WO2017222261A1 - 이차 전지 - Google Patents

이차 전지 Download PDF

Info

Publication number
WO2017222261A1
WO2017222261A1 PCT/KR2017/006417 KR2017006417W WO2017222261A1 WO 2017222261 A1 WO2017222261 A1 WO 2017222261A1 KR 2017006417 W KR2017006417 W KR 2017006417W WO 2017222261 A1 WO2017222261 A1 WO 2017222261A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
counterpart
plate
axis direction
rivet
Prior art date
Application number
PCT/KR2017/006417
Other languages
English (en)
French (fr)
Inventor
이현수
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to EP17815674.1A priority Critical patent/EP3477731A4/en
Priority to US16/312,989 priority patent/US11476525B2/en
Priority to CN201780035603.7A priority patent/CN109314196B/zh
Publication of WO2017222261A1 publication Critical patent/WO2017222261A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a secondary battery, and more particularly, to a secondary battery that couples rivet terminals to plate terminals to form electrode terminals.
  • a rechargeable battery is a battery that repeatedly performs charging and discharging, unlike a primary battery.
  • Small capacity secondary batteries can be used in portable electronic devices such as mobile phones, notebook computers and camcorders, and large capacity secondary batteries can be used as power sources for driving motors of hybrid vehicles and electric vehicles.
  • the secondary battery may be used as a single cell as in a small electronic device, or may be used as a module state in which a plurality of cells are electrically connected and a pack state in which a plurality of modules are electrically connected as in a motor driving.
  • the secondary battery includes a case having an electrode assembly for charging and discharging current, a cap plate coupled to an opening of the case, and an electrode terminal electrically connected to the electrode assembly and installed in a terminal hole of the cap plate.
  • the electrode terminal includes a rivet terminal connected to the electrode assembly inside the cap plate and installed in the terminal hole, and a plate terminal disposed outside the cap plate and connected to the rivet terminal.
  • the rivet terminal is inserted into the coupling hole of the plate terminal and connected by riveting or welding. At this time, the outer surface of the rivet terminal and the coupling hole of the plate terminal are formed in a plane with each other is in surface contact with each other.
  • the plate terminal has a low frictional force against the torque acting on the z-axis of the rivet terminal, increases the electrical contact resistance due to the lack of contact area, and does not suppress the thermal deformation generated during thermal shock, thereby preventing the electrical resistance distribution. You can increase it.
  • One embodiment of the present invention is to provide a secondary battery that increases the torque resistance of the plate terminal with respect to the z-axis of the rivet terminal.
  • One embodiment of the present invention is to increase the contact area between the plate terminal and the rivet terminal to lower the electrical contact resistance, to provide a secondary battery that reduces the electrical resistance distribution by suppressing the thermal deformation generated during thermal shock.
  • a secondary battery an electrode assembly for charging and discharging a current, a case containing the electrode assembly, a cap plate coupled to the opening of the case, and the cap is electrically connected to the electrode assembly
  • An electrode terminal provided in a terminal hole of a plate, wherein the electrode terminal includes a plate terminal disposed outside the cap plate and having a coupling hole, and a rivet terminal installed in the terminal hole and coupled to the coupling hole.
  • the plate terminal and the rivet terminal may include a torque resistance increasing unit that is formed at a coupling interface between the coupling hole and the rivet terminal to increase torque resistance of the plate terminal with respect to the z-axis of the rivet terminal.
  • the rivet terminal may include a first counterpart coupled to the terminal hole in an insulated state through a gasket, and a second counterpart coupled to the first counterpart in the z-axis direction and coupled to the coupling hole in a conductive state. Can be.
  • the torque resistance increasing part may include a knurling part formed on an outer surface of the second counterpart, and a deformation part transferred to an inner surface of the coupling hole corresponding to the knurling part of the second counterpart.
  • the knurling part may include a hill and a valley that are repeatedly arranged along the circumferential direction on the outer circumferential surface of the second counterpart and formed in the z-axis direction.
  • the deformable part may include a deformed bone and a deformed mountain that are deformed to correspond to the peaks and valleys of the knurling part and are repeatedly deformed in the circumferential direction from the inner surface of the coupling hole and formed in the z axis direction.
  • the second counterpart may be formed to have the same diameter in all regions in the z-axis direction.
  • the second counterpart may form a minimum diameter at the inner side in the z-axis direction and gradually increase while going outward to form a maximum diameter at the outer side.
  • the knurling part is repeatedly disposed along the circumferential direction on the outer circumferential surface of the second counterpart and squeezed in the z-axis direction, repeatedly disposed along the z-axis direction on the outer circumferential surface of the second counterpart, in the circumferential direction.
  • second protrusions intersecting the first bones, and protrusions formed between the first bones and the second bones.
  • the deformable portion is deformed in correspondence with the protrusions, the first valleys and the second valleys of the knurling portion, and is repeatedly deformed while being circumferentially formed along the inner surface of the coupling hole and zipped in the z-axis direction. It may include deformed valleys formed in a circumferential direction by repeatedly deforming and disposed along the axial direction, and deformed mountains formed between the deformed intersecting valleys.
  • the second counterpart may be formed to have the same diameter in all regions in the z-axis direction.
  • the protrusions may be formed as a plurality of square pyramids on the outer surface of the second counterpart by the first bones and the second bones intersecting the first bones.
  • the strength of the rivet terminal may be higher than the strength of the plate terminal.
  • the torque resistance increasing part is provided at the coupling interface between the coupling hole of the plate terminal and the rivet terminal, the torque resistance of the plate terminal with respect to the z axis of the rivet terminal may be increased. That is, the coupling force between the rivet terminal and the plate terminal can be increased.
  • the torque resistance increasing unit increases the contact area between the plate terminal and the rivet terminal that are coupled to each other, thereby lowering the electrical contact resistance.
  • the torque resistance increasing unit increases the contact area between the plate terminal and the rivet terminal, it is possible to reduce the electrical resistance distribution by suppressing thermal deformation generated during thermal shock.
  • FIG. 1 is a perspective view of a rechargeable battery according to a first exemplary embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1.
  • FIG. 3 is an exploded perspective view of an electrode terminal in the rechargeable battery of FIG. 1.
  • FIG. 4 is a perspective view of the rivet terminal in the electrode terminal of FIG.
  • FIG. 5 is a plan view of the electrode terminal of FIG. 3 assembled
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5.
  • FIG. 7 is a cross-sectional view of an electrode terminal in a rechargeable battery according to a second exemplary embodiment of the present invention.
  • FIG. 8 is a perspective view of the rivet terminal in the electrode terminal of FIG.
  • FIG. 9 is a cross-sectional view of an electrode terminal in a rechargeable battery according to a third exemplary embodiment of the present invention.
  • FIG. 10 is a perspective view of the rivet terminal in the electrode terminal of FIG.
  • the secondary battery 1 includes an electrode assembly 10 for charging and discharging a current, a case 15 in which the electrode assembly 10 is embedded, and a case 15.
  • a cap plate 20 coupled to an opening of the electrode plate, and electrode terminals (negative and positive electrode terminals 21 and 22) provided on the cap plate 20.
  • the electrode assembly 10 arranges electrodes (negative and positive electrodes 11 and 12) on both sides of the separator 13 as an insulator, and jelly the negative electrode 11, the separator 13, and the positive electrode 12. It is formed by rolling in a roll state.
  • the negative electrode 11 and the positive electrode 12 are coated portions 11a and 12a respectively formed by applying an active material to a current collector of thin metal, and uncoated portions 11b and 12b formed of a current collector exposed by not applying the active material. ).
  • the uncoated portion 11b of the negative electrode 11 is formed at one end of the negative electrode 11 along the negative electrode 11 to be wound.
  • the uncoated portion 12b of the anode 12 is formed at one end of the anode 12 along the anode 12 to be wound.
  • the uncoated portions 11b and 12b are disposed at both ends of the electrode assembly 10, respectively.
