WO2018021856A1 - 이차 전지 - Google Patents

이차 전지 Download PDF

Info

Publication number
WO2018021856A1
WO2018021856A1 PCT/KR2017/008124 KR2017008124W WO2018021856A1 WO 2018021856 A1 WO2018021856 A1 WO 2018021856A1 KR 2017008124 W KR2017008124 W KR 2017008124W WO 2018021856 A1 WO2018021856 A1 WO 2018021856A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
curved
electrode assembly
curved portion
sealing
Prior art date
Application number
PCT/KR2017/008124
Other languages
English (en)
French (fr)
Inventor
이재욱
김경진
김진환
박준형
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170009291A external-priority patent/KR102356496B1/ko
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US16/321,622 priority Critical patent/US11329338B2/en
Priority to CN201780058274.8A priority patent/CN109716574B/zh
Publication of WO2018021856A1 publication Critical patent/WO2018021856A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a secondary battery that incorporates a wound electrode assembly in a case.
  • a rechargeable battery is a battery that repeatedly performs charging and discharging, unlike a primary battery.
  • Small capacity secondary batteries can be used in portable electronic devices such as mobile phones, notebook computers and camcorders, and large capacity secondary batteries can be used as power sources for driving motors of hybrid vehicles and electric vehicles.
  • the secondary battery includes an electrode assembly which is charged and discharged and is formed by winding an electrode and a separator, a pouch for receiving the electrode assembly, and an electrode tab for drawing the electrode assembly out of the pouch.
  • the electrode assembly Since the electrode assembly is pressed after being wound in a cylinder, the electrode assembly has curved portions corresponding to the thickness at both ends, and is formed in a plate shape having a thickness between both curved portions.
  • the pouch receives the electrode assembly and forms a seal along the perimeter.
  • the sealing portion of the pouch provided on the side surface corresponding to the curved portion of the electrode assembly is folded to form a side surface from the outside of the secondary battery.
  • the curved portion sets the maximum width of the electrode assembly, and the side surface of the pouch corresponding to the curved portion sets the maximum width of the secondary battery.
  • the sealing part provided at the side surface is further formed to overlap the side surface of the secondary battery, the maximum width of the secondary battery is increased by the thickness of both sealing portions. That is, the maximum width of the electrode assembly is reduced within the maximum width range of the allowed secondary battery. Reducing the maximum width of the electrode assembly can lead to a reduction in cell capacity. That is, the folding of the sealing part may reduce space utilization.
  • One aspect of the present invention is to provide a secondary battery that increases the maximum width of the electrode assembly accommodated in the pouch, thereby increasing battery capacity and increasing space utilization.
  • a secondary battery includes: an electrode assembly formed by winding a first electrode, a separator, and a second electrode; and a tab connected to the first electrode and the second electrode, respectively, to draw out to the outside.
  • the pouch has a second flat portion corresponding to the first flat portion and a second curved portion connected to the second flat portion corresponding to the first curved portion, wherein the sealing portion extends in the first flat portion.
  • the width W of the sealing portion set in the extension direction is set to be larger than 1/2 of the sum thickness t of the first and second planar portions and less than or equal to the sum thickness t (t / 2). ⁇ W ⁇ t).
  • the first exterior member may be in close contact with the first flat portion and the first curved portion of the electrode assembly, and the second exterior member may be in close contact with the first flat portion of the electrode assembly.
  • the sealing part may include a folding part in close contact with an outer surface of the second curved part, and the folding part may be disposed in the space.
  • the folding parts may be alternately folded in opposite directions.
  • the folding unit may further include a shim member inserted inside the folded portion.
  • the folding unit may be continuously folded in the same direction.
  • the sealing part is provided on one side from which the tab is drawn out, and a front fusion part for thermally fusion bonding the first exterior material and the second exterior material, and a rear connection portion for connecting the first exterior material and the second exterior material, and the front fusion part; It may include a side folding portion provided on the side of the second curved portion therebetween.
  • the sealing portion is provided on both sides of the tab is drawn out and the front fusion portion and the rear fusion portion for heat-sealing the first outer material and the second outer material, and the second curved portion between the front fusion portion and the rear fusion portion It may include a side folding portion provided on the side.
  • the side folding part may be disposed in the space to be in close contact with the outer surface of the second curved part.
  • the side folding part may be folded in a plurality and disposed in the space.
  • the side folding parts may be alternately folded in the space in the opposite direction, and may be folded with a shorter width as the side folding parts move away from the outer surface of the second curved part.
  • the side folding portion may further include a shim member inserted inside the folded portion.
  • the shim member may be formed of a wire and inserted into the entire length of the side folding portion in the longitudinal direction.
  • the side folding part may be folded in the same direction and disposed in the space.
  • FIG. 1 is an exploded perspective view illustrating a rechargeable battery according to a first exemplary embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a state in which a sealing unit of the rechargeable battery of FIG. 1 is folded.
  • FIG. 3 is an exploded perspective view illustrating a rechargeable battery according to a second exemplary embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating the secondary battery of FIG. 3 in combination.
  • FIG. 5 is a perspective view illustrating a state in which a sealing unit of the rechargeable battery of FIG. 4 is folded.
  • FIG. 6 is a partial front view of the rechargeable battery of FIG. 5 viewed from the front.
  • FIG. 7 is a perspective view illustrating a folding state of a sealing part of a rechargeable battery according to a third exemplary embodiment of the present invention.
  • FIG. 8 is a partial front view of the rechargeable battery of FIG. 7 viewed from the front.
  • FIG. 9 is a partial front view of a rechargeable battery according to a fourth exemplary embodiment of the present invention viewed from the front.
  • FIG. 10 is a partial front view of a rechargeable battery according to a fifth exemplary embodiment of the present invention as seen from the front.
  • FIG. 1 is an exploded perspective view illustrating a rechargeable battery according to a first exemplary embodiment of the present invention
  • FIG. 2 is a perspective view illustrating a folding state of a sealing part of the rechargeable battery of FIG. 1.
  • the pouch 820 is heat-sealed to the outside of the first exterior member 821 and the second exterior member 822 to seal the portion 823.
  • the first and second exterior materials 821 and 822 are integrally connected by the rear connection part 832.
  • a folding portion is formed because the portions of the sealing portions 823 of the first and second exterior materials 821 and 822 are located at both sides in the y-axis direction.
  • the sealing portion 823 is provided between the front fusion portion 831 and the front fusion portion 831 and the rear connection portion 832 provided at one side of the x-axis direction in which the tabs 14 and 15 are drawn out. And a side folding part 233 provided on the second curved part 202 side.
  • the sealing process of the pouch 820 is simple, and the electrode assembly ( In (10), the length in the x-axis direction can be increased.
  • FIG. 3 is an exploded perspective view illustrating a rechargeable battery according to a second exemplary embodiment of the present invention
  • FIG. 4 is a perspective view illustrating the combined rechargeable battery of FIG. 3. 3 and 4,
  • the secondary battery 1 includes an electrode assembly 10 for charging and discharging current, and a pouch 20 for receiving the electrode assembly 10 and an electrolyte.
  • the electrode assembly 10 is disposed by winding a first electrode (referred to as “anode”) 11 and a second electrode (referred to as “cathode” for convenience) 12 with the separator 13 interposed therebetween. It is made in the form of a roll.
  • the electrode assembly 10 is formed flat by pressing the side surface in the wound cylindrical shape.
  • the electrode assembly 10 may be connected to the anode 11 and the cathode 12, respectively, and may be drawn out of the pouch 20 through the tabs 14 and 15 provided to one side of the winding cross section.
  • the positive electrode 11 includes a coating part coated with a positive electrode active material on a current collector of a thin metal plate, and an uncoated part that is set as an exposed body by not applying the positive electrode active material.
  • the tab 14 connected to the current collector and the uncoated portion of the positive electrode 11 may be formed of aluminum (Al).
  • the negative electrode 12 includes a coating part in which an active material of the positive electrode 11 and another negative electrode active material are applied to a current collector of a thin metal plate, and a non-coating part which is set to a current collector exposed by not applying a negative electrode active material.
  • the tab 15 connected to the current collector and the uncoated portion of the negative electrode 12 may be formed of nickel (Ni).
  • the electrode assembly 10 includes a first flat portion 101 and a curved portion 102 disposed on both sides of the first flat portion 101 in a winding cross section (yz plane). That is, the electrode assembly 10 forms a winding cross section (yz plane) at the front side from which the tab 15 is drawn out (x-axis direction) and the rear side opposite to the tab 15, and forms the first flat portion 101 in the middle of the winding cross section.
  • the curved surfaces 102 that are convex to the outside from both sides (y-axis direction) of the first flat portion 101 are formed.
  • the pouch 20 heat seals the periphery of the first exterior material 21 and the second exterior material 22 to form a sealing portion 23.
  • the tabs 14 and 15 electrically connect the inside and the outside of the pouch 20 through the sealing part 23.
  • the insulating members 16 and 17 electrically insulate the tabs 14 and 15, thereby electrically insulating the tabs 14 and 15 and the pouch 20 safely.
  • FIG. 5 is a perspective view illustrating a state in which a sealing unit of the rechargeable battery of FIG. 4 is folded
  • FIG. 6 is a partial front view of the rechargeable battery of FIG. 4, 5, and 6, the pouch 20 is formed in a structure corresponding to the electrode assembly 10 accommodated therein.
  • the pouch 20 is connected to both sides (y-axis directions) of the second planar portion 201 and the second planar portion 201 corresponding to the first planar portion 101 and the first curved portion 102. It includes a second curved portion 202 corresponding to).
  • the sealing part 23 of the pouch 20 is an imaginary extension plane EP set in an extension direction (left and right, y-axis direction in FIG. 6) of the first flat part 101, and a second curved surface protruding in the extension direction.
  • Space set in the imaginary intersection plane CP set in the outer surface of the part 202 and the direction which intersects the extension direction from the end of the extension direction of the 2nd curved part 202 (up-down, z-axis direction of FIG. 6). It is located in (S).
  • the sealing portion 23 does not increase the width in the y-axis direction in the secondary battery 1.
  • first exterior member 21 is in close contact with the first flat portion 101 and the first curved portion 102 of the electrode assembly 10
  • second exterior member 22 is the first flat surface of the electrode assembly 10. It is in close contact with the portion 101.
  • the first and second exterior materials 21 and 22 minimize the increase in the width in the y-axis direction and the thickness in the z-axis direction in the secondary battery 1.
  • the width W (see FIG. 4) of the sealing portion 23 set in the extension direction (y-axis direction) is the sum thickness (t, see FIG. 6) of the first planar portion 101 and the second planar portion 201. It is set to greater than 1/2 of the sum thickness t or less (t / 2 ⁇ W? T).
  • the sealing part 23 is located within the maximum protrusion range D1 of the second curved part 202 set on both sides of the first planar part 101 in the extending direction (left and right, y-axis direction in FIG. 6). That is, the sealing part 23 of the pouch 20 is provided on one side outer surface of the second curved part 202 within the maximum protruding range D1 of the second curved part 202 in the y-axis direction.
