WO2021234955A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2021234955A1
WO2021234955A1 PCT/JP2020/020348 JP2020020348W WO2021234955A1 WO 2021234955 A1 WO2021234955 A1 WO 2021234955A1 JP 2020020348 W JP2020020348 W JP 2020020348W WO 2021234955 A1 WO2021234955 A1 WO 2021234955A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat transfer
main
transfer tube
sub
Prior art date
Application number
PCT/JP2020/020348
Other languages
French (fr)
Japanese (ja)
Inventor
祐基 中尾
哲二 七種
理人 足立
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20937009.7A priority Critical patent/EP4155625A4/en
Priority to JP2022524843A priority patent/JPWO2021234955A1/ja
Priority to PCT/JP2020/020348 priority patent/WO2021234955A1/en
Priority to US17/910,914 priority patent/US20230147134A1/en
Publication of WO2021234955A1 publication Critical patent/WO2021234955A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the present disclosure relates to a heat exchanger having a heat transfer tube and an air conditioner including a heat exchanger.
  • Patent Document 1 discloses a heat exchanger in which the value obtained by dividing the cross-sectional area of the flow path per heat transfer tube by the cross-sectional area of the header per heat transfer tube is 3% to 30%. Patent Document 1 intends to improve the heat exchange performance by this.
  • Patent Document 1 in a heat exchanger having a large number of heat transfer tubes, when the air conditioning load applied to the heat exchanger is low and the flow rate of the refrigerant is small, the refrigerant in the gas-liquid two-phase state transfers heat. It may not be able to ascend in the pipe and may flow backward. Therefore, in Patent Document 1, a pressure loss may occur in the heat transfer tube and the heat exchange performance may be deteriorated.
  • the present disclosure has been made to solve the above-mentioned problems, and is an air provided with a heat exchanger and a heat exchanger that suppress the occurrence of pressure loss of the refrigerant in the heat transfer tube and improve the heat exchange performance. It provides a harmonizer.
  • the heat exchanger includes a main heat exchanger and an auxiliary heat exchanger connected to the main heat exchanger.
  • the main heat exchanger extends in the vertical direction and has a flow path through which the refrigerant flows.
  • N 2 the number of main heat transfer tubes
  • Fukuden When the number of heat transfer tubes is N 2 , the following formula (1) is satisfied, the flow path cross-sectional area per main heat transfer tube is Ta 1 , and the flow path cross-sectional area per secondary heat transfer tube is Ta. 2.
  • the diameter [m] is D 1
  • the equivalent diameter [m] of the flow path cross section per flow path of the secondary heat transfer tube is D 2
  • the density [kG / m 3 ] of the liquid refrigerant flowing through the main heat transfer tube is ⁇ L 1
  • the secondary is the diameter [m] of the flow path cross section per flow path of the secondary heat transfer tube.
  • the main heat exchanger satisfies the following formulas (2) and (4).
  • the secondary heat exchanger satisfies (3) and (5). Therefore, in the refrigerant flowing through the heat transfer tube, the stagnation of the ascending flow and the backflow are suppressed. Therefore, the heat exchanger can improve the heat exchange performance without causing the pressure loss of the refrigerant in the heat transfer tube.
  • FIG. 1 It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the heat exchanger 7 which concerns on Embodiment 1.
  • FIG. It is a top view which shows the heat exchanger 7 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the main heat transfer tube 31 and the main first header 33 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the secondary heat transfer tube 41 and the secondary first header 43 which concerns on Embodiment 1.
  • FIG. It is a graph which shows the heat exchange performance of the heat exchanger 7 which concerns on Embodiment 1.
  • FIG. It is a graph which shows the occurrence condition of flooding which concerns on Embodiment 1.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 has an outdoor unit 2, an indoor unit 3, and a refrigerant pipe 4. Although one indoor unit 3 is illustrated in FIG. 1, the number of indoor units 3 may be two or more.