  • the case 15 forms an inner space of the rectangular parallelepiped so as to set a space for accommodating the electrode assembly 10 and the electrolyte therein, and forms an opening connecting the outside and the internal space on one surface of the rectangular parallelepiped. The opening allows insertion of the electrode assembly 10 into the case 15.
  • the cap plate 20 is installed in the opening of the case 15 to seal the opening of the case 15.
  • the case 15 and the cap plate 20 may be made of aluminum and welded to each other.
  • the cap plate 20 includes an electrolyte injection hole 29, a vent hole 24, and terminal holes H1 and H2.
  • the electrolyte injection hole 29 couples the cap plate 20 to the case 15, and then injects the electrolyte into the case 15. After the electrolyte injection, the electrolyte injection opening 29 is sealed with a sealing stopper 27.
  • vent hole 24 is sealed by the vent plate 25 so as to discharge the internal pressure of the secondary battery 1.
  • the vent plate 25 is cut along the notch 25a to open the vent hole 24.
  • the negative electrode terminal 21 and the positive electrode terminal 22 are installed in the terminal holes H1 and H2 of the cap plate 20, respectively, and are electrically connected to the electrode assembly 10 in the case 15. That is, the negative electrode terminal 21 is electrically connected to the negative electrode 11 of the electrode assembly 10, and the positive electrode terminal 22 is electrically connected to the positive electrode 12 of the electrode assembly 10. Therefore, the electrode assembly 10 is drawn out of the case 15 through the cathode terminal 21 and the anode terminal 22.
  • the secondary battery 1 of the first embodiment has an external short circuit portion 40 on the negative electrode terminal 21 side. Although not shown, an external short circuit part may not be provided in the secondary battery. Hereinafter, the rechargeable battery 1 having the external short circuit portion 40 will be described.
  • the positive and negative terminals 21 and 22 are disposed outside the cap plate 20 and include plate terminals 21c and 22c having coupling holes H3 and H4, and terminal holes H1 and H1 of the cap plate 20. And rivet terminals 21a and 22a which are respectively installed in H2) and are coupled to the coupling holes H3 and H4.
  • positive and negative terminals 21 and 22 may further include flanges 21b and 22b formed integrally with the rivet terminals 21a and 22a inside the cap plate 20. Rivet terminals 21a and 22a are electrically connected to electrode assembly 10 through flanges 21b and 22b.
  • the negative and positive gaskets 36 and 37 are provided between the rivet terminals 21a and 22a of the negative and positive terminal 21 and 22 and the inner surfaces of the terminal holes H1 and H2, respectively. Between the rivet terminals 21a and 22a of the 22 and the cap plate 20 is sealed and electrically insulated.
  • the anode gaskets 36 and 37 are further installed between the flanges 21b and 22b and the inner surface of the cap plate 20 to further seal and electrically connect between the flanges 21b and 22b and the cap plate 20. Insulate. That is, the positive and negative gaskets 36 and 37 are provided with the negative and positive terminals 21 and 22 in the cap plate 20 to prevent leakage of the electrolyte through the terminal holes H1 and H2.
  • the negative lead tabs 51 and 52 electrically connect the negative and positive terminal 21 and 22 to the negative and positive electrodes 11 and 12 of the electrode assembly 10, respectively.
  • the positive and negative lead tabs 51 and 52 are coupled to the lower ends of the rivet terminals 21a and 22a to caulk the lower ends so that the negative and positive lead tabs 51 and 52 are connected to the flanges 21b and 22b. While being supported, it is connected to the lower ends of the rivet terminals 21a and 22a.
  • the negative and positive insulating members 61 and 62 are provided between the negative and positive lead tabs 51 and 52 and the cap plate 20, respectively. Insulate electrically.
  • the negative and positive electrode insulating members 61 and 62 are coupled to the cap plate 20 on one side, and the negative and positive lead tabs 51 and 52 and the rivet terminals 21a and 22a and the flanges 21b and 22b on the other side. It encloses and stabilizes their connection and coupling structure.
  • the external short circuit portion 40 on the side of the negative electrode terminal 21 includes a short circuit tab 41 and a short circuit member 43 spaced apart or shorted according to the internal pressure.
  • the shorting tab 41 is electrically connected to the rivet terminal 21a of the negative electrode terminal 21 and disposed outside the cap plate 20 via the insulating member 31.
  • the insulating member 31 is installed between the short tab 41 and the cap plate 20 to electrically insulate the short tab 41 and the cap plate 20. That is, the cap plate 20 is maintained in an electrically insulated state from the negative terminal 21.
  • the shorting tab 41 and the plate terminal 21c are coupled to the upper end of the rivet terminal 21a. Therefore, the short tab 41 and the plate terminal 21c are fixed to the cap plate 20 with the insulating member 31 interposed therebetween.
  • the negative electrode gasket 36 is further extended between the rivet terminal 21a and the insulating member 31. That is, the negative electrode gasket 36 further seals between the rivet terminal 21a and the insulating member 31.
  • the short circuit member 43 is installed in the short circuit hole 42 formed in the cap plate 20 to seal the short circuit hole 42.
  • the shorting tab 41 is connected to the negative electrode terminal 21 and extends along the outside of the shorting member 43.
  • the shorting tab 41 and the shorting member 43 correspond to the shorting holes 42, maintain the spaced apart state (solid line state) to face each other, and when the internal pressure of the secondary battery 1 rises, A short circuit state (virtual line state) can be formed by inversion.
  • the top plate 46 on the positive terminal 22 side electrically connects the plate terminal 22c and the cap plate 20 of the positive terminal 22. That is, the cap plate 20 is maintained in a state of being electrically connected to the positive terminal 22.
  • the top plate 46 is interposed between the plate terminal 22c and the cap plate 20 to be electrically connected to each other, and has a through hole H5 to penetrate the rivet terminal 22a.
  • the top plate 46 and the plate terminal 22c are coupled to the top of the rivet terminal 22a to caulk the top, so that the top plate 46 and the plate terminal 22c are coupled to the top of the rivet terminal 22a.
  • the plate terminal 22c is installed outside the cap plate 20 with the top plate 46 interposed therebetween.
  • the anode gasket 37 is further extended between the rivet terminal 22a and the top plate 46. That is, the anode gasket 37 prevents the rivet terminal 22a and the top plate 46 from being electrically connected directly. That is, the rivet terminal 22a is electrically connected to the top plate 46 through the plate terminal 22c.
  • the plate terminals 21c and 22c and the rivet terminals 21a and 22a are coupled to each other by caulking, and the coupling holes H3 and H4 and the rivet terminals 21a and 22a are combined.
  • the torque resistance increasing part is further provided in the coupling interface of the).
  • the torque resistance increasing portion is configured to increase the torque resistance of the plate terminals 21c and 22c with respect to the z axis of the rivet terminals 21a and 22a.
  • the torque resistance increasing unit may be applied to the plate terminals 21c and 22c of the negative and positive terminals 21 and 22 and the rivet terminals 21a and 22a in the same structure.
  • torque resistance increasing unit will be described with reference to the anode terminal 22 as an example in FIGS. 3 to 6.
  • FIG. 3 is an exploded perspective view of an electrode terminal of the rechargeable battery of FIG. 1
  • FIG. 4 is a perspective view of a rivet terminal of the electrode terminal of FIG. 3. 3 and 4, the rivet terminal 22a is coupled to the plate terminal 22c and includes a first counterpart 221 and a second counterpart 222 that are partitioned according to the position in the z-axis direction. do.
  • the first counterpart 221 is sealingly coupled to the terminal hole H2 in an insulated state through the anode gasket 37, and the second counterpart 222 is connected to the first counterpart 221 in the z-axis direction.
  • the coupling hole H4 is coupled in a conductive state.
  • the torque resistance increasing unit T increases the torque resistance of the plate terminal 22c on the z-axis of the second counterpart 222. In other words, by increasing the mechanical contact area between the rivet terminal 22a and the plate terminal 22c, mutual coupling force is increased.
  • FIG. 5 is a plan view of the electrode terminal of FIG. 3 assembled, and FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5.
  • the torque resistance increasing unit T includes a knurling unit 223 formed on an outer surface of the second counterpart 222, and a knurling unit of the second counterpart 222.
  • the deformable portion 224 is transferred to the inner surface of the coupling hole (H4) corresponding to the 223.
  • the coupling hole H4 of the plate terminal 22c is coupled to the knurling part 223 and deformed, and thus does not include the deformation part 224. 5 and 6, the deformable portion 224 is formed while the knurling portion 223 is coupled to the coupling hole H4.
  • the knurling part 223 includes mountains 231 and valleys 232 repeatedly arranged in the circumferential direction along the circumferential direction of the second counterpart 222 and squeezed in the z-axis direction.