  • the sealing part may not be disposed on the outermost side of the second curved portion 202 in the y-axis direction. Then, the thickness and the space occupied by the sealing portion at the outermost side surface of the second curved portion 202 in the y-axis direction are removed. That is, the sealing part 23 prevents the width increase of the y-axis direction in the secondary battery 1, ensuring the sealing force of the 1st, 2nd exterior material 21, 22. As shown in FIG. Therefore, the reduction of the capacity of the secondary battery 1 can be prevented.
  • the pouch 20 may be formed in a multilayer sheet structure surrounding the outside of the electrode assembly 10.
  • the pouch 20 may be formed of a polymer sheet 121 that forms an inner surface and electrically insulates and heat-bonds, a nylon sheet 122 that forms an outer surface to protect, and a metal sheet that provides mechanical strength ( 123).
  • the nylon sheet 122 may be replaced with a polyethyleneterephthalate (PET) sheet or a PET-nylon composite sheet 122.
  • PET polyethyleneterephthalate
  • the metal sheet 123 is interposed between the polymer sheet 121 and the nylon sheet 122 and may be formed of an aluminum sheet.
  • the pouch 20 accommodates the electrode assembly 10 with the first exterior material 21, covers the electrode assembly 10 with the second exterior material 22, and first and second surfaces outside the electrode assembly 10.
  • the exterior materials 21 and 22 are heat-sealed to form the sealing part 23.
  • the first envelope 21 is formed in a concave structure to accommodate the electrode assembly 10
  • the second envelope 22 is flat to cover the electrode assembly 10 accommodated in the first envelope 21. It is formed into a structure.
  • the first and second exterior materials 21 and 22 may be formed of a polymer sheet 121, a nylon sheet 122, and a metal sheet 123 having the same layer structure.
  • the sealing part 23 in the pouch 20 includes a folding part 233 in close contact with the outer surface of the second curved part 202.
  • the folding unit 233 is disposed in the space S.
  • the folding units 233 may be alternately folded in opposite directions.
  • the sealing part 23 may include the front fusion part 231 and the rear fusion part 232, and the front fusion part provided on both sides of the x-axis direction in which the tabs 14 and 15 are drawn out. And a side folding part 233 provided on the second curved part 202 side between the part 231 and the rear fusion part 232.
  • the side foldable portion 233 is folded in the y-axis direction and squeezed in the x-axis direction so as to extend the maximum protrusion range D1 of the second curved portion 202 in the y-axis direction of the pouch 20. Within close contact with the outer surface of the second curved portion 202.
  • the side folding part 233 is plurally folded, the extension plane EP extending to the y-direction maximum protrusion range D1 of the second curved part 202, and the second curved part 202 protruding in the extension direction.
  • the imaginary intersection plane CP is set to a half thickness range t / 2 on one side divided at the center of the sum thickness t of the first planar portion 101 and the second planar portion 201. For convenience, the thickness difference by the first and second exterior materials 21 and 22 in the 1/2 thickness range t / 2 is ignored.
  • the side folding part 233 is accommodated in the pouch 20 to increase the maximum width (maximum protrusion range D1) of the electrode assembly 10 set in the y-axis direction, thereby increasing the battery capacity and increasing the secondary battery 1. ) Can increase the space utilization.
  • the side folding portion 233 is equal to the width of the electrode assembly 10, ie, between the second curved portions 202, by the width difference ⁇ D 1 (in the y-axis direction) of the electrode assembly reduced by the side folding portion of the prior art. It is possible to further increase the maximum protruding range (D1) or the second planar portion 201 of.
  • the space S formed on one side of the second curved portion 202 increases.
  • an acceptable range of the side folding part 233 increases.
  • the side folding parts 233 may be alternately folded in one side space S of the second curved part 202 in opposite directions.
  • the space S becomes narrower as it moves away from the second curved portion 202.
  • the side folding part 233 is folded with a shorter width as it moves away from the outer surface of the second curved part 202. That is, the side folding part 233 may be folded and accommodated in a maximum amount corresponding to the shape of the space S.
  • the side folding portion 233 is within the maximum protruding range D1 of the second curved portion 202 in the y-axis direction, and the sum of the first flat portion 101 and the second flat portion 201 in the z-axis direction. It is disposed within a half thickness range t / 2 of one side divided at the center of the thickness t.
  • the side folding portion 233 disposed in the second curved portion 202 in the space S does not exceed the maximum protruding range D1 of the second curved portion 202 on both sides in the y-axis direction, so The maximum width (maximum protrusion range D1) of the accommodated electrode assembly 10 may be increased to increase battery capacity and increase space utilization of the secondary battery 1.
  • the sealing portion 823 is formed at three sides of the pouch 820, and in the second embodiment, the sealing portion 23 is formed at the four sides of the pouch 20. Therefore, in the first and second embodiments, the pouches 820 and 20 may be formed of various first exterior materials 821 and 21 and second exterior materials 822 and 22.
  • the secondary battery 4 of the first embodiment may have a longer length in the x-axis direction in the electrode assembly 10 than in the secondary battery 1 of the second embodiment.
  • FIG. 7 is a perspective view illustrating a state in which a sealing unit of a rechargeable battery according to a third exemplary embodiment of the present invention is folded
  • FIG. 8 is a partial front view of the rechargeable battery of FIG. 7 and 8, in the pouch 50 of the secondary battery 2 according to the third embodiment, the sealing portions 53 of the first and second exterior materials 51 and 52 are disposed at both sides in the y-axis direction.
  • the folding part is formed by folding the position to be located.
  • the folding part may further include a shim member 54 inserted inside the folded part.
  • the pouch 50 has a side folding part 533.
  • the side folding part 533 is an extension plane EP of the second planar part 501, an outer surface of the second curved part 502 protruding in the extension direction (left and right, y-axis direction in FIG. 8), and a second curved surface. It is disposed in the space S2 set in the imaginary cross plane CP set in the z-axis direction at the end of the extending direction of the portion 502 and in close contact with the outer surface of the second curved portion 502.
  • the side folding part 533 is located within the maximum width (maximum protruding range D2 of the second curved portion 502) of the electrode assembly 10 accommodated in the pouch 50 and set in the y-axis direction. That is, the side folding part 533 is provided on one side outer surface of the second curved part 502 within the maximum protruding range D2 of the second curved part 502 in the y-axis direction.
  • the side folding part may not be disposed on the outermost side of the second curved part 502 in the y-axis direction. That is, the thickness and the space occupied by the side folding portion at the outermost side surface of the second curved portion 502 in the y-axis direction are removed. In addition, the capacity reduction of the secondary battery 2 can be prevented.
  • the side folding portion 533 further includes a shim member 54 inserted into the folded portion.
  • the shim member 54 is formed of a wire, and is inserted and arranged in the entire range of the longitudinal direction (x-axis direction) of the side folding part 533.
  • the shim member 54 can improve the durability against external impact of the sealing portion 53 and the side folding portion 533.
  • the side folding portion 533 having the shim member 54 may be alternately folded in one side space S2 of the second curved portion 502 in opposite directions.
  • the shim member 54 may be disposed inside the portion in which the side folding portion 533 is primarily folded to have a strong fastening force with the side folding portion 533.
  • the space S2 becomes narrower as it moves away from the second curved portion 502.
  • the side folding part 533 is folded with a shorter width as it moves away from the outer surface of the second curved part 502. That is, the side folding part 533 may be folded and accommodated in a maximum amount corresponding to the shape of the space S2.
  • the side folding portion 533 incorporating the shim member 54 is within the maximum protruding range D2 of the second curved portion 502 in the y-axis direction, and is equal to the first flat portion 101 in the z-axis direction.
  • the second planar portion 501 is disposed within a half thickness range t2 / 2 on one side divided at the center of the sum thickness t2 of the second planar portion 501.
  • the side folding part 533 disposed in the second curved portion 502 in the space S and having the shim member 54 built therein extends the maximum protruding range D2 of the second curved portion 502 at both sides in the y-axis direction. Since it does not exceed the maximum width (maximum protrusion range D2) of the electrode assembly 10 accommodated in the pouch 50 can be increased. Therefore, the capacity of the battery is increased, and the space utilization of the secondary battery 2 can be increased.
  • the side folding part 533 is the width of the electrode assembly 10, that is, the maximum of the second curved part 502 by the width difference ⁇ D 2 of the electrode assembly reduced by the side folding part of the prior art.
  • the range of the protruding range D2 or the second planar portion 501 can be further increased.
  • FIG. 9 is a partial front view of a rechargeable battery according to a fourth exemplary embodiment of the present invention viewed from the front.
  • portions of the sealing portions 63 of the first and second exterior materials 61 and 62 located at both sides of the y-axis direction.
  • the side folding part 633 is formed.
  • the side folding part 633 is folded in the same direction (clockwise in FIG. 9), and extends in the extension plane EP extending in the y-axis direction maximum protrusion range D3 of the second curved part 602 and the extension direction.
  • the second curved surface disposed in the space (S3) is set to the outer surface of the second curved portion 602, and the virtual intersection plane (CP) set in the z-axis direction at the end of the second curved portion 602 in the extending direction of the second curved portion 602. It is in close contact with the outer surface of the portion 602.
  • the side folding part may not be disposed on the outermost side of the second curved part 602 in the y-axis direction. That is, the thickness and the space occupied by the side folding part at the outermost side surface of the second curved part 602 in the y-axis direction are removed. In addition, the capacity reduction of the secondary battery 3 can be prevented.
  • the side folding part 653 further includes a shim member 64 inserted into an inner side of a portion to be folded (wound). do.
  • the shim member 64 is formed of a wire, and is inserted and disposed in the entire length direction (x-axis direction) of the side folding portion 653.
  • the shim member 64 can improve the endurance strength against external collision of the sealing portion 65 and the side folding portion 653.
  • the side folding portion 633 without the shim member 64 and the side folding portion 653 with the shim member 64 include the second curved portion 602.
  • the shim member 64 may be disposed at the innermost portion of the portion where the side folding portion 653 is folded to have a strong fastening force with the side folding portion 653.
  • the space S3 is formed at two positions on the upper and lower sides of the second curved portion 602. That is, the side folding parts 633 and 653 may be folded and accommodated in a maximum amount corresponding to the shape of the space S3.
  • the side fold portion 633 without the shim member 64 and the side fold portion 653 with the shim member 64 have the maximum protruding range D3 of the second curved portion 602 in the y-axis direction.
  • the side fold portion 633 without the shim member 64 and the side fold portion 653 with the shim member 64 have the maximum protruding range D3 of the second curved portion 602 in the y-axis direction.
  • the maximum width (maximum protrusion range D3) of the electrode assembly 10 accommodated in the 60 can be increased. Therefore, the capacity of the battery is increased, and the space utilization of the secondary batteries 3 and 5 can be increased.
  • the side folding parts 633 and 653 may have the width of the electrode assembly 10, that is, the second curved part () as much as the width difference ⁇ D 3 of the electrode assembly reduced by the side folding parts of the related art.
  • the maximum protruding range D3 or the range of the second planar portion 601 of 602 can be further increased.
  • first curved portion 121 polymer sheet
  • side folding part 832 rear connection part
  • EP extension plane S, S2, S3: space
  • DELTA D1, DELTA D2, DELTA D3 width difference of the electrode assembly reduced by the side folding part of the prior art

