WO2021235719A1 - 전극조립체, 그의 제조방법 및 이차전지 - Google Patents

전극조립체, 그의 제조방법 및 이차전지 Download PDF

Info

Publication number
WO2021235719A1
WO2021235719A1 PCT/KR2021/005325 KR2021005325W WO2021235719A1 WO 2021235719 A1 WO2021235719 A1 WO 2021235719A1 KR 2021005325 W KR2021005325 W KR 2021005325W WO 2021235719 A1 WO2021235719 A1 WO 2021235719A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
tab
active material
assembly
material layer
Prior art date
Application number
PCT/KR2021/005325
Other languages
English (en)
French (fr)
Inventor
한송이
류지훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US17/792,363 priority Critical patent/US20230031275A1/en
Priority to CN202180007502.5A priority patent/CN114846662A/zh
Priority to EP21809324.3A priority patent/EP4071869A4/en
Publication of WO2021235719A1 publication Critical patent/WO2021235719A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly capable of satisfying both energy density and output performance, a manufacturing method thereof, and a secondary battery.
  • a secondary battery refers to a battery capable of charging and discharging unlike a primary battery that cannot be charged, and such secondary batteries are widely used in high-tech electronic devices such as phones, notebook computers, and camcorders.
  • Such a secondary battery includes an electrode assembly in which electrodes and separators are alternately stacked, and a pouch accommodating the electrode assembly.
  • the present invention was invented to solve the above problems, and an object of the present invention is to provide an electrode assembly capable of satisfying both energy density and output, a manufacturing method thereof, and a secondary battery.
  • the present invention for achieving the above object is an electrode assembly in which a first electrode and a second electrode are alternately stacked with a separator interposed therebetween. 1b electrode may be included.
  • the electrode active material layer of the 1a electrode and the electrode active material layer of the 1b electrode may have the same area, and the electrode active material layer of the 1a electrode may be thicker than the electrode active material layer of the 1b electrode.
  • a greater number of the 1a electrodes than the 1b electrodes may be stacked.
  • the 1a electrode and the 1b electrode may include a 1a electrode tab and a 1b electrode tab, respectively, and the 1a electrode tab and the 1b electrode tab may have different widths.
  • the 1b electrode tab may have a wider width than the 1a electrode tab.
  • an electrode lead including a first electrode lead to which the 1b electrode tab and the 1a electrode tab are coupled, and a second electrode lead to which the second electrode tab of the second electrode is coupled.
  • the 1b electrode tab and the 1a electrode tab may be respectively coupled to one side and the other side of the first electrode lead in a state in which they are not in contact with each other.
  • the first electrode may further include a 1c electrode having the same area as the 1a electrode and the 1b electrode and having a different electrode active material layer thickness, and the 1c electrode may have a smaller electrode active material layer thickness than the 1b electrode. have.
  • the 1c electrode may include a 1c electrode tab, and the 1c electrode tab may have a wider width than the 1b electrode tab.
  • the electrode assembly manufacturing method of the present invention includes a first electrode manufacturing step (S10) of manufacturing a first electrode including a 1a electrode and a 1b electrode having different electrode active material layer thicknesses; and an electrode assembly manufacturing step ( S20 ) of alternately stacking the second electrode and the 1a electrode or the 1b electrode of the first electrode with the separator interposed therebetween to manufacture the electrode assembly.
  • the first electrode manufacturing step includes a process of preparing a plurality of current collectors having the same area, and a 1a electrode having the same area and different thicknesses of the electrode active material layer by varying the loading amount of the electrode active material on the surface of the current collector and a process of manufacturing a 1b electrode, wherein the 1a electrode increases the loading amount of the electrode active material than the 1b electrode to prepare an electrode active material layer thicker than the 1b electrode, and the 1b electrode is the first electrode By reducing the loading amount of the electrode active material compared to the electrode 1a, it is possible to prepare an electrode active material layer thinner than the electrode 1a.
  • 1a electrode tabs and 1b electrode tabs are manufactured by cutting uncoated regions of the 1a electrode and the 1b electrode without an electrode active material, wherein the 1b electrode tab is the 1a electrode tab. It can be manufactured with a wider width.
  • the first electrode may include an electrode assembly manufacturing step (S20) of stacking the 1b electrodes in a smaller number than the 1a electrodes.
  • the 1a electrode tab and the 1b electrode tab are coupled to the first electrode lead, and the second electrode tab of the second electrode is coupled to the second electrode lead.
  • the method further includes step S30, wherein the 1a electrode tab and the 1b electrode tab may be respectively coupled to one side and the other side of the first electrode lead without being in contact with each other.
  • the secondary battery of the present invention includes an electrode assembly; and a case accommodating the electrode assembly.
  • the electrode assembly of the present invention is characterized in that the first electrode and the second electrode are alternately stacked with the separator interposed therebetween, wherein the first electrode includes a 1a electrode and a 1b electrode having different thicknesses of the electrode active material layers. have Due to these characteristics, it is possible to obtain an electrode assembly capable of satisfying both energy density and output.
  • the electrode active material layer of the 1a electrode and the electrode active material layer of the 1b electrode have the same area, and the electrode active material layer of the 1a electrode is thicker than the electrode active material layer of the 1b electrode It is characterized by being provided. That is, the energy density may be increased through the 1a electrode having a large thickness of the electrode active material layer, and output performance may be increased through the 1b electrode having a thin electrode active material layer. Accordingly, the electrode assembly of the present invention can satisfy both energy density and output performance.
  • the 1a electrode is characterized in that a greater number than the 1b electrode is stacked. Due to these characteristics, it is possible to sufficiently secure the energy density.
  • the 1a electrode and the 1b electrode each include a 1a electrode tab and a 1b electrode tab, and the 1a electrode tab and the 1b electrode tab have different widths. have characteristics.
  • the 1b electrode tab has a wider width than the 1a electrode tab. Due to such a characteristic, it is possible to induce a large amount of current to flow through the 1b electrode tab, and accordingly, the output performance of the electrode assembly may be stably increased.
  • FIG. 1 is a perspective view showing an electrode assembly according to a first embodiment of the present invention
  • Figure 2 is a front view showing the electrode assembly according to the first embodiment of the present invention.
  • FIG 3 is a plan view illustrating an electrode assembly according to a first embodiment of the present invention.
  • FIG 4 is a plan view showing a first electrode 1a of the first electrode in the electrode assembly according to the first embodiment of the present invention.
  • FIG 5 is a plan view showing a first electrode 1b of the first electrode in the electrode assembly according to the first embodiment of the present invention.
  • FIG. 6 is a plan view showing a second electrode in the electrode assembly according to the first embodiment of the present invention.
  • FIG. 7 is a front view showing the first electrode 1a and the first electrode 1b of the first electrode in the electrode assembly according to the first embodiment of the present invention.
  • FIG 8 is a plan view showing a state including electrode leads in the electrode assembly according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a method for manufacturing an electrode assembly according to a first embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing an electrode assembly according to a second embodiment of the present invention.
  • FIG. 11 is a plan view showing an electrode assembly according to a second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a secondary battery according to a third embodiment of the present invention.
  • 13 is a graph showing an experimental example of the present invention.
  • the electrode assembly 100 includes a first electrode 110 and a second electrode 120 with a separator 130 interposed therebetween. It has a structure that is alternately stacked.
  • the first electrode 110 includes a 1a electrode 111 and a 1b electrode 112 having different electrode active material layer thicknesses. That is, the 1a electrode 111 and the 1b electrode 112 may be composed of an electrode having high energy density and an electrode having high output performance due to the difference in the thickness of the electrode active material layer, and as a result, the 1a electrode 111 ) and the electrode assembly including the 1b electrode 112, both energy density and output performance can be increased.
  • the electrode active material layer of the 1a electrode 111 and the electrode active material layer of the 1b electrode 112 have the same area, and the electrode active material layer of the 1a electrode 111 . is thicker than the electrode active material layer of the 1b electrode 112 . Accordingly, the 1a electrode 111 has a higher energy density than the 1b electrode because the electrode active material layer is thicker than the 1b electrode 112 , and the 1b electrode 112 is an electrode than the 1a electrode 111 . Since the active material layer is thin, the output performance is higher than that of the first electrode 111 . Therefore, energy density and output performance can be simultaneously obtained by varying the thickness of the electrode active material layer of the 1a electrode 111 and the electrode active material layer of the 1b electrode 112 .
  • the first electrode 111 includes a current collector 111a and an electrode active material layer 111b coated on the surface of the current collector 111a.
  • the 1b electrode 112 includes a current collector 112a and an electrode active material layer 112b coated on the surface of the current collector 112a.
  • the current collector 111a of the 1a electrode 111 and the current collector 112a of the 1b electrode 112 have the same material, size, and thickness.
  • the electrode active material layer 111b of the 1a electrode 111 and the electrode active material layer 112b of the 1b electrode 112 are provided with the same area and material.
