WO2021235314A1 - ドレン除去監視装置 - Google Patents

ドレン除去監視装置 Download PDF

Info

Publication number
WO2021235314A1
WO2021235314A1 PCT/JP2021/018215 JP2021018215W WO2021235314A1 WO 2021235314 A1 WO2021235314 A1 WO 2021235314A1 JP 2021018215 W JP2021018215 W JP 2021018215W WO 2021235314 A1 WO2021235314 A1 WO 2021235314A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
liquid phase
gas phase
gas
measuring device
Prior art date
Application number
PCT/JP2021/018215
Other languages
English (en)
French (fr)
Inventor
亮 ▲高▼田
正樹 大迫
政弘 石川
英明 佐藤
創一朗 田畑
直人 杼谷
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to CN202180020925.0A priority Critical patent/CN115279993A/zh
Priority to DE112021001297.5T priority patent/DE112021001297B4/de
Priority to US17/921,157 priority patent/US20230243273A1/en
Priority to KR1020227037440A priority patent/KR20220156632A/ko
Publication of WO2021235314A1 publication Critical patent/WO2021235314A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow

Definitions

  • the present disclosure relates to a drain removal monitoring device.
  • This application claims priority based on Japanese Patent Application No. 2020-87905 filed with the Japan Patent Office on May 20, 2020, and the contents thereof are incorporated herein by reference.
  • the blades may be damaged by erosion due to the collision of water droplets with the blades.
  • Patent Document 1 a slit that communicates the internal space inside the stationary blade and the outside of the stationary blade is formed on the blade surface of the hollow stationary blade, and the moisture adhering to the surface of the stationary blade is formed through the slit.
  • a steam turbine capable of removing drainage by sucking (liquid phase) into an internal space by a pressure difference is disclosed. In this steam turbine, drainage is removed by adjusting the pressure difference between the outside and the inside space of the stationary blade to an appropriate pressure difference according to the turbine load fluctuation.
  • At least one embodiment of the present disclosure is an object of providing a drain removal monitoring device capable of grasping whether or not drain removal is properly performed.
  • the drain removal monitoring device is used in a steam turbine, through a slit formed in the surface of at least one hollow blade including an internal space, to be outside the stationary blade.
  • a drain removal monitoring device for monitoring drain removal performed by sucking a fluid into the internal space, and a gas-liquid separation device for separating the fluid sucked into the internal space into a liquid phase and a gas phase.
  • a liquid phase flow rate measuring device for measuring the flow rate of the liquid phase separated by the gas-liquid separation device, a gas phase flow rate measuring device for measuring the flow rate of the gas phase separated by the gas-liquid separation device, and the above. It is provided with a liquid phase return line for communicating the liquid phase flow rate measuring device and the steam turbine, and a gas phase return line for communicating the gas phase flow rate measuring device and the steam turbine.
  • the flow rate of both the liquid phase and the gas phase in the fluid sucked into the internal space of the stationary blade through the slit formed in the stationary blade of the steam turbine is measured, so that the drain is measured. It is possible to grasp whether the removal is performed properly.
  • FIG. 3 is a block configuration diagram of a preferable configuration of a drain removal monitoring device for diagnosing an abnormality in drain removal from the flow rates of a liquid phase and a gas phase in the drain removal monitoring device according to the first embodiment of the present disclosure. It is a graph which shows the abnormality detection example of drain removal. It is a graph which shows the abnormality detection example of drain removal.
  • the drain removal monitoring device 10 is a steam turbine 1 through a slit 4 formed on the surface of at least one hollow blade 2 including an internal space 3.
  • the purpose is to monitor the drain removal performed by sucking the fluid outside the stationary blade 2 into the internal space 3.
  • the diaphragm 5 to which the stationary blade 2 is connected is configured in a hollow shape including the internal space 6, and the internal space 6 and the internal space 3 are in communication with each other.
  • the steam turbine 1 includes a turbine including a stationary blade 2, a turbine outlet exhaust casing, and a condenser casing.
  • the drain removal monitoring device 10 measures the flow rate of the gas-liquid separation device 11 that separates the liquid phase and the fluid including the gas phase into the liquid phase and the gas phase, and the liquid phase separated by the gas-liquid separation device 11.
  • a flow rate measuring device 12 a gas phase flow rate measuring device 13 for measuring the flow rate of the gas phase separated by the gas / liquid separating device 11, and a liquid phase return line 14 for communicating the liquid phase flow measuring device 12 and the steam turbine 1.
  • the gas phase return line 15 for communicating the gas phase flow rate measuring device 13 and the steam turbine 1 is provided.
  • the drain removal monitoring device 10 further includes a two-phase flow distribution line 16 that communicates the internal space 6 in the diaphragm 5 and the gas-liquid separation device 11. Since the internal space 6 and the internal space 3 communicate with each other, the two-phase flow flow line 16 communicates the internal space 3 and the gas-liquid separation device 11 via the internal space 6. Further, the drain removal monitoring device 10 further includes a gas phase distribution line 17 that communicates the gas-liquid separation device 11 and the gas phase flow rate measuring device 13.
  • the configuration of the gas-liquid separation device 11 is not particularly limited, and a demista type, a corrugated plate type, a cyclone type cyclone separator or the like using a mesh or the like can be used.
  • the cyclone type configuration has a wider flow rate range that can maintain low pressure loss and high-performance gas-liquid separation than the mesh configuration, and it is possible to follow changes in measurement conditions and expand the control range. It is preferable to use a cyclone separator as the gas-liquid separation device 11.
  • the configuration of the liquid phase flow rate measuring device 12 is not particularly limited, and a measuring device having any configuration can be used.
  • a tank unit 21 for storing the liquid phase separated by the gas-liquid separation device 11 and a liquid phase amount detecting unit 22 for detecting the amount of the liquid phase in the tank unit 21 are provided. You can use what you include.
  • a liquid level meter for detecting the liquid level of the liquid phase in the tank unit 21 can be used.
  • a float type meter or a device that detects the liquid level by light, infrared rays, ultrasonic waves, or the like can be used.
  • the liquid phase flow rate measuring device 12 has a configuration including the tank portion 21, it is preferable that the end portion of the liquid phase return line 14 is connected to the bottom portion of the tank portion 21. Further, in this case, the liquid phase return line 14 may be provided with a drain valve 23 that can be automatically opened and closed according to the detection value by the liquid phase amount detecting unit 22. For example, an upper limit value can be set in advance for the value detected by the liquid phase amount detection unit 22, and the drain valve 23 can be opened when the detection value by the liquid phase amount detection unit 22 reaches the upper limit value.
  • the configuration of the gas phase flow rate measuring device 13 is not particularly limited, and a measuring device having any configuration can be used.
  • a measuring device having any configuration can be used as an example of the gas phase flow rate measuring device 13, a plurality of measuring mechanisms 30 are provided, and each of the measuring mechanisms 30 is provided with a pressure measuring device 31 for measuring the pressure of the gas phase and a downstream side of the pressure measuring device 31.
  • a device including a critical nozzle 32 and an on-off valve 33 provided on the downstream side of the critical nozzle 32 can be used.
  • the critical nozzle 32 any nozzle such as an orifice nozzle or a Laval nozzle can be used, but it is preferable to use a Laval nozzle for the reason described later.
  • the gas phase flow rate measuring device 13 includes six measuring mechanisms 30, but the number is not limited to six, and the vapor phase flow rate measuring device 13 may include only one measuring mechanism 30 or other than six. It may include any number of measuring mechanisms 30 of the above.
  • Each measuring mechanism 30 includes a gas phase flow pipe 34 through which the gas phase flows, but the inner diameters of the gas phase flow pipes 34 may be the same, all may be different, or some may be different. The inner diameter of the gas phase flow pipe 34 may be the same, but the other inner diameters may be different.
  • the operation of the drain removal monitoring device 10 according to the first embodiment of the present disclosure will be described.
  • the sucked fluid includes a liquid phase adhering to the surface of the stationary blade 2, that is, liquid water, and a working fluid of the steam turbine 1 that passes through the stationary blade 2, that is, a gas phase and a liquid phase in steam. Is done.
  • the fluid sucked into the internal space 3 flows into the two-phase flow distribution line 16 through the internal space 6 and flows through the two-phase flow distribution line 16.
  • the fluid flowing through the two-phase flow distribution line 16 flows into the gas-liquid separation device 11 and is separated into a liquid phase and a gas phase.
  • the liquid phase that is, liquid water flows into and is stored in the tank portion 21 of the liquid phase flow rate measuring device 12.
  • the gas phase flows through the gas phase distribution line 17 and flows into the gas phase flow rate measuring device 13.
  • the liquid phase amount detecting unit 22 detects the transition of the water level of the water in the tank unit 21. Since the amount of water in the tank portion 21 can be calculated from the water level of the water in the tank portion 21, the liquid phase in the fluid sucked into the internal space 3 is calculated based on the value detected by the liquid phase amount detection unit 22. The transition of the flow rate can be obtained.