Abstract

본 발명의 일 실시예에 따른 이차 전지는, 제1전극, 세퍼레이터 및 제2전극을 권취하여 형성되는 전극 조립체, 및 상기 제1전극과 상기 제2전극에 각각 연결되는 탭을 외부로 인출하도록 상기 전극 조립체를 수용하는 제1외장재와 제2외장재의 외곽을 열융착하여 실링부를 형성되는 파우치를 포함하며, 상기 전극 조립체는, 권취 단면에서 제1평면부의 양측에 볼록한 제1곡면부를 구비하고, 상기 파우치는, 상기 제1평면부에 대응하는 제2평면부와 상기 제1곡면부에 대응하여 상기 제2평면부에 연결되는 제2곡면부를 구비하며, 상기 실링부는, 상기 제1평면부의 연장 방향으로 설정되는 연장 평면, 상기 연장 방향으로 돌출되는 상기 제2곡면부의 외면, 및 상기 제2곡면부의 상기 연장 방향 끝에서 상기 연장 방향에 교차하는 방향으로 설정되는 교차 평면으로 설정되는 공간 내에 위치한다.

Description

이차 전지
본 기재는 권취된 전극 조립체를 케이스에 내장하는 이차 전지에 관한 것이다.
모바일 기기에 대한 기술 개발에 따라 에너지원으로써 이차 전지의 수요가 증가되고 있다. 이차 전지(rechargeable battery)는 일차 전지와 달리 충전 및 방전을 반복적으로 수행하는 전지이다.
소용량의 이차 전지는 휴대폰이나 노트북 컴퓨터 및 캠코더와 같이 휴대가 가능한 소형 전자기기에 사용되고, 대용량 이차 전지는 하이브리드 자동차 및 전기 자동차의 모터 구동용 전원으로 사용될 수 있다.
예를 들면, 이차 전지는 충전 및 방전 작용하며 전극과 세퍼레이터를 권취하여 형성되는 전극 조립체, 전극 조립체를 수용하는 파우치 및 전극 조립체를 파우치의 외부로 인출하는 전극 탭을 포함한다.
전극 조립체는 원통으로 권취 후 가압되므로 양단에서 두께에 대응하는 곡면부를 가지며, 양측 곡면부 사이에서 두께를 가지는 판상으로 형성된다. 파우치는 전극 조립체를 수용하고 외곽을 따라 실링부를 형성한다.
전극 조립체의 곡면부에 대응하는 측면에 구비되는 파우치의 실링부는 폴딩되어 이차 전지의 외부에서 측면을 형성한다. 곡면부는 전극 조립체의 최대 폭을 설정하며, 곡면부에 대응하는 파우치의 측면은 이차 전지의 최대 폭을 설정한다.
측면에 구비되는 실링부가 폴딩되어 이차 전지의 측면에 포개어지는 측면을 더 형성하므로 양측 실링부의 두께만큼 이차 전지의 최대 폭이 증가된다. 즉 허용된 이차 전지의 최대 폭 범위 내에서 전극 조립체의 최대 폭이 감소된다. 전극 조립체의 최대 폭 감소는 전지 용량의 감소로 이어질 수 있다. 즉 실링부의 폴딩은 공간 활용성을 저하시킬 수 있다.
본 발명의 일 측면은 파우치에 수용되는 전극 조립체의 최대 폭을 증대시켜서, 전지 용량을 증대시키며 공간 활용성을 높이는 이차 전지를 제공하는 것이다.
본 발명의 일 실시예에 따른 이차 전지는, 제1전극, 세퍼레이터 및 제2전극을 권취하여 형성되는 전극 조립체, 및 상기 제1전극과 상기 제2전극에 각각 연결되는 탭을 외부로 인출하도록 상기 전극 조립체를 수용하는 제1외장재와 제2외장재의 외곽을 열융착하여 실링부를 형성되는 파우치를 포함하며, 상기 전극 조립체는, 권취 단면에서 제1평면부의 양측에 볼록한 제1곡면부를 구비하고, 상기 파우치는, 상기 제1평면부에 대응하는 제2평면부와 상기 제1곡면부에 대응하여 상기 제2평면부에 연결되는 제2곡면부를 구비하며, 상기 실링부는, 상기 제1평면부의 연장 방향으로 설정되는 연장 평면, 상기 연장 방향으로 돌출되는 상기 제2곡면부의 외면, 및 상기 제2곡면부의 상기 연장 방향 끝에서 상기 연장 방향에 교차하는 방향으로 설정되는 교차 평면으로 설정되는 공간 내에 위치한다.
상기 연장 방향으로 설정되는 상기 실링부의 폭(W)은 상기 제1평면부와 상기 제2평면부의 합 두께(t)의 1/2보다 크고 상기 합 두께(t) 이하로 설정될(t/2<W≤t) 수 있다.
상기 제1외장재는 상기 전극 조립체의 상기 제1평면부 및 상기 제1곡면부에 밀착되고, 상기 제2외장재는 상기 전극 조립체의 상기 제1평면부에 밀착될 수 있다.
상기 실링부는 상기 제2곡면부의 외면에 밀착되는 폴딩부를 포함하고, 상기 폴딩부는 상기 공간 내에 배치될 수 있다.
상기 폴딩부는 서로 반대 방향으로 번갈아 폴딩될 수 있다.
상기 폴딩부는 폴딩되는 내측에 삽입되는 심 부재를 더 포함할 수 있다.
상기 폴딩부는 동일 방향으로 연속 폴딩될 수 있다.
상기 실링부는 상기 탭이 인출되는 일측에 구비되고 상기 제1외장재와 상기 제2외장재를 열융착하는 전방 융착부, 및 상기 제1외장재와 상기 제2외장재를 연결하는 후방 연결부와 상기 전방 융착부와 사이의 상기 제2곡면부 측에 구비되는 사이드 폴딩부를 포함할 수 있다.
상기 실링부는 상기 탭이 인출되는 양측에 구비되고 상기 제1외장재와 상기 제2외장재를 열융착하는 전방 융착부와 후방 융착부, 및 상기 전방 융착부와 상기 후방 융착부 사이의 상기 제2곡면부 측에 구비되는 사이드 폴딩부를 포함할 수 있다.
상기 사이드 폴딩부는 상기 공간에 배치되어 상기 제2곡면부의 외면에 밀착될 수 있다.
상기 사이드 폴딩부는 복수로 폴딩되어 상기 공간 내에 배치될 수 있다.
상기 사이드 폴딩부는 상기 공간에서 서로 반대 방향으로 번갈아 폴딩되며 상기 제2곡면부의 외면에서 멀어질수록 짧은 폭으로 폴딩될 수 있다.
상기 사이드 폴딩부는 폴딩되는 내측에 삽입되는 심 부재를 더 포함할 수 있다.
상기 심 부재는 와이어로 형성되어 상기 사이드 폴딩부의 길이 방향 전체 범위에 삽입될 수 있다.
상기 사이드 폴딩부는 동일 방향으로 폴딩되어, 상기 공간 내에 배치될 수 있다.
본 발명의 일 실시예에 따르면, 파우치의 실링부(예, 사이드 폴딩부)를 제1평면부의 연장 방향으로 설정되는 연장 평면, 제2곡면부의 외면, 및 제2곡면부의 연장 방향 끝에 교차하는 방향으로 설정되는 교차 평면으로 설정되는 공간(S) 내에 구비하므로 파우치에 수용되는 전극 조립체의 최대 폭(양측 제2곡면부 사이 거리로 설정)을 증대시킬 수 있다. 따라서 이차 전지에서 전지 용량이 증대되며, 공간 활용성이 높아질 수 있다.
도 1은 본 발명의 제1실시예에 따른 이차 전지를 분해하여 도시한 사시도이다.
도 2는 도 1의 이차 전지의 실링부를 폴딩한 상태를 도시한 사시도이다.
도 3은 본 발명의 제2실시예에 따른 이차 전지를 분해하여 도시한 사시도이다.
도 4는 도 3의 이차 전지를 결합하여 도시한 사시도이다.
도 5는 도 4의 이차 전지의 실링부를 폴딩한 상태를 도시한 사시도이다.
도 6은 도 5의 이차 전지를 전방에서 본 부분 정면도이다.
도 7은 본 발명의 제3실시예에 따른 이차 전지의 실링부를 폴딩한 상태를 도시한 사시도이다.
