 噬菌体、 病毒或其它载体。
[0032] 为了说明本申请所述的技术方案, 以下结合具体实施例进行详细说明。
[0033] 本申请实施例提供一种多蛋白体系的共生产方法, 其包括如下步骤:
[0034] S1、 提供多种共表达菌株、 多孔材料, 每种共表达菌株分别表达多蛋白体系中 的一种蛋白以及溶菌蛋白, 且不同的共表达菌株表达的蛋白各不相同;
[0035] S2、 将每种共表达菌株分别容置于多孔材料中, 得到多种容置共表达菌株的多 孔材料; [0036] S3、 将全部的容置共表达菌株的多孔材料进行共培养, 在溶菌蛋白的作用下, 共表达菌株发生自主裂解, 收集共表达菌株表达的蛋白, 得到多蛋白体系;
[0037] 其中, 多蛋白体系包括用于蛋白质翻译、 能量再生的蛋白质和 /或催化化合物 合成的酶;
[0038] 多孔材料具有三维网络结构, 且多孔材料中各孔洞的孔径为 l u m -5 u m。
[0039] 现有的菌群制备无细胞蛋白合成系统的方法中, 在菌群的共培养阶段, 由于不 同菌群之间会产生复杂的相互作用 (尤其是竞争作用) , 且各菌群的生长速度 各不相同, 混合菌群培养时, 有的菌群生长的很快, 生产了大量的蛋白; 有的 菌群生长的较慢, 生产的蛋白量较少, 这将导致混合菌群生产的蛋白组分难以 预测, 实际收获的蛋白组分与预期的蛋白组分存在较大差别。 本申请为了克服 该 问题, 通过将表达溶菌蛋白的质粒和多种表达蛋白的质粒共转入到蛋白表达 菌株中, 所得共表达菌株表达相应的蛋白及溶菌蛋白, 然后将共表达菌株容置 于具有三维网络结构的多孔材料中, 得到的容置共表达菌株的多孔材料提供了 一个空间隔离的作用, 由于多孔材料中的三维网络结构限制了细菌尺寸大小的 物质运动, 而相对于细菌菌体尺寸小很多的蛋白质等, 其运动不受多孔材料三 维网络的限制, 因此, 通过将共表达菌株限制在多孔材料的内部生长繁殖, 随 着共表达菌株的生长, 产生的溶菌蛋白作用于共表达菌株, 使其发生自主裂解 , 释放出其表达的蛋白, 蛋白通过多孔材料的孔洞进入多孔材料的外部培养环 境 中, 得到多蛋白体系。 本申请多蛋白体系的共生产方法集成了共表达菌株破 碎与产物分离这两个步骤, 不仅可以实现多种共表达菌株的共同培养并一次性 收集获得多种蛋白, 而且通过多孔材料容置共表达菌株, 可以分别为不同种共 表达菌株提供一个独立生长的环境, 起到了空间隔离的作用, 避免不同菌群之 间的相互作用 (尤其是竞争作用)和影响; 同时, 将共表达菌株容置于多孔材 料的孔洞中时, 由于多孔材料的搭载能力决定了共表达菌株在其中密度的上限 , 因此可以根据实际需求对容置有不同种共表达菌株的多孔材料的数量进行控 制, 实现对特定共表达菌株的数量的控制, 继而使收获的多蛋白体系中各种蛋 白的含量与实际需求一致 (如图 1所示, 其中, A表示使用多孔材料将不同种共 表达菌株进行空间隔离, 将不同种共表达菌株分别限制在各自的多孔材料中生 长繁殖; B表示经过多孔材料将不同种共表达菌株进行空间隔离后, 避免不同菌 群之间的相互作用 (尤其是竞争作用)和影响, 使多蛋白体系中实际蛋白的组 成与理想蛋白组成一致) 。 最后, 本申请实施例提供的多蛋白体系的共生产方 法 中, 由于共表达菌株随着生长密度升高, 使菌群表达的群体感应效应分子浓 度升高, 进而促进表达溶菌蛋白的质粒拷贝数增高, 随之表达的溶菌蛋白量增 加, 菌群开始发生裂解; 随着菌群的裂解, 菌群密度相应降低, 菌群表达的群 体感应效应分子浓度也降低, 表达溶菌蛋白的质粒拷贝数随之感应下降, 继而 表达的溶菌蛋白量降低, 菌群裂解的速度也降低, 然后恢复生长, 菌群的密度 逐渐升高。 如此往复, 实现多蛋白体系的循环式共生产。
[0040] 具体的, S1中, 每种共表达菌株分别表达多蛋白体系中的一种蛋白以及溶菌蛋 白, 且不同的共表达菌株表达的蛋白各不相同。 在一些实施例中, 采用如下方 法进行共表达菌株的构建: 将表达溶菌蛋白的质粒和多种表达蛋白的质粒分别 共转入蛋白表达菌株中, 得到多种共表达菌株; 其中, 多种表达蛋白的质粒中 , 每种质粒不重复地表达多蛋白体系中的一种蛋白。
[0041] 进一步地, 表达溶菌蛋白的载体可用于表达溶菌蛋白。 溶菌蛋白是一类通过不 同途径抑制宿主细胞的细胞壁合成, 或直接破坏宿主细胞的细胞壁的蛋白质。 通过将表达溶菌蛋白的载体转入蛋白表达菌株中, 随着细菌的生长, 表达溶菌 蛋白的质粒拷贝数也相应增加, 导致溶菌蛋白的表达量升高, 进而使共表达菌 株发生自主裂解。 在一些实施例中, 选择表达噬菌体 4) X174 E蛋白的质粒 ePop 作为表达溶菌蛋白的载体。 ePop作为一种工程化的基因线路质粒, 其中含有两 个主要模块: 一个细胞裂解模块: 该模块基于来自噬菌体 4) X174 E蛋白的基因 。 噬菌体 4)X174只含有 10个基因, 其溶菌机制是产生单一的 E蛋白, E蛋白可以 有效抑制肽聚糖合成酶 MraY, 从而抑制肽聚糖的合成, 并且, E蛋白还可以抑制 肽聚糖前体物质二氨基庚酸进入细胞壁, 进而引起宿主细胞的溶解。 另一模块 是细胞密度传感模块, 该模块基于突变的 luxR基因和 ColEl来源的、 缺少 Rom/Ro P蛋白复制的基因。 因此, 使用质粒 ePop可以实现编程自主裂解, 通过将 E蛋白 表达模块与细胞密度传感模块偶联, 当蛋白表达菌株在培养繁殖中达到一定密 度时, 表达噬菌体 4>X174 E蛋白的质粒 ePop拷贝数增加, E蛋白的表达也更高, 进而导致共表达菌株发生自主裂解。 需要说明的是, 基因线路可根据需要执行 的功能调节相应的模块, 因此上述选择表达噬菌体 4)X174 E蛋白的质粒 ePop的 实施例仅为本申请实施例的其中一个选择, 即使不使用该基因线路, 利用其他 可使细胞产生自主裂解或诱导裂解的基因线路; 或者可以使蛋白表达菌株在生 长密度达到较高时发生自主裂解的技术方案都应属于本申请的保护范围。