  • the outdoor unit 2 includes a compressor 5, a flow path switching device 6, a heat exchanger 7, an outdoor blower 8, and an expansion unit 9.
  • the indoor unit 3 has an indoor heat exchanger 11 and an indoor blower 12.
  • the refrigerant pipe 4 connects the compressor 5, the flow path switching device 6, the heat exchanger 7, the expansion unit 9, and the indoor heat exchanger 11, and constitutes a refrigerant circuit by flowing the refrigerant inside.
  • the compressor 5 sucks in a refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the sucked refrigerant.
  • the flow path switching device 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
  • the heat exchanger 7 exchanges heat between the refrigerant and the outdoor air.
  • the heat exchanger 7 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 8 is a device that sends outdoor air to the heat exchanger 7.
  • the expansion unit 9 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the indoor heat exchanger 11 exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
  • the gas-liquid two-phase state refrigerant flows into the indoor heat exchanger 11 that acts as an evaporator.
  • the refrigerant flowing into the indoor heat exchanger 11 exchanges heat with the indoor air sent by the indoor blower 12, evaporates, and gasifies. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas refrigerant passes through the flow path switching device 6 and is sucked into the compressor 5.
  • Heating operation Next, the heating operation will be described.
  • the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 5 passes through the flow path switching device 6 and flows into the indoor heat exchanger 11 acting as a condenser.
  • the refrigerant flowing into the indoor heat exchanger 11 exchanges heat with the indoor air sent by the indoor blower 12, condenses and liquefies. At that time, the indoor air is warmed and the indoor heating is carried out.
  • the liquid-state refrigerant flows into the expansion unit 9, is depressurized and expanded, and becomes a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase state refrigerant flows into the heat exchanger 7, which acts as an evaporator.
  • the refrigerant flowing into the heat exchanger 7 is heat-exchanged with the outdoor air sent by the outdoor blower 8 to evaporate and gasify. After that, the evaporated low-temperature and low-pressure gas refrigerant passes through the flow path switching device 6 and is sucked into the compressor 5.
  • FIG. 2 is a perspective view showing the heat exchanger 7 according to the first embodiment.
  • FIG. 3 is a plan view showing the heat exchanger 7 according to the first embodiment.
  • the white arrows in FIG. 2 indicate the flow of the refrigerant when the heat exchanger 7 acts as an evaporator.
  • the hatched arrows indicate the flow of air through the heat exchanger 7.
  • the configuration of the heat exchanger 7 will be described in detail.
  • the same configuration as that of the heat exchanger 7 may be applied to the indoor heat exchanger 11.
  • the heat exchanger 7 has a main heat exchanger 21 and an auxiliary heat exchanger 22.
  • the main heat exchanger 21 is located on the upstream side of the sub heat exchanger 22.
  • the auxiliary heat exchanger 22 acts as a supercooler when the heat exchanger 7 acts as a condenser.
  • the heat exchanger 7 may be L-shaped in top view so as to be along the back surface and the side surface of the housing of the outdoor unit 2. Further, in this case, the portions of the heat exchanger 7 located on the back surface side and the side surface side may be connected via a connecting pipe or may be integrally molded.
  • the main heat exchanger 21 has a main heat transfer tube 31, a main fin 32, a main first header 33, a main second header 34, and a main third header 35.
  • the main heat transfer tube 31 is a heat transfer tube in which a plurality of flow paths through which the refrigerant flows are formed, and is, for example, a flat tube.
  • the main heat transfer tube 31 extends in the vertical direction. Further, main heat transfer pipe 31 is provided 1 present N.
  • the main heat transfer tubes 31 are arranged in two rows as a first row and a second row.
  • the main heat transfer tube 31 may have only one row.
  • the main fin 32 is, for example, a corrugated fin, which is provided in the main heat transfer tube 31 and promotes heat exchange between the refrigerant flowing inside the main heat transfer tube 31 and air.