도 8은 도 7의 이차 전지를 전방에서 본 부분 정면도이다.
도 9는 본 발명의 제4실시예에 따른 이차 전지를 전방에서 본 부분 정면도이다.
도 10은 본 발명의 제5실시예에 따른 이차 전지를 전방에서 본 부분 정면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 제1실시예에 따른 이차 전지를 분해하여 도시한 사시도이고, 도 2는 도 1의 이차 전지의 실링부를 폴딩한 상태를 도시한 사시도이다.
도 1 및 도 2를 참조하면, 제1실시예에 따른 이차 전지(4)에서 파우치(820)는 제1외장재(821)와 제2외장재(822)의 외곽을 열융착 하여 실링부(823)를 형성한다. 제1, 제2외장재(821, 822)는 후방 연결부(832)에 의하여 일체로 연결된다. 파우치(820)에서, 제1, 제2외장재(821, 822)의 실링부(823) 중 y축 방향 양측에 위치하는 부분을 폴딩하므로 폴딩부가 형성된다.
파우치(820)에서 실링부(823)는 탭(14, 15)이 인출되는 x축 방향의 일측에 구비되는 전방 융착부(831), 및 전방 융착부(831)와 후방 연결부(832) 사이에서 제2곡면부(202) 측에 구비되는 사이드 폴딩부(233)를 포함한다.
제1실시예의 이차 전지(4)의 파우치(820)에서, 일체로 형성되는 후방 연결부(832)는 후방에서 별도의 실링부를 형성하지 않게 하므로 파우치(820)의 실링 공정을 단순하고, 전극 조립체(10)에서 x축 방향의 길이를 길게 할 수 있다.
전극 조립체(10) 및 파우치(820)의 구체적인 구성은 후술하는 제2실시예에 개시되어 있다.
도 3은 본 발명의 제2실시예에 따른 이차 전지를 분해하여 도시한 사시도이고, 도 4는 도 3의 이차 전지를 결합하여 도시한 사시도이다. 도 3 및 도 4를 참조하면, 이차 전지(1)는 전류를 충전 및 방전 작용하는 전극 조립체(10), 및 전극 조립체(10)와 전해질을 수용하는 파우치(20)를 포함한다.
전극 조립체(10)는 세퍼레이터(13)를 사이에 두고 제1전극(편의상 "양극"이라 한다)(11)과 제2전극(편의상, "음극"이라 한다)(12)을 배치하여 권취함으로써 젤리롤 형태로 이루어진다.
전극 조립체(10)는 권취된 원통 형상에서 측면을 가압함으로써 납작하게 형성된다. 전극 조립체(10)는 양극(11)과 음극(12)에 각각 연결되어 권취 단면의 일측으로 제공되는 탭(14, 15)을 통하여 파우치(20)의 외부로 인출될 수 있다.
양극(11)은 금속 박판의 집전체에 양극 활물질을 도포한 코팅부 및 양극 활물질을 도포하지 않아 노출된 진접체로 설정되는 무지부를 포함한다. 예를 들면, 양극(11)의 집전체 및 무지부에 연결되는 탭(14)은 알루미늄(Al)으로 형성될 수 있다.
음극(12)은 양극(11)의 활물질과 다른 음극 활물질을 금속 박판의 집전체에 도포한 코팅부 및 음극 활물질을 도포하지 않아 노출된 집전체로 설정되는 무지부를 포함한다. 예를 들면, 음극(12)의 집전체 및 무지부에 연결되는 탭(15)은 니켈(Ni)로 형성될 수 있다.
전극 조립체(10)은 권취 단면(yz 평면)에서 제1평면부(101)와 제1평면부(101)의 양측에 배치되는 곡면부(102)를 포함한다. 즉 전극 조립체(10)는 탭(15)이 인출되는(x축 방향) 전방과 그 반대측인 후방에서 권취 단면(yz 평면)을 형성하고, 권취 단면의 중간에 제1평면부(101)를 형성하며, 제1평면부(101)의 양측(y축 방향)에서 외부로 볼록한 곡면부(102)를 형성한다.
파우치(20)는 제1외장재(21)와 제2외장재(22)의 외곽을 열융착하여 실링부(23)를 형성한다. 탭(14, 15)은 실링부(23)를 통하여 파우치(20)의 내부와 외부를 전기적으로 연결한다. 절연부재(16, 17)는 탭(14, 15)을 전기적으로 절연하여, 탭(14, 15)과 파우치(20)를 전기적으로 안전하게 절연한다.
도 5는 도 4의 이차 전지의 실링부를 폴딩한 상태를 도시한 사시도이고, 도 6은 도 5의 이차 전지를 전방에서 본 부분 정면도이다. 도 4, 도 5 및 도 6을 참조하면, 파우치(20)는 내부에 수용되는 전극 조립체(10)에 대응하는 구조로 형성된다.
예를 들면, 파우치(20)는 제1평면부(101)에 대응하는 제2평면부(201), 제2평면부(201)의 양측(y축 방향)에 연결되어 제1곡면부(102)에 대응하는 제2곡면부(202)를 포함한다.
파우치(20)의 실링부(23)는 제1평면부(101)의 연장 방향(도 6의 좌우, y축 방향)으로 설정되는 가상의 연장 평면(EP), 연장 방향으로 돌출되는 제2곡면부(202)의 외면, 및 제2곡면부(202)의 연장 방향 끝에서 연장 방향에 교차하는 방향(도 6의 상하, z축 방향)으로 설정되는 가상의 교차 평면(CP)으로 설정되는 공간(S) 내에 위치한다. 실링부(23)는 이차 전지(1)에서 y축 방향의 폭을 증대시키지 않는다.
이때, 제1외장재(21)는 전극 조립체(10)의 제1평면부(101) 및 제1곡면부(102)에 밀착되고, 제2외장재(22)는 전극 조립체(10)의 제1평면부(101)에 밀착된다. 제1, 제2외장재(21, 22)는 이차 전지(1)에서 y축 방향의 폭 및 z축 방향의 두께 증대를 최소화 한다.
연장 방향(y축 방향)으로 설정되는 실링부(23)의 폭(W, 도 4 참조)은 제1평면부(101)와 제2평면부(201)의 합 두께(t, 도 6 참조)의 1/2보다 크고 합 두께(t) 이하로 설정된다(t/2<W≤t).
즉 실링부(23)는 제1평면부(101)의 연장 방향(도 6의 좌우, y축 방향) 양측에 설정되는 제2곡면부(202)의 최대 돌출 범위(D1) 이내에 위치한다. 즉 파우치(20)의 실링부(23)는 y축 방향에서 제2곡면부(202)의 최대 돌출 범위(D1) 이내에서 제2곡면부(202)의 일측 외면에 구비된다.
따라서 y축 방향에서 제2곡면부(202)의 최외곽 측에 실링부가 배치되지 않을 수 있다. 그리고 y축 방향에서 제2곡면부(202)의 최외곽 측면에서 실링부가 차지하는 두께 및 공간이 제거된다. 즉 실링부(23)는 제1, 제2외장재(21, 22)의 실링력을 확보하면서 이차 전지(1)에서 y축 방향의 폭 증대를 방지한다. 따라서 이차 전지(1)의 용량 감소가 방지될 수 있다.
다시 도 3을 참조하면, 파우치(20)는 전극 조립체(10)의 외부를 감싸는 다층 시트 구조로 형성될 수 있다. 예를 들면, 파우치(20)는 내면을 형성하고 전기적인 절연 및 열융착 작용하는 폴리머 시트(121), 외면을 형성하여 보호 작용하는 나일론 시트(122), 및 기계적인 강도를 제공하는 금속 시트(123)를 포함한다.