  • the electrode active material layer thickness ⁇ of the 1a electrode 111 is provided to be thicker than the electrode active material layer thickness ⁇ of the 1b electrode 112, and accordingly, the 1a electrode 111 has more energy than the 1b electrode. The density is increased, and the output performance of the 1b electrode 112 is increased.
  • the number of the 1a electrode 111 is greater than that of the 1b electrode 112 .
  • the 1a electrode 111 having a high energy density is stacked more than the 1b electrode 112 , thereby securing output performance and energy density. can be raised as high as possible.
  • the electrode assembly 100 includes the 1a electrode 111 having high energy density and the 1b electrode 112 having high output performance, so that energy density and output performance can be obtained at the same time. .
  • the 1a electrode 111 and the 1b electrode 112 include a 1a electrode tab 111c and a 1b electrode tab 112c, respectively.
  • the 1a electrode tab 111c and the 1b electrode tab 112c have different widths, and thus the resistance difference between the electrodes may be intentionally adjusted. That is, the 1b electrode tab 112c of the 1b electrode 112 has the same length and a wide width as the 1a electrode tab 111c of the 1a electrode 111 .
  • the electrode assembly 100 includes an electrode lead 130 , and the electrode lead 130 includes the 1a electrode tab 111c of the 1a electrode 111 and the It includes a first electrode lead 131 to which the 1b electrode tab 112c is coupled, and a second electrode lead 132 to which the second electrode tab 121 of the second electrode 120 is coupled.
  • the electrode lead 130 is coupled to the first electrode lead 131 in a state in which the 1a electrode tab 111c and the 1b electrode tab 112c are separated so that current flows, respectively. That is, the 1a electrode tab 111c is coupled to one side of the first electrode lead 131 , and the 1b electrode tab 112c is coupled to the other side of the first electrode lead 131 , and accordingly, the 1a electrode tab 111c and the 1b electrode tab are coupled. Since the 112c is not in contact, each current flows, and as a result, a large amount of current can be induced to flow in the 1b electrode 112 .
  • the first electrode 110 is a cathode
  • the second electrode 120 is an anode
  • the electrode assembly 100 according to the first embodiment of the present invention having the above structure can satisfy both output performance and energy density, and as a result, the efficiency and usability of the electrode assembly can be greatly improved.
  • the electrode assembly 100 has a first electrode ( 110) of the first electrode manufacturing step (S10), the second electrode 120 and the first electrode 111 or the first b electrode 112 of the first electrode 110 with the separator 130 interposed therebetween. ) by alternately stacking an electrode assembly manufacturing step (S20) of manufacturing the electrode assembly 100, and an electrode lead coupling step (S30) of coupling the electrode leads 130 to the first and second electrodes.
  • the first electrode manufacturing step (S10) is for manufacturing the 1a electrode and the 1b electrode having different electrode active material layer thicknesses, and includes a process of preparing a plurality of current collectors having the same area, and an electrode active material on the surface of the current collector It includes a process of manufacturing the 1a electrode 111 and the 1b electrode 112 having the same area and different thicknesses of the electrode active material layer by varying the loading amount of the electrode active material layer.
  • the 1a electrode 111 increases the loading amount of the electrode active material compared to the 1b electrode 112 to prepare a thicker electrode active material layer than the 1b electrode 112 .
  • the electrode 1a having an electrode active material layer having a first thickness ⁇ is manufactured by loading an electrode active material on the surface of the current collector to a first thickness ⁇ .
  • the 1b electrode 112 reduces the loading amount of the electrode active material than the 1a electrode 111 , thereby manufacturing an electrode active material layer thinner than the 1a electrode 111 .
  • the 1b electrode 112 having the electrode active material layer of the second thickness ( ⁇ ) is manufactured.
  • the 1a electrode 111 has a higher energy density because the loading amount of the electrode active material is greater than that of the 1b electrode 112 , and the 1b electrode 112 has a higher output performance because the loading amount of the electrode active material is smaller than that of the 1b electrode 112 .
  • an electrode assembly is manufactured by stacking 25 sheets of the first electrode and the second electrode, 22 sheets of the 1a electrode are manufactured, and 3 sheets of the 1b electrode are manufactured.
  • the first electrode manufacturing step (S10) further includes an electrode tab manufacturing process, wherein the electrode tab manufacturing process cuts the uncoated area of the 1a electrode 111 and the 1b electrode 112 without an electrode active material.
  • a 1a electrode tab 111c and a 1b electrode tab 112c are manufactured.
  • the 1b electrode tab 112c has a wider width than the 1a electrode tab 111c. is manufactured with
  • the electrode assembly manufacturing step (S20) is for manufacturing the electrode assembly, and the second electrode 120 and the first electrode 110 are alternately stacked with the separator 130 interposed therebetween to prepare the electrode assembly 100.
  • the 1a electrode 111 or the 1b electrode 112 is laminated on the portion where the first electrode 110 is laminated. That is, if you want to increase the energy density, the 1a electrode 111 is stacked more than the 1b electrode 112 , and if you want to greatly increase the output performance, the 1b electrode 112 is stacked more than the 1a electrode 111 .
  • an electrode assembly having higher energy density than output performance or an electrode assembly having higher output performance than energy density In particular, if the number of the 1a electrode 111 and the 1b electrode 112 stacked on the electrode assembly is adjusted, an electrode assembly in which energy density and output performance are more effectively adjusted can be manufactured.
  • the 1b electrodes 112 are stacked in a smaller number than the 1a electrodes 111 . That is, since energy density is more important than output performance in the electrode assembly, the 1a electrode 111 is stacked more than the 1b electrode 112 , and thus the energy density of the electrode assembly can be sufficiently secured.
  • the basic units include the second electrode 120, the separator 130, the first a electrode 111, and the separator ( 130), the second electrode 120, the separator 130, the 1a electrode 111, the separator, the second electrode 120, the separator 130, the first b electrode 112, and the separator are sequentially arranged in the vertical direction. It has a 12-layer structure stacked with
  • an electrode lead coupling step (S30) is performed.
  • the 1a electrode tab 111c and the 1b electrode tab 112c are coupled to the first electrode lead 131, and the second electrode tab ( 121) is coupled to the second electrode lead 132 .
  • the 1a electrode tab 111c and the 1b electrode tab 112c are respectively coupled to one side and the other side of the first electrode lead 131 in a state in which they are not in contact with each other.
  • the finished electrode assembly 100 can be manufactured.
  • the finished electrode assembly 100 having high energy density and high output performance can be manufactured.
  • the electrode assembly 100 includes the first electrode 110 and the second electrode 120 with the separator 130 interposed therebetween. It has a structure that is alternately stacked.
  • the first electrode 110 includes a 1a electrode 111 and a 1b electrode 112 .
  • the first electrode 110 further includes a 1c electrode 113 having the same area as the 1a electrode 111 and the 1b electrode 112 and having a different electrode active material layer thickness.
  • the 1c electrode 113 has a smaller electrode active material layer thickness than the 1b electrode 112 , and thus the output performance can be significantly improved than that of the 1b electrode 112 .
  • the 1a electrode 111 > the 1b electrode 112 > the 1c electrode (113) becomes.
  • the 1c electrode 113 includes a 1c electrode tab 113c, and the 1c electrode tab 113c has a wider width than the 1b electrode tab 112c. Accordingly, the 1c electrode 113 may induce a current to flow preferentially than the 1b electrode 112 , and thus the output performance may be higher than that of the 1b electrode 112 .
  • the electrode assembly 100 according to the second exemplary embodiment of the present invention is characterized in that it includes the third electrode 113 provided with the third electrode tab 113c. Due to these characteristics, energy density and output performance can be further subdivided.
  • the secondary battery 10 includes an electrode assembly 100 and a case 200 accommodating the electrode assembly 100 .
  • the electrode assembly 100 has the same configuration as the electrode assembly 100 according to the first embodiment described above, and thus overlapping description will be omitted.
  • the secondary battery 10 according to the third embodiment of the present invention can obtain both energy density and output performance, and as a result, battery performance can be improved.
  • a secondary battery including an electrode assembly in which a first electrode and a second electrode are alternately stacked with a separator interposed therebetween is prepared.
  • the first electrode includes a 1a electrode and a 1b electrode having different thicknesses of the electrode active material layers, and in particular, the 1a electrode has a thicker electrode active material layer than the 1b electrode. That is, in the preparation example, a secondary battery including two types of first electrodes having different thicknesses of the electrode active material layers is prepared.
  • the manufacturing example has the same structure as the electrode assembly according to the first embodiment of the present application.
  • Preparation Example prepares a secondary battery including an electrode assembly in which the first electrode and the second electrode are alternately stacked with a separator interposed therebetween. That is, in Comparative Example, a secondary battery including one type of first electrode having the same thickness of the electrode active material layer is prepared.
  • the output performance is measured.
  • the production example has significantly improved output performance than the comparative example. That is, it can be seen that the manufacturing example has an initial output performance of about 53Ah, and the comparative example has an initial output performance of about 47Ah.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 분리막을 개재한 상태로 제1 전극과 제2 전극이 교대로 적층되는 전극조립체로서, 상기 제1 전극은 전극활물질층 두께는 서로 다른 제1a 전극과 제1b 전극을 포함한다.