  • the main first header 33 is a header into which one end of each main heat transfer tube 31 arranged as the first row is inserted.
  • a refrigerant pipe 4 is connected to the main first header 33.
  • the main first header 33 distributes the refrigerant flowing from the refrigerant pipe 4 to the main heat transfer pipes 31 arranged in the first row.
  • the main first header 33 causes the refrigerant merged from the main heat transfer pipes 31 arranged in the first row to flow out to the refrigerant pipe 4.
  • the main second header 34 is provided so as to face the main first header 33 and the main third header 35, and the other ends of the main heat transfer tubes 31 arranged as the first row and the second row are inserted. Header.
  • the main second header 34 distributes the refrigerant merged from the main heat transfer tubes 31 arranged in the first row to the main heat transfer tubes 31 arranged in the second row. ..
  • the main second header 34 is attached to the main heat transfer tube 31 in which the refrigerant merged from the main heat transfer tubes 31 arranged in the second row is arranged in the first row when the heat exchanger 7 acts as an evaporator. Distribute.
  • the main third header 35 is a header provided in parallel with the main first header 33 and into which one end of each main heat transfer tube 31 arranged as a second row is inserted.
  • the main third header 35 uses the refrigerant flowing in from the main heat transfer tubes 31 arranged in the second row as the sub-third header 45 of the sub-heat exchanger 22, which will be described later, when the heat exchanger 7 acts as a condenser. Inflow. Further, when the heat exchanger 7 acts as an evaporator, the main third header 35 distributes the refrigerant flowing from the sub-third header 45 to the main heat transfer tubes 31 arranged in the second row.
  • the main heat exchanger 21 has a configuration in which the main first header 33 and the main third header 35 are integrally molded, and has a partition portion (not shown) for partitioning the internal space in the central portion. May be good.
  • FIG. 4 is a configuration diagram showing a main heat transfer tube 31 and a main first header 33 according to the first embodiment.
  • FIG. 4 shows a cross section of the main first header 33 in the AA direction shown in FIG.
  • the "cross section” indicates a cross section in a direction perpendicular to the flow path formed in the main heat transfer tube 31.
  • the corresponding diameter [m] of the cross section of the flow path per main heat transfer tube 31 is D 1 .
  • the flow path cross-sectional area per flow path of the main heat transfer tube 31 is Ta 1 .
  • the flow path cross-sectional area Ta 1 is the total cross-sectional area of a plurality of flow paths formed in the main heat transfer tube 31.
  • the total cross-sectional area of the flow path of the main heat transfer tube 31 is AT 1 .
  • the total channel cross-sectional area AT 1 is a value obtained by multiplying the channel cross-sectional area Ta 1 per main heat transfer tube 31 by the number N 1 of the main heat transfer tubes 31.
  • the cross-sectional area of the main first header 33 per main heat transfer tube 31 is Ha 1 .
  • the cross-sectional area Ha 1 of main heat transfer tubes per 31 present main first header 33, the main value obtained by dividing the sectional area of the inner space in the number N 1 of main heat transfer tube 31 of the first header 33.
  • the cross-sectional area Ha 1 of the main first header 33 per 31 main heat transfer tubes is the area of the region shown by hatching in the lateral direction of the paper in FIG.
  • the main heat exchanger 21 satisfies the following equation (2). [Number 6] 0.03 ⁇ Ta 1 / Ha 1 ⁇ 0.3 ... (2)
  • the flow rate [kG / h] of all the refrigerants flowing through the main heat exchanger 21 is Gr 1
  • the density [kG / m 3 ] of the liquid refrigerant flowing through the main heat transfer tube 31 is ⁇ L 1
  • the density [kG / m 3 ] of the gas refrigerant flowing through the main heat transfer tube 31 was ⁇ G 1
  • the dryness [-] of the refrigerant flowing through the main heat exchanger 21 was X 1
  • the gravity acceleration [m / s 2 ] was G.