  • the drain valve 23 opens, so that the water in the tank section 21 is drained from the tank section 21 and the steam turbine 1 is specifically provided via the liquid phase return line 14. It flows into a condenser (not shown). In this way, the liquid phase can be automatically drained from the tank portion 21, so that long-term monitoring is possible.
  • the gas phase flow rate measuring device 13 the gas phase flows into at least one measuring mechanism 30.
  • the number of measuring mechanisms 30 into which the gas phase flows can be adjusted by opening and closing the on-off valve 33 of each measuring mechanism 30, thereby upstream of the slit 4.
  • the pressure difference between the downstream and the downstream and the flow rate of the two-phase flow sucked into the internal space 3 through the slit 4 can be adjusted, and the details thereof will be described in the fifth embodiment described later.
  • the gas phase flowing into the measuring mechanism 30 flows into the critical nozzle 32 after the pressure is measured by the pressure measuring device 31.
  • the gas phase that has flowed into the critical nozzle 32 flows out of the critical nozzle 32 while the channel area is expanded again after the channel area is narrowed. Since the critical nozzle 32 is used in the gas phase flow rate measuring device 13, the gas phase flow rate can be measured only by the pressure on the upstream side of the critical nozzle 32.
  • FIG. 2 shows a comparison of pressure changes in the critical nozzle 32 when an orifice nozzle is used as the critical nozzle 32 and when a Laval nozzle is used.
  • the pressure P1 at the position L1 before the flow path area is narrowed in the critical nozzle 32 is the pressure measured by the pressure measuring device 31 (see FIG. 1), and is the same for all nozzles. If the pressure at the position L2 after the flow path area is narrowed in the critical nozzle 32 is P2 in the case of the Laval nozzle and P2'in the case of the orifice nozzle, P2 ⁇ P2'.
  • the pressure P3 at the position L3 on the sufficiently downstream side is the same for all nozzles.
  • the pressure ratios P1 / P2 and P1 / P2' reach the critical pressure ratio, so that the gas phase flow rate can be calculated from the value measured by the pressure measuring device 31.
  • the critical pressure ratio may not be reached in the critical nozzle 32.
  • P2 ⁇ P2' by using the Laval nozzle as the critical nozzle 32, the possibility of reaching the critical pressure ratio can be increased, so that the reliability of the flow rate measurement of the gas phase can be improved. Therefore, it is preferable to use a Laval nozzle as the critical nozzle 32.
  • the liquid in the fluid sucked into the internal space 3 inside the stationary blade 2 through the slit 4 formed in the stationary blade 2 of the steam turbine 1. Since the flow rates of both the phase and the gas phase are measured, it is possible to grasp whether or not the drain removal is properly performed.
  • the drain removal monitoring device 10 includes a control device 20 to which each of the liquid phase flow rate measuring device 12 and the gas phase flow rate measuring device 13 is electrically connected. It is preferable to prepare.
  • the control device 20 is configured to transmit the liquid phase flow rate and the gas phase flow rate measured by each of the liquid phase flow rate measuring device 12 and the gas phase flow rate measuring device 13.
  • the control device 20 presets an upper limit value and a lower limit value regarding the flow rate of the liquid phase and an upper limit value and a lower limit value regarding the flow rate of the gas phase, and the control device 20 sets the transmitted liquid phase and the gas phase, respectively.
  • An abnormality in drain removal is detected based on the flow rate of the above and the upper and lower limit values for the respective flow rates of the liquid phase and the gas phase. As long as each of the flow rate of the liquid phase and the flow rate of the gas phase changes between the upper limit value and the lower limit value, the control device 20 determines that the drain removal is properly performed.
  • control is performed.
  • the device 20 determines that an abnormality has occurred in which the fluid sucked into the internal space of the stationary blade 2 (see FIG. 1) is back-injected from the slit 4 (see FIG. 1). When such anomalies occur, the risk of erosion damage increases.
  • the control device 20 operates the on-off valve 33 (see FIG. 1) to increase the pressure ratio between the upstream and downstream of the slit 4 to increase the flow rate of the gas phase. ..
  • the flow rate of the gas phase rises and changes between the upper limit value and the lower limit value, and drain removal is appropriately performed.
  • control is performed.
  • the device 20 determines that the gas path may increase due to deformation of the slit 4 (see FIG. 1) or the like. If such a state is left unattended, the output of the steam turbine 1 (see FIG. 1) decreases.
  • the control device 20 operates the on-off valve 33 (see FIG. 1) within a range in which the flow rate of the liquid phase does not fluctuate to reduce the pressure ratio between the upstream and downstream of the slit 4. ..
  • the flow rate of the gas phase decreases and changes between the upper limit value and the lower limit value, so that drain removal is appropriately performed.
  • control device 20 can automatically detect the occurrence of an abnormality in drain removal and its cause.
  • the drain removal monitoring device 10 when the drain removal monitoring device 10 includes the control device 20, an upper limit value regarding the detection value by the liquid phase amount detection unit 22 is set in the control device 20, and the detection value by the liquid phase amount detection unit 22 is set.
  • the control device 20 may be configured to open the drain valve 23.
  • the drain removal monitoring device according to the second embodiment adds a bypass line for communicating the two-phase flow flow line 16 and the gas phase return line 15 to the first embodiment.
  • the same reference numerals as those of the configuration requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the drain removal monitoring device 10 includes a bypass line 40 that communicates the two-phase flow distribution line 16 and the gas phase return line 15.
  • the bypass line 40 is provided with an on-off valve 41, and the two-phase flow flow line 16 is provided with an on-off valve 18 on the downstream side of the connection position with the bypass line 40.
  • Other configurations are the same as those in the first embodiment.
  • the on-off valve 18 when measuring the flow rates of the liquid phase and the gas phase, the on-off valve 18 is opened and the on-off valve 41 is closed.
  • the on-off valve 18 when it is not necessary to measure the flow rates of the liquid phase and the gas phase, the on-off valve 18 is closed and the on-off valve 41 is opened so that the fluid sucked into the internal space 3 is returned to the bypass line 40 and the gas phase. Since it can be returned to the steam turbine 1 via the line 15, the power consumption for measuring the flow rate can be reduced. Further, it is also possible to maintain the liquid phase flow rate measuring device and the gas phase flow rate measuring device while continuing the operation of the steam turbine 1.
  • the drain removal monitoring device adds a first communication line that connects the tank portion 21 and the gas phase return line 15 to the first or second embodiment.
  • the third embodiment will be described with the configuration in which the first communication line is added to the configuration of the second embodiment, but the third embodiment may be configured by adding the first communication line to the configuration of the first embodiment. ..
  • the same reference numerals as those of the configuration requirements of the second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the drain removal monitoring device 10 includes a first communication line 50 that communicates the tank portion 21 and the gas phase return line 15.
  • An on-off valve 51 is provided in the first communication line 50.
  • Other configurations are the same as those in the second embodiment.
  • the liquid phase separated by the gas-liquid separation device 11 is transferred to the tank section 21, but if the pressure difference is small, the liquid phase moves to the tank section 21. It becomes difficult to be transferred.
  • the on-off valve 51 when the on-off valve 51 is opened, the pressure in the tank portion 21 can be made equal to the pressure on the downstream side of the gas phase flow rate measuring device 13 via the first communication line 50. Therefore, the pressure difference can be increased. As a result, the transfer of the liquid phase from the gas-liquid separation device 11 to the tank portion 21 can be promoted, and the reliability of the flow rate measurement of the liquid phase can be improved.
  • the drain removal monitoring device according to the fourth embodiment is obtained by adding a second communication line that communicates the gas phase distribution line 17 and the first communication line 50 to the third embodiment.
  • the same reference numerals as those of the constituent requirements of the third embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the drain removal monitoring device 10 includes a second communication line 60 that communicates the gas phase distribution line 17 and the first communication line 50.
  • the second communication line 60 is provided with an on-off valve 61.
  • Other configurations are the same as those in the third embodiment.
  • the liquid phase staying in the gas phase distribution line 17 can be transferred to the tank portion 21 via the second communication line 60, so that the flow rate measurement of the gas phase is reliable.
  • the sex can be improved.
  • the drain removal monitoring device according to the fifth embodiment has a plurality of stationary blades 2 to be measured with respect to any one of the first to fourth embodiments.
  • the fifth embodiment will be described in which the configuration of the first embodiment has a plurality of stationary blades 2 to be measured, but the configuration of any of the second to fourth embodiments has a plurality of the stationary blades 2 to be measured.