[0042] 多种表达蛋白的质粒用于表达多蛋白体系。 在一些实施例中, 通过构建多种表 达蛋白的载体, 且表达蛋白的载体的种类数量与多蛋白体系中蛋白的种类数量 相等。 其中, 每种表达蛋白的载体不重复地表达多蛋白体系中的一种蛋白。
[0043] 蛋白表达菌株在本申请实施例中用于共表达溶菌蛋白和多蛋白体系中的蛋白, 因此, 原则上适合共表达溶菌蛋白和其它蛋白表达菌株均适用于本申请。 在一 些实施例中, 为了实现蛋白的稳定生产, 选择大肠杆菌菌株作为蛋白表达菌株 。 具体地, 大肠杆菌菌株包括但不限于 BL21 (DE3) 、 MC4100、 MG1655、 NISSLE 1917系列的菌株、 它们的突变菌株或衍生菌株。
[0044] S2中, 将共表达菌株容置于具有三维网络结构的多孔材料中, 从而得到多种容 置共表达菌株的多孔材料。 在一些实施例中, 多孔材料的结构为包括多个孔洞 的海绵状结构和 /或包括空心部的空心囊状结构; 当多孔材料的结构为海绵状结 构时, 共表达菌株生长在三维交联结构形成的支架, 或容置于海绵状结构的孔 洞 中, 例如海藻酸钠水凝胶胶囊及壳聚糖水凝胶胶囊; 当多孔材料的结构为空 心囊状结构时, 共表达菌株容置于空心囊状结构的空心部内, 例如脂质体 (lipo some)、 胶束等。
[0045] 在一些实施例中, 选择壳聚糖微胶囊 (如图 2所示) 和 /或海藻酸盐微胶囊作为 多孔材料。 具体地, 壳聚糖微胶囊的制备方法可以由壳聚糖和三聚磷酸盐交联 得到; 海藻酸盐微胶囊的制备方法可以由海藻酸钠和氯化钙交联得到。 由于壳 聚糖高分子水溶液的 pKa值为 6. 2-6. 8, 属于带正电荷的高分子材料, 因此, 当 溶液的 pH低于壳聚糖的 pKa值时, 高分子链带正电, 壳聚糖微胶囊发生溶胀; 反 之壳聚糖微胶囊发生收缩。 此外, 随着溶液离子强度升高, 在电荷屏蔽作用下 导致高分子链塌缩, 进而壳聚糖微胶囊也发生收缩; 反之壳聚糖胶囊发生溶胀 。 基于上述特性, 结合共表达菌株在培养过程中会同步改变培养环境中的 pH值 以及离子强度, 因此当使用壳聚糖微胶囊作为多孔材料时, 随着共表达菌株的 生长繁殖, 壳聚糖微胶囊会发生收缩, 为蛋白经过孔洞释放到微胶囊的外部进 一步提供了动力, 有助于蛋白从微胶囊内部运输到外部。 制备壳聚糖微胶囊和 / 或海藻酸盐微胶囊的方法也可以采用多种方法实现, 具体地, 可以采用电喷雾 法来完成。 以多孔材料为壳聚糖微胶囊为例, 具体地, 将壳聚糖溶液与一种共 表达菌株的菌液混合, 所得混合物装入注射器中, 将注射器放置在配备有注射 泵的电喷雾系统中, 电喷雾系统的阳极连接到注射器的针头, 阴极连接到装有 交联溶液 (三聚磷酸盐) 的无菌金属接收容器, 混合物在高压 lkV-5kV、 0. 25mL /min-2mL/min流速下以喷雾形态进入接收容器与搅拌条件下的交联溶液交联约 2 Omin, 经离心、 洗涤, 得到容置有该共表达菌株的壳聚糖微胶囊。
[0046] 多孔材料中各孔洞的孔径为 1 u m-5 n m, 而共表达菌株的细胞直径约为 1 y m, 多孔材料的三维网络结构可以将共表达菌株限制在孔洞内, 并限制了共表达菌 株的运动; 与此同时, 该孔径大小允许营养物质 (如培养基等) 和蛋白质分子 的通过, 所以当共表达菌株发生自主裂解释放其表达的蛋白时, 蛋白可以通过 该孔洞离开多孔材料, 进入多孔材料外部的培养环境中进而被收集。
[0047] 多孔材料的直径决定了其大小, 也决定了其可容置的共表达菌株的数量。 在一 些实施例中, 多孔材料的直径为 50 u m-5000 u m。 在一些实施例中, 多孔材料的 直径为 100 n m -800 n mo 此时, 其可容置的共表达菌株数量约为 10 2_10 3个。
[0048] S3中, 通过将 S2得到的所有容置有共表达菌株的多孔材料进行共培养, 当多孔 材料内的共表达菌株生长到一定密度时, 其表达的溶菌蛋白浓度达到破坏共表 达菌株细胞壁的浓度, 此时共表达菌株发生自主裂解, 将其表达的蛋白释放出 来 。 其中, 由于每种共表达菌株分别表达多蛋白体系中的一种蛋白, 将所有容 置有共表达菌的多孔材料释放的蛋白收集起来, 即组成多蛋白体系。
[0049] 在一些实施例中, 可以对共表达菌株发生自主裂解的时机进行控制。 具体地, 当表达溶菌蛋白的载体为表达噬菌体 4>X174
E蛋白的质粒 ePop时, 可实现对 ePop的基因线路中关于细胞自主裂解模块进行设 置, 使其在共表达菌株的生长密度达到某个数值时, 表达噬菌体 4>X174 E蛋白 的质粒 ePop的拷贝数会显著增加, 进而表达更多的溶菌蛋白, 促进共表达菌株 发生自主裂解。 需要说明的是, 上述方法仅提供了一种更加有利于实现控制共 表达菌株发生自主裂解的实际的方法, 由于共表达菌株自身已经表达溶菌蛋白 , 因此即使不通过上述设置基因线路的方法, 当共表达菌株在培养过程中, 所 表达的溶菌蛋白达到一定的浓度时, 也可以使共表达菌株发生自主裂解。 在一 些实施例中, 将多种容置共表达菌株的多孔材料进行共培养之前, 先将每种共 表达菌株进行单独培养, 然后再分别容置于多孔材料中进行共培养。 