  • the sub heat exchanger 22 has a sub heat transfer tube 41, a sub fin 42, a sub first header 43, a sub second header 44, and a sub third header 45.
  • the sub heat transfer tube 41 is a heat transfer tube in which a plurality of flow paths through which the refrigerant flows are formed, and is, for example, a flat tube.
  • the auxiliary heat transfer tube 41 extends in the vertical direction. Further, two secondary heat transfer tubes 41 are provided. In the first embodiment, the auxiliary heat transfer tubes 41 are parallel to each other in two rows as a first row and a second row.
  • the auxiliary heat transfer tubes 41 may have only one row.
  • the sub-fin 42 is, for example, a corrugated fin, which is provided in the sub-heat transfer tube 41 and promotes heat exchange between the refrigerant flowing inside the sub-heat transfer tube 41 and air.
  • the sub-first header 43 is a header into which one end of each sub-heat transfer tube 41 arranged as the first row is inserted.
  • the sub first header 43 is connected to the main first header 33 via the first partition plate 23.
  • the first partition plate 23 partitions the space inside the main first header 33 and the sub first header 43.
  • a refrigerant pipe 4 is connected to the sub-first header 43.
  • the sub-first header 43 distributes the refrigerant flowing from the refrigerant pipe 4 to the sub-heat transfer tubes 41 arranged in the first row.
  • the sub-first header 43 causes the refrigerant merged from the sub-heat transfer tubes 41 arranged in the first row to flow out to the refrigerant pipe 4.
  • the sub-second header 44 is provided facing the sub-first header 43 and the sub-third header 45, and the other end of each sub-heat transfer tube 41 arranged as the first row and the second row is inserted. Header.
  • the sub second header 44 is connected to the main second header 34 via the second partition plate 24.
  • the second partition plate 24 divides the space inside the main second header 34 and the sub second header 44.
  • the sub-second header 44 distributes the refrigerant merged from the sub-heat transfer tubes 41 arranged in the first row to the sub-heat transfer tubes 41 arranged in the second row. ..
  • sub-second header 44 is attached to the sub-heat transfer tubes 41 in which the refrigerant merged from the sub-heat transfer tubes 41 arranged in the second row is arranged in the first row when the heat exchanger 7 acts as a condenser. Distribute.
  • the sub-third header 45 is a header provided in parallel with the sub-first header 43 and into which one end of each sub-heat transfer tube 41 arranged as a second row is inserted.
  • the sub-third header 45 is connected so that the main third header 35 and the internal space communicate with each other.
  • the sub-third header 45 causes the refrigerant flowing from the sub-heat transfer tubes 41 arranged in the second row to flow into the main third header 35 of the main heat exchanger 21 when the heat exchanger 7 acts as an evaporator. ..
  • the sub-third header 45 distributes the refrigerant flowing from the main third header 35 to the sub-heat transfer tubes 41 arranged in the second row when the heat exchanger 7 acts as a condenser.
  • the sub-heat exchanger 22 has a configuration in which the sub-first header 43 and the sub-third header 45 are integrally molded, and has a partition portion (not shown) for partitioning the internal space in the central portion. May be good.
  • FIG. 5 is a configuration diagram showing a sub heat transfer tube 41 and a sub first header 43 according to the first embodiment.
  • FIG. 5 shows a cross section of the sub-first header 43 in the AA direction shown in FIG.
  • the "cross section” indicates a cross section in a direction perpendicular to the flow path formed in the auxiliary heat transfer tube 41.
  • the configuration in which the subscript " 2 " of the subheat exchanger 22 is replaced with " 1 " corresponds to the corresponding configuration of the main heat exchanger 21.
  • the equivalent diameter [m] of the cross section of the flow path per sub heat transfer tube 41 is D 2 .
  • the flow path cross-sectional area per flow path of the auxiliary heat transfer tube 41 is Ta 2 .