  • the fifth embodiment may be configured.
  • the same reference numerals as those of the constituent requirements of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the upstream end of the two-phase flow flow line 16 branches into four branch pipes 16a, 16b, 16c, 16d, respectively.
  • On-off valves 71a, 71b, 71c, 71d are provided in the branch pipe.
  • the two-phase flow distribution line 16 is provided with an on-off valve 18.
  • Each of the branch pipes 16a, 16b, 16c, 16d has an internal space 6a, 6b, 6c formed in a diaphragm 5a, 5b, 5c, 5d to which each of four different stationary blades 2a, 2b, 2c, 2d is connected.
  • the two-phase flow flow line 16 has the internal space 6a.
  • 6b, 6c, 6d and the branch pipes 16a, 16b, 16c, 16d communicate with each of the internal spaces 3a, 3b, 3c, 3d and the gas-liquid separation device 11.
  • the configuration in which the upstream end of the distribution line 16 branches into four branch pipes is merely an example, and may be configured to branch into two, three, or even five or more branch pipes. Other configurations are the same as those in the first embodiment.
  • the gas phase flow rate measuring device 13 includes six measuring mechanisms 30a, 30b, 30c, 30d, 30e, 30f, and the gas phase flow tubes 34a, 34b, 34c, 34d, 34e, 34f of each measuring mechanism.
  • the inner diameters are different, as shown in Table 1, depending on the combination of the open / closed states of the on-off valves 33a, 33b, 33c, 33d, 33e, 33f of each measuring mechanism (the open on-off valves in Table 1 are marked with a circle).
  • the flow rate of the two-phase flow sucked from the slits 4a, 4b, 4c, 4d of each stationary blade and the pressure ratio between the upstream and downstream of the slits 4a, 4b, 4c, 4d of each stationary blade are independent. Can be adjusted.
  • Table 1 it is assumed that the inner diameters of the gas phase flow tubes 34a, 34b, 34c, 34d, 34e, and 34f are different from each other, and the inner diameters increase in this order.
  • the gas phase flow rate measuring device 13 provided with only one measuring mechanism, as shown in FIG. 11, when the flow rate of the gas phase decreases due to the change of the measurement target from the stationary blade 2a to the stationary blade 2b.
  • the relationship between the pressure ratio and the flow rate is fixed at one point, and there is a possibility that the flow rate cannot be measured at an appropriate pressure ratio.
  • the same pressure ratio is obtained, for example, by combining the open / closed states of the on-off valves 33a, 33b, 33c, 33d, 33e, 33f, as shown in FIG.
  • a plurality of measurement targets have been described by taking a plurality of physically separate stationary blades 2a to 2d as an example, but the present invention is not limited to this embodiment.
  • the upstream end of the two-phase flow distribution line 16 does not need to be branched into a plurality of branch pipes, and the configuration may be the same as that of the first embodiment.
  • the drain removal monitoring device is In the steam turbine (1), the fluid outside the stationary blade (2) is passed through the slit (4) formed on the surface of at least one hollow blade (2) including the internal space (3).
  • a drain removal monitoring device (10) for monitoring drain removal performed by sucking into the internal space (3).
  • a gas-liquid separation device (11) that separates the fluid sucked into the internal space (3) into a liquid phase and a gas phase.
  • a liquid phase flow rate measuring device (12) for measuring the flow rate of the liquid phase separated by the gas-liquid separating device (11), and a liquid phase flow rate measuring device (12).
  • a gas phase flow rate measuring device (13) for measuring the flow rate of the gas phase separated by the gas-liquid separating device (11), and a gas phase flow rate measuring device (13).
  • a liquid phase return line (14) communicating the liquid phase flow rate measuring device (12) and the steam turbine (1),
  • a gas phase return line (15) communicating the gas phase flow rate measuring device (13) and the steam turbine (1) is provided.
  • the flow rate of both the liquid phase and the gas phase in the fluid sucked into the internal space of the stationary blade through the slit formed in the stationary blade of the steam turbine is measured, so that the drain is measured. It is possible to grasp whether the removal is performed properly.
  • the drain removal monitoring device is the drain removal monitoring device of [1].
  • a bypass line (40) that communicates the two-phase flow distribution line (16) and the gas phase return line (15) is provided.
  • the fluid sucked into the internal space can be returned to the steam turbine via the bypass line and the gas phase return line. Therefore, the power consumption for flow rate measurement can be reduced. It is also possible to maintain the liquid phase flow rate measuring device and the gas phase flow rate measuring device while continuing the operation of the steam turbine.
  • the drain removal monitoring device is the drain removal monitoring device of [1] or [2].
  • the liquid phase flow rate measuring device (12) includes a tank portion (21) for storing the liquid phase.
  • a first communication line (50) that connects the tank portion (21) and the gas phase return line (15) is provided.
  • the liquid phase separated by the gas-liquid separator Due to the pressure difference between the gas-liquid separator and the tank section, the liquid phase separated by the gas-liquid separator is transferred to the tank section, but if the pressure difference is small, it becomes difficult for the liquid phase to be transferred to the tank section.
  • the pressure difference can be increased, so that the transfer of the liquid phase from the gas-liquid separation device to the tank portion is promoted, and the reliability of the flow rate measurement of the liquid phase is enhanced. Can be done.
  • the drain removal monitoring device is the drain removal monitoring device of [3].
  • a gas phase distribution line (17) communicating the gas-liquid separation device (11) and the gas phase flow rate measuring device (13), A second communication line (60) that communicates the gas phase distribution line (17) and the first communication line (50) is provided.
  • the liquid phase staying in the gas phase distribution line can be transferred to the tank portion, so that the reliability of the flow rate measurement of the gas phase can be improved.
  • the drain removal monitoring device is the drain removal monitoring device according to any one of [1] to [4].
  • the gas phase flow rate measuring device (13) includes a plurality of measuring mechanisms (30). Each of the plurality of measuring mechanisms (30) A pressure measuring device (31) for measuring the pressure of the gas phase and A critical nozzle (32) provided on the downstream side of the pressure measuring instrument (31) and It includes the pressure measuring device (31) and an on-off valve (33) provided on the upstream side or the downstream side of the critical nozzle (32).
  • the number of measuring mechanisms used for measuring the flow rate of the gas phase can be adjusted by opening and closing the on-off valve of each measuring mechanism.
  • the pressure difference and liquid between the upstream and downstream of the slit can be adjusted by adjusting the number of measuring instruments used.
  • the flow rate of the gas phase can be appropriately measured by appropriately adjusting the conditions with the flow rate of the two-phase flow including the phase and the gas phase.
  • the drain removal monitoring device is the drain removal monitoring device of [5].
  • the critical nozzle (32) is a Laval nozzle.
  • the critical nozzle in the gas phase flow rate measuring device, it is possible to measure the flow rate of the gas phase only by the pressure on the upstream side of the critical nozzle.
  • the critical pressure ratio may not be reached at the critical nozzle.
  • the possibility of reaching the critical pressure ratio can be increased by using the Laval nozzle as the critical nozzle, so that the reliability of the gas phase flow rate measurement should be improved. Can be done.
  • the drain removal monitoring device is the drain removal monitoring device according to any one of [1] to [6].
  • the gas-liquid separation device (11) is a cyclone separator.
  • gas-liquid separation can be performed for a wide range of fluid flow rates.
  • the drain removal monitoring device is the drain removal monitoring device according to any one of [1] to [7].
  • the liquid phase flow rate measuring device (12) is The tank portion (21) for storing the liquid phase and It includes a liquid phase amount detecting unit (22) for detecting the amount of the liquid phase in the tank unit (21).
  • the flow rate of the liquid phase can be acquired over time.
  • the drain removal monitoring device is the drain removal monitoring device of [8].
  • the liquid phase return line (14) is connected to the tank portion (21) and is connected to the tank portion (21).
  • the liquid phase return line (14) is provided with a drain valve (23) configured to open when the detected value by the liquid phase amount detecting unit (22) reaches a preset upper limit value. ..
  • the liquid phase in the tank part when the amount of the liquid phase in the tank part reaches the upper limit, the liquid phase can be automatically drained from the tank part, so that long-term monitoring is possible.
  • the drain removal monitoring device is the drain removal monitoring device according to any one of [1] to [9].
  • a control device (20) for transmitting the flow rate of the liquid phase and the flow rate of the gas phase measured by the liquid phase flow rate measuring device (12) and the gas phase flow rate measuring device (13) is provided.
  • the control device (20) is preset with an upper limit value and a lower limit value relating to the flow rate of the liquid phase and an upper limit value and a lower limit value relating to the flow rate of the gas phase.
  • the control device (20) includes the flow rates of the liquid phase and the gas phase transmitted from each of the liquid phase flow rate measuring device (12) and the gas phase flow rate measuring device (13), and the liquid phase and the gas phase.
  • the abnormality of drain removal is detected based on the upper limit value and the lower limit value for each flow rate of the gas phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