  • the deformable portion 224 includes deformed bones 241 and deformed mountains 242 that are transferred in correspondence with the mountains 231 and the valleys 232 of the knurling portion 223.
  • the deformed valleys 241 and the deformed mountains 242 deformed by engagement are repeatedly deformed in the circumferential direction from the inner surface of the engagement hole H4 and formed in the z-axis direction.
  • a gap G may be formed between the knurling part 223 and the deformable part 224 according to the outer diameter of the knurling part 223. That is, when the deformation peaks 242 coincide with the inner surface of the coupling hole H4, the gap G is provided between the deformation peaks 242 and the valleys 232 so that the rivet terminal 22a and the plate terminal 22c are provided. It can absorb the heat deformation generated between the).
  • the second counterpart 222 is formed with the same diameter in all regions in the z-axis direction.
  • the strength of the rivet terminal 22a is higher than that of the plate terminal 22c.
  • the strength of the second corresponding portion 222 is higher than that of the coupling hole H4 of the plate terminal 22c.
  • the coupling hole H4 is formed at the inner surface of the mountains 231 and the valleys of the knurled portion 223. 232 may be firmly coupled to each other while forming the deformable portion 224.
  • the mountains 231 and the valleys 232 of the knurling portion 223 are formed in the z-axis direction so as to be coupled to the deformation valleys 241 and the deformation mountains 242 formed when the insertion hole H4 is inserted into the deformation portion.
  • the plate terminal 22c having 224 has a large resistance to z-axis torque.
  • the knurling portion 223 and the deformable portion 224 are coupled to the large area formed by the mountains 231 and the valleys 232 in contact with the large area formed by the modified valleys 241 and the deformed mountains 242. Therefore, the contact area between the plate terminal 22c and the rivet terminal 22a may be increased to lower the mutual electrical contact resistance.
  • the coupling structure of the knurling part 223 and the deformable part 224 suppresses thermal deformation due to shrinkage and expansion generated during thermal shock. Therefore, when comparing the electrical resistance during thermal shock and normal driving, the electrical resistance spread can be reduced.
  • FIG. 7 is a cross-sectional view of an electrode terminal in a rechargeable battery according to a second exemplary embodiment of the present invention
  • FIG. 8 is a perspective view of a rivet terminal of the electrode terminal of FIG. 7.
  • the second counterpart 777 of the positive electrode terminal 72 forms a minimum diameter inside the z-axis direction of the cap plate 20. And gradually increase toward the outside to form a maximum diameter on the outside.
  • the torque resistance increasing portion T2 corresponds to the knurling portion 773 formed on the outer surface of the second counter portion 777 and the knurling portion 773 of the second counter portion 777. Deformation portion 774 is transferred to the inner surface of the).
  • the knurling part 773 is repeatedly disposed along the circumferential direction on the outer circumferential surface of the second counterpart 777 to form mountains 771 and the valleys 772 which are formed to be inclined at an angle ⁇ set in the z-axis direction. Include.
  • the deformable portion 774 includes deformed valleys 781 and deformed mountains 782 that are deformed in correspondence with the mountains 771 and the valleys 772 of the knurling portion 773.
  • the deformed valleys 781 and the deformed mountains 782 that are deformed by engagement are repeatedly deformed while being circumferentially oriented along the inner surface of the coupling hole H24 to be inclined at an angle ⁇ set in the z-axis direction.
  • a gap G12 may be formed between the knurling part 773 and the deformation part 74 according to the outer diameter of the knurling part 773. That is, when the deformation mountains 782 coincide with the inner surface of the coupling hole H24, the gap G12 is provided between the deformation mountains 782 and the valleys 772, so that the rivet terminal 72a and the plate terminal 72c are provided. It can absorb the heat deformation generated between the).
  • the second counterpart 777 forms a minimum diameter on the inner side in the z-axis direction and gradually increases while going outward to form a maximum diameter on the outer side. Therefore, when the knurling portion 773 of the second counter portion 777 is inserted into the coupling hole H24 of the plate terminal 72c, the coupling hole H24 is firmly coupled to each other while forming the deformation portion 774 on the inner surface thereof. .
  • a gap G2 may be formed between the knurled portion 773 and the deformable portion 774 at the inner side of the knurled portion 773 according to the outer maximum diameter of the knurled portion 773. That is, the gap G2 may be provided between the modified valleys 781 and the mountains 771 to further absorb thermal deformation generated between the rivet terminal 72a and the plate terminal 72c.
  • the coupling structure of the knurling part 773 and the deformable part 774 includes a gap G12 and a gap G2, thermal deformation due to shrinkage and expansion generated during thermal shock is further absorbed and suppressed. Therefore, when comparing the electrical resistance during thermal shock and normal driving, the electrical resistance spread can be further reduced.
  • FIG. 9 is a cross-sectional view of an electrode terminal in a rechargeable battery according to a third exemplary embodiment of the present invention
  • FIG. 10 is a perspective view of a rivet terminal of the electrode terminal of FIG. 9.
  • the torque resistance increasing portion T3 of the electrode terminal 82 is formed on the outer surface of the second counter portion 888.
  • the part 883 and the deformable part 884 transferred to the inner surface of the engaging hole H34 corresponding to the knurled part 883 of the 2nd corresponding part 888 are included.
  • the knurling portion 883 is disposed repeatedly along the circumferential direction from the outer circumferential surface of the second counter portion 888 and is formed to be deflected in the z-axis direction and crosses the first valley 872 and the first valley 872. And a protrusion 871 formed between the valley 874 and the first and second valleys 872 and 874.
  • the second bone 874 is repeatedly arranged along the z-axis direction on the outer circumferential surface of the second counterpart 888 and formed in the circumferential direction.
  • the deformable portion 884 includes a deformed valley 891 and a deformed peak 892.
  • the deformed valleys 891 and the deformed peaks 892 are deformed in correspondence with the projections 871 of the knurling portion 883 and the first and second valleys 872 and 874.
  • the deformed valleys 891 are formed in the circumferential direction by repeatedly deforming and being oriented in the z-axis direction along the circumferential direction on the inner surface of the coupling hole H34, and are also deformed and repeatedly formed in the circumferential direction while going along the z-axis direction.
  • Deformation mountains 892 are formed between intersecting deformation valleys 891.
  • the gap G3 may be formed between the knurled portion 883 and the deformable portion 884 according to the outer diameter of the knurled portion 883. That is, when the deformation peaks 892 coincide with the inner surface of the coupling hole H34, the gap G3 is provided between the deformation peaks 892 and the first and second valleys 872 and 874, so that the rivet terminal ( It is possible to absorb heat deformation generated between 82a) and plate terminal 82c.
  • the second counterpart 888 may be formed to have the same diameter in all regions in the z-axis direction.
  • the first valleys 872 intersect the second valleys 874 with the protrusions 871 interposed therebetween in the knurling portion 883. Therefore, the protrusions 871 are formed of a plurality of square pyramids on the outer surface of the second counter portion 888.
  • the plate terminal 82c having the deformable portion 884 has a greater resistance to the z-axis torque of the rivet terminator 82a.
  • the knurled portion 883 and the deformable portion 884 are coupled to each other by the protrusions 871 and the first and second valleys 872 and 874. Contact the area. Therefore, the contact area between the plate terminal 82c and the rivet terminal 82a may be increased to lower the mutual electrical contact resistance.
  • the coupling structure of the knurling portion 883 and the deformable portion 884 suppresses thermal deformation due to shrinkage and expansion generated during thermal shock. Therefore, when comparing the electrical resistance during thermal shock and normal driving, the electrical resistance spread can be reduced.
  • electrode assembly 11 first electrode (cathode)
  • 21c, 22c, 72c, 82c plate terminal
  • vent hole 25 vent plate
  • G, G2, G12, G3 Gap H1, H2: Terminal Hole
  • H3, H4, H24, H34 Coupling hole H5: Through hole
  • T, T2, T3 torque resistance increasing section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시예에 따른 이차 전지는, 전류를 충전 및 방전하는 전극 조립체, 상기 전극 조립체를 내장하는 케이스, 상기 케이스의 개구에 결합되는 캡 플레이트, 및 상기 전극 조립체에 전기적으로 연결되어 상기 캡 플레이트의 단자홀에 설치되는 전극단자를 포함하며, 상기 전극단자는 상기 캡 플레이트의 외측에 배치되어 결합구멍을 구비하는 플레이트 터미널, 및 상기 단자홀에 설치되어 상기 결합구멍에 결합되는 리벳 터미널을 포함하고, 상기 플레이트 터미널과 상기 리벳 터미널은 상기 결합구멍과 상기 리벳 터미널의 결합 계면에 형성되어 상기 리벳 터미널의 z축에 대한 상기 플레이트 터미널의 토크 저항력을 증대시키는 토크 저항 증대부를 포함한다.