  • the flow path cross-sectional area Ta 2 is the total cross-sectional area of a plurality of flow paths formed in the auxiliary heat transfer tube 41.
  • the total cross-sectional area of the flow path of the auxiliary heat transfer tube 41 is AT 2 .
  • the total channel cross-sectional area AT 2 is a value obtained by multiplying the flow path cross-sectional area Ta 2 per sub-heat transfer tube 41 by the number N 2 of the sub-heat transfer tubes 41.
  • the cross-sectional area of the sub-first header 43 per sub-heat transfer tube 41 is Ha 2 .
  • the cross-sectional area Ha 2 of the sub-first header 43 per sub-heat transfer tube 41 is a value obtained by dividing the cross-sectional area of the internal space of the sub-first header 43 by the number N 2 of the sub-heat transfer tubes 41.
  • the cross-sectional area Ha 2 of the sub-first header 43 per sub-heat transfer tube 41 is the area of the region shown by hatching in the lateral direction of the paper in FIG.
  • the secondary heat exchanger 22 satisfies the following formula (3). [Number 8] 0.03 ⁇ Ta 2 / Ha 2 ⁇ 0.3 ... (3)
  • the flow rate [kG / h] of all the refrigerants flowing through the sub-heat exchanger 22 is Gr 2
  • the density [kG / m 3 ] of the liquid refrigerant flowing through the sub-heat transfer tube 41 is ⁇ L 2
  • the density [kG / m 3 ] of the gas refrigerant flowing through the sub heat transfer tube 41 is ⁇ G 2
  • the dryness [-] of the refrigerant flowing through the sub heat exchanger 22 is X 2
  • FIG. 6 is a graph showing the heat exchange performance of the heat exchanger 7 according to the first embodiment.
  • the vertical axis of FIG. 6 shows the heat exchange performance of the heat exchanger 7.
  • the horizontal axis shows the ratio of the auxiliary heat exchanger 22 in the heat exchanger 7.
  • the ratio of the sub heat exchanger 22 is the ratio of the number N 2 of the sub heat transfer tubes 41 to the total number N 1 + N 2 of the main heat transfer tubes 31 and the sub heat transfer tubes 41.
  • the heat exchanger 7 has a high heat exchange efficiency when the ratio of the sub heat exchanger 22 is 10% to 40%.
  • the heat exchanger 7 satisfies the following formula (1) with respect to the number of main heat transfer tubes 31 and sub heat transfer tubes 41. Therefore, the heat exchanger 7 can obtain high heat exchange performance.
  • FIG. 7 is a graph showing the conditions for generating flooding according to the first embodiment.
  • Flooding is caused by the fact that when the refrigerant in the gas-liquid two-phase state rises in the heat transfer tube, the refrigerant in the liquid state near the gas-liquid interface flows backward with respect to the flow of the refrigerant in the gas state. This is a phenomenon in which the refrigerant in the phase state stagnates in the heat transfer tube. When flooding occurs in the heat transfer tube, the pressure of the refrigerant flowing through the heat transfer tube is lost.
  • FIG. 7 it will be described with reference to FIG. 7 that the stagnation and backflow of the refrigerant flowing as an ascending flow are suppressed in the main heat transfer tube 31 and the sub heat transfer tube 41 according to the first embodiment.
  • FIG. 7 shows the results of verifying the conditions for generating flooding when the speed of the refrigerant flowing through the heat transfer tube is changed in the heat exchanger 7 satisfying the equations (1) to (3).
  • the vertical axis of FIG. 7 shows a dimensionless quantity jG * (1/2) obtained from the following equation (6) when the flow velocity [m / s] of the gas refrigerant flowing through the heat transfer tube is jG.
  • the horizontal axis shows a dimensionless quantity jL * (1/2) obtained from the following equation (7) when the flow velocity [m / s] of the liquid refrigerant flowing through the heat transfer tube is jL.