通过将每 种共表达菌株进行单独培养, 可以活化共表达菌株, 使其达到较佳状态, 此时 , 在每种共表达菌株单独培养的环境中加入葡萄糖, 以用于抑制菌株发生自主 裂解, 从而使菌株可以顺利繁殖到一定的密度; 然后将各种共表达菌株分别容 置于多孔材料中, 对所有容置共表达菌株的多孔材料进行共培养, 形成共培养 体系, 此时不加入葡萄糖, 使自主裂解线路打开, 因此多孔材料中的共表达菌 株在生长达到自主裂解的密度时即发生自主裂解, 表达的多种蛋白穿过多孔材 料的孔洞, 释放到培养环境中。 具体地, 加入葡萄糖用于抑制共培养菌株发生 自主裂解时, 葡萄糖在培养环境下 (如培养基中) 的终质量体积浓度为 0. 5%-2% 。 多蛋白体系可以有很多种, 其是各代谢途径中所包括的一系列具有催化功能 的蛋白的总称。 在本申请实施例中, 多蛋白体系包括用于蛋白质翻译和能量再 生的蛋白质和 /或催化合成化合物的酶。 其中, 用于蛋白质翻译和能量再生的蛋 白质组成的多蛋白体系是实现体外合成蛋白质的关键, 在本申请实施例中, 能 量再生所必需的蛋白包括肌酸激酶、 肌激酶、 二磷酸核苷激酶和焦磷酸酶; 催 化合成化合物的酶组成的多酶体系可以实现多种目标化合物的高效合成, 目前 在生物、 化工、 医疗等领域均有应用。
[0050] 在一些实施例中, 选择聚酮化合物合成酶体系和 /或非核糖体多肽合成酶体系 作为多蛋白体系共生产方法的目标多蛋白体系。 其中, 聚酮化合物是由细菌、 放线菌、 真菌或植物产生的一大类天然产物, 包括大环内酯类、 四环素类、 蒽 环类、 聚醚类等化合物。 由于这些天然产物具有抗感染、 抗真菌、 抗肿瘤、 免 疫抑制等多种活性, 因此提供可高效生产聚酮化合物合成酶体系的方法在医疗 领域具有重要意义。 催化合成聚酮化合物的酶即为聚酮化合物合成酶 (polyket idesynthase, PKS) , 具体包括 PKS I、 PKS II、 PKS III。 非核糖体多肽合成 酶是一类特殊的酶, 其可以在没有核糖体、 不以 mRNA为模板、 也不需 tRNA为携 带工具的情况下, 利用氨基酸及其它化合物 (如水杨酸、 吡啶羧酸等)合成特 殊多肽。 细菌和真菌体内通过非核糖体多肽合成酶可合成青霉素、 万古霉素、 放线菌素 D、 杆菌肽、 环孢菌素 A等, 高效生产非核糖体多肽合成酶体系将为高 效合成上述药物化合物提供更便利的条件 D
[0051] 在一些实施例中, 选择以重组元件蛋白质合成体系作为多蛋白体系共生产方法 的目标多蛋白体系 D 重组元件蛋白质合成体系也是多蛋白体系中的一种, 其包 括的一系列蛋白可以在体外条件下用于合成目的蛋白。 与非核糖体多肽合成酶 体系不同的是, 在合成目的蛋白过程中, 重组元件蛋白质合成体系需要核糖体 和氨基酸的参与, 同时还需要以 DNA或 mRNA作为模板, 以 tRNA作为携带氨基酸的 工具。
[0052] 在一些实施例中, 当以 mRNA作为模板时, 重组元件蛋白质合成体系包括翻译起 始因子 1 (translational initiation factorl, IF1 ) 、 翻译起始因子 2 (translational initiation factor 2, IF2 ) 、 翻译起始因子 3 (translational initiation factor 3, IF3) 、 翻译延伸 (translational elongation factor
G, EF-G) 、 翻译延伸因子 Tu (translational elongation factor Tu, EF-Tu ) 、 翻译延伸因子 Ts (translational elongation factor Ts, EF_Ts) 、 翻译 延伸因子 4 (translational elongation factor
4, EF-4) 、 翻译释放因子 1 (translational release factor 1, RF1) 、 翻译 释放因子 2 (translational release factor
2, RF2) 、 翻译释放因子 3 (translational release factor 3, RF3) 、 核糖 体循环因子 (ribosome recycling factor, RRF) 、 甲硫氨酰 -tRNA甲酰转移酶 (Met-tRNA formyltransferase) 、 22种氨酰 -tRNA合成酶、 肌酸激酶 (creatine kinase, CK) 、 肌激酶 (myokinase) 和二磷酸核苷激酶 (diphosphonucleotid e kinase, NDK)和焦磷酸酶 (Pyrophosphatase) 作为重组元件蛋白质的组合 , 通过多蛋白体系的共生产方法进行生产, 可以快速高效实现目标蛋白的体外 合成。 其中, 22种氨酰 -tRNA合成酶具体包括: 甲硫氨酰 -tRNA合成酶 (Met-tRN A-synthetase) 、 苏氨酰 -tRNA合成酶 (Thr-tRNA-synthetase) 、 谷氨酰 -tRNA 合成酶 (Glu-tRNA-synthetase) 丙氨酰 -tRNA合成酶 (Ala-tRNA-synthetase ) 天冬氨酰 -tRNA合成酶 (Asp-tRNA-synthetase) 天冬酰胺酰 -tRNA合成酶 (Asn-tRNA-synthetase) 、 半脱氨酰 -tRNA合成酶 (Cys-tRNA-synthetase) 、 脯氨酰 _tRNA合成酶 (Pro-tRNA-synthetase) 酪氨酰 -tRNA合成酶 (Tyr-tRNA -synthetase) 、 谷氨酰胺酰 -tRNA合成酶 (Gln-tRNA-synthetase) 、 组氨酰 _t RNA合成酶 (His-tRNA-synthetase) 、 甘氨酰 -tRNA合成酶 A (Gly-tRNA-synthe tase-A) 、 甘氨酰 -tRNA合成酶 B (Gly-tRNA-synthetase-B) 、 纟额氨酰 -tRNA合 成酶 (Val-tRNA-synthetase) 、 赖氨酰 -tRNA合成酶 (Lys_tRNA_synthetase)