Description

전극조립체, 그의 제조방법 및 이차전지
관련출원과의 상호인용
본 출원은 2020년 05월 22일자 한국특허출원 제10-2020-0061375호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 에너지밀도와 출력 성능을 모두 만족시킬 수 있는 전극조립체, 그의 제조방법 및 이차전지에 관한 것이다.
일반적으로 이차전지(secondary battery)는 충전이 불가능한 일차 전지와는 달리 충전 및 방전이 가능한 전지를 말하며, 이러한 이차전지는 폰, 노트북 컴퓨터 및 캠코더 등의 첨단 전자 기기 분야에서 널리 사용되고 있다.
이와 같은 이차전지는 전극과 분리막이 교대로 적층된 전극조립체, 상기 전극조립체를 수용하는 파우치를 포함한다.
한편, EV용 이차전지는 에너지 밀도를 최대한 높이는 것이 중요하기 때문에 대부분 전극의 로딩을 높게 설계하고 있으며, HEV용 이차전지는 출력 성능을 향상시키는 것이 중요하기 때문에 전극의 로딩을 낮게 설계하고 있다.
여기서 이차전지의 사용 증가로 인해 서로 상반된 두 가지 특성, 즉 에너지밀도 및 출력을 모두 만족시킬 수 있는 새로운 기술이 필요한 실정이다.
본 발명은 상기와 같은 문제를 해결하기 위해 발명된 것으로, 본 발명의 목적은 에너지밀도 및 출력을 모두 만족시킬 수 있는 전극조립체, 그의 제조방법 및 이차전지를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명은 분리막을 개재한 상태로 제1 전극과 제2 전극이 교대로 적층되는 전극조립체로서, 상기 제1 전극은 전극활물질층 두께가 서로 다른 제1a 전극과 제1b 전극을 포함할 수 있다.
상기 제1a 전극의 전극활물질층과 상기 제1b 전극의 전극활물질층은 동일한 면적을 가지고, 상기 제1a 전극의 전극활물질층은 상기 제1b 전극의 전극활물질층 보다 두껍게 구비될 수 있다.
상기 제1a 전극은 상기 제1b 전극 보다 많은 개수가 적층될 수 있다.
상기 제1a 전극과 상기 제1b 전극은 각각 제1a 전극탭과 제1b 전극탭을 포함하고, 상기 제1a 전극탭과 상기 제1b 전극탭은 서로 다른 너비를 가질 수 있다.
상기 제1b 전극탭은 상기 제1a 전극탭 보다 넓은 너비를 가질 수 있다.
상기 제1b 전극탭과 상기 제1a 전극탭이 결합되는 제1 전극리드와, 상기 제2 전극의 제2 전극탭이 결합되는 제2 전극리드를 구비한 전극리드를 포함할 수 있다.
상기 제1b 전극탭과 상기 제1a 전극탭은 서로 접촉되지 않은 상태로 상기 제1 전극리드의 일측과 타측에 각각 결합될 수 있다.
상기 제1 전극은 상기 제1a 전극 및 상기 제1b 전극과 면적은 동일하고 전극활물질층 두께는 다른 제1c 전극을 더 포함하고, 상기 제1c 전극은 상기 제1b 전극 보다는 전극활물질층 두께가 작을 수 있다.
상기 제1c 전극은 제1c 전극탭을 포함하며, 상기 제1c 전극탭은 상기 제1b 전극탭 보다 넓은 너비를 가질 수 있다.
한편, 본 발명의 전극조립체 제조방법은 전극활물질층 두께가 서로 다른 제1a 전극과 제1b 전극을 포함한 제1 전극을 제조하는 제1 전극 제조단계(S10); 및 분리막을 개재한 상태로 제2 전극과 상기 제1 전극의 제1a 전극 또는 제1b 전극을 교대로 적층하여 전극조립체를 제조하는 전극조립체 제조단계(S20)를 포함할 수 있다.
상기 제1 전극 제조단계는, 동일한 면적을 가진 집전체를 복수개 준비하는 공정과, 상기 집전체의 표면에 전극활물질의 로딩량을 달리하여 전극활물질층의 면적은 동일하고 두께는 서로 다른 제1a 전극과 제1b 전극을 제조하는 공정을 포함하되, 상기 제1a 전극은 상기 제1b 전극 보다 전극활물질의 로딩량을 증대시켜서 상기 제1b 전극 보다 두꺼운 전극활물질층을 제조하고, 상기 제1b 전극은 상기 제1a 전극 보다 전극활물질의 로딩량을 감소시켜서 상기 제1a 전극 보다 얇은 전극활물질층을 제조할 수 있다.
상기 제1 전극 제조단계는, 상기 제1a 전극과 상기 제1b 전극의 전극활물질이 없는 무지부를 커팅하여 제1a 전극탭과 제1b 전극탭을 제조하되, 상기 제1b 전극탭은 상기 제1a 전극탭 보다 넓은 너비로 제조될 수 있다.
전극조립체 제조단계(S20)에서 상기 제1 전극은 상기 제1b 전극을 상기 제1a 전극 보다 적은 개수로 적층하는 전극조립체 제조단계(S20)를 포함할 수 있다.
상기 전극조립체 제조단계(S20) 후, 상기 제1a 전극탭과 상기 제1b 전극탭을 제1 전극리드에 결합하고, 상기 제2 전극의 제2 전극탭을 제2 전극리드에 결합하는 전극리드 결합단계(S30)를 더 포함하며, 상기 제1a 전극탭과 상기 제1b 전극탭은 서로 접촉되지 않은 상태로 상기 제1 전극리드의 일측과 타측에 각각 결합될 수 있다.
본 발명의 이차전지는 전극조립체; 및 상기 전극조립체를 수용하는 케이스를 포함할 수 있다.
본 발명의 전극조립체는 분리막을 개재한 상태로 제1 전극과 제2 전극이 교대로 적층되되, 상기 제1 전극은 전극활물질층 두께가 서로 다른 제1a 전극과 제1b 전극을 포함하는 것에 특징을 가진다. 이와 같은 특징으로 인해 에너지밀도 및 출력을 모두 만족시킬 수 있는 전극조립체를 얻을 수 있다.
또한, 본 발명의 전극조립체는 상기 제1a 전극의 전극활물질층과 상기 제1b 전극의 전극활물질층은 동일한 면적을 가지고, 상기 제1a 전극의 전극활물질층은 상기 제1b 전극의 전극활물질층 보다 두껍게 구비되는 것에 특징을 가진다. 즉, 전극활물질층의 두께가 큰 제1a 전극을 통해 에너지밀도를 높일 수 있고, 전극활물질층의 두께가 얇은 제1b 전극을 통해 출력 성능을 높일 수 있다. 이에 따라 본 발명의 전극조립체는 에너지밀도와 출력 성능을 모두 만족시킬 수 있다.