  • the ⁇ and + marks shown in FIG. 7 indicate the values of jG * (1/2) and jL * (1/2) when flooding occurs. Further, the ⁇ mark and the ⁇ mark indicate the values of jG * (1/2) and jL * (1/2) when the flooding is completed. That is, FIG. 7 shows that flooding occurs in the range of 0.88 ⁇ C ⁇ 1. Further, it is known that when C ⁇ 0.88, the liquid refrigerant completely descends from the heat transfer tube. Therefore, in the heat exchanger 7, when C> 1, that is, when the following equation (8) is satisfied, the stagnation and backflow of the refrigerant flowing as an ascending flow are suppressed in the main heat transfer tube 31 and the sub heat transfer tube 41. .. [Number 13] jG * (1/2) + jL * (1/2) > 1 ... (8)
  • Equation (18) corresponds to equations (4) and (5). That is, the main heat exchanger 21 and the sub heat exchanger 22 according to the first embodiment satisfy the configuration in which C> 1 derived by the experiment of FIG. 7. Therefore, in the main heat exchanger 21 and the sub heat exchanger 22 according to the first embodiment, the stagnation and backflow of the refrigerant flowing as an ascending flow are suppressed in the main heat transfer tube 31 and the sub heat transfer tube 41.
  • the main heat exchanger 21 has the following formulas (2) and (4).
  • the auxiliary heat exchanger 22 satisfies (3) and (5). Therefore, in the refrigerant flowing through the heat transfer tube, the stagnation of the ascending flow and the backflow are suppressed. Therefore, the heat exchanger can improve the heat exchange performance without causing the pressure loss of the refrigerant in the heat transfer tube.
  • the heat exchanger 7 operates as a condenser, and even when the sub-heat exchanger 22 operates as a supercooler, the condensing performance of the sub-heat exchanger 22 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger wherein: Formula (1) is satisfied where N1 and N2 are the numbers of main heat exchanger tubes and secondary heat exchanger tubes; Formula (2) and Formula (3) are satisfied where Ta1 and Ta2 are the channel cross-sectional areas of one main heat exchanger tube and one secondary heat exchanger tube, Ha1 is the cross-sectional area of a main first header per one main heat exchanger tube, and Ha2 is the cross-sectional area of a secondary first header per one secondary heat exchanger tube; and Formula (4) and Formula (5) are satisfied where AT1 is the sum of the channel cross-sectional areas of the main heat exchanger tubes, AT2 is the sum of the channel cross-sectional areas of the secondary heat exchanger tubes, Gr1 and Gr2 are the flow rates [kG/h] of all refrigerants circulating through a main heat exchanger and a secondary heat exchanger, G is the gravitational acceleration [m/s2], D1 and D2 are the equivalent diameters [m] of the cross-sections of one channel of the main heat exchanger tube and one channel of the secondary heat exchanger tube, ρL1 and ρL2 are the densities [kG/m3] of the liquid refrigerant flowing through the main heat exchanger tube and the secondary heat exchanger tube, ρG1 and ρG2 are the densities [kG/m3] of the gas refrigerant flowing through the main heat exchanger tube and the secondary heat exchanger tube, and X1 and X2 are the dryness [-] of the refrigerant in the main heat exchanger and the secondary heat exchanger, respectively. (1): 0.1 < N2/(N1 + N2) < 0.4. (2): 0.03 < Ta1/Ha1 < 0.3. (3): 0.03 < Ta2/Ha2 < 0.3. (4): AT1 < Gr1/(G × D1(ρL1-ρG1))(1/2) × (X1(1/2) × ρG1(-1/4) + (1-X1)(1/2) × ρL1(-1/4))2. (5): AT2 < Gr2/(G × D2(ρL2-ρG2))(1/2) × (X2(1/2) × ρG2(-1/4) + (1-X2)(1/2) × ρL2(-1/4))2.