Description

이차 전지
본 기재는 이차 전지에 관한 것으로서, 보다 상세하게는 플레이트 터미널에 리벳 터미널을 결합하여 전극단자를 형성하는 이차 전지에 관한 것이다.
이차 전지(rechargeable battery)는 일차 전지와 달리 충전 및 방전을 반복적으로 수행하는 전지이다. 소용량의 이차 전지는 휴대폰이나 노트북 컴퓨터 및 캠코더와 같이 휴대가 가능한 소형 전자기기에 사용되고, 대용량 이차 전지는 하이브리드 자동차 및 전기 자동차의 모터 구동용 전원으로 사용될 수 있다.
이차 전지는 소형 전자기기에서와 같이 단일 셀로 사용되거나, 모터 구동용에서와 같이 복수의 셀들을 전기적으로 연결한 모듈 상태 및 복수의 모듈을 전기적으로 연결한 팩 상태로 사용될 수 있다.
이차 전지는 전류를 충전 및 방전하는 전극 조립체를 내장하는 케이스, 케이스의 개구에 결합되는 캡 플레이트, 및 전극 조립체에 전기적으로 연결되어 캡 플레이트의 단자홀에 설치되는 전극단자를 포함한다.
전극단자는 캡 플레이트의 내측에서 전극 조립체에 연결되고 단자홀에 설치되는 리벳 터미널, 캡 플레이트의 외측에 배치되어 리벳 터미널에 연결되는 플레이트 터미널을 포함한다.
리벳 터미널은 플레이트 터미널의 결합구멍에 삽입되어 리벳팅 또는 용접으로 연결된다. 이때, 리벳 터미널의 외표면과 플레이트 터미널의 결합구멍은 서로 평면으로 형성되어 서로 면접촉 된다.
따라서 플레이트 터미널은 리벳 터미널의 z축에 작용하는 토크에 대하여 낮은 마찰력을 가지게 되고, 접촉 면적의 부족으로 인하여 전기적인 접촉 저항을 높이게 되며, 열충격 시 발생되는 열변형을 억제하지 못하여 전기적인 저항 산포를 증대시킬 수 있다.
본 발명의 일 실시예는 리벳 터미널의 z축에 대한 플레이트 터미널의 토크 저항력을 증대시키는 이차 전지를 제공하는 것이다. 본 발명의 일 실시예는 플레이트 터미널과 리벳 터미널의 접촉 면적을 증대시켜 전기적인 접촉 저항을 낮추며, 열충격 시 발생되는 열변형을 억제하여 전기적인 저항 산포를 줄이는 이차 전지를 제공하는 것이다.
본 발명의 일 실시예에 따른 이차 전지는, 전류를 충전 및 방전하는 전극 조립체, 상기 전극 조립체를 내장하는 케이스, 상기 케이스의 개구에 결합되는 캡 플레이트, 및 상기 전극 조립체에 전기적으로 연결되어 상기 캡 플레이트의 단자홀에 설치되는 전극단자를 포함하며, 상기 전극단자는 상기 캡 플레이트의 외측에 배치되어 결합구멍을 구비하는 플레이트 터미널, 및 상기 단자홀에 설치되어 상기 결합구멍에 결합되는 리벳 터미널을 포함하고, 상기 플레이트 터미널과 상기 리벳 터미널은 상기 결합구멍과 상기 리벳 터미널의 결합 계면에 형성되어 상기 리벳 터미널의 z축에 대한 상기 플레이트 터미널의 토크 저항력을 증대시키는 토크 저항력 증대부를 포함한다.
상기 리벳 터미널은 개스킷을 개재하여 상기 단자홀에 절연 상태로 결합되는 제1대응부, 및 상기 제1대응부에 z축 방향으로 연결되어 상기 결합구멍에 도전 상태로 결합되는 제2대응부를 포함할 수 있다.
상기 토크 저항 증대부는 상기 제2대응부의 외표면에 형성되는 널링(knurling)부, 및 상기 제2대응부의 상기 널링부에 대응하여 상기 결합구멍의 내면에 전사되는 변형부를 포함할 수 있다.
상기 널링부는 상기 제2대응부의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향으로 벋어 형성되는 산과 골을 포함할 수 있다.
상기 변형부는 상기 널링부의 산과 골에 대응하여 변형되고, 상기 결합구멍의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향으로 벋어 형성되는 변형 골과 변형 산을 포함할 수 있다.
상기 제2대응부는 z축 방향의 전 영역에서 동일 직경으로 형성될 수 있다.
상기 제2대응부는 z축 방향의 내측에서 최소 직경을 형성하고 외측으로 가면서 점진적으로 증대되어 외측에서 최대 직경을 형성할 수 있다.
상기 널링부는 상기 제2대응부의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향으로 벋어 형성되는 제1골들, 상기 제2대응부의 외주면에서 z축 방향으로 따라 가면서 반복적으로 배치되어 원주 방향으로 형성되고, 상기 제1골들에 교차하는 제2골들, 및 상기 제1골들과 상기 제2골들 사이에 형성되는 돌기들을 포함할 수 있다.
상기 변형부는 상기 널링부의 상기 돌기들과 상기 제1골들 및 상기 제2골들에 대응하여 변형되며, 상기 결합구멍의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향으로 벋어 형성되고, z축 방향으로 따라 가면서 반복적으로 변형 배치되어 원주 방향으로 형성되는 변형 골들, 및 교차하는 상기 변형 골들 사이에 형성되는 변형 산들을 포함할 수 있다.
상기 제2대응부는 z축 방향의 전 영역에서 동일 직경으로 형성될 수 있다.
상기 돌기들은 상기 제1골들과, 상기 제1골들에 교차하는 상기 제2골들에 의하여, 상기 제2대응부의 외표면에 복수의 사각뿔로 형성될 수 있다.
상기 리벳 터미널의 강도는 상기 플레이트 터미널의 강도보다 높을 수 있다.
본 발명의 일 실시예는 플레이트 터미널의 결합구멍과 리벳 터미널의 결합 계면에 토크 저항 증대부를 구비하므로 리벳 터미널의 z축에 대한 플레이트 터미널의 토크 저항력을 증대시킬 수 있다. 즉 리벳 터미널과 플레이트 터미널의 결합력이 증대될 수 있다.
토크 저항 증대부가 서로 결합되는 플레이트 터미널과 리벳 터미널의 접촉 면적을 증대시키므로 전기적인 접촉 저항을 낮출 수 있다. 또한 토크 저항 증대부는 플레이트 터미널과 리벳 터미널의 접촉 면적을 증대시키므로 열충격 시 발생되는 열변형을 억제하여 전기적인 저항 산포를 줄일 수 있다.
도 1은 본 발명의 제1실시예에 따른 이차 전지의 사시도이다.
도 2는 도 1의 Ⅱ-Ⅱ 선을 따라 자른 단면도이다.
도 3은 도 1의 이차 전지에서 전극단자의 분해 사시도이다.
도4는 도 3의 전극단자에서 리벳 터미널의 사시도이다.
도 5는 도 3의 전극단자를 조립한 평면도이다.
도 6은 도 5의 Ⅵ-Ⅵ 선을 따라 자른 단면도이다.
도 7은 본 발명의 제2실시예에 따른 이차 전지에서 전극단자의 단면도이다.
도 8은 도 7의 전극단자에서 리벳 터미널의 사시도이다.
도 9는 본 발명의 제3실시예에 따른 이차 전지에서 전극단자의 단면도이다.
도 10은 도 9의 전극단자에서 리벳 터미널의 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 만 아니라, 다른 부재를 사이에 두고 "간접적으로 연결"된 것도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
도 1은 본 발명의 제1실시예에 따른 이차 전지의 사시도이고, 도 2는 도 1의 Ⅱ-Ⅱ 선을 따라 자른 단면도이다. 도 1 및 도 2를 참조하면, 제1실시예에 따른 이차 전지(1)는 전류를 충전 및 방전하는 전극 조립체(10), 전극 조립체(10)를 내장하는 케이스(15), 케이스(15)의 개구에 결합되는 캡 플레이트(20), 및 캡 플레이트(20)에 설치되는 전극단자(음, 양극 단자(21, 22))를 포함한다.
예를 들면, 전극 조립체(10)는 절연체인 세퍼레이터(13)의 양면에 전극(음, 양극(11, 12))을 배치하고, 음극(11), 세퍼레이터(13) 및 양극(12)을 젤리롤 상태로 귄취하여 형성된다.
음극(11) 및 양극(12)은 각각 박판 금속의 집전체에 활물질을 도포하여 형성되는 코팅부(11a, 12a), 및 활물질을 도포하지 않아서 노출된 집전체로 형성되는 무지부(11b, 12b)를 포함한다.
음극(11)의 무지부(11b)는 권취되는 음극(11)을 따라 음극(11)의 한 쪽 단부에 형성된다. 양극(12)의 무지부(12b)는 권취되는 양극(12)을 따라 양극(12)의 한 쪽 단부에 형성된다. 무지부들(11b, 12b)은 전극 조립체(10)의 양단에 각각 배치된다.
예를 들면, 케이스(15)는 내부에 전극 조립체(10)와 전해액을 수용하는 공간을 설정하도록 대략 직육면체의 내부 공간을 형성하며, 외부와 내부 공간을 연결하는 개구를 직육면체의 일면에 형성한다. 개구는 전극 조립체(10)를 케이스(15)의 내부로 삽입할 수 있게 한다.
캡 플레이트(20)는 케이스(15)의 개구에 설치되어 케이스(15)의 개구를 밀폐한다. 예를 들면, 케이스(15)와 캡 플레이트(20)는 알루미늄으로 형성되어 서로 용접될 수 있다.
또한, 캡 플레이트(20)는 전해액 주입구(29)와 벤트 홀(24) 및 단자홀(H1, H2)을 구비한다. 전해액 주입구(29)는 케이스(15)에 캡 플레이트(20)를 결합한 후, 케이스(15)의 내부로 전해액을 주입할 수 있게 한다. 전해액 주입 후, 전해액 주입구(29)는 밀봉 마개(27)로 밀봉된다.
벤트 홀(24)은 이차 전지(1)의 내부 압력을 배출할 수 있도록 벤트 플레이트(25)로 밀폐된다. 이차 전지(1)의 내부 압력이 설정 압력에 이르면, 벤트 플레이트(25)가 노치(25a)를 따라 절개되어 벤트 홀(24)을 개방한다.