蒸気タービンにおいて、内部空間を含む中空状の少なくとも1つの静翼の表面に形成されたスリットを介して、静翼の外部の流体を内部空間に吸い込むことによって行われるドレン除去を監視するためのドレン除去監視装置は、内部空間に吸い込まれた流体を液相と気相とに分離する気液分離装置と、気液分離装置によって分離された液相の流量を測定する液相流量測定装置と、気液分離装置によって分離された気相の流量を測定する気相流量測定装置と、液相流量測定装置と蒸気タービンとを連通する液相戻りラインと、気相流量測定装置と蒸気タービンとを連通する気相戻りラインとを備える。

Description

ドレン除去監視装置
 本開示は、ドレン除去監視装置に関する。
 本願は、2020年5月20日に日本国特許庁に出願された特願2020-87905号に基づき優先権を主張し、その内容をここに援用する。
 蒸気タービンでは、動翼への水滴の衝突によって、動翼がエロージョン損傷を受けるおそれがある。特許文献1には、中空状の静翼の翼面に、静翼内部の内部空間と静翼の外部とを連通するスリットを形成し、このスリットを介して、静翼の表面に付着した水分(液相)を圧力差によって内部空間に吸い込むことで、ドレン除去が可能な蒸気タービンが開示されている。この蒸気タービンでは、静翼の外部と内部空間との圧力差をタービン負荷変動に応じた適切な圧力差に調整することにより、ドレン除去を行っている。
特開昭62-157206号公報
 しかしながら、スリットを介して内部空間へ吸い込まれるのは液相だけではなく気相も吸い込まれるため、ドレン除去が適切に行われているかどうかは実際にはわからない。ドレン除去が適切に行われているかどうかを把握するためには、スリットを介して内部空間へ吸い込まれる液相及び気相の両方の流量を測定する必要がある。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、ドレン除去が適切に行われているかどうかを把握できるドレン除去監視装置を提供することを目的とする。
 上記目的を達成するため、本開示に係るドレン除去監視装置は、蒸気タービンにおいて、内部空間を含む中空状の少なくとも1つの静翼の表面に形成されたスリットを介して、前記静翼の外部の流体を前記内部空間に吸い込むことによって行われるドレン除去を監視するためのドレン除去監視装置であって、前記内部空間に吸い込まれた前記流体を液相と気相とに分離する気液分離装置と、前記気液分離装置によって分離された前記液相の流量を測定する液相流量測定装置と、前記気液分離装置によって分離された前記気相の流量を測定する気相流量測定装置と、前記液相流量測定装置と前記蒸気タービンとを連通する液相戻りラインと、前記気相流量測定装置と前記蒸気タービンとを連通する気相戻りラインとを備える。
 本開示のドレン除去監視装置によれば、蒸気タービンの静翼に形成されたスリットを介して静翼の内部空間へ吸い込まれる流体中の液相及び気相の両方の流量を測定するので、ドレン除去が適切に行われているかどうかを把握することができる。
本開示の実施形態1に係るドレン除去監視装置の構成模式図である。 本開示の実施形態1に係るドレン除去監視装置の気相流量測定装置に用いられる臨界ノズルにオリフィスノズルを用いた場合とラバールノズルを用いた場合との比較を表す図である。 本開示の実施形態1に係るドレン除去監視装置において、液相及び気相の流量からドレン除去の異常を診断するためのドレン除去監視装置の好ましい構成のブロック構成図である。 ドレン除去の異常検知例を示すグラフである。 ドレン除去の異常検知例を示すグラフである。 ドレン除去の異常検知例を示すグラフである。 本開示の実施形態2に係るドレン除去監視装置の構成模式図である。 本開示の実施形態3に係るドレン除去監視装置の構成模式図である。 本開示の実施形態4に係るドレン除去監視装置の構成模式図である。 本開示の実施形態5に係るドレン除去監視装置の構成模式図である。 1つのみの測定機構を有する気相流量測定装置での圧力比と流量との関係を模式的に示すグラフである。 複数の測定機構を有する気相流量測定装置での圧力比と流量との関係を模式的に示すグラフである。
 以下、本開示の実施形態によるドレン除去監視装置について、図面に基づいて説明する。かかる実施形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<本開示の実施形態1に係るドレン除去監視装置の構成>
 図1に示されるように、実施形態1に係るドレン除去監視装置10は、蒸気タービン1において、内部空間3を含む中空状の少なくとも1つの静翼2の表面に形成されたスリット4を介して、静翼2の外部の流体を内部空間3に吸い込むことによって行われるドレン除去を監視するためのものである。静翼2が接続されるダイヤフラム5は、内部空間6を含む中空状に構成され、内部空間6と内部空間3とは互いに連通している。尚、蒸気タービン1は、図1に図示されていないが、静翼2を含むタービンと、タービン出口排気車室と、復水器車室とを備えている。
 ドレン除去監視装置10は、液相及び気相を含む流体を液相と気相とに分離する気液分離装置11と、気液分離装置11によって分離された液相の流量を測定する液相流量測定装置12と、気液分離装置11によって分離された気相の流量を測定する気相流量測定装置13と、液相流量測定装置12と蒸気タービン1とを連通する液相戻りライン14と、気相流量測定装置13と蒸気タービン1とを連通する気相戻りライン15とを備えている。
 ドレン除去監視装置10は、ダイヤフラム5内の内部空間6と気液分離装置11とを連通する二相流流通ライン16をさらに備えている。内部空間6と内部空間3とは互いに連通しているので、二相流流通ライン16は、内部空間6を介して内部空間3と気液分離装置11とを連通している。また、ドレン除去監視装置10は、気液分離装置11と気相流量測定装置13とを連通する気相流通ライン17をさらに備えている。
 気液分離装置11の構成は特に限定するものではなく、メッシュ等によるデミスタ式や波板式、サイクロン式のサイクロンセパレータ等を使用することができる。ただし、メッシュ等の構成よりもサイクロン式の構成の方が、低圧損かつ高性能な気液分離を維持できる流量範囲が広く、測定条件の変化への追随や制御レンジの拡大が可能になるので、気液分離装置11としてはサイクロンセパレータを使用することが好ましい。
 液相流量測定装置12の構成は特に限定するものではなく、任意の構成の測定装置を使用することができる。液相流量測定装置12の一例としては、気液分離装置11で分離された液相を貯留するタンク部21と、タンク部21内の液相の量を検出する液相量検出部22とを含むものを使用することができる。液相量検出部22としては、タンク部21内の液相の液面レベルを検出する液面レベル計を使用することができる。液面レベル計としては、フロート式のものや、光、赤外線、超音波等によって液面レベルを検出するものを使用することができる。
 液相流量測定装置12がタンク部21を含む構成を有する場合、液相戻りライン14の端部はタンク部21の底部に接続することが好ましい。また、この場合、液相量検出部22による検出値に応じて自動的に開閉可能な排液弁23を液相戻りライン14に設けてもよい。例えば、液相量検出部22による検出値に関して予め上限値を設定しておき、液相量検出部22による検出値が当該上限値に達したら排液弁23が開くようにすることができる。