또한, 본 발명의 전극조립체에서 상기 제1a 전극은 상기 제1b 전극 보다 많은 개수가 적층되는 것에 특징을 가진다. 이와 같은 특징으로 인해 에너지 밀도를 충분히 확보할 수 있다.
또한, 본 발명의 전극조립체에서 상기 제1a 전극과 상기 제1b 전극은 각각 제1a 전극탭과 제1b 전극탭을 포함하고, 상기 제1a 전극탭과 상기 제1b 전극탭은 서로 다른 너비를 가지는 것에 특징을 가진다. 특히 상기 제1b 전극탭은 상기 제1a 전극탭 보다 넓은 너비를 가진다. 이와 같은 특징으로 인해 제1b 전극탭으로 많은 전류가 흐르도록 유도할 수 있고, 그에 따라 전극조립체의 출력 성능을 안정적으로 높일 수 있다.
도 1은 본 발명의 제1 실시예에 따른 전극조립체를 도시한 사시도.
도 2는 본 발명의 제1 실시예에 따른 전극조립체를 도시한 정면도.
도 3은 본 발명의 제1 실시예에 따른 전극조립체를 도시한 평면도.
도 4는 본 발명의 제1 실시예에 따른 전극조립체에서 제1 전극의 제1a 전극을 도시한 평면도.
도 5는 본 발명의 제1 실시예에 따른 전극조립체에서 제1 전극의 제1b 전극을 도시한 평면도.
도 6은 본 발명의 제1 실시예에 따른 전극조립체에서 제2 전극을 도시한 평면도.
도 7은 본 발명의 제1 실시예에 따른 전극조립체에서 제1 전극의 제1a 전극와 제1b 전극을 도시한 정면도.
도 8은 본 발명의 제1 실시예에 따른 전극조립체에서 전극리드를 포함한 상태를 도시한 평면도.
도 9는 본 발명의 제1 실시예에 따른 전극조립체 제조방법을 나타낸 순서도.
도 10은 본 발명의 제2 실시예에 따른 전극조립체를 도시한 분리사시도.
도 11은 본 발명의 제2 실시예에 따른 전극조립체를 도시한 평면도.
도 12는 본 발명의 제3 실시예에 따른 이차전지를 도시한 단면도.
도 13은 본 발명의 실험예를 나타낸 그래프.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
[본 발명의 제1 실시예에 따른 전극조립체]
본 발명의 제1 실시예에 따른 전극조립체(100)는 도 1 내지 도 8에 도시되어 있는 것과 같이, 분리막(130)을 개재한 상태로 제1 전극(110)과 제2 전극(120)이 교대로 적층되는 구조를 가진다.
여기서 상기 제1 전극(110)은 전극활물질층 두께가 서로 다른 제1a 전극(111)과 제1b 전극(112)을 포함한다. 즉, 상기 제1a 전극(111)과 제1b 전극(112)은 전극활물질층의 두께 차이로 인해 에너지밀도가 높은 전극과 출력성능이 높은 전극으로 구성할 수 있으며, 그 결과 상기 제1a 전극(111)과 상기 제1b 전극(112)을 포함하여 전극조립체를 구성하면, 에너지밀도와 출력성능을 모두 높일 수 있다.
여기서, 상기 제1 전극(110)에서 제1a 전극(111)의 전극활물질층과 상기 제1b 전극(112)의 전극활물질층은 동일한 면적을 가지되, 상기 제1a 전극(111)의 전극활물질층은 상기 제1b 전극(112)의 전극활물질층 보다 두껍게 구비된다. 이에 따라 제1a 전극(111)은 상기 제1b 전극(112) 보다 전극활물질층이 두껍기 때문에 제1b 전극 보다 에너지밀도가 높게 되고, 상기 제1b 전극(112)은 상기 제1a 전극(111) 보다 전극활물질층이 얇기 때문에 상기 제1a 전극(111) 보다 출력 성능이 높게 된다. 따라서 제1a 전극(111)의 전극활물질층과 상기 제1b 전극(112)의 전극활물질층의 두께를 달리함으로써 에너지밀도와 출력 성능을 동시에 얻을 수 있다.
일례로, 도 7을 참조하면 제1a 전극(111)은 집전체(111a)와, 상기 집전체(111a)의 표면에 코팅되는 전극활물질층(111b)을 포함한다. 제1b 전극(112)은 집전체(112a)와, 집전체(112a)의 표면에 코팅되는 전극활물질층(112b)을 포함한다. 한편 제1a 전극(111)의 집전체(111a)와 제1b 전극(112)의 집전체(112a)는 동일한 소재, 크기 및 두께를 가진다. 제1a 전극(111)의 전극활물질층(111b)과 제1b 전극(112)의 전극활물질층(112b)은 동일한 면적과 물질로 마련된다.
여기서 제1a 전극(111)의 전극활물질층 두께(α)는 상기 제1b 전극(112)의 전극활물질층 두께(β) 보다 두껍게 구비되며, 이에 따라 제1a 전극(111)은 제1b 전극 보다 에너지밀도가 높게 되고, 상기 제1b 전극(112)은 출력 성능이 높게 된다.
한편, 제1a 전극과 제1b 전극을 구비한 제1 전극(110)과 제2 전극(120)을 적층할 때, 상기 제1a 전극(111)은 상기 제1b 전극(112) 보다 많은 개수가 적층될 수 있다. 즉, EV용 전지는 에너지 밀도를 최대한 높이는 것이 중요하기 때문에 에너지밀도가 높은 상기 제1a 전극(111)을 상기 제1b 전극(112) 보다 많이 적층하며, 이에 따라 출력 성능을 확보함과 동시에 에너지 밀도를 최대한 높일 수 있다.
일례로, 제1 전극(110)과 제2 전극(120)이 25장씩 적층되는 전극조립체를 제조할 때, 제1a 전극(111)은 22장, 제1b 전극(112)은 3장을 적층하며, 이에 따라 에너지 밀도를 충분히 확보할 수 있다.
따라서 본 발명의 제1 실시예에 따른 전극조립체(100)는 에너지밀도가 높은 제1a 전극(111)과 출력 성능이 높은 제1b 전극(112)을 포함함으로써 에너지밀도와 출력성능을 동시에 얻을 수 있다.
한편, 본 발명의 제1 실시예에 따른 전극조립체(100)에서 제1a 전극(111)과 제1b 전극(112)은 각각 제1a 전극탭(111c)과 제1b 전극탭(112c)을 포함한다. 여기서 제1a 전극탭(111c)과 제1b 전극탭(112c)은 서로 다른 너비를 가지며, 이에 따라 전극간의 저항 차이를 의도적으로 조절할 수 있다. 즉, 제1b 전극(112)의 제1b 전극탭(112c)은 제1a 전극(111)의 제1a 전극탭(111c)과 길이는 동일하고 너비는 넓게 구비된다. 이에 따라 제1a 전극탭(111c)과 제1b 전극탭(112c)의 너비 차이로 인해 출력 성능이 높은 제1b 전극탭(112c)에 우선적으로 많은 전류가 흐르게 유도할 수 있고, 에너지밀도가 높은 제1a 전극탭(111c)에 적은 전류가 흐르게 유도할 수 있다.