、 亮氨酰 -tRNA合成酶 (Leu-tRNA-synthetase) 、 色氨酰 -tRNA合成酶 (Trp-tR NA-synthetase) 、 苯丙氨酰 -tRNA合成酶 B (Phe-tRNA-B synthetase) 、 丝氨 酰 -tRNA合成酶 (Ser-tRNA-synthetase) 、 苯丙氨酰 -tRNA合成酶 A (Phe-tRNA- A synthetase) 、 精氨酰 -tRNA合成酶 (Arg-tRNA synthetase ) 、 异亮氨酰 -tRNA合成酶 ( I le-tRNA synthetase ) 。
[0053] 在一些实施例中, 当以编码目的蛋白的 DNA作为模板时, 还需在上述多蛋白体 系 中添加 T7 RNA聚合酶; 当目的蛋白是一些体外较难合成的蛋白时, 通过在上 述多蛋白体系中添加二硫键异构酶和 /或分子伴侣蛋白等, 有助于提升这类目的 蛋白的体外合成效率。
[0054] 第二方面, 本申请在一些实施例中提供了多蛋白体系的循环共生产系统, 其包 括:
[0055] 共表达菌株制备单元, 用于制备多种共表达菌株, 每种共表达菌株分别表达多 蛋白体系中的一种蛋白以及溶菌蛋白, 且不同的共表达菌株表达的蛋白各不相 同;
[0056] 多孔材料制备单元, 用于制备多种容置共表达菌株的多孔材料, 每种容置共表 达菌株的多孔材料分别容置多种共表达菌株中的一种, 且不同的容置共表达菌 株的多孔材料容置的共表达菌株各不相同;
[0057] 培养单元, 用于培养容置共表达菌株的多孔材料中的共表达菌株; [0058] 其中, 多蛋白体系包括用于蛋白质翻译、 能量再生的蛋白质和 /或催化合成化 合物的酶;
[0059] 多孔材料具有三维网络结构, 且所述多孔材料中各孔洞的孔径为 1 um -5 um。
[0060] 本申请实施例提供的多蛋白体系的循环共生产系统的有益效果在于: 多蛋白体 系的循环共生产系统包括共表达菌株制备单元、 多孔材料制备单元和培养单元 方面, 共表达菌株制备单元制备多种共表达菌株, 由于每种共表达菌株分 别表达多蛋白体系中的一种蛋白及溶菌蛋白, 在溶菌蛋白的作用下, 共表达菌 株发生自主裂解, 释放出多种蛋白; 另一方面, 在多孔材料制备单元中, 将共 表达菌株容置于具有三维网络结构的多孔材料中得到多种容置共表达菌株的多 孔材料, 多孔材料为不同种共表达菌株提供了独立的生长环境, 起到了空间隔 离的作用, 避免不同菌群之间的相互作用 (尤其是竞争作用)和影响; 同时, 共表达菌株容置于多孔材料的孔洞中, 由于多孔材料的搭载能力决定了共表达 菌株在其中密度的上限, 因此可以根据实际需求对容置有不同种共表达菌株的 多孔材料的数量进行控制, 实现对特定共表达菌株的数量的控制, 继而使收获 的多蛋白体系中各种蛋白的含量与实际需求一致; 再一方面, 由于多孔材料的 三维网络结构限制了细菌尺寸大小的物质运动, 而相对于细菌菌体尺寸小很多 的蛋白质等, 其运动不受多孔材料三维网络的限制, 因此, 通过将共表达菌株 限制在多孔材料的内部生长繁殖, 随着共表达菌株的生长, 产生的溶菌蛋白作 用于共表达菌株, 使其发生自主裂解, 释放出其表达的蛋白。 蛋白通过多孔材 料的孔洞进入多孔材料的外部培养环境中, 得到多体系。 最后一方面, 由于共 表达菌株的裂解导致其生长密度降低, 停止裂解并继续生长繁殖, 当其生长密 度再次达到自主裂解密度时又再次发生裂解, 如此往复, 使多蛋白体系的共生 产系统实现循环式共生产。
[0061] 共表达菌株制备单兀中有多种共表达菌株, 且每种共表达菌株分别表达多蛋白 体系中的一种蛋白以及溶菌蛋白, 且不同的共表达菌株表达的蛋白各不相同。 在一些实施例中, 可以先构建多种表达蛋白的载体, 每种表达蛋白的载体不重 复地表达上述多蛋白体系中的一种蛋白; 通过将这些表达载体与表达溶菌蛋白 的载体分别共转入到蛋白表达菌株中, 从而得到多种共表达菌株, 每种共表达 菌株不重复地表达多蛋白体系中的一种蛋白以及溶菌蛋白。 表达溶菌蛋白的载 体具体可以选择表达噬菌体 4)X174 E蛋白的质粒 ePop, 该质粒在表达 E蛋白的基 础上, 还具有感应细胞密度功能, 当共表达菌株的生长达到一定密度时, 可以 进一步促进该质粒的拷贝数增加, 进而促进 E蛋白的表达量, 加速共表达菌株发 生 自主裂解的同时还可以实现自主裂解时间可控的效果。
[0062] 在一些实施例中, 选择聚酮化合物合成酶体系和 /或非核糖体多肽合成酶体系 作为多蛋白体系的共生产系统的目标多蛋白体系。 通过合成这两种多蛋白体系 , 有助于实现多种药物化合物的高效合成。
[0063] 在一些实施例中, 选择重组元件蛋白质合成体系作为多蛋白体系的共生产系统 的目标体系。 通过制备重组元件蛋白质合成体系, 有助于实现目标蛋白质的体 外高效合成。
[0064] 在一些实施例中, 当以编码目的蛋白的 mRNA为模板时, 选择翻译起始因子 1、 翻译起始因子 2、 翻译起始因子 3、 翻译延伸因子 G、 翻译延伸因子 Tu、 翻译延伸 因子 Ts、 翻译延伸因子 4、 翻译释放因子 1、 翻译释放因子 2、 翻译释放因子 3、 核糖体循环因子、 甲硫氨酰 -tRNA甲酰转移酶、 22种氨酰 -tRNA合成酶、 肌酸激 酶、 肌激酶、 二磷酸核苷激酶和焦磷酸酶的组合作为多蛋白体系的共生产系统 的目标多蛋白体系。 通过表达上述蛋白, 可以快速高效实现目标蛋白的体外合 成 。 当以编码目的蛋白的 DNA作为模板时, 还需在上述多蛋白体系中添加 T7 RNA 聚合酶; 当目的蛋白是一些体外较难合成的蛋白时, 通过在上述多蛋白体系中 添加二硫键异构酶、 分子伴侣蛋白等, 有助于提升这类目的蛋白的体外合成效 率 。