 気相流量測定装置13の構成は特に限定するものではなく、任意の構成の測定装置を使用することができる。気相流量測定装置13の一例としては、複数の測定機構30を備え、測定機構30のそれぞれは、気相の圧力を測定する圧力測定器31と、圧力測定器31の下流側に設けられた臨界ノズル32と、臨界ノズル32の下流側に設けられた開閉弁33とを含むものを使用することができる。臨界ノズル32としては、オリフィスノズルやラバールノズル等、任意のノズルを使用することができるが、後述する理由で、ラバールノズルを使用することが好ましい。
 図1では、気相流量測定装置13は6つの測定機構30を備えているが、6つに限定するものではなく、測定機構30を1つのみ含むものであってもよいし、6つ以外の任意の個数の測定機構30を含むものであってもよい。各測定機構30は、気相が流通する気相流通管34を含んでいるが、各気相流通管34の内径は、全て同一であってもよいし、全て異なってもよいし、いくつかの気相流通管34の内径が同じで他の内径は異なるようにしてもよい。
<本開示の実施形態1に係るドレン除去監視装置の動作>
 次に、本開示の実施形態1に係るドレン除去監視装置10の動作を説明する。蒸気タービン1の運転中、スリット4を介して流体が内部空間3へ吸い込まれる。ここで、吸い込まれる流体には、静翼2の表面に付着した液相、すなわち液体の水や、静翼2を通過する蒸気タービン1の作動流体、すなわち蒸気中の気相及び液相が含まれる。内部空間3へ吸い込まれた流体は、内部空間6を介して二相流流通ライン16に流入し、二相流流通ライン16を流通する。
 二相流流通ライン16を流通する流体は、気液分離装置11に流入して、液相と気相とに分離される。液相、すなわち液体の水は、液相流量測定装置12のタンク部21に流入して貯留される。一方、気相は、気相流通ライン17を流通して、気相流量測定装置13に流入する。
 液相流量測定装置12では、タンク部21内の水の水面レベルの推移を液相量検出部22が検出する。タンク部21内の水の水面レベルから、タンク部21内の水の量を算出できるので、液相量検出部22による検出値に基づいて、内部空間3へ吸い込まれた流体中の液相の流量の推移が得られる。
 タンク部21内の水面レベルが上限値に達したら排液弁23が開くことで、タンク部21内の水は、タンク部21から排水され、液相戻りライン14を介して蒸気タービン1、具体的には図示しない復水器に流入する。このように、自動でタンク部21から液相を排水できるので、長期のモニタリングが可能となる。
 一方、気相流量測定装置13では、気相が少なくとも1つの測定機構30に流入する。気相流量測定装置13が複数の測定機構30を有する場合、各測定機構30の開閉弁33を開閉することにより、気相が流入する測定機構30の個数を調整でき、これによりスリット4の上流及び下流間の圧力差と、スリット4を介して内部空間3に吸い込まれる二相流の流量とを調整できるが、その詳細は、後述の実施形態5で説明する。
 測定機構30に流入した気相は、圧力測定器31によって圧力を測定された後、臨界ノズル32に流入する。臨界ノズル32に流入した気相は、流路面積が絞られた後に再び流路面積が拡大されながら臨界ノズル32から流出する。気相流量測定装置13に臨界ノズル32を用いていることにより、臨界ノズル32の上流側の圧力のみによって気相の流量測定が可能となる。
 図2は、臨界ノズル32としてオリフィスノズルを用いた場合とラバールノズルを用いた場合とにおいて臨界ノズル32内の圧力変化の比較を示している。臨界ノズル32において流路面積が絞られる前の位置L1における圧力P1は、圧力測定器31(図1参照)によって測定された圧力であり、いずれのノズルでも同じである。臨界ノズル32において流路面積が絞られた後の位置L2おける圧力を、ラバールノズルの場合をP2,オリフィスノズルの場合をP2’とすると、P2<P2’となる。十分下流側の位置L3における圧力P3は、いずれのノズルでも同じである。
 圧力比P1/P3が充分大きければ、圧力比P1/P2及びP1/P2’が臨界圧力比に達するため、圧力測定器31による測定値から気相の流量を算出可能である。しかし、蒸気タービン1の運転条件によって気相流量測定装置13の下流側の圧力、すなわち圧力P3が上昇すると、臨界ノズル32において臨界圧力比に達しなくなる場合がある。これに対し、P2<P2’の関係から、臨界ノズル32としてラバールノズルを用いることにより、臨界圧力比に達する可能性を高めることができるので、気相の流量測定の信頼性を高めることができる。このため、臨界ノズル32としてラバールノズルを用いることが好ましい。
 このように、本開示の実施形態1に係るドレン除去監視装置10では、蒸気タービン1の静翼2に形成されたスリット4を介して静翼2内部の内部空間3へ吸い込まれる流体中の液相及び気相の両方の流量を測定するので、ドレン除去が適切に行われているかどうかを把握することができる。
<ドレン除去の異常診断について>
 次に、液相流量測定装置12及び気相流量測定装置13のそれぞれによって測定された液相及び気相の流量からドレン除去の異常を診断する例を説明する。このような診断を行うために、図3に示されるように、ドレン除去監視装置10は、液相流量測定装置12及び気相流量測定装置13のそれぞれが電気的に接続された制御装置20を備えることが好ましい。
 制御装置20には、液相流量測定装置12及び気相流量測定装置13のそれぞれによって測定された液相の流量及び気相の流量が伝送されるようになっている。制御装置20には、液相の流量に関する上限値及び下限値と、気相の流量に関する上限値及び下限値とが予め設定されており、制御装置20は、伝送された液相及び気相それぞれの流量と、液相及び気相のそれぞれの流量に関する上限値及び下限値とに基づいて、ドレン除去の異常を検知する。液相の流量及び気相の流量のそれぞれが、それぞれの上限値と下限値との間を推移している限りでは、ドレン除去が適切に行われていると制御装置20は判断する。
 例えば図4に示されるように、液相の流量が上限値と下限値との間を推移しているにもかかわらず、気相の流量が低下して下限値を下回るおそれがある場合、制御装置20(図3参照)は、静翼2(図1参照)の内部空間に吸い込まれた流体がスリット4(図1参照)から逆噴する異常が生じていると判断する。このような異常が生じると、エロージョン損傷のリスクが増加する。このような異常が検知された場合は、制御装置20は、開閉弁33(図1参照)を操作してスリット4の上流及び下流間の圧力比を増加させて、気相の流量を増加する。このような制御が行われると、気相の流量が上昇して上限値と下限値との間を推移するようになり、ドレン除去が適切に行われるようになる。
 例えば図5に示されるように、液相の流量が上限値と下限値との間を推移しているにもかかわらず、気相の流量が上昇して上限値を上回るおそれがある場合、制御装置20(図3参照)は、スリット4(図1参照)の変形等によるガスパスの増加の可能性があると判断する。このような状態を放置していると蒸気タービン1(図1参照)の出力が低下する。このような異常が検知された場合は、制御装置20は、液相の流量が変動しない範囲で開閉弁33(図1参照)を操作してスリット4の上流及び下流間の圧力比を低減する。このような制御が行われると、気相の流量が低下して上限値と下限値との間を推移するようになり、ドレン除去が適切に行われるようになる。
 例えば図6に示されるように、気相の流量が上限値と下限値との間を推移しているにもかかわらず、液相の流量が上昇して上限値を上回るおそれがある場合、制御装置20(図3参照)は、主蒸気の湿り度の増加の可能性があると判断する。このような状態も、エロージョン損傷のリスクが増加する。ただし、このような異常は制御によって回復することができないので、異常を早期に知らせることで、定検時期を早める等のトラブル未然防止につなげられるようにする。