따라서 제1a 전극탭(111c)과 제1b 전극탭(112c)의 너비를 달리 적용함으로써 제1b 전극(112)에 많은 전류를 흐르게 유도할 수 있고, 그 결과 제1b 전극(112)의 출력 성능을 안정적으로 높일 수 있다. 특히 제1b 전극탭(112c)에 흐르는 전류를 크게 분산시킬 수 있어 제1b 전극탭(112c)에 발생하는 저항을 크게 낮출 수 있다.
한편, 본 발명의 제1 실시예에 따른 전극조립체(100)는 전극리드(130)를 포함하며, 상기 전극리드(130)는 상기 제1a 전극(111)의 제1a 전극탭(111c)과 상기 제1b 전극탭(112c)이 결합되는 제1 전극리드(131)와, 상기 제2 전극(120)의 제2 전극탭(121)이 결합되는 제2 전극리드(132)를 포함한다.
여기서, 전극리드(130)는 제1a 전극탭(111c)과 상기 제1b 전극탭(112c)이 각각 전류가 흐르게 분리된 상태로 제1 전극리드(131)에 결합된다. 즉, 제1 전극리드(131)의 일측에 제1a 전극탭(111c)이 결합되고, 타측에 제1b 전극탭(112c)이 결합되며, 이에 따라 제1a 전극탭(111c)과 제1b 전극탭(112c)은 접촉되지 않기 때문에 전류가 각각 흐르게 되며, 그 결과 제1b 전극(112)에 많은 전류를 흐르게 유도할 수 있다.
한편, 제1 전극(110)은 음극이고, 제2 전극(120)은 양극이다.
상기와 같은 구조를 가진 본 발명의 제1 실시예에 따른 전극조립체(100)는 출력 성능과 에너지밀도를 모두 만족시킬 수 있으며, 그 결과 전극조립체 효율성과 활용성을 크게 높일 수 있다.
이하 본 발명의 제1 실시예에 따른 전극조립체 제조방법을 설명한다.
[본 발명의 제1 실시예에 따른 전극조립체 제조방법]
본 발명의 제1 실시예에 따른 전극조립체(100)는 도 9에 도시되어 있는 것과 같이, 전극활물질층 두께가 서로 다른 제1a 전극(111)과 제1b 전극(112)을 포함한 제1 전극(110)을 제조하는 제1 전극 제조단계(S10), 분리막(130)을 개재한 상태로 제2 전극(120)과 상기 제1 전극(110)의 제1a 전극(111) 또는 제1b 전극(112)을 교대로 적층하여 전극조립체(100)를 제조하는 전극조립체 제조단계(S20), 및 상기 제1 및 제2 전극에 전극리드(130)를 결합하는 전극리드 결합단계(S30)를 포함한다.
제1 전극 제조단계
제1 전극 제조단계(S10)는 전극활물질층 두께가 서로 다른 제1a 전극과 제1b 전극을 제조하기 위한 것으로, 동일한 면적을 가진 집전체를 복수개 준비하는 공정과, 상기 집전체의 표면에 전극활물질의 로딩량을 달리하여 전극활물질층의 면적은 동일하고 두께는 서로 다른 제1a 전극(111)과 제1b 전극(112)을 제조하는 공정을 포함한다.
상기 제1a 전극(111)은 상기 제1b 전극(112) 보다 전극활물질의 로딩량을 증대시켜서 상기 제1b 전극(112) 보다 두꺼운 전극활물질층을 제조한다.
일례로, 상기 집전체의 표면에 전극활물질을 제1 두께(α)로 로딩하여 제1 두께(α)의 전극활물질층을 가진 제1a 전극(111)을 제조한다.
상기 제1b 전극(112)은 상기 제1a 전극(111) 보다 전극활물질의 로딩량을 감소시켜서 상기 제1a 전극(111) 보다 얇은 전극활물질층을 제조한다.
일례로, 집전체의 표면에 전극활물질을 제1 두께(α) 보다 얇은 제2 두께(β)로 로딩하여 제2 두께(β)의 전극활물질층을 가진 제1b 전극(112)을 제조한다.
여기서 상기 제1a 전극(111)은 상기 제1b 전극(112) 보다 전극활물질의 로딩량이 많기 때문에 에너지밀도가 높고, 상기 제1b 전극(112)은 보다 전극활물질의 로딩량이 적기 때문에 출력 성능이 높다.
한편, 제1 전극과 제2 전극을 25장씩 적층하여 전극조립체를 제조한다면, 상기 제1a 전극은 22장을 제조하고, 상기 제1b 전극은 3장을 제조한다.
한편, 제1 전극 제조단계(S10)는 전극탭 제조공정을 더 포함하며, 상기 전극탭 제조공정은 상기 제1a 전극(111)과 상기 제1b 전극(112)의 전극활물질이 없는 무지부를 커팅하여 제1a 전극탭(111c)과 제1b 전극탭(112c)을 제조한다.
여기서 출력 성능이 높은 상기 제1b 전극(112)의 제1b 전극탭(112c)에 우선적으로 많은 전류가 흐르게 유도하기 위해 상기 제1b 전극탭(112c)은 상기 제1a 전극탭(111c) 보다 넓은 너비로 제조된다.
전극조립체 제조단계
전극조립체 제조단계(S20)은 전극조립체를 제조하기 위한 것으로, 분리막(130)을 개재한 상태로 제2 전극(120)과 상기 제1 전극(110)을 교대로 적층하여 전극조립체(100)를 제조하되, 상기 제1 전극(110)이 적층되는 부분에 제1a 전극(111) 또는 제1b 전극(112)을 적층한다. 즉, 에너지밀도를 높이고 싶으면 제1a 전극(111)을 제1b 전극(112) 보다 많이 적층하고, 출력 성능을 크게 높이고 싶으면 제1b 전극(112)을 제1a 전극(111) 보다 많이 적층한다.
따라서 출력 성능 보다 에너지밀도가 높은 전극조립체 또는 에너지밀도 보다 출력 성능이 높은 전극조립체를 제조할 수 있다. 특히 제1a 전극(111)와 제1b 전극(112)는 전극조립체에 적층되는 장수를 조절한다면 에너지밀도와 출력 성능을 보다 효과적으로 조절된 전극조립체를 제조할 수 있다.