음극 단자(21) 및 양극 단자(22)는 캡 플레이트(20)의 단자홀(H1, H2)에 각각 설치되어 케이스(15) 내에서 전극 조립체(10)에 전기적으로 연결된다. 즉 음극 단자(21)는 전극 조립체(10)의 음극(11)에 전기적으로 연결되고, 양극 단자(22)는 전극 조립체(10)의 양극(12)에 전기적으로 연결된다. 따라서 전극 조립체(10)는 음극 단자(21) 및 양극 단자(22)를 통하여 케이스(15)의 외부로 인출된다.
한편, 제1실시예의 이차 전지(1)는 음극 단자(21) 측에 외부 단락부(40)를 구비한다. 도시하지 않았으나 이차 전지에서 외부 단락부는 구비되지 않을 수도 있다. 이하에서는 외부 단락부(40)가 구비된 이차 전지(1)에 대하여 설명한다.
음극 단자(21)와 양극 단자(22)는 캡 플레이트(20)의 내측에서 서로 동일 구조를 형성하므로 동일 구조에 대하여 함께 설명하고, 캡 플레이트(20)의 외측에서 서로 다른 구조를 형성하므로 다른 구조에 대하여 각각 별도로 설명한다.
음, 양극 단자(21, 22)는 캡 플레이트(20)의 외측에 배치되어 결합구멍(H3, H4)을 구비하는 플레이트 터미널(21c, 22c), 및 캡 플레이트(20)의 단자홀(H1, H2)에 각각 설치되고 결합구멍(H3, H4)에 결합되는 리벳 터미널(21a, 22a)을 포함한다.
또한, 음, 양극 단자(21, 22)는 캡 플레이트(20)의 내측에서 리벳 터미널(21a, 22a)에 일체로 넓게 형성되는 플랜지(21b, 22b)를 더 포함할 수 있다. 리벳 터미널(21a, 22a)은 플랜지(21b, 22b)를 통하여 전극 조립체(10)에 전기적으로 연결된다.
음, 양극 개스킷(36, 37)은 음, 양극 단자(21, 22)의 리벳 터미널(21a, 22a)과 단자홀(H1, H2)의 내면 사이에 각각 설치되어, 음, 양극 단자(21, 22)의 리벳 터미널(21a, 22a)과 캡 플레이트(20) 사이를 실링하고 전기적으로 절연한다.
음, 양극 개스킷(36, 37)은 플랜지(21b, 22b)와 캡 플레이트(20)의 내면 사이에 더 연장 설치되어, 플랜지(21b, 22b)와 캡 플레이트(20) 사이를 더 실링하고 전기적으로 절연한다. 즉 음, 양극 개스킷(36, 37)은 캡 플레이트(20)에 음, 양극 단자(21, 22)를 설치함으로써 단자홀(H1, H2)을 통하여 전해액이 새는 것(leak)을 방지한다.
음, 양극 리드 탭(51, 52)은 음, 양극 단자(21, 22)를 전극 조립체(10)의 음, 양극(11, 12)에 각각 전기적으로 연결한다. 즉 음, 양극 리드 탭(51, 52)을 리벳 터미널(21a, 22a)의 하단에 결합하여 하단을 코킹(caulking)함으로써, 음, 양극 리드 탭(51, 52)은 플랜지(21b, 22b)에 지지되면서 리벳 터미널(21a, 22a)의 하단에 연결된다.
음, 양극 절연부재(61, 62)는 음, 양극 리드 탭(51, 52)과 캡 플레이트(20) 사이에 각각 설치되어, 음, 양극 리드 탭(51, 52)과 캡 플레이트(20)를 전기적으로 절연시킨다.
또한 음, 양극 절연부재(61, 62)는 일측으로 캡 플레이트(20)에 결합되고 다른 일측으로 음, 양극 리드 탭(51, 52)과 리벳 터미널(21a, 22a) 및 플랜지(21b, 22b)를 감싸므로 이들의 연결 및 결합 구조를 안정시킨다.
한편, 음극 단자(21)의 플레이트 터미널(21c)과 관련하여 외부 단락부(40)에 대하여 설명하고, 양극 단자(22)의 플레이트 터미널(22c)과 관련하여 탑 플레이트(46)에 대하여 설명한다.
음극 단자(21) 측의 외부 단락부(40)는 내부 압력에 따라 이격 또는 단락되는 단락 탭(41)과 단락부재(43)를 포함한다. 단락 탭(41)은 음극 단자(21)의 리벳 터미널(21a)에 전기적으로 연결되어 절연부재(31)를 개재하여 캡 플레이트(20)의 외측에 배치된다.
절연부재(31)는 단락 탭(41)과 캡 플레이트(20) 사이에 설치되어, 단락 탭(41)과 캡 플레이트(20)를 전기적으로 절연시킨다. 즉 캡 플레이트(20)는 음극 단자(21)와 전기적으로 절연된 상태를 유지한다.
단락 탭(41)과 플레이트 터미널(21c)을 리벳 터미널(21a)의 상단에 결합하여 상단을 코킹함으로써, 단락 탭(41)과 플레이트 터미널(21c)은 리벳 터미널(21a)의 상단에 결합된다. 따라서 단락 탭(41)과 플레이트 터미널(21c)은 절연부재(31)를 개재한 상태로 캡 플레이트(20)에 고정된다.
한편, 음극 개스킷(36)은 리벳 터미널(21a)과 절연부재(31) 사이로 더 연장되어 설치된다. 즉 음극 개스킷(36)은 리벳 터미널(21a)과 절연부재(31) 사이를 더 실링한다.
단락부재(43)는 캡 플레이트(20)에 형성되는 단락 홀(42)에 설치되어 단락 홀(42)을 밀폐한다. 단락 탭(41)은 음극 단자(21)에 연결되어 단락부재(43)의 외측을 따라 신장된다.
따라서 단락 탭(41)과 단락부재(43)는 단락 홀(42)에 대응하고, 서로 마주하여 이격 상태(실선 상태)를 유지하고, 이차 전지(1)의 내압 상승시 단락부재(43)의 반전에 의하여 단락 상태(가상선 상태)를 형성할 수 있다.
양극 단자(22) 측의 탑 플레이트(46)는 양극 단자(22)의 플레이트 터미널(22c)과 캡 플레이트(20)를 전기적으로 연결한다. 즉 캡 플레이트(20)는 양극 단자(22)와 전기적으로 연결된 상태를 유지한다.
예를 들면, 탑 플레이트(46)는 플레이트 터미널(22c)과 캡 플레이트(20) 사이에 개재되어 전기적으로 서로 연결하고, 관통구멍(H5)을 구비하여 리벳 터미널(22a)을 관통시킨다.
따라서 탑 플레이트(46)와 플레이트 터미널(22c)을 리벳 터미널(22a)의 상단에 결합하여 상단을 코킹함으로써, 탑 플레이트(46)와 플레이트 터미널(22c)은 리벳 터미널(22a)의 상단에 결합된다. 플레이트 터미널(22c)은 탑 플레이트(46)를 개재한 상태로 캡 플레이트(20)의 외측에 설치된다.
한편, 양극 개스킷(37)은 리벳 터미널(22a)과 탑 플레이트(46) 사이로 더 연장되어 설치된다. 즉 양극 개스킷(37)은 리벳 터미널(22a)과 탑 플레이트(46)가 전기적으로 직접 연결되는 것을 방지한다. 즉 리벳 터미널(22a)은 플레이트 터미널(22c)을 통하여 탑 플레이트(46)에 전기적으로 연결된다.
또한 제1실시예의 이차 전지(1)에서 플레이트 터미널(21c, 22c)과 리벳 터미널(21a, 22a)은 코킹으로 서로 결합되는 구조에 더하여, 결합구멍(H3, H4)과 리벳 터미널(21a, 22a)의 결합 계면에 토크 저항 증대부를 더 구비한다.
토크 저항 증대부는 리벳 터미널(21a, 22a)의 z축에 대한 플레이트 터미널(21c, 22c)의 토크 저항력을 증대시키도록 구성된다. 토크 저항 증대부는 음, 양극 단자(21, 22)의 플레이트 터미널(21c, 22c)과 리벳 터미널(21a, 22a)에 동일 구조로 적용될 수 있다.
편의상, 도 3 내지 도 6에서는 양극 단자(22)를 예로 들어서, 토크 저항 증대부에 대하여 설명한다.
도 3은 도 1의 이차 전지에서 전극단자의 분해 사시도이고, 도4는 도 3의 전극단자에서 리벳 터미널의 사시도이다. 도 3 및 도 4를 참조하면, 리벳 터미널(22a)은 플레이트 터미널(22c)과 결합되며, z축 방향의 위치에 따라 구획되는 제1대응부(221)와 제2대응부(222)를 포함한다.
제1대응부(221)는 양극 개스킷(37)을 개재하여 단자홀(H2)에 절연 상태로 실링 결합되고, 제2대응부(222)는 제1대응부(221)에 z축 방향으로 연결되어 결합구멍(H4)에 도전 상태로 결합된다.
이때, 토크 저항 증대부(T)는 제2대응부(222)의 z축에서 플레이트 터미널(22c)의 토크 저항력을 증대시킨다. 즉 리벳 터미널(22a)과 플레이트 터미널(22c)의 기계적인 접촉 면적을 증대시켜 상호 결합력이 증대된다.
도 5는 도 3의 전극단자를 조립한 평면도이고, 도 6은 도 5의 Ⅵ-Ⅵ 선을 따라 자른 단면도이다.
도 3 내지 도 6을 참조하면, 토크 저항 증대부(T)는 제2대응부(222)의 외표면에 형성되는 널링(knurling)부(223), 및 제2대응부(222)의 널링부(223)에 대응하여 결합구멍(H4)의 내면에 전사되는 변형부(224)를 포함한다.
도 4에서 플레이트 터미널(22c)의 결합구멍(H4)은 널링부(223)와 결합되어 변형되므로 변형부(224)를 구비하지 않는다. 변형부(224)는 도 5 및 도 6에서와 같이, 결합구멍(H4)에 널링부(223)가 결합되면서 형성된다.
널링부(223)는 제2대응부(222)의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향으로 벋어 형성되는 산들(231)과 골들(232)을 포함한다.
변형부(224)는 널링부(223)의 산들(231)과 골들(232)에 대응하여 전사되는 변형 골들(241)과 변형 산들(242)을 포함한다. 결합으로 변형되는 변형 골들(241)과 변형 산들(242)은 결합구멍(H4)의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향으로 벋어 형성된다.