 このように、制御装置20は、ドレン除去の異常の発生及びその原因を自動的に検知することができる。
 実施形態1において、ドレン除去監視装置10が制御装置20を備える場合、液相量検出部22による検出値に関する上限値を制御装置20に設定しておき、液相量検出部22による検出値が当該上限値に達したら、制御装置20が排液弁23を開くように構成してもよい。
(実施形態2)
 次に、実施形態2に係るドレン除去監視装置について説明する。実施形態2に係るドレン除去監視装置は、実施形態1に対して、二相流流通ライン16と気相戻りライン15とを連通するバイパスラインを追加したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図7に示されるように、本開示の実施形態2に係るドレン除去監視装置10は、二相流流通ライン16と気相戻りライン15とを連通するバイパスライン40を備えている。バイパスライン40には開閉弁41が設けられ、二相流流通ライン16には、バイパスライン40との接続位置よりも下流側に開閉弁18が設けられている。その他の構成は実施形態1と同じである。
 実施形態2では、液相及び気相の流量を測定する場合には、開閉弁18を開くとともに開閉弁41を閉じる。一方、液相及び気相の流量を測定する必要がない場合には、開閉弁18を閉じるとともに開閉弁41を開くことにより、内部空間3へ吸い込まれた流体を、バイパスライン40及び気相戻りライン15を介して蒸気タービン1に戻すことができるので、流量測定のための消費電力を削減できる。また、蒸気タービン1の運転を継続しながら液相流量測定装置及び気相流量測定装置のメンテナンスを行うこともできる。
(実施形態3)
 次に、実施形態3に係るドレン除去監視装置について説明する。実施形態3に係るドレン除去監視装置は、実施形態1又は2に対して、タンク部21と気相戻りライン15とを連通する第1連通ラインを追加したものである。以下では、実施形態2の構成に第1連通ラインを追加した構成で実施形態3を説明するが、実施形態1の構成に第1連通ラインを追加することによって実施形態3を構成してもよい。尚、実施形態3において、実施形態2の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図8に示されるように、本開示の実施形態3に係るドレン除去監視装置10は、タンク部21と気相戻りライン15とを連通する第1連通ライン50を備えている。第1連通ライン50には開閉弁51が設けられている。その他の構成は実施形態2と同じである。
 気液分離装置11とタンク部21との圧力差によって、気液分離装置11で分離された液相がタンク部21に移送されるが、当該圧力差が小さいと、液相がタンク部21へ移送されにくくなる。これに対し、実施形態3では、開閉弁51を開けると、第1連通ライン50を介して、タンク部21内の圧力を、気相流量測定装置13の下流側の圧力と同等にすることができるので、当該圧力差を増加できる。これにより、気液分離装置11からタンク部21への液相の移送を促進し、液相の流量測定の信頼性を高めることができる。
(実施形態4)
 次に、実施形態4に係るドレン除去監視装置について説明する。実施形態4に係るドレン除去監視装置は、実施形態3に対して、気相流通ライン17と第1連通ライン50とを連通する第2連通ラインを追加したものである。尚、実施形態4において、実施形態3の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
 図9に示されるように、本開示の実施形態4に係るドレン除去監視装置10は、気相流通ライン17と第1連通ライン50とを連通する第2連通ライン60を備えている。第2連通ライン60には開閉弁61が設けられている。その他の構成は実施形態3と同じである。
 実施形態4では、開閉弁61を開けると、第2連通ライン60を介して、気相流通ライン17に滞留する液相をタンク部21へ移送することができるので、気相の流量測定の信頼性を向上することができる。
(実施形態5)
 次に、実施形態5に係るドレン除去監視装置について説明する。実施形態5に係るドレン除去監視装置は、実施形態1~4のいずれかに対して、測定対象の静翼2を複数にしたものである。以下では、実施形態1の構成に測定対象の静翼2を複数にした構成で実施形態5を説明するが、実施形態2~4のいずれかの構成に測定対象の静翼2を複数にして実施形態5を構成してもよい。尚、実施形態5において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<本開示の実施形態5に係るドレン除去監視装置の構成>
 図10に示されるように、本開示の実施形態5に係るドレン除去監視装置10では、二相流流通ライン16の上流端が4つの分岐管16a,16b,16c,16dに分岐し、それぞれの分岐管に開閉弁71a,71b,71c,71dが設けられている。二相流流通ライン16には開閉弁18が設けられている。分岐管16a,16b,16c,16dのそれぞれは、異なる4つの静翼2a,2b,2c,2dのそれぞれが接続されるダイヤフラム5a,5b,5c,5dに形成された内部空間6a,6b,6c,6dと連通するようにダイヤフラム5a,5b,5c,5dに接続されている。静翼2a,2b,2c,2dのそれぞれの内部空間3a,3b,3c,3dと内部空間6a,6b,6c,6dとは連通しているので、二相流流通ライン16は、内部空間6a,6b,6c,6d及び分岐管16a,16b,16c,16dを介して内部空間3a,3b,3c,3dのそれぞれと気液分離装置11とを連通している。尚、流通ライン16の上流端が4つの分岐管に分岐する構成はあくまでも例示であり、2つ又は3つ、さらには5つ以上の分岐管に分岐した構成であってもよい。その他の構成は実施形態1と同じである。
<本開示の実施形態5に係るドレン除去監視装置の動作>
 実施形態5において、気相流量測定装置13が6つの測定機構30a,30b,30c,30d,30e,30fを備え、各測定機構の気相流通管34a,34b,34c,34d,34e,34fの内径が異なる場合、表1に示されるように、各測定機構の開閉弁33a,33b,33c,33d,33e,33fの開閉状態の組み合わせにより(表1において開いている開閉弁に丸印が付されている)、各静翼のスリット4a,4b,4c,4dから吸い込まれる二相流の流量と、各静翼のスリット4a,4b,4c,4dの上流及び下流間の圧力比とを独立して調整できる。尚、表1では、各気相流通管34a,34b,34c,34d,34e,34fの内径がそれぞれ異なり、この順番に内径が大きくなる構成を想定している。
Figure JPOXMLDOC01-appb-T000001
 例えば、1つの測定機構しか備えていない気相流量測定装置13では、図11に示されるように、測定対象が静翼2aから静翼2bに変わったことにより気相の流量が減少する場合には、圧力比と流量との関係が1点に固定されてしまい、適切な圧力比での流量測定ができなくなるおそれがある。これに対し、複数の測定機構を備える気相流量測定装置13では、開閉弁33a,33b,33c,33d,33e,33fの開閉状態の組み合わせにより、例えば図12に示されるように、同じ圧力比でも流量を変えられるといった互いに独立した流量及び圧力比の調整が可能となり、適切な条件でのドレン除去が可能になる。