특히 전극조립체 제조단계(S20)에서 상기 제1b 전극(112)은 상기 제1a 전극(111) 보다 적은 개수로 적층한다. 즉, 전극조립체는 출력 성능 보다 에너지밀도가 중요하기 때문에 상기 제1a 전극(111)을 제1b 전극(112) 보다 많이 적층하며, 이에 따라 전극조립체의 에너지밀도를 충분히 확보할 수 있다.
일례로, 전극조립체 제조단계(S20)은 도 1을 참조하면, 하나 이상의 기본단위체를 포함하되, 상기 기본단위체는 제2 전극(120), 분리막(130), 제1a 전극(111), 분리막(130), 제2 전극(120), 분리막(130), 제1a 전극(111), 분리막, 제2 전극(120), 분리막(130), 제1b 전극(112) 및 분리막이 상하방향을 따라 순차적으로 적층되는 12층 구조를 가진다.
상기 전극조립체 제조단계(S20) 후, 전극리드 결합단계(S30)를 수행한다.
전극리드 결합단계
전극리드 결합단계(S30)는 상기 제1a 전극탭(111c)과 상기 제1b 전극탭(112c)을 제1 전극리드(131)에 결합하고, 상기 제2 전극(120)의 제2 전극탭(121)을 제2 전극리드(132)에 결합한다.
여기서 전극리드 결합단계(S30)에서 상기 제1a 전극탭(111c)과 상기 제1b 전극탭(112c)은 서로 접촉되지 않은 상태로 상기 제1 전극리드(131)의 일측과 타측에 각각 결합된다.
이와 같이 전극리드 결합단계(S30)가 완료되면 완제품 전극조립체(100)를 제조할 수 있다. 특히 에너지밀도와 출력 성능이 높은 완제품 전극조립체(100)를 제조할 수 있다.
이하, 본 발명의 다른 실시예를 설명함에 있어 전술한 실시예와 동일한 기능을 가지는 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
[본 발명의 제2 실시예에 따른 전극조립체]
본 발명의 제2 실시예에 따른 전극조립체(100)는 도 10 및 도 11에 도시되어 있는 것과 같이, 분리막(130)을 개재한 상태로 제1 전극(110)과 제2 전극(120)이 교대로 적층되는 구조를 가진다. 그리고 제1 전극(110)은 제1a 전극(111)과 제1b 전극(112)을 포함한다.
여기서 상기 제1 전극(110)은 상기 제1a 전극(111) 및 상기 제1b 전극(112)과 면적은 동일하고 전극활물질층 두께는 다른 제1c 전극(113)을 더 포함한다.
특히 상기 제1c 전극(113)은 상기 제1b 전극(112) 보다는 전극활물질층 두께가 작으며, 이에 따라 상기 제1b 전극(112) 보다 출력 성능을 크게 높일 수 있다.
즉, 본 발명의 제2 실시예에 따른 전극조립체(100)에서 제1 전극(110)은 전극활물질층 두께 순으로 배치하면, 제1a 전극(111)>제1b 전극(112)>제1c 전극(113)이 된다.
한편, 상기 제1c 전극(113)은 제1c 전극탭(113c)을 포함하며, 상기 제1c 전극탭(113c)은 상기 제1b 전극탭(112c) 보다 넓은 너비를 가진다. 이에 따라 상기 제1c 전극(113)은 상기 제1b 전극(112) 보다 우선적으로 전류가 흐르게 유도할 수 있고, 그에 따라 출력 성능을 상기 제1b 전극(112) 보다 높일 수 있다.
따라서 본 발명의 제2 실시예에 따른 전극조립체(100)는 제3 전극탭(113c)이 구비된 제3 전극(113)을 포함하는 것에 특징을 가진다. 이와 같은 특징으로 인해 에너지밀도와 출력 성능을 보다 세분화할 수 있다.
[본 발명의 제3 실시예에 따른 이차전지]
본 발명의 제3 실시예에 따른 이차전지(10)는 도 12에 도시되어 있는 것과 같이, 전극조립체(100), 및 전극조립체(100)를 수용하는 케이스(200)를 포함한다.
여기서 상기 전극조립체(100)는 앞에서 설명한 제1 실시예에 따른 전극조립체(100)와 동일한 구성을 가지며, 이에 따라 중복되는 설명은 생략한다.
따라서 본 발명의 제3 실시예에 따른 이차전지(10)는 에너지밀도와 출력 성능을 동시에 얻을 수 있으며, 그 결과 전지 성능을 높일 수 있다.
[실험예]
제조예
제조예는 분리막을 개재한 상태로 제1 전극과 제2 전극이 교대로 적층되는 전극조립체를 포함한 이차전지를 준비한다. 이때 제1 전극은 전극활물질층의 두께가 서로 다른 제1a 전극과 제1b 전극을 포함하고, 특히 제1a 전극은 제1b 전극 보다 전극활물질층의 두께가 두껍게 구비된다. 즉, 제조예는 전극활물질층의 두께가 서로 다른 2종의 제1 전극이 포함된 이차전지를 준비한다.
한편, 제조예는 본 출원의 제1 실시예에 따른 전극조립체와 동일한 구조를 가진다.
이와 같은 구조를 가진 제조예의 이차전지에 전압을 인가한 후, 출력 성능을 측정한다.
비교예
비교예는 제조예는 분리막을 개재한 상태로 제1 전극과 제2 전극이 교대로 적층되는 전극조립체를 포함한 이차전지를 준비한다. 즉, 비교예는 동일한 두께의 전극활물질층을 가진 1종의 제1 전극이 포함된 이차전지를 준비한다.
이와 같은 구조를 가진 비교예의 이차전지에 전압을 인가한 후 출력 성능을 측정한다.
실험결과
제조예와 비교예의 실험결과, 도 13과 같은 그래프를 얻을 수 있다.
도 13을 참조하면, 제조예가 비교예 보다 출력 성능이 크게 향상된 것을 알 수 있다. 즉 제조예는 최초 출력 성능이 대략 53Ah가 발생한 것을 알 수 있고, 비교예는 최초 출력 성능이 대략 47Ah가 발생한 것을 알 수 있다.
따라서 제조예는 비교예 보다 출력성능이 크게 향상된 것을 확인할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.
[부호의 설명]
100: 전극조립체
110: 제1 전극
111: 제1a 전극
111c: 제1a 전극탭
112: 제1b 전극
112c: 제1b 전극탭
113: 제1c 전극
120: 제2 전극
130: 전극리드
131: 제1 전극리드
132: 제2 전극리드