[0065] 在多孔材料制备单元中, 将每种共表达菌株分别容置于具有三维网络结构的多 孔材料中, 从而得到多种容置共表达菌株的多孔材料。 在一些实施例中, 多孔 材料的结构为包括多个孔洞的海绵状结构和 /或包括空心部的空心囊状结构; 当 多孔材料的结构为海绵状结构时, 共表达菌株容置于海绵状结构的孔洞中; 当 多孔材料的结构为空心囊状结构时, 共表达菌株容置于空心囊状结构的空心部 内。
[0066] 在一些实施例中, 选择壳聚糖微胶囊 (如图 2所示) 和 /或海藻酸盐微胶囊作为 多孔材料。 其中, 壳聚糖微胶囊的制备方法可以由壳聚糖和三聚磷酸盐交联得 至 IJ; 海藻酸盐微胶囊的制备方法可以由海藻酸钠和氯化钙交联得到。 由于壳聚 糖高分子的 pKa值为 6. 2-6. 8, 属于带正电荷的高分子材料, 因此, 当溶液的 pH 低于壳聚糖的 pKa值时, 高分子链带正电, 壳聚糖微胶囊发生溶胀; 反之壳聚糖 微胶囊发生收缩。 此外, 随着溶液离子强度升高, 在电荷屏蔽作用下导致高分 子链塌缩, 进而壳聚糖微胶囊也发生收缩; 反之壳聚糖胶囊发生溶胀。 基于上 述特性, 结合共表达菌株在培养过程中会同步改变培养环境中的 pH值以及离子 强度, 因此当使用壳聚糖微胶囊作为多孔材料时, 随着共表达菌株的生长繁殖 , 壳聚糖微胶囊会发生收缩, 为酶蛋白经过孔洞释放到多孔材料的外部进一步 提供了动力, 有助于酶蛋白的收集。
[0067] 多孔材料的直径决定了其大小, 也决定了其可容置的共表达菌株的数量。 在一 些实施例中, 多孔材料的直径为 50 y m-50 ⑻ u m。 多孔材料的直径过大, 其可以 容置的共表达菌株过多, 对共表达菌株数量的控制效果会相对较差; 多孔材料 的直径过小, 则会限制共表达菌株在其内部的繁殖数量, 进而影响其表达的酶 蛋白含量
[0068] 在一些实施例中, 多孔材料的直径为 200 u m -800 u m。 此时, 其可容置的共表 达菌株数量约为 10 2_10 3个。
[0069] 在一些实施例中, 在培养单元中对多种容置共表达菌株的多孔材料进行共培养 的条件测试涉及培养基、 培养温度、 培养湿度、 培养时间、 辅助添加物、 光照 条件等多方面。 其中, 经过反复多次的实验发现, 当培养基为 M9和 /或 LB培养基 , 可进一步促进壳聚糖微胶囊产生收缩的综合效用。 具体地, 选择具有卡那霉 素和氯霉素双抗性的 LB培养基对共表达菌株进行单独培养, 事先加入葡萄糖用 于抑制菌株发生自主裂解, 从而使共表达菌株可以顺利繁殖到一定的密度 (0D6 00 3-5) ; 然后将不同种共表达菌株分别容置于多孔材料中, 将所得不同种容 置有共表达菌株的多孔材料转入具有卡那霉素和氯霉素双抗性、 含有终浓度为 0 · ImM 的异丙基 - 0 -D-硫代半乳糖苷 (IPTG)诱导剂的 M9培养基中, 在 37°C、 200rpm 条件下共培养 24h后, 将共培养物离心、 收集上清进行纯化, 得到多蛋白体系。 [0070] 在一些实施例中, 多蛋白体系的循环共生产系统还可以包括蛋白纯化单元, 用 于将共表达菌株发生自主裂解后释放并收集的多蛋白体系进行纯化, 去除多余 的细胞碎片和杂质蛋白。 纯化的方法可以采用本领域的常用蛋白纯化方法, 也 可 以在表达蛋白的载体构建时融合重组蛋白纯化标签如 His标签, 使后续的蛋白 纯化过程更加快速方便。 His标签可以实现金属螯合亲和层析, 是蛋白纯化的常 用标签, 本申请实施例的蛋白纯化方法也可以采用 His标签以外的任何适用于蛋 白纯化的标签。
[0071] 第三方面, 本申请在一些实施例中提供了多蛋白体系的循环共生产系统在体外 合成蛋白质和 /或化合物中的应用。
[0072] 本申请实施例提供的多蛋白体系的循环共生产系统将多种共表达菌株分别容置 于多孔材料中, 得到多种容置共表达菌株的多孔材料, 通过空间隔离的方式将 不 同种共表达菌株隔离, 避免不同菌群之间的相互作用 (尤其是竞争作用)和 影响。 与现有无细胞蛋白合成系统的制备相比, 本申请多蛋白体系的循环共生 产系统集成了共表达菌株破碎与产物分离这两个步骤, 不仅更加简便、 快速、 高效、 成本更低, 而且还可以实现对所生产的多蛋白体系中各种蛋白的配比进 行准确调配。
[0073] 下面结合具体实施例进行说明。
[0074] 实施例
[0075] ( 1) 将 38种融合了 His标签的表达蛋白的质粒分别与表达噬菌体 <i>X174 E蛋白 的质粒 ePop共同转化进入蛋白表达菌株 BL21 (DE3) 中, 得到 38种共表达菌株; 其 中, 38种表达蛋白的质粒依次单独表达翻译起始因子 1、 翻译起始因子 2、 翻 译起始因子 3、 翻译延伸因子 G、 翻译延伸因子 Tu、 翻译延伸因子 Ts、 翻译延伸 因子 4、 翻译释放因子 1、 翻译释放因子 2、 翻译释放因子 3、 核糖体循环因子、 甲硫氨酰 -tRNA甲酰转移酶和 22种氨酰 -tRNA合成酶、 肌酸激酶、 肌激酶、 二磷 酸核苷激酶和焦磷酸酶;
[0076] (2) 分别从 38种共表达菌株中挑单克隆于 8ml LB培养基中 (卡那霉素和氯霉 素双抗性) , 并加入 400 u L、 40wt%的葡萄糖用来抑制细胞的自主裂解, 在 37 °C的摇床中, 220rpm分别培养 14-18小时; [0077] (3) 从步骤 (2) 所得初步培养后的 38种共表达菌株中, 分别取 5ml菌液离心