널링부(223)의 외경에 따라 널링부(223)와 변형부(224) 사이에 갭(G)이 형성될 수 있다. 즉 변형 산들(242)이 결합구멍(H4)의 내표면에 일치할 때, 갭(G)은 변형 산들(242)과 골들(232) 사이에 구비되어, 리벳 터미널(22a)과 플레이트 터미널(22c) 사이에서 발생되는 열변형을 흡수할 수 있다.
제2대응부(222)는 z축 방향의 전 영역에서 동일 직경으로 형성된다. 리벳 터미널(22a)의 강도는 플레이트 터미널(22c)의 강도보다 높다. 즉 제2대응부(222)의 강도가 플레이트 터미널(22c)의 결합구멍(H4)의 강도보다 더 높다.
따라서 제2대응부(222)의 널링부(223)가 플레이트 터미널(22c)의 결합구멍(H4)으로 삽입되면, 결합구멍(H4)이 내면에서 널링부(223)의 산들(231)과 골들(232)에 의하여 변형부(224)를 형성하면서 상호 견고하게 결합될 수 있다.
널링부(223)의 산들(231)과 골들(232)이 z축 방향으로 벋어 형성되어, 결합구멍(H4)에 삽입시 형성되는 변형 골들(241)과 변형 산들(242)에 결합되므로 변형부(224)를 가지는 플레이트 터미널(22c)은 z축 토크에 대하여 큰 저항력을 가지게 된다.
또한 널링부(223)와 변형부(224) 결합은 산들(231)과 골들(232)에 의한 넓은 면적을 변형 골들(241)과 변형 산들(242)에 의한 넓은 면적에 접촉시킨다. 따라서 플레이트 터미널(22c)과 리벳 터미널(22a)의 접촉 면적이 증대되어 상호 전기적인 접촉 저항이 낮아질 수 있다.
그리고 널링부(223)와 변형부(224)의 결합 구조는 열충격 시 발생되는 수축 및 팽창에 의한 열변형을 억제한다. 따라서 열충격 시와 정상 구동시의 전기적인 저항을 비교할 때, 전기적인 저항 산포가 줄어들 수 있다.
이하 본 발명의 다양한 실시예에 대하여 설명한다. 제1실시예 및 기 설명된 실시예를 다양한 실시예와 비교하여 서로 동일한 구성에 대하여 설명을 생략하고, 서로 다른 구성에 대하여 설명한다.
도 7은 본 발명의 제2실시예에 따른 이차 전지에서 전극단자의 단면도이고, 도 8은 도 7의 전극단자에서 리벳 터미널의 사시도이다.
도 7 및 도 8을 참조하면, 제2실시예의 이차 전지(2)에서, 양극 단자(72)의 제2대응부(777)는 캡 플레이트(20)의 z축 방향의 내측에서 최소 직경을 형성하고 외측으로 가면서 점진적으로 증대되어 외측에서 최대 직경을 형성한다.
토크 저항 증대부(T2)는 제2대응부(777)의 외표면에 형성되는 널링(knurling)부(773), 및 제2대응부(777)의 널링부(773)에 대응하여 결합구멍(H24)의 내면에 전사되는 변형부(774)를 포함한다.
널링부(773)는 제2대응부(777)의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향에서 설정된 된 각도(θ)로 경사지게 벋어 형성되는 산들(771)과 골들(772)을 포함한다.
변형부(774)는 널링부(773)의 산들(771)과 골들(772)에 대응하여 변형되는 변형 골들(781)과 변형 산들(782)을 포함한다. 결합으로 변형되는 변형 골들(781)과 변형 산들(782)은 결합구멍(H24)의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향에서 설정된 각도(θ)로 경사지게 벋어 형성된다.
널링부(773)의 외경에 따라 널링부(773)와 변형부(74) 사이에 갭(G12)이 형성될 수 있다. 즉 변형 산들(782)이 결합구멍(H24)의 내표면에 일치할 때, 갭(G12)은 변형 산들(782)과 골들(772) 사이에 구비되어, 리벳 터미널(72a)과 플레이트 터미널(72c) 사이에서 발생되는 열변형을 흡수할 수 있다.
제2대응부(777)는 z축 방향의 내측에서 최소 직경을 형성하고 외측으로 가면서 점진적으로 증대되어 외측에서 최대 직경을 형성한다. 따라서 제2대응부(777)의 널링부(773)가 플레이트 터미널(72c)의 결합구멍(H24)으로 삽입되면 결합구멍(H24)이 내면에서 변형부(774)를 형성하면서 상호 견고하게 결합된다.
널링부(773)의 외측 최대 직경에 따라 널링부(773)의 내측에서 널링부(773)와 변형부(774) 사이에 갭(G2)이 형성될 수 있다. 즉 갭(G2)은 변형 골들(781)과 산들(771) 사이에 구비되어, 리벳 터미널(72a)과 플레이트 터미널(72c) 사이에서 발생되는 열변형을 더 흡수할 수 있다.
그리고 널링부(773)와 변형부(774)의 결합 구조는 갭(G12)과 갭(G2)을 구비하므로 열충격 시 발생되는 수축 및 팽창에 의한 열변형을 더 흡수 및 억제한다. 따라서 열충격 시와 정상 구동시의 전기적인 저항을 비교할 때, 전기적인 저항 산포가 더 줄어들 수 있다.
도 9는 본 발명의 제3실시예에 따른 이차 전지에서 전극단자의 단면도이고, 도 10은 도 9의 전극단자에서 리벳 터미널의 사시도이다.
도 9 및 도 10을 참조하면, 제3실시예의 이차 전지(3)에서, 전극단자(82)의 토크 저항 증대부(T3)는 제2대응부(888)의 외표면에 형성되는 널링(knurling)부(883), 및 제2대응부(888)의 널링부(883)에 대응하여 결합구멍(H34)의 내면에 전사되는 변형부(884)를 포함한다.
널링부(883)는 제2대응부(888)의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향으로 벋어 형성되는 제1골(872), 제1골(872)에 교차하는 제2골(874), 및 제1, 제2골(872, 874) 사이에 형성되는 돌기(871)을 포함한다. 제2골(874)은 제2대응부(888)의 외주면에서 z축 방향으로 따라 가면서 반복적으로 배치되어 원주 방향으로 형성된다.
변형부(884)는 변형 골(891)과 변형 산(892)을 포함한다. 변형 골(891)과 변형 산(892)은 널링부(883)의 돌기(871)와 제1, 제2골(872, 874)에 대응하여 변형된다. 변형 골들(891)은 결합구멍(H34)의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향으로 벋어 형성되며, 또한 z축 방향으로 따라 가면서 반복적으로 변형 배치되어 원주 방향으로 형성된다. 변형 산들(892)은 교차하는 변형 골들(891) 사이에 형성된다.
널링부(883)의 외경에 따라 널링부(883)와 변형부(884) 사이에 갭(G3)이 형성될 수 있다. 즉 변형 산들(892)이 결합구멍(H34)의 내표면에 일치할 때, 갭(G3)은 변형 산들(892)과 제1, 제2골들(872, 874) 사이에 구비되어, 리벳 터미널(82a)과 플레이트 터미널(82c) 사이에서 발생되는 열변형을 흡수할 수 있다.
제2대응부(888)는 z축 방향의 전 영역에서 동일 직경으로 형성될 수 있다. 이때, 널링부(883)에서 돌기들(871)을 사이에 두고 제1골들(872)은 제2골들(874)에 교차한다. 따라서 돌기들(871)은 제2대응부(888)의 외표면에 복수의 사각뿔들로 형성된다.
제2대응부(888)에서 사각뿔의 돌기들(871)로 형성되는 널링부(883)는 결합구멍(H34)의 내표면에 사각뿔들에 대응하는 대응홈들을 형성한다. 변형부(884)를 가지는 플레이트 터미널(82c)은 리벳 터미러(82a)의 z축 토크에 대하여 더 큰 저항력을 가지게 된다.
또한 널링부(883)와 변형부(884) 결합은 돌기들(871)과 제1, 제2골들(872, 874)에 의한 넓은 면적을 변형 골들(891)과 변형 산들(892)에 의한 넓은 면적에 접촉시킨다. 따라서 플레이트 터미널(82c)과 리벳 터미널(82a)의 접촉 면적이 증대되어 상호 전기적인 접촉 저항이 낮아질 수 있다.
그리고 널링부(883)와 변형부(884)의 결합 구조는 열충격 시 발생되는 수축 및 팽창에 의한 열변형을 억제한다. 따라서 열충격 시와 정상 구동시의 전기적인 저항을 비교할 때, 전기적인 저항 산포가 줄어들 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
(부호의 설명)
10: 전극 조립체 11: 제1전극(음극)
11, 12: 전극(음, 양극) 11a, 12a: 코팅부
11b, 12b: 무지부 13: 세퍼레이터
15: 케이스 20: 캡 플레이트
21, 22: 전극단자(음, 양극 단자) 21c, 22c, 72c, 82c: 플레이트 터미널
21a, 22a: 리벳 터미널 21b, 22b: 플랜지
24: 벤트 홀 25: 벤트 플레이트
25a: 노치 27: 밀봉 마개
29: 전해액 주입구 31: 절연부재
36, 37: 음, 양극 개스킷 40: 외부 단락부
41: 단락 탭 43: 단락부재
46: 탑 플레이트 51, 52: 음, 양극 리드 탭
72, 82: 양극 단자 221: 제1대응부
222, 777, 888: 제2대응부 223, 773, 883: 널링부
224, 774, 884: 변형부 231, 771: 산
232, 772: 골 241, 781: 변형 골
242, 782: 변형 산 781: 제1산
871: 돌기 872, 874: 제1, 제2골
891: 변형 골 892: 변형 산
G, G2, G12, G3: 갭 H1, H2: 단자홀
H3, H4, H24, H34: 결합구멍 H5: 관통구멍
T, T2, T3: 토크 저항 증대부