Claims (15)

  1. 분리막을 개재한 상태로 제1 전극과 제2 전극이 교대로 적층되는 전극조립체로서,
    상기 제1 전극은 전극활물질층 두께가 서로 다른 제1a 전극과 제1b 전극을 포함하는 전극조립체.
  2. 청구항 1에 있어서,
    상기 제1a 전극의 전극활물질층과 상기 제1b 전극의 전극활물질층은 동일한 면적을 가지고,
    상기 제1a 전극의 전극활물질층은 상기 제1b 전극의 전극활물질층 보다 두껍게 구비되는 전극조립체.
  3. 청구항 1에 있어서,
    상기 제1a 전극은 상기 제1b 전극 보다 많은 개수가 적층되는 전극조립체.
  4. 청구항 1에 있어서,
    상기 제1a 전극과 상기 제1b 전극은 각각 제1a 전극탭과 제1b 전극탭을 포함하고,
    상기 제1a 전극탭과 상기 제1b 전극탭은 서로 다른 너비를 가지는 전극조립체.
  5. 청구항 4에 있어서,
    상기 제1b 전극탭은 상기 제1a 전극탭 보다 넓은 너비를 가지는 전극조립체.
  6. 청구항 4에 있어서,
    상기 제1b 전극탭과 상기 제1a 전극탭이 결합되는 제1 전극리드와, 상기 제2 전극의 제2 전극탭이 결합되는 제2 전극리드를 구비한 전극리드를 포함하는 전극조립체.
  7. 청구항 6에 있어서,
    상기 제1b 전극탭과 상기 제1a 전극탭은 서로 접촉되지 않은 상태로 상기 제1 전극리드의 일측과 타측에 각각 결합되는 전극조립체.
  8. 청구항 4에 있어서,
    상기 제1 전극은 상기 제1a 전극 및 상기 제1b 전극과 면적은 동일하고 전극활물질층 두께는 다른 제1c 전극을 더 포함하고,
    상기 제1c 전극은 상기 제1b 전극 보다는 전극활물질층 두께가 작은 전극조립체.
  9. 청구항 8에 있어서,
    상기 제1c 전극은 제1c 전극탭을 포함하며,
    상기 제1c 전극탭은 상기 제1b 전극탭 보다 넓은 너비를 가지는 전극조립체.
  10. 전극활물질층 두께가 서로 다른 제1a 전극과 제1b 전극을 포함한 제1 전극을 제조하는 제1 전극 제조단계(S10); 및
    분리막을 개재한 상태로 제2 전극과 상기 제1 전극의 제1a 전극 또는 제1b 전극을 교대로 적층하여 전극조립체를 제조하는 전극조립체 제조단계(S20)를 포함하는 전극조립체 제조방법.
  11. 청구항 10에 있어서,
    상기 제1 전극 제조단계는, 동일한 면적을 가진 집전체를 복수개 준비하는 공정과, 상기 집전체의 표면에 전극활물질의 로딩량을 달리하여 전극활물질층의 면적은 동일하고 두께는 서로 다른 제1a 전극과 제1b 전극을 제조하는 공정을 포함하되,
    상기 제1a 전극은 상기 제1b 전극 보다 전극활물질의 로딩량을 증대시켜서 상기 제1b 전극 보다 두꺼운 전극활물질층을 제조하고,
    상기 제1b 전극은 상기 제1a 전극 보다 전극활물질의 로딩량을 감소시켜서 상기 제1a 전극 보다 얇은 전극활물질층을 제조하는 전극조립체 제조방법.
  12. 청구항 10에 있어서,
    상기 제1 전극 제조단계는, 상기 제1a 전극과 상기 제1b 전극의 전극활물질이 없는 무지부를 커팅하여 제1a 전극탭과 제1b 전극탭을 제조하되,
    상기 제1b 전극탭은 상기 제1a 전극탭 보다 넓은 너비로 제조되는 전극조립체 제조방법.
  13. 청구항 10에 있어서,
    전극조립체 제조단계(S20)에서 상기 제1 전극은 상기 제1b 전극을 상기 제1a 전극 보다 적은 개수로 적층하는 전극조립체 제조단계(S20)를 포함하는 전극조립체 제조방법.
  14. 청구항 13에 있어서,
    상기 전극조립체 제조단계(S20) 후, 상기 제1a 전극탭과 상기 제1b 전극탭을 제1 전극리드에 결합하고, 상기 제2 전극의 제2 전극탭을 제2 전극리드에 결합하는 전극리드 결합단계(S30)를 더 포함하며,
    상기 제1a 전극탭과 상기 제1b 전극탭은 서로 접촉되지 않은 상태로 상기 제1 전극리드의 일측과 타측에 각각 결합되는 전극조립체 제조방법.
  15. 청구항 1 내지 청구항 9 중 어느 하나의 청구항에 따른 전극조립체; 및
    상기 전극조립체를 수용하는 케이스를 포함하는 이차전지.
PCT/KR2021/005325 2020-05-22 2021-04-27 전극조립체, 그의 제조방법 및 이차전지 WO2021235719A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/792,363 US20230031275A1 (en) 2020-05-22 2021-04-27 Electrode assembly, method for manufacturing the same and secondary battery
CN202180007502.5A CN114846662A (zh) 2020-05-22 2021-04-27 电极组件及其制造方法和二次电池
EP21809324.3A EP4071869A4 (en) 2020-05-22 2021-04-27 ELECTRODE ARRANGEMENT, PRODUCTION METHOD THEREOF AND SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0061375 2020-05-22
KR1020200061375A KR20210144266A (ko) 2020-05-22 2020-05-22 전극조립체, 그의 제조방법 및 이차전지