, 用 200 H L的 M9培养基或 PBS重悬沉淀菌体, 并与 5mL、 2%的壳聚糖溶液 (2g壳 聚糖溶解于 100mL、 1%的冰醋酸中) 混合均匀后转移到带有针头的注射器中; 将 注射器放置在一个装有注射栗的电喷雾系统中, 电喷雾系统的阳极连接到针头 , 阴极连接到装有交联溶液 (5
%的三聚磷酸盐) 的金属圆盒。 将溶液在高压 5kV、 500 y 1/min流速下喷洒到搅 拌着的交联溶液中, 喷洒结束后, 继续搅拌交联 20-30分钟 (如图 3所示) , 自 然沉降微胶囊后, 去除上清,
Figure imgf000020_0001
有共表达菌株的壳聚糖微胶囊;
[0078] (4) 将步骤 (3) 所得壳聚糖微胶囊与 M9培养基 (卡那霉素和氯霉素双抗性, 加入终浓度为 0. ImM的 IPTG) 按照胶囊体积与培养基体积为 1: 10的体积比混合 , 在 37°C摇床 200rpm进行培养 24小时后, 500g离心力下, 4°C离心 20分钟, 收取 上清过镍柱纯化收集 38种混合蛋白;
[0079] (5) 将步骤 (4) 所得 38种混合蛋白用 3. 5kDa的透析袋进行透析浓缩, 浓缩后 的混合蛋白加入核糖体、 能量缓冲液和表达红色荧光蛋白 mRFP的 DNA模板, 在 37 °C金属浴中反应 4小时。 检测到有荧光信号 (mRFP激发: 580nm, 发射: 610nm , 如表 1所示) ; 其中, 能量缓冲液由 L-谷氨酸钾、 20种氨基酸混合物、 HEPES- K0H缓冲液、 亚精胺、 乙酸镁、 磷酸肌酸、 二硫苏糖醇、 甲酰叶酸、 NTPs、 IPTG 、 tRNA、 T7 RNA聚合酶、 RNA酶抑制剂、 无菌水配制而成。
[0080] 表 1 荧光检测结果
□ [表 1]
Figure imgf000020_0002
[0081] 以上仅为本申请的可选实施例而已, 并不用于限制本申请。 对于本领域的技术 人员来说, 本申请可以有各种更改和变化。 凡在本申请的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本申请的权利要求范围之内。

Claims

权 利 要求 书
[权利要求 1] 一种多蛋白体系的共生产方法, 其特征在于, 包括如下步骤: 提供多种共表达菌株、 多孔材料, 每种所述共表达菌株分别表达所述 多蛋白体系中的一种蛋白以及溶菌蛋白, 且不同的所述共表达菌株表 达的蛋白各不相同; 将每种所述共表达菌株分别容置于所述多孔材料中, 得到多种容置共 表达菌株的多孔材料; 将全部的所述容置共表达菌株的多孔材料进行共培养, 在所述溶菌蛋 白的作用下, 所述共表达菌株发生自主裂解, 收集所述共表达菌株表 达的蛋白, 得到所述多蛋白体系; 其中, 所述多蛋白体系包括用于蛋白质翻译、 能量再生的蛋白质和 / 或催化合成化合物的酶; 所述多孔材料具有三维网络结构, 且所述多孔材料中各孔洞的孔径为 1 U m _5 u m
[权利要求 2] 根据权利要求 i所述多蛋白体系的共生产方法, 其特征在于, 所述多 孔材料的结构为包括多个孔洞的海绵状结构和 /或包括空心部的空心 囊状结构; 当所述多孔材料的结构为海绵状结构时, 所述共表达菌株 容置于所述海绵状结构的所述孔洞中; 当所述多孔材料的结构为空心 囊状结构时, 所述共表达菌株容置于所述空心囊状结构的所述空心部 内。
[权利要求 3] 根据权利要求 2所述多蛋白体系的共生产方法, 其特征在于, 所述多 孔材料选自壳聚糖微胶囊、 海藻酸盐微胶囊、 脂质体、 胶束中的至少 一种。
[权利要求 4] 根据权利要求 1所述多蛋白体系的共生产方法, 其特征在于, 所述多 孔材料的直径为 50 ti m-5000 tun„
[权利要求 5] 根据权利要求 1所述多蛋白体系的共生产方法, 其特征在于, 所述多 蛋白体系选自聚酮化合物合成酶体系、 非核糖体多肽合成酶体系、 重 组元件蛋白质合成体系中的至少一种。
[权利要求 6] 根据权利要求 5所述多蛋白体系的共生产方法, 其特征在于, 所述重 组元件蛋白质合成体系包括翻译起始因子 1、 翻译起始因子 2、 翻译起 始因子 3、 翻译延伸因子 G、 翻译延伸因子 Tu、 翻译延伸因子 Ts、 翻译 延伸因子 4、 翻译释放因子 1、 翻译释放因子 2、 翻译释放因子 3、 核糖 体循环因子、 甲硫氨酰 -tRNA甲酰转移酶、 22种氨酰 -tRNA合成酶、 肌 酸激酶、 肌激酶、 二磷酸核苷激酶和焦磷酸酶。
[权利要求 7] 根据权利要求 6所述多蛋白体系的共生产方法, 其特征在于, 所述重 组元件蛋白质合成系统还包括 T7 RNA聚合酶、 二硫键异构酶、 分子伴 侣蛋白中的至少一种。
[权利要求 8] 根据权利要求 1-7任意一项所述多蛋白体系的共生产方法, 其特征在 于, 所述共表达菌株的构建方法是将表达溶菌蛋白的载体和表达蛋白 的载体分别共转入蛋白表达菌株中, 得到所述共表达菌株。
[权利要求 9] 根据权利要求 8所述多蛋白体系的共生产方法, 其特征在于, 所述表 达溶菌蛋白的载体为表达噬菌体 X174 E蛋白的质粒 ePop。
[权利要求 10] 一种多蛋白体系的循环共生产系统, 其特征在于, 包括: 共表达菌株制备单元, 用于制备多种共表达菌株, 每种所述共表达菌 株分别表达所述多蛋白体系中的一种蛋白以及溶菌蛋白, 且不同的所 述共表达菌株表达的蛋白各不相同; 多孔材料制备单元, 用于制备多种容置共表达菌株的多孔材料, 每种 所述容置共表达菌株的多孔材料分别容置所述多种共表达菌株中的一 种, 且不同的所述容置共表达菌株的多孔材料容置的共表达菌株各不 相同; 培养单元, 用于培养所述容置共表达菌株的多孔材料中的共表达菌株 其中, 所述多蛋白体系包括用于蛋白质翻译、 能量再生的蛋白质和 / 或催化合成化合物的酶; 所述多孔材料具有三维网络结构, 且所述多孔材料中各孔洞的孔径为