 実施形態5では、複数の測定対象を、物理的に別々の複数の静翼2a~2dを例にして説明していたが、この形態に限定するものではない。実施形態5は、1つの同じ静翼であっても測定時期が異なる場合、すなわち、1つの同じ静翼に対する複数の測定についても、複数の測定対象とすることを想定している。尚、このような場合には、二相流流通ライン16の上流端が複数の分岐管に分岐している必要はなく、実施形態1と同様の構成であってもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
[1]一の態様に係るドレン除去監視装置は、
 蒸気タービン(1)において、内部空間(3)を含む中空状の少なくとも1つの静翼(2)の表面に形成されたスリット(4)を介して、前記静翼(2)の外部の流体を前記内部空間(3)に吸い込むことによって行われるドレン除去を監視するためのドレン除去監視装置(10)であって、
 前記内部空間(3)に吸い込まれた前記流体を液相と気相とに分離する気液分離装置(11)と、
 前記気液分離装置(11)によって分離された前記液相の流量を測定する液相流量測定装置(12)と、
 前記気液分離装置(11)によって分離された前記気相の流量を測定する気相流量測定装置(13)と、
 前記液相流量測定装置(12)と前記蒸気タービン(1)とを連通する液相戻りライン(14)と、
 前記気相流量測定装置(13)と前記蒸気タービン(1)とを連通する気相戻りライン(15)と
を備える。
 本開示のドレン除去監視装置によれば、蒸気タービンの静翼に形成されたスリットを介して静翼の内部空間へ吸い込まれる流体中の液相及び気相の両方の流量を測定するので、ドレン除去が適切に行われているかどうかを把握することができる。
[2]別の態様に係るドレン除去監視装置は、[1]のドレン除去監視装置であって、
 前記内部空間(3)と前記気液分離装置(11)とを連通する二相流流通ライン(16)と、
 前記二相流流通ライン(16)と前記気相戻りライン(15)とを連通するバイパスライン(40)と
を備える。
 このような構成によれば、液相及び気相の流量を測定する必要がない場合には、内部空間へ吸い込まれた流体を、バイパスライン及び気相戻りラインを介して蒸気タービンに戻すことができるので、流量測定のための消費電力を削減できる。また、蒸気タービンの運転を継続しながら液相流量測定装置及び気相流量測定装置のメンテナンスを行うこともできる。
[3]さらに別の態様に係るドレン除去監視装置は、[1]または[2]のドレン除去監視装置であって、
 前記液相流量測定装置(12)は、前記液相を貯留するタンク部(21)を含み、
 前記タンク部(21)と前記気相戻りライン(15)とを連通する第1連通ライン(50)を備える。
 気液分離装置とタンク部との圧力差によって、気液分離装置で分離された液相がタンク部に移送されるが、当該圧力差が小さいと、液相がタンク部へ移送されにくくなる。これに対し、上記[3]の構成によれば、当該圧力差を増加できるので、気液分離装置からタンク部への液相の移送を促進し、液相の流量測定の信頼性を高めることができる。
[4]さらに別の態様に係るドレン除去監視装置は、[3]のドレン除去監視装置であって、
 前記気液分離装置(11)と前記気相流量測定装置(13)とを連通する気相流通ライン(17)と、
 前記気相流通ライン(17)と前記第1連通ライン(50)とを連通する第2連通ライン(60)と
を備える。
 このような構成によれば、気相流通ラインに滞留する液相をタンク部へ移送することができるので、気相の流量測定の信頼性を向上することができる。
[5]さらに別の態様に係るドレン除去監視装置は、[1]~[4]のいずれかのドレン除去監視装置であって、
 前記気相流量測定装置(13)は複数の測定機構(30)を備え、
 前記複数の測定機構(30)のそれぞれは、
 前記気相の圧力を測定する圧力測定器(31)と、
 前記圧力測定器(31)の下流側に設けられた臨界ノズル(32)と、
 前記圧力測定器(31)及び前記臨界ノズル(32)の上流側又は下流側に設けられた開閉弁(33)と
を含む。
 このような構成によれば、各測定機構の開閉弁を開閉することにより、気相の流量測定に使用される測定機構の個数を調整できる。これにより、測定対象の静翼が変わった場合や測定対象の静翼の個数が変化した場合でも、使用される測定機器の個数を調整することにより、スリットの上流及び下流間の圧力差と液相及び気相を含む二相流の流量との条件を適切に調整して、気相の流量測定を適切に行うことができる。
[6]さらに別の態様に係るドレン除去監視装置は、[5]のドレン除去監視装置であって、
 前記臨界ノズル(32)はラバールノズルである。
 気相流量測定装置に臨界ノズルを用いていることにより、臨界ノズルの上流側の圧力のみによって気相の流量測定が可能となる。しかし、蒸気タービンの運転条件によって気相流量測定装置の下流側の圧力が上昇すると、臨界ノズルにおいて臨界圧力比に達しなくなる場合がある。気相流量測定装置の下流側の圧力が上昇した場合でも、臨界ノズルとしてラバールノズルを用いることにより、臨界圧力比に達する可能性を高めることができるので、気相の流量測定の信頼性を高めることができる。
[7]さらに別の態様に係るドレン除去監視装置は、[1]~[6]のいずれかのドレン除去監視装置であって、
 前記気液分離装置(11)はサイクロンセパレータである。
 このような構成によれば、広範囲の流体の流量に対して、気液分離を行うことができる。
[8]さらに別の態様に係るドレン除去監視装置は、[1]~[7]のいずれかのドレン除去監視装置であって、
 前記液相流量測定装置(12)は、
 前記液相を貯留するタンク部(21)と、
 前記タンク部(21)内の前記液相の量を検出する液相量検出部(22)と
を含む。
 このような構成によれば、経時的に液相の流量を取得することができる。
[9]さらに別の態様に係るドレン除去監視装置は、[8]のドレン除去監視装置であって、
 前記液相戻りライン(14)は前記タンク部(21)に接続され、
 前記液相戻りライン(14)には、前記液相量検出部(22)による検出値が予め設定された上限値に達したら開くように構成された排液弁(23)が設けられている。
 このような構成によれば、タンク部内の液相の量が上限値に達したら、自動でタンク部から液相を排液できるので、長期のモニタリングが可能となる。
[10]さらに別の態様に係るドレン除去監視装置は、[1]~[9]のいずれかのドレン除去監視装置であって、
 前記液相流量測定装置(12)及び前記気相流量測定装置(13)によって測定された前記液相の流量及び前記気相の流量が伝送される制御装置(20)を備え、
 前記制御装置(20)には、前記液相の流量に関する上限値及び下限値と、前記気相の流量に関する上限値及び下限値とが予め設定されており、
 前記制御装置(20)は、前記液相流量測定装置(12)及び前記気相流量測定装置(13)のそれぞれから伝送される前記液相及び前記気相それぞれの流量と、前記液相及び前記気相のそれぞれの流量に関する前記上限値及び前記下限値とに基づいて、前記ドレン除去の異常を検知する。
 このような構成によれば、ドレン除去の異常の発生及びその原因を自動的に検知することができる。
1 蒸気タービン
2 静翼
3 内部空間
4 スリット
10 ドレン除去監視装置
11 気液分離装置
12 液相流量測定装置
13 気相流量測定装置
14 液相戻りライン
15 気相戻りライン
16 二相流流通ライン
20 制御装置
21 タンク部
22 液相量検出部
23 排液弁
30 測定機構
31 圧力測定器
32 臨界ノズル
33 開閉弁
40 バイパスライン
50 第1連通ライン
60 第2連通ライン