Claims (12)

  1. 전류를 충전 및 방전하는 전극 조립체;
    상기 전극 조립체를 내장하는 케이스;
    상기 케이스의 개구에 결합되는 캡 플레이트; 및
    상기 전극 조립체에 전기적으로 연결되어 상기 캡 플레이트의 단자홀에 설치되는 전극단자를 포함하며,
    상기 전극단자는
    상기 캡 플레이트의 외측에 배치되어 결합구멍을 구비하는 플레이트 터미널, 및
    상기 단자홀에 설치되어 상기 결합구멍에 결합되는 리벳 터미널을 포함하고,
    상기 플레이트 터미널과 상기 리벳 터미널은
    상기 결합구멍과 상기 리벳 터미널의 결합 계면에 형성되어 상기 리벳 터미널의 z축에 대한 상기 플레이트 터미널의 토크 저항력을 증대시키는 토크 저항 증대부를 포함하는 이차 전지.
  2. 제1항에 있어서,
    상기 리벳 터미널은
    개스킷을 개재하여 상기 단자홀에 절연 상태로 결합되는 제1대응부, 및
    상기 제1대응부에 z축 방향으로 연결되어 상기 결합구멍에 도전 상태로 결합되는 제2대응부를 포함하는 이차 전지.
  3. 제2항에 있어서,
    상기 토크 저항 증대부는
    상기 제2대응부의 외표면에 형성되는 널링부, 및
    상기 제2대응부의 상기 널링부에 대응하여 상기 결합구멍의 내면에 전사되는 변형부를 포함하는 이차 전지.
  4. 제3항에 있어서,
    상기 널링부는
    상기 제2대응부의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향으로 벋어 형성되는 산과 골을 포함하는 이차 전지.
  5. 제4항에 있어서,
    상기 변형부는
    상기 널링부의 산과 골에 대응하여 변형되고, 상기 결합구멍의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향으로 벋어 형성되는 변형 골과 변형 산을 포함하는 이차 전지.
  6. 제4항에 있어서,
    상기 제2대응부는
    z축 방향의 전 영역에서 동일 직경으로 형성되는 이차 전지.
  7. 제4항에 있어서,
    상기 제2대응부는
    z축 방향의 내측에서 최소 직경을 형성하고 외측으로 가면서 점진적으로 증대되어 외측에서 최대 직경을 형성하는 이차 전지.
  8. 제3항에 있어서,
    상기 널링부는
    상기 제2대응부의 외주면에서 원주 방향으로 따라 가면서 반복적으로 배치되어 z축 방향으로 벋어 형성되는 제1골들,
    상기 제2대응부의 외주면에서 z축 방향으로 따라 가면서 반복적으로 배치되어 원주 방향으로 형성되고, 상기 제1골들에 교차하는 제2골들, 및
    상기 제1골들과 상기 제2골들 사이에 형성되는 돌기들을 포함하는 이차 전지.
  9. 제8항에 있어서,
    상기 변형부는
    상기 널링부의 상기 돌기들과 상기 제1골들 및 상기 제2골들에 대응하여 변형되며, 상기 결합구멍의 내면에서 원주 방향으로 따라 가면서 반복적으로 변형 배치되어 z축 방향으로 벋어 형성되고, z축 방향으로 따라 가면서 반복적으로 변형 배치되어 원주 방향으로 형성되는 변형 골들, 및
    교차하는 상기 변형 골들 사이에 형성되는 변형 산들
    을 포함하는 이차 전지.
  10. 제8항에 있어서,
    상기 제2대응부는
    z축 방향의 전 영역에서 동일 직경으로 형성되는 이차 전지.
  11. 제9항에 있어서,
    상기 돌기들은
    상기 제1골들과, 상기 제1골들에 교차하는 상기 제2골들에 의하여, 상기 제2대응부의 외표면에 복수의 사각뿔로 형성되는 이차 전지.
  12. 제1항에 있어서,
    상기 리벳 터미널의 강도는
    상기 플레이트 터미널의 강도보다 높은 이차 전지.
PCT/KR2017/006417 2016-06-24 2017-06-19 이차 전지 WO2017222261A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17815674.1A EP3477731A4 (en) 2016-06-24 2017-06-19 RECHARGEABLE BATTERY
US16/312,989 US11476525B2 (en) 2016-06-24 2017-06-19 Rechargeable battery
CN201780035603.7A CN109314196B (zh) 2016-06-24 2017-06-19 可再充电电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160079650A KR102612062B1 (ko) 2016-06-24 2016-06-24 이차 전지
KR10-2016-0079650 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017222261A1 true WO2017222261A1 (ko) 2017-12-28