1 U m _5 u m0
[权利要求 11] 根据权利要求 10所述多蛋白体系的循环共生产系统, 其特征在于, 所 述多孔材料的结构为包括多个孔洞的海绵状结构和 /或包括空心部的 空心囊状结构; 当所述多孔材料的结构为海绵状结构时, 所述共表达 菌株容置于所述海绵状结构的所述孔洞中; 当所述多孔材料的结构为 空心囊状结构时, 所述共表达菌株容置于所述空心囊状结构的所述空 心部内。
[权利要求 12] 根据权利要求 11所述多蛋白体系的循环共生产系统, 其特征在于, 所 述多孔材料选自壳聚糖微胶囊、 海藻酸盐微胶囊、 脂质体、 胶束中的 至少一种。
[权利要求 13] 根据权利要求 10所述多蛋白体系的循环共生产系统, 其特征在于, 所 述多孔材料的直径为 50 y m-5000 y m。
[权利要求 14] 根据权利要求 10所述多蛋白体系的循环共生产系统, 其特征在于, 所 述多蛋白体系选自聚酮化合物合成酶体系、 非核糖体多肽合成酶体系 、 重组元件蛋白质合成体系中的至少一种。
[权利要求 15] 根据权利要求 14所述多蛋白体系的循环共生产系统, 其特征在于, 所 述重组元件蛋白质合成体系包括翻译起始因子 1、 翻译起始因子 2、 翻 译起始因子 3、 翻译延伸因子 G、 翻译延伸因子 Tu、 翻译延伸因子 Ts、 翻译延伸因子 4、 翻译释放因子 1、 翻译释放因子 2、 翻译释放因子 3、 核糖体循环因子、 甲硫氨酰 -tRNA甲酰转移酶、 22种氨酰 -tRNA合成酶 、 肌酸激酶、 肌激酶、 二磷酸核苷激酶和焦磷酸酶。
[权利要求 16] 根据权利要求 15所述多蛋白体系的循环共生产系统, 其特征在于, 所 述重组元件蛋白质体系还包括 T7 RNA聚合酶、 二硫键异构酶、 分子伴 侣蛋白中的至少一种。
[权利要求 17] 根据权利要求 10-16任意一项所述多蛋白体系的循环共生产系统, 其 特征在于, 所述溶菌蛋白为噬菌体 4) X174 E蛋白。
[权利要求 18] 权利要求 10-17任意一项所述多蛋白体系的循环共生产系统在体外合 成蛋白质和 /或化合物中的应用。
PCT/CN2020/092111 2020-05-25 2020-05-25 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用 WO2021237411A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092111 WO2021237411A1 (zh) 2020-05-25 2020-05-25 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092111 WO2021237411A1 (zh) 2020-05-25 2020-05-25 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用

Publications (1)

Publication Number Publication Date
WO2021237411A1 true WO2021237411A1 (zh) 2021-12-02

Family

ID=78745152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092111 WO2021237411A1 (zh) 2020-05-25 2020-05-25 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用

Country Status (1)

Country Link
WO (1) WO2021237411A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359014A (zh) * 2018-02-08 2018-08-03 四川农业大学 含有dhav-1 2a1-p的多肽及其介导的多蛋白共表达方法
CN108642076A (zh) * 2017-03-23 2018-10-12 康码(上海)生物科技有限公司 一种体外DNA-to-Protein(D2P)的合成体系、制剂、试剂盒及制备方法
CN109722445A (zh) * 2017-10-27 2019-05-07 成都必高生物科技有限公司 提升溶菌酶产量及活性的方法
WO2020010030A1 (en) * 2018-07-03 2020-01-09 Leidos, Inc. Materials and methods for cell-free expression of vaccine epitope concatemers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642076A (zh) * 2017-03-23 2018-10-12 康码(上海)生物科技有限公司 一种体外DNA-to-Protein(D2P)的合成体系、制剂、试剂盒及制备方法
CN109722445A (zh) * 2017-10-27 2019-05-07 成都必高生物科技有限公司 提升溶菌酶产量及活性的方法