나일론 시트(122)는 PET(polyethyleneterephthalate) 시트 또는 PET-나일론 복합 시트(122)로 대치될 수도 있다. 금속 시트(123)는 폴리머 시트(121)와 나일론 시트(122) 사이에 개재되며, 알루미늄 시트로 형성될 수 있다.
파우치(20)는 제1외장재(21)로 전극 조립체(10)를 수용하고, 제2외장재(22)로 전극 조립체(10)를 덮으며, 전극 조립체(10)의 외측에서 제1, 제2외장재(21, 22)가 열융착 됨으로써 실링부(23)를 형성한다.
예를 들면, 제1외장재(21)는 전극 조립체(10)를 수용하도록 오목한 구조로 형성되고, 제2외장재(22)는 제1외장재(21)에 수용된 전극 조립체(10)를 덮을 수 있도록 평평한 구조로 형성된다. 제1, 제2외장재(21, 22)는 동일한 층구조의 폴리머 시트(121), 나일론 시트(122) 및 금속 시트(123)로 형성될 수 있다.
파우치(20)에서 실링부(23)는 제2곡면부(202)의 외면에 밀착되는 폴딩부(233)를 포함한다. 폴딩부(233)는 공간(S) 내에 배치된다. 일례로써, 폴딩부(233)는 서로 반대 방향으로 번갈아 폴딩될 수 있다.
보다 구체적으로 보면, 파우치(20)에서 실링부(23)는 탭(14, 15)이 인출되는 x축 방향의 양측에 구비되는 전방 융착부(231)와 후방 융착부(232), 및 전방 융착부(231)와 후방 융착부(232) 사이에서 제2곡면부(202) 측에 구비되는 사이드 폴딩부(233)를 포함한다.
도 5 및 도 6을 참조하면, 사이드 폴딩부(233)는 y축 방향으로 폴딩되고 x축 방향으로 벋어 파우치(20)의 y축 방향에서 제2곡면부(202)의 최대 돌출 범위(D1) 이내에서 제2곡면부(202)의 외면에 밀착된다.
즉 사이드 폴딩부(233)는 복수로 폴딩되어, 제2곡면부(202)의 y축 방향 최대 돌출 범위(D1)까지 연장되는 연장 평면(EP), 연장 방향으로 돌출되는 제2곡면부(202)의 외면, 및 제2곡면부(202)의 연장 방향 끝에서 z축 방향으로 설정되는 가상의 교차 평면(CP)으로 설정되는 공간(S) 내에 배치되어 제2곡면부(202)의 외면에 밀착된다.
가상의 교차 평면(CP)은 제1평면부(101)와 제2평면부(201)의 합 두께(t)의 중심에서 분할되는 일측의 1/2 두께 범위(t/2)로 설정된다. 편의상, 1/2 두께 범위(t/2)에서 제1, 제2외장재(21, 22)에 의한 두께 차이는 무시한다.
따라서 사이드 폴딩부(233)는 파우치(20)에 수용되어 y축 방향으로 설정되는 전극 조립체(10)의 최대 폭(최대 돌출 범위(D1))을 증대시켜, 전지 용량을 증대시키며 이차 전지(1)의 공간 활용성을 높일 수 있다.
즉 사이드 폴딩부(233)는 종래기술의 사이드 폴딩부에 의하여 감소되는 전극 조립체의 폭 차이(ΔD1)(y축 방향에서)만큼 전극 조립체(10)의 폭, 즉 제2곡면부(202) 사이의 최대 돌출 범위(D1) 또는 제2평면부(201)를 더 증대시킬 수 있다.
z축 방향으로 설정되는 전극 조립체(10) 및 파우치(20)의 합 두께(t)가 증대될수록 제2곡면부(202)의 일측에 형성되는 공간(S)이 증대된다. 최대 돌출 범위(D1)가 고정된 상태에서 공간(S)이 증대될수록 사이드 폴딩부(233)의 수용 가능 범위가 확대된다.
예를 들면, 사이드 폴딩부(233)는 제2곡면부(202)의 일측 공간(S)에서 서로 반대 방향으로 번갈아 폴딩되어 수용될 수 있다. 공간(S)은 제2곡면부(202)에서 멀어질수록 좁아진다. 이때, 사이드 폴딩부(233)는 제2곡면부(202)의 외면에서 멀어질수록 점점 더 짧은 폭으로 폴딩된다. 즉 사이드 폴딩부(233)는 공간(S)의 형상에 대응하여 최대량으로 폴딩되어 수용될 수 있다.
또한 사이드 폴딩부(233)는 y축 방향에서 제2곡면부(202)의 최대 돌출 범위(D1) 이내이고, z축 방향에서 제1평면부(101)와 제2평면부(201)의 합 두께(t)의 중심에서 분할되는 일측의 1/2 두께 범위(t/2) 이내에 배치된다.
공간(S)에서 제2곡면부(202)에 배치되는 사이드 폴딩부(233)는 y축 방향 양측에서 제2곡면부(202)의 최대 돌출 범위(D1)를 초과하지 않으므로 파우치(20)에 수용되는 전극 조립체(10)의 최대 폭(최대 돌출 범위(D1))을 증대시켜 전지 용량을 증대시키며 이차 전지(1)의 공간 활용성을 높일 수 있다.
제1실시예는 파우치(820)에서 실링부(823)를 3변에 형성하고, 제2실시예는 파우치(20)에서 실링부(23)를 4변에 형성한다. 따라서 제1, 제2실시예는 파우치(820, 20)는 다양한 제1외장재(821, 21) 및 제2외장재(822, 22)로 형성될 수 있다. 또한 제1실시예의 이차 전지(4)는 제2실시예의 이차 전지(1)에 비하여, 전극 조립체(10)에서 x축 방향의 길이를 더 길게 형성할 수 있다.
이하에서 본 발명의 제3, 4실시예에 대하여 설명한다. 제1 내지 제4실시예의 구성을 비교하여 서로 동일한 구성을 생략하고 서로 다른 구성에 대하여 설명한다.
도 7은 본 발명의 제3실시예에 따른 이차 전지의 실링부를 폴딩한 상태를 도시한 사시도이고, 도 8은 도 7의 이차 전지를 전방에서 본 부분 정면도이다. 도 7 및 도 8을 참조하면, 제3실시예에 따른 이차 전지(2)의 파우치(50)에서, 제1, 제2외장재(51, 52)의 실링부(53) 중 y축 방향 양측에 위치하는 부분을 폴딩하므로 폴딩부가 형성된다. 폴딩부는 폴딩되는 내측에 삽입되는 심 부재(54)를 더 포함할 수 있다.
제3실시예에서 파우치(50)는 사이드 폴딩부(533)를 구비한다. 사이드 폴딩부(533)는 제2평면부(501)의 연장 평면(EP), 연장 방향(도 8의 좌우, y축 방향)으로 돌출되는 제2곡면부(502)의 외면, 및 제2곡면부(502)의 연장 방향 끝에서 z축 방향으로 설정되는 가상의 교차 평면(CP)으로 설정되는 공간(S2) 내에 배치되어 제2곡면부(502)의 외면에 밀착된다.
따라서 사이드 폴딩부(533)는 파우치(50)에 수용되어 y축 방향으로 설정되는 전극 조립체(10)의 최대 폭(제2곡면부(502)의 최대 돌출 범위(D2)) 이내에 위치한다. 즉 사이드 폴딩부(533)는 y축 방향에서 제2곡면부(502)의 최대 돌출 범위(D2) 이내에서 제2곡면부(502)의 일측 외면에 구비된다.
따라서 y축 방향에서 제2곡면부(502)의 최외곽 측에 사이드 폴딩부가 배치되지 않을 수 있다. 즉 y축 방향에서 제2곡면부(502)의 최외곽 측면에서 사이드 폴딩부가 차지하는 두께 및 공간이 제거된다. 그리고 이차 전지(2)의 용량 감소가 방지될 수 있다.