Family

ID=60784529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006417 WO2017222261A1 (ko) 2016-06-24 2017-06-19 이차 전지

Country Status (5)

Country Link
US (1) US11476525B2 (ko)
EP (1) EP3477731A4 (ko)
KR (1) KR102612062B1 (ko)
CN (1) CN109314196B (ko)
WO (1) WO2017222261A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682131A (zh) * 2020-05-13 2020-09-18 远景动力技术(江苏)有限公司 一种动力电池顶盖组件、动力电池及动力电池的装配方法
DE102020130686A1 (de) * 2020-11-20 2022-05-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung einer Lithiumionen-Batteriezelle und Lithiumionen-Batteriezelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090005946A (ko) * 2007-07-10 2009-01-14 경희대학교 산학협력단 열전달 완충판의 폭발확관 합격여부 판단 방법
KR20090053637A (ko) * 2007-11-23 2009-05-27 주식회사 엘지화학 우수한 제조공정성 및 구조적 안정성의 이차전지 팩
KR20110133257A (ko) * 2010-06-04 2011-12-12 에스비리모티브 주식회사 이차 전지
KR101223517B1 (ko) * 2011-09-16 2013-01-17 로베르트 보쉬 게엠베하 이차 전지
KR20160038582A (ko) * 2014-09-30 2016-04-07 삼성에스디아이 주식회사 이차 전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132214A (ja) 1997-10-29 1999-05-18 Nozawa Corp ブラインドリベット
JP2003257410A (ja) 2002-03-05 2003-09-12 San Jidosha Kogyo:Kk 車両用バッテリーの端子増設具
DE202006013142U1 (de) 2006-08-26 2006-11-16 Textron Verbindungstechnik Gmbh & Co. Ohg Selbstbohrendes Blindniet
US8119280B2 (en) * 2007-06-07 2012-02-21 A123 Systems, Inc. Cap assembly for a high current capacity energy delivery device
JP2009037817A (ja) 2007-08-01 2009-02-19 Toyota Motor Corp 電池
CN101874318B (zh) 2007-11-23 2012-12-26 株式会社Lg化学 具有优异生产率和结构稳定性的二次电池组
KR101056426B1 (ko) * 2009-06-23 2011-08-11 에스비리모티브 주식회사 이차전지 및 그 모듈
US8574752B2 (en) 2009-10-29 2013-11-05 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery using the same
US8748030B2 (en) 2010-06-09 2014-06-10 Samsung Sdi Co., Ltd. Secondary battery
US20120214053A1 (en) 2011-02-18 2012-08-23 Dukjung Kim Rechargeable battery and method of manufacturing the same
KR101274859B1 (ko) 2011-03-04 2013-06-13 로베르트 보쉬 게엠베하 이차 전지 및 그 조립 방법
US9023498B2 (en) 2011-07-07 2015-05-05 Samsung Sdi Co., Ltd. Rechargeable battery
JP6031770B2 (ja) * 2012-02-01 2016-11-24 株式会社Gsユアサ 導電部材接続構造
KR101693291B1 (ko) 2012-11-23 2017-01-05 삼성에스디아이 주식회사 이차 전지
KR101597680B1 (ko) 2014-04-16 2016-02-29 현무산업 주식회사 전기자동차 배터리팩용 리벳단자 및 그의 제조방법
JP6428123B2 (ja) 2014-10-06 2018-11-28 株式会社Gsユアサ 蓄電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090005946A (ko) * 2007-07-10 2009-01-14 경희대학교 산학협력단 열전달 완충판의 폭발확관 합격여부 판단 방법
KR20090053637A (ko) * 2007-11-23 2009-05-27 주식회사 엘지화학 우수한 제조공정성 및 구조적 안정성의 이차전지 팩
KR20110133257A (ko) * 2010-06-04 2011-12-12 에스비리모티브 주식회사 이차 전지
KR101223517B1 (ko) * 2011-09-16 2013-01-17 로베르트 보쉬 게엠베하 이차 전지
KR20160038582A (ko) * 2014-09-30 2016-04-07 삼성에스디아이 주식회사 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477731A4 *

Also Published As

Publication number Publication date
US11476525B2 (en) 2022-10-18
KR20180001063A (ko) 2018-01-04
US20190229306A1 (en) 2019-07-25
CN109314196B (zh) 2022-06-17
CN109314196A (zh) 2019-02-05
EP3477731A4 (en) 2019-12-04
EP3477731A1 (en) 2019-05-01
KR102612062B1 (ko) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2018147603A1 (ko) 이차 전지
WO2018074842A1 (ko) 이차 전지 및 그 모듈
WO2018034425A1 (ko) 이차 전지
WO2014062016A1 (ko) 전극 리드 및 이를 포함하는 이차 전지
WO2018048160A1 (ko) 이차전지
WO2021033943A1 (ko) 이차 전지
WO2018199439A1 (ko) 이차 전지
WO2018048159A1 (ko) 이차 전지
WO2018026105A1 (ko) 이차 전지
WO2020116856A1 (ko) 벤팅 부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
WO2022030839A1 (ko) 단선 방지층을 포함하는 전극 조립체 및 이의 제조방법
WO2021125504A1 (ko) 이차 전지
WO2017188533A1 (ko) 멤브레인을 갖는 이차 전지
WO2018016747A1 (ko) 이차 전지
WO2018021698A1 (ko) 이차 전지
WO2018043880A1 (ko) 이차 전지
WO2017222261A1 (ko) 이차 전지
WO2020027430A1 (ko) 복수의 벤트를 갖는 이차전지
WO2022025687A1 (ko) 버튼형 이차전지 및 그의 제조방법
WO2018016766A1 (ko) 이차 전지
WO2017222260A1 (ko) 이차 전지
WO2019203450A1 (ko) 이차전지
WO2023113424A1 (ko) 이차 전지
WO2018074846A1 (ko) 이차 전지
WO2022215881A1 (ko) 이차전지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815674

Country of ref document: EP

Effective date: 20190124