Publications (1)

Publication Number Publication Date
WO2021235719A1 true WO2021235719A1 (ko) 2021-11-25

Family

ID=78707960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005325 WO2021235719A1 (ko) 2020-05-22 2021-04-27 전극조립체, 그의 제조방법 및 이차전지

Country Status (5)

Country Link
US (1) US20230031275A1 (ko)
EP (1) EP4071869A4 (ko)
KR (1) KR20210144266A (ko)
CN (1) CN114846662A (ko)
WO (1) WO2021235719A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007992A (ko) * 2011-07-11 2013-01-21 가부시키가이샤 히타치세이사쿠쇼 축전지, 조전지, 조전지 설치 방법, 전극군, 전극군의 제조 방법
KR101336309B1 (ko) * 2012-04-20 2013-12-02 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR20150045161A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 리튬 이차전지용 전극조립체 및 이를 포함하는 리튬이차전지
KR20150049635A (ko) * 2013-10-30 2015-05-08 삼성에스디아이 주식회사 이차전지
KR20150134162A (ko) * 2014-05-21 2015-12-01 삼성에스디아이 주식회사 전극 구조체 및 이를 채용한 리튬 전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077027B2 (en) * 2010-03-04 2015-07-07 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery using the same
JP5994977B2 (ja) * 2012-06-26 2016-09-21 三菱自動車工業株式会社 二次電池
JP5861589B2 (ja) * 2012-07-27 2016-02-16 株式会社豊田自動織機 蓄電装置
JP2019133901A (ja) * 2018-02-02 2019-08-08 マクセルホールディングス株式会社 電気化学素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007992A (ko) * 2011-07-11 2013-01-21 가부시키가이샤 히타치세이사쿠쇼 축전지, 조전지, 조전지 설치 방법, 전극군, 전극군의 제조 방법
KR101336309B1 (ko) * 2012-04-20 2013-12-02 주식회사 엘지화학 전극 조립체, 이를 포함하는 전지셀 및 디바이스
KR20150045161A (ko) * 2013-10-18 2015-04-28 주식회사 엘지화학 리튬 이차전지용 전극조립체 및 이를 포함하는 리튬이차전지
KR20150049635A (ko) * 2013-10-30 2015-05-08 삼성에스디아이 주식회사 이차전지
KR20150134162A (ko) * 2014-05-21 2015-12-01 삼성에스디아이 주식회사 전극 구조체 및 이를 채용한 리튬 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071869A4 *

Also Published As

Publication number Publication date
KR20210144266A (ko) 2021-11-30
EP4071869A1 (en) 2022-10-12
CN114846662A (zh) 2022-08-02
US20230031275A1 (en) 2023-02-02
EP4071869A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2014123363A1 (ko) 스텝 유닛셀을 포함하는 단차를 갖는 전극 조립체
WO2022030839A1 (ko) 단선 방지층을 포함하는 전극 조립체 및 이의 제조방법
WO2014104795A1 (ko) 두께 방향의 형상 자유도가 우수한 전극 조립체, 상기 전극 조립체를 포함하는 이차 전지, 전지팩 및 디바이스
WO2013151233A1 (ko) 배터리셀
WO2018030835A1 (ko) 이차 전지
WO2021235719A1 (ko) 전극조립체, 그의 제조방법 및 이차전지
WO2023085850A1 (ko) 전지 조립체 제조방법, 전지 조립체 및 이를 포함하는 이차 전지
WO2023014071A1 (ko) 전극리드 일체형 전극조립체 및 이의 제조방법
WO2021235724A1 (ko) 이차전지 및 그의 제조방법
WO2018012789A1 (ko) 이차전지
WO2022025700A1 (ko) 외장재, 외장재에 패턴을 형성하는 방법 및 외장재를 포함하는 배터리를 생성하는 방법
WO2021251569A1 (ko) 보호부재를 포함하는 전지셀
WO2021085917A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2021015459A1 (ko) 이차전지용 전극 조립체, 이의 제조 방법 및 이를 포함하는 리튬이차전지
WO2020153594A1 (ko) 전극조립체, 그를 포함하는 이차전지, 이차전지 제조방법 및 전지팩
WO2023063734A1 (ko) 접착코팅부가 부가된 리튬 이차전지용 전극 및 이의 제조방법
WO2018021856A1 (ko) 이차 전지
WO2022149921A1 (ko) 절연성 코팅층이 형성된 분리막을 포함하는 이차전지용 유닛셀, 및 이의 제조방법
WO2021235910A1 (ko) 폴딩가능한 파우치형 전지셀 및 이의 제조방법
WO2024043759A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2024136277A1 (ko) 이차 전지 및 그 제조 방법
WO2023062613A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2024049222A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2021033963A1 (ko) 이차전지, 그 이차전지의 제조방법 및 그 이차전지를 포함하는 전지팩
WO2023120924A1 (ko) 3전극 전지 및 이를 이용한 성능 분석 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021809324

Country of ref document: EP

Effective date: 20220706

NENP Non-entry into the national phase

Ref country code: DE