Claims (10)

  1.  蒸気タービンにおいて、内部空間を含む中空状の少なくとも1つの静翼の表面に形成されたスリットを介して、前記静翼の外部の流体を前記内部空間に吸い込むことによって行われるドレン除去を監視するためのドレン除去監視装置であって、
     前記内部空間に吸い込まれた前記流体を液相と気相とに分離する気液分離装置と、
     前記気液分離装置によって分離された前記液相の流量を測定する液相流量測定装置と、
     前記気液分離装置によって分離された前記気相の流量を測定する気相流量測定装置と、
     前記液相流量測定装置と前記蒸気タービンとを連通する液相戻りラインと、
     前記気相流量測定装置と前記蒸気タービンとを連通する気相戻りラインと
    を備えるドレン除去監視装置。
  2.  前記内部空間と前記気液分離装置とを連通する二相流流通ラインと、
     前記二相流流通ラインと前記気相戻りラインとを連通するバイパスラインと
    を備える、請求項1に記載のドレン除去監視装置。
  3.  前記液相流量測定装置は、前記液相を貯留するタンク部を含み、
     前記タンク部と前記気相戻りラインとを連通する第1連通ラインを備える、請求項1または2に記載のドレン除去監視装置。
  4.  前記気液分離装置と前記気相流量測定装置とを連通する気相流通ラインと、
     前記気相流通ラインと前記第1連通ラインとを連通する第2連通ラインと
    を備える、請求項3に記載のドレン除去監視装置。
  5.  前記気相流量測定装置は複数の測定機構を備え、
     前記複数の測定機構のそれぞれは、
     前記気相の圧力を測定する圧力測定器と、
     前記圧力測定器の下流側に設けられた臨界ノズルと、
     前記圧力測定器及び前記臨界ノズルの上流側又は下流側に設けられた開閉弁と
    を含む、請求項1~4のいずれか一項に記載のドレン除去監視装置。
  6.  前記臨界ノズルはラバールノズルである、請求項5に記載のドレン除去監視装置。
  7.  前記気液分離装置はサイクロンセパレータである、請求項1~6のいずれか一項に記載のドレン除去監視装置。
  8.  前記液相流量測定装置は、
     前記液相を貯留するタンク部と、
     前記タンク部内の前記液相の量を検出する液相量検出部と
    を含む、請求項1~7のいずれか一項に記載のドレン除去監視装置。
  9.  前記液相戻りラインは前記タンク部に接続され、
     前記液相戻りラインには、前記液相量検出部による検出値が予め設定された上限値に達したら開くように構成された排液弁が設けられている、請求項8に記載のドレン除去監視装置。
  10.  前記液相流量測定装置及び前記気相流量測定装置によって測定された前記液相の流量及び前記気相の流量が伝送される制御装置を備え、
     前記制御装置には、前記液相の流量に関する上限値及び下限値と、前記気相の流量に関する上限値及び下限値とが予め設定されており、
     前記制御装置は、前記液相流量測定装置及び前記気相流量測定装置のそれぞれから伝送される前記液相及び前記気相それぞれの流量と、前記液相及び前記気相のそれぞれの流量に関する前記上限値及び前記下限値とに基づいて、前記ドレン除去の異常を検知する、請求項1~9のいずれか一項に記載のドレン除去監視装置。
PCT/JP2021/018215 2020-05-20 2021-05-13 ドレン除去監視装置 WO2021235314A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180020925.0A CN115279993A (zh) 2020-05-20 2021-05-13 废水排放监视装置
DE112021001297.5T DE112021001297B4 (de) 2020-05-20 2021-05-13 Einrichtung zur überwachung einer abflussentfernung
US17/921,157 US20230243273A1 (en) 2020-05-20 2021-05-13 Drain removal monitoring equipment
KR1020227037440A KR20220156632A (ko) 2020-05-20 2021-05-13 드레인 제거 감시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-087905 2020-05-20
JP2020087905A JP7369089B2 (ja) 2020-05-20 2020-05-20 ドレン除去監視装置

Publications (1)

Publication Number Publication Date
WO2021235314A1 true WO2021235314A1 (ja) 2021-11-25

Family

ID=78606194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018215 WO2021235314A1 (ja) 2020-05-20 2021-05-13 ドレン除去監視装置

Country Status (6)

Country Link
US (1) US20230243273A1 (ja)
JP (1) JP7369089B2 (ja)
KR (1) KR20220156632A (ja)
CN (1) CN115279993A (ja)
DE (1) DE112021001297B4 (ja)
WO (1) WO2021235314A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326802A (ja) * 1989-06-23 1991-02-05 Hitachi Ltd 蒸気タービンの静翼装置
JPH1151732A (ja) * 1997-08-06 1999-02-26 Chinetsu Gijutsu Kaihatsu Kk 噴気仮測定試験設備
JP2014040803A (ja) * 2012-08-23 2014-03-06 Hitachi Ltd 蒸気タービンの静翼構造及び蒸気タービン
JP2014055577A (ja) * 2012-09-14 2014-03-27 Hitachi Ltd 蒸気タービン静翼及び蒸気タービン

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157206A (ja) 1985-12-29 1987-07-13 Toshiba Corp 蒸気タ−ビンの水分排除装置
JPH0441908A (ja) 1990-06-01 1992-02-12 Hitachi Ltd 蒸気タービンの運転制御システム
CN207454045U (zh) * 2017-12-01 2018-06-05 济南玮泉生物发电有限公司 凉水塔势能回收利用系统
JP7284472B2 (ja) 2018-11-15 2023-05-31 株式会社青井黒板製作所 照明装置のケーブル押さえ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326802A (ja) * 1989-06-23 1991-02-05 Hitachi Ltd 蒸気タービンの静翼装置
JPH1151732A (ja) * 1997-08-06 1999-02-26 Chinetsu Gijutsu Kaihatsu Kk 噴気仮測定試験設備
JP2014040803A (ja) * 2012-08-23 2014-03-06 Hitachi Ltd 蒸気タービンの静翼構造及び蒸気タービン
JP2014055577A (ja) * 2012-09-14 2014-03-27 Hitachi Ltd 蒸気タービン静翼及び蒸気タービン

Also Published As

Publication number Publication date
JP2021181773A (ja) 2021-11-25
KR20220156632A (ko) 2022-11-25
JP7369089B2 (ja) 2023-10-25
US20230243273A1 (en) 2023-08-03
DE112021001297B4 (de) 2024-03-28
DE112021001297T5 (de) 2023-01-26
CN115279993A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US10174978B2 (en) System or method for measuring the phase of ammonia in a cooling system
US5353653A (en) Heat exchanger abnormality monitoring system
JP5501806B2 (ja) 圧力センサ、差圧式流量計及び流量コントローラ
TWI831881B (zh) 測量通過半導體製造裝置的管路之流體流動的設備
CN112864054B (zh) 半导体加工设备
WO2021235314A1 (ja) ドレン除去監視装置
US11992593B2 (en) Medical condensate trap for medical use, method for dehumidifying, blood treatment apparatus, blood treatment device
EP1585919B1 (en) Condensate trap
JP3758465B2 (ja) 復水器,発電プラント設備、及びその運転方法
JP2007107761A (ja) 復水器冷却水流量調節装置
EP3096120A1 (en) A drain for a pressure sensing line
CN104535326B (zh) 一种再热式合缸汽轮机过桥汽封泄漏量测量方法
JP3933512B2 (ja) 血液透析装置
CN217846371U (zh) 一种设备供水排水装置
CN219183725U (zh) 血压检测装置、血压测量仪及动态血压心电检测装置
RU2709895C2 (ru) Многоступенчатая паровая турбина для генерирования электроэнергии
EP3985360B1 (en) Flow measurement using multiple pitot tubes and multiple sensing units
CN217483962U (zh) 一种用于气体观测系统的进气干燥装置
WO2021172368A1 (ja) 熱交換器の洗浄方法及び検査方法、並びに、熱交換器の洗浄装置
JP6851807B2 (ja) 弁装置の動作判定システム及び動作判定方法
CN209952352U (zh) 分离罐
JP5357478B2 (ja) 差圧式流量測定装置
CN107060913A (zh) 一种无人值守自动疏水系统
WO2004073829A1 (en) Slug inhibition
CN117589936A (zh) 用于检测管壳式换热器管内气体泄露的检测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227037440

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217061618

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 21809095

Country of ref document: EP

Kind code of ref document: A1