CN108359014A (zh) * 2018-02-08 2018-08-03 四川农业大学 含有dhav-1 2a1-p的多肽及其介导的多蛋白共表达方法
WO2020010030A1 (en) * 2018-07-03 2020-01-09 Leidos, Inc. Materials and methods for cell-free expression of vaccine epitope concatemers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOU LIHUA: "Research progress of cell-free protein synthesis system", JOURNAL OF MEDICAL MOLECULAR BIOLOGY, vol. 24, no. 1, 28 February 2002 (2002-02-28), pages 29 - 32, XP055872597, ISSN: 1001-1080 *
TAKAYOSHI MATSUDA ET AL.: "Cell-free synthesis system suitable for disulfide-containing proteins", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 431, no. 2, 1 January 2013 (2013-01-01), pages 296 - 301, XP028970952, ISSN: 0006-291X, DOI: 10.1016/j.bbrc.2012.12.107 *

Similar Documents

Publication Publication Date Title
Li et al. Establishing a high yielding streptomyces‐based cell‐free protein synthesis system
CN101426919B (zh) 利用炭疽杆菌芽孢外壁在细胞表面展示目的蛋白的方法
Carlson et al. Cell-free protein synthesis: applications come of age
JP2009521229A (ja) 細胞又は細胞様システムへのゲノム若しくは部分ゲノムのインストール
US20230392138A1 (en) Synthetic genome
CN109897862B (zh) 庆大霉素b生产菌及其制备方法和应用
CN114410560B (zh) 一株高产fk228的工程菌株及其构建与应用
Guo et al. Genetic code expansion through quadruplet codon decoding
CN111621511B (zh) 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用
WO2021237411A1 (zh) 多蛋白体系的共生产方法、多蛋白体系的循环共生产系统及应用
Cao et al. Inducible population quality control of engineered Bacillus subtilis for improved N-acetylneuraminic acid biosynthesis
JP6991897B2 (ja) 非光栄養性c1代謝微生物での遺伝子発現制御のための核酸およびベクター、およびそれらの形質転換体
CN111662918B (zh) 多蛋白体系的共生产方法、多蛋白体系的共生产系统及应用
US20230295613A1 (en) Long chain carbon and cyclic amino acids substrates for genetic code reprogramming
CN110951760B (zh) 一种蛋白延时表达开关及其在葡萄糖二酸生产中应用
WO2021237410A1 (zh) 多蛋白体系的共生产方法、多蛋白体系的共生产系统及应用
CN110904079B (zh) β-呋喃果糖苷酶突变体、突变基因及其在制备维生素B12中的应用
Finley et al. Structural genomics for Caenorhabditis elegans: high throughput protein expression analysis
WO2017124777A1 (zh) 基于nbdk的定点荧光标记方法
CN110157725A (zh) 使不产毒微藻产生微囊藻毒素的方法及得到的产毒微藻
CN113584056A (zh) 靶蛋白-内含肽-磁小体融合基因及其构建的产物自动提纯的智能细菌表达系统和制备方法
Qi et al. Consolidated plasmid Design for Stabilized Heterologous Production of the complex natural product Siderophore Yersiniabactin
CN116769814B (zh) 一种大肠杆菌益生菌t7表达系统及其应用
CN112522218B (zh) 控制脂肽脂链长度改变的关键交换结构域及其突变体和应用
WO2024099089A1 (zh) 一种生产假尿苷的基因工程菌株及其构建方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937358

Country of ref document: EP

Kind code of ref document: A1