제3실시예에서 사이드 폴딩부(533)는 폴딩되는 부분의 내측에 삽입되는 심 부재(54)를 더 포함한다. 심 부재(54)는 와이어로 형성되어 사이드 폴딩부(533)의 길이 방향(x축 방향) 전체 범위에 삽입되어 배치된다. 심 부재(54)는 실링부(53) 및 사이드 폴딩부(533)의 외부 충돌에 대한 내구 강도를 개선할 수 있다.
예를 들면, 심 부재(54)를 내장한 사이드 폴딩부(533)는 제2곡면부(502)의 일측 공간(S2)에서 서로 반대 방향으로 번갈아 폴딩되어 수용될 수 있다. 심 부재(54)는 사이드 폴딩부(533)가 1차 폴딩되는 부분의 내측에 배치되어 사이드 폴딩부(533)와 강한 체결력을 가질 수 있다.
공간(S2)은 제2곡면부(502)에서 멀어질수록 좁아진다. 이때, 사이드 폴딩부(533)는 제2곡면부(502)의 외면에서 멀어질수록 점점 더 짧은 폭으로 폴딩된다. 즉 사이드 폴딩부(533)는 공간(S2)의 형상에 대응하여 최대량으로 폴딩되어 수용될 수 있다.
또한, 심 부재(54)를 내장한 사이드 폴딩부(533)는 y축 방향에서 제2곡면부(502)의 최대 돌출 범위(D2) 이내이고, z축 방향에서 제1평면부(101)와 제2평면부(501)의 합 두께(t2)의 중심에서 분할되는 일측의 1/2 두께 범위(t2/2) 이내에 배치된다.
공간(S)에서 제2곡면부(502)에 배치되고 심 부재(54)를 내장한 사이드 폴딩부(533)는 y축 방향 양측에서 제2곡면부(502)의 최대 돌출 범위(D2)를 초과하지 않으므로 파우치(50)에 수용되는 전극 조립체(10)의 최대 폭(최대 돌출 범위(D2))을 증대시킬 수 있다. 따라서 전지의 용량이 증대되며, 이차 전지(2)의 공간 활용성이 높아질 수 있다.
즉 제3실시예에서 사이드 폴딩부(533)는 종래기술의 사이드 폴딩부에 의하여 감소되는 전극 조립체의 폭 차이(ΔD2)만큼 전극 조립체(10)의 폭, 즉 제2곡면부(502)의 최대 돌출 범위(D2) 또는 제2평면부(501)의 범위를 더 증대시킬 수 있다.
도 9는 본 발명의 제4실시예에 따른 이차 전지를 전방에서 본 부분 정면도이다. 도 9를 참조하면, 제4실시예에 따른 이차 전지(3)의 파우치(60)에서, 제1, 제2외장재(61, 62)의 실링부(63) 중 y축 방향 양측에 위치하는 부분을 폴딩(권취)하므로 사이드 폴딩부(633)가 형성된다.
사이드 폴딩부(633)는 동일 방향(도 9에서 시계 방향)으로 폴딩되어, 제2곡면부(602)의 y축 방향 최대 돌출 범위(D3)까지 연장되는 연장 평면(EP), 연장 방향으로 돌출되는 제2곡면부(602)의 외면, 및 제2곡면부(602)의 연장 방향 끝에서 z축 방향으로 설정되는 가상의 교차 평면(CP)으로 설정되는 공간(S3) 내에 배치되어 제2곡면부(602)의 외면에 밀착된다.
따라서 y축 방향에서 제2곡면부(602)의 최외곽 측에 사이드 폴딩부가 배치되지 않을 수 있다. 즉 y축 방향에서 제2곡면부(602)의 최외곽 측면에서 사이드 폴딩부가 차지하는 두께 및 공간이 제거된다. 그리고 이차 전지(3)의 용량 감소가 방지될 수 있다.
도 10은 본 발명의 제5실시예에 따른 이차 전지를 전방에서 본 부분 정면도이다. 도 10을 참조하면, 제5실시예에 따른 이차 전지(5)의 파우치(60)에서, 사이드 폴딩부(653)는 폴딩(권취)되는 부분의 내측에 삽입되는 심 부재(64)를 더 포함한다.
심 부재(64)는 와이어로 형성되어 사이드 폴딩부(653)의 길이 방향(x축 방향) 전체 범위에 삽입되어 배치된다. 심 부재(64)는 실링부(65) 및 사이드 폴딩부(653)의 외부 충돌에 대한 내구 강도를 개선할 수 있다.
제4, 제5실시예를 같이 설명하면, 심 부재(64)를 내장하지 않은 사이드 폴딩부(633) 및 심 부재(64)를 내장한 사이드 폴딩부(653)는 제2곡면부(602)의 일측 공간(S3)에서 동일 방향으로 연속 폴딩(권취)되어 수용될 수 있다. 심 부재(64)는 사이드 폴딩부(653)가 폴딩되는 부분의 최 내측에 배치되어 사이드 폴딩부(653)와 강한 체결력을 가질 수 있다.
공간(S3)은 제2곡면부(602)에서 상하 양측 2곳에 형성된다. 즉 사이드 폴딩부(633, 653)는 공간(S3)의 형상에 대응하여 최대량으로 폴딩되어 수용될 수 있다.
또한, 심 부재(64)를 내장하지 않은 사이드 폴딩부(633) 및 심 부재(64)를 내장한 사이드 폴딩부(653)는 y축 방향에서 제2곡면부(602)의 최대 돌출 범위(D3) 이내이고, z축 방향에서 제1평면부(101)와 제2평면부(601)의 합 두께(t3)의 중심에서 분할되는 일측의 1/2 두께 범위(t3/2) 이내에 배치된다.
공간(S3) 내에서 제2곡면부(602)에 밀착 배치되는 사이드 폴딩부(633, 653)는 y축 방향 양측에서 제2곡면부(602)의 최대 돌출 범위(D3)를 초과하지 않으므로 파우치(60)에 수용되는 전극 조립체(10)의 최대 폭(최대 돌출 범위(D3))을 증대시킬 수 있다. 따라서 전지의 용량이 증대되며, 이차 전지(3, 5)의 공간 활용성이 높아질 수 있다.
즉 제4, 5실시예에서 사이드 폴딩부(633, 653)는 종래기술의 사이드 폴딩부에 의하여 감소되는 전극 조립체의 폭 차이(ΔD3)만큼 전극 조립체(10)의 폭, 즉 제2곡면부(602)의 최대 돌출 범위(D3) 또는 제2평면부(601)의 범위를 더 증대시킬 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
(부호의 설명)
1, 2, 3, 4, 5: 이차 전지 10: 전극 조립체
11, 12: 제1, 제2전극(양, 음극) 13: 세퍼레이터
14, 15: 탭 16, 17: 절연부재
20, 50, 60, 820: 파우치 21, 61, 821: 제1외장재
22, 62, 822: 제2외장재 23, 53, 63, 65, 823: 실링부
54, 64: 심 부재 101: 제1평면부
102: 제1곡면부 121: 폴리머 시트
122: 나일론 시트 123: 금속 시트
201, 501, 601: 제2평면부 202, 502, 602: 제2곡면부
231, 831: 전방 융착부 232: 후방 융착부
233, 533, 633, 653: 사이드 폴딩부 832: 후방 연결부
D1, D2, D3: 제2곡면부 사이의 최대 돌출 범위 CP: 교차 평면
EP: 연장 평면 S, S2, S3: 공간
t, t2, t3: 제1평면부와 제2평면부의 합 두께 W: 실링부의 폭
ΔD1, ΔD2, ΔD3: 종래기술의 사이드 폴딩부에 의하여 감소되는 전극 조립체의 폭 차이

Claims (15)

  1. 제1전극, 세퍼레이터 및 제2전극을 권취하여 형성되는 전극 조립체; 및
    상기 제1전극과 상기 제2전극에 각각 연결되는 탭을 외부로 인출하도록 상기 전극 조립체를 수용하는 제1외장재와 제2외장재의 외곽을 열융착하여 실링부를 형성되는 파우치
    를 포함하며,
    상기 전극 조립체는, 권취 단면에서 제1평면부의 양측에 볼록한 제1곡면부를 구비하고,
    상기 파우치는, 상기 제1평면부에 대응하는 제2평면부와 상기 제1곡면부에 대응하여 상기 제2평면부에 연결되는 제2곡면부를 구비하며,
    상기 실링부는,
    상기 제1평면부의 연장 방향으로 설정되는 연장 평면,
    상기 연장 방향으로 돌출되는 상기 제2곡면부의 외면, 및
    상기 제2곡면부의 상기 연장 방향 끝에서 상기 연장 방향에 교차하는 방향으로 설정되는 교차 평면으로 설정되는 공간 내에 위치하는 이차 전지.
  2. 제1항에 있어서,
    상기 연장 방향으로 설정되는 상기 실링부의 폭(W)은
    상기 제1평면부와 상기 제2평면부의 합 두께(t)의 1/2보다 크고 상기 합 두께(t) 이하로 설정되는(t/2<W≤t) 이차 전지.
  3. 제1항에 있어서,
    상기 제1외장재는
    상기 전극 조립체의 상기 제1평면부 및 상기 제1곡면부에 밀착되고,
    상기 제2외장재는
    상기 전극 조립체의 상기 제1평면부에 밀착되는 이차 전지.
  4. 제1항에 있어서,
    상기 실링부는
    상기 제2곡면부의 외면에 밀착되는 폴딩부를 포함하고,
    상기 폴딩부는
    상기 공간 내에 배치되는 이차 전지.
  5. 제4항에 있어서,
    상기 폴딩부는
    서로 반대 방향으로 번갈아 폴딩되는 이차 전지.
  6. 제5항에 있어서,
    상기 폴딩부는
    폴딩되는 내측에 삽입되는 심 부재를 더 포함하는 이차 전지.
  7. 제4항에 있어서,
    상기 폴딩부는
    동일 방향으로 연속 폴딩되는 이차 전지.
  8. 제1항에 있어서,
    상기 실링부는
    상기 탭이 인출되는 일측에 구비되고 상기 제1외장재와 상기 제2외장재를 열융착하는 전방 융착부, 및
    상기 제1외장재와 상기 제2외장재를 연결하는 후방 연결부와 상기 전방 융착부와 사이의 상기 제2곡면부 측에 구비되는 사이드 폴딩부를 포함하는 이차 전지.
  9. 제1항에 있어서,
    상기 실링부는
    상기 탭이 인출되는 양측에 구비되고 상기 제1외장재와 상기 제2외장재를 열융착하는 전방 융착부와 후방 융착부, 및
    상기 전방 융착부와 상기 후방 융착부 사이의 상기 제2곡면부 측에 구비되는 사이드 폴딩부
    를 포함하는 이차 전지.
  10. 제9항에 있어서,
    상기 사이드 폴딩부는
    상기 공간에 배치되어 상기 제2곡면부의 외면에 밀착되는 이차 전지.
  11. 제10항에 있어서,
    상기 사이드 폴딩부는
    복수로 폴딩되어
    상기 공간 내에 배치되는 이차 전지.
  12. 제11항에 있어서,
    상기 사이드 폴딩부는
    상기 공간에서 서로 반대 방향으로 번갈아 폴딩되며 상기 제2곡면부의 외면에서 멀어질수록 짧은 폭으로 폴딩되는 이차 전지.
  13. 제9항에 있어서,
    상기 사이드 폴딩부는
    폴딩되는 내측에 삽입되는 심 부재를 더 포함하는 이차 전지.
  14. 제13항에 있어서,
    상기 심 부재는
    와이어로 형성되어 상기 사이드 폴딩부의 길이 방향 전체 범위에 삽입되는 이차 전지.
  15. 제10항에 있어서,
    상기 사이드 폴딩부는
    동일 방향으로 폴딩되어, 상기 공간 내에 배치되는 이차 전지.
PCT/KR2017/008124 2016-07-29 2017-07-27 이차 전지 WO2018021856A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/321,622 US11329338B2 (en) 2016-07-29 2017-07-27 Rechargeable battery
CN201780058274.8A CN109716574B (zh) 2016-07-29 2017-07-27 可再充电电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160097250 2016-07-29
KR10-2016-0097250 2016-07-29
KR10-2017-0009291 2017-01-19
KR1020170009291A KR102356496B1 (ko) 2016-07-29 2017-01-19 이차 전지

Publications (1)

Publication Number Publication Date
WO2018021856A1 true WO2018021856A1 (ko) 2018-02-01

Family

ID=61017588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008124 WO2018021856A1 (ko) 2016-07-29 2017-07-27 이차 전지

Country Status (3)

Country Link
US (1) US11329338B2 (ko)
CN (1) CN109716574B (ko)
WO (1) WO2018021856A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210011639A (ko) * 2019-07-23 2021-02-02 에스케이이노베이션 주식회사 이차전지 및 이를 포함하는 배터리 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535791A (ja) * 2010-08-05 2013-09-12 エルジー・ケム・リミテッド 安全性が向上した二次電池用ポーチ及びこれを利用したポーチ型二次電池、中大型電池パック
KR20140033585A (ko) * 2012-09-06 2014-03-19 에스케이이노베이션 주식회사 이차전지
JP5600078B2 (ja) * 2010-03-30 2014-10-01 三星エスディアイ株式会社 パウチ型二次電池及びその製造方法
KR20150089463A (ko) * 2014-01-28 2015-08-05 주식회사 엘지화학 경화성 물질 부가 수단을 구비한 전지셀 제조장치
KR20150119664A (ko) * 2014-04-16 2015-10-26 삼성에스디아이 주식회사 커브드 이차 전지

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0731516B1 (en) 1995-03-07 1999-04-21 Matsushita Electric Industrial Co., Ltd. Flat-type cell
WO2000062354A1 (fr) * 1999-04-08 2000-10-19 Dai Nippon Printing Co., Ltd. Materiau d'emballage de pile, sachet de transport de pile et procede de production connexe
TW504854B (en) 1999-08-27 2002-10-01 Toshiba Battery Flat non-aqueous electrolyte secondary cell
US7348762B2 (en) * 2003-05-01 2008-03-25 Sony Corporation Battery pack and method for producing battery pack
EP1686636A4 (en) * 2003-10-07 2009-04-22 Nec Corp FILTER-COATED BATTERY AND METHOD FOR MANUFACTURING FILTER-COATED BATTERY
KR100943569B1 (ko) 2007-03-26 2010-02-23 삼성에스디아이 주식회사 폴리머 전해질 전지 및 그 형성 방법
KR100876254B1 (ko) * 2007-07-20 2008-12-26 삼성에스디아이 주식회사 파우치형 이차전지
KR101002468B1 (ko) 2008-07-01 2010-12-17 삼성에스디아이 주식회사 파우치형 리튬 이차전지
KR100995076B1 (ko) 2008-12-30 2010-11-18 에스비리모티브 주식회사 이차 전지
JP2012519366A (ja) * 2009-03-02 2012-08-23 エルジー ケム. エルティーディ. パウチおよびこれを含む二次電池
KR101310732B1 (ko) 2011-01-26 2013-09-24 주식회사 엘지화학 이차 전지 및 그 제조 방법
US9130223B2 (en) 2012-04-26 2015-09-08 Medtronic, Inc. Mandrel for electrode assemblies
CN205004361U (zh) 2015-09-16 2016-01-27 深圳市言九电子科技有限公司 一种软包装锂离子电池的折边装置
CN205122651U (zh) 2015-11-02 2016-03-30 宁德新能源科技有限公司 软包装锂离子电池
CN105322107B (zh) 2015-11-30 2018-09-04 小米科技有限责任公司 一种电池和电子设备
US11171375B2 (en) * 2016-03-25 2021-11-09 Enevate Corporation Stepped electrochemical cells with folded sealed portion
KR102016643B1 (ko) * 2016-09-19 2019-08-30 주식회사 엘지화학 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600078B2 (ja) * 2010-03-30 2014-10-01 三星エスディアイ株式会社 パウチ型二次電池及びその製造方法
JP2013535791A (ja) * 2010-08-05 2013-09-12 エルジー・ケム・リミテッド 安全性が向上した二次電池用ポーチ及びこれを利用したポーチ型二次電池、中大型電池パック
KR20140033585A (ko) * 2012-09-06 2014-03-19 에스케이이노베이션 주식회사 이차전지
KR20150089463A (ko) * 2014-01-28 2015-08-05 주식회사 엘지화학 경화성 물질 부가 수단을 구비한 전지셀 제조장치
KR20150119664A (ko) * 2014-04-16 2015-10-26 삼성에스디아이 주식회사 커브드 이차 전지

Also Published As

Publication number Publication date
CN109716574B (zh) 2022-01-18
CN109716574A (zh) 2019-05-03
US11329338B2 (en) 2022-05-10
US20210288365A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2019139323A1 (ko) 히든형 가스 포켓부를 갖는 파우치형 전지 케이스, 이를 구비한 파우치형 이차전지 및 이를 포함하는 전지 모듈
WO2011115464A2 (ko) 파우치형 케이스 및 이를 포함하는 전지팩
WO2020159306A1 (ko) 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
WO2021033943A1 (ko) 이차 전지
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2018048159A1 (ko) 이차 전지
WO2020175773A1 (ko) 벤팅 장치
WO2018080080A1 (ko) 이차 전지
WO2018048095A1 (ko) 이차 전지
WO2018021856A1 (ko) 이차 전지
WO2018016766A1 (ko) 이차 전지
WO2022108335A1 (ko) 이차전지 및 그 제조방법
WO2018216891A1 (ko) 이차 전지
WO2022005233A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2017222261A1 (ko) 이차 전지
WO2021096035A1 (ko) 이차 전지 및 실링 블록
WO2021071057A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2020235927A1 (ko) 이차 전지
WO2023063734A1 (ko) 접착코팅부가 부가된 리튬 이차전지용 전극 및 이의 제조방법
WO2024049222A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2024010425A1 (ko) 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2023063777A1 (ko) 파우치형 이차전지, 이를 포함하는 이차전지 모듈 및 이에 이용되는 파우치
WO2022065764A1 (ko) 파우치 전지셀 및 이를 포함하는 전지 모듈
WO2024043759A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지
WO2023058955A1 (ko) 전극 조립체 및 이를 포함하는 전지 셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834797

Country of ref document: EP

Kind code of ref document: A1