Description

熱交換器及び空気調和機Heat exchanger and air conditioner
 本開示は、伝熱管を有する熱交換器及び熱交換器を備える空気調和機に関する。 The present disclosure relates to a heat exchanger having a heat transfer tube and an air conditioner including a heat exchanger.
 従来、複数の伝熱管及び、伝熱管の両端部が挿入された一対のヘッダを有する熱交換器が知られている。特許文献1には、伝熱管1本あたりの流路の断面積を、伝熱管1本あたりのヘッダの断面積で除した値が3%~30%である熱交換器が開示されている。特許文献1は、これにより、熱交換性能を向上させようとするものである。 Conventionally, a heat exchanger having a plurality of heat transfer tubes and a pair of headers in which both ends of the heat transfer tubes are inserted is known. Patent Document 1 discloses a heat exchanger in which the value obtained by dividing the cross-sectional area of the flow path per heat transfer tube by the cross-sectional area of the header per heat transfer tube is 3% to 30%. Patent Document 1 intends to improve the heat exchange performance by this.
特許第4686062号公報Japanese Patent No. 4686062
 しかしながら、特許文献1のように、伝熱管の本数が多い熱交換器は、熱交換器にかかっている空調負荷が低く、冷媒の流量が少ない場合に、気液二相状態の冷媒が伝熱管内を上昇できずに逆流することがある。このため、特許文献1は、伝熱管内で圧力損失が生じ、熱交換性能が低下する虞がある。 However, as in Patent Document 1, in a heat exchanger having a large number of heat transfer tubes, when the air conditioning load applied to the heat exchanger is low and the flow rate of the refrigerant is small, the refrigerant in the gas-liquid two-phase state transfers heat. It may not be able to ascend in the pipe and may flow backward. Therefore, in Patent Document 1, a pressure loss may occur in the heat transfer tube and the heat exchange performance may be deteriorated.
 本開示は、上記のような課題を解決するためになされたもので、伝熱管内での冷媒の圧力損失の発生を抑制し、熱交換性能を向上させる熱交換器及び熱交換器を備える空気調和機を提供するものである。 The present disclosure has been made to solve the above-mentioned problems, and is an air provided with a heat exchanger and a heat exchanger that suppress the occurrence of pressure loss of the refrigerant in the heat transfer tube and improve the heat exchange performance. It provides a harmonizer.
 本開示に係る熱交換器は、主熱交換器と、主熱交換器に接続する副熱交換器と、を備え、主熱交換器は、上下方向に延び、内部に冷媒が流れる流路が形成された複数の主伝熱管と、それぞれの主伝熱管の一端部が挿入された主第1ヘッダと、主伝熱管に設けられ、主伝熱管の内部を流れる冷媒と空気との熱交換を促進する主フィンと、主第1ヘッダに対向し、主伝熱管の他端部が挿入された主第2ヘッダと、を有し、副熱交換器は、上下方向に延び、内部に冷媒が流れる流路が形成された複数の副伝熱管と、副伝熱管に設けられ、副伝熱管の内部を流れる冷媒と空気との熱交換を促進する副フィンと、それぞれの副伝熱管の一端部が挿入された副第1ヘッダと、副第1ヘッダに対向し、副伝熱管の他端部が挿入された副第2ヘッダと、を有し、主伝熱管の本数をN、副伝熱管の本数をN、とした際に、下記式(1)を満たし、主伝熱管の1本あたりの流路断面積をTa、副伝熱管の1本あたりの流路断面積をTa、主伝熱管の1本あたりの主第1ヘッダの断面積をHa、副伝熱管の1本あたりの副第1ヘッダの断面積をHa、とした際に、下記式(2)及び(3)を満たし、主伝熱管の流路断面積の総和をAT、副伝熱管の流路断面積の総和をAT、主熱交換器を流通する全冷媒の流量[kG/h]をGr、副熱交換器を流通する全冷媒の流量[kG/h]をGr、重力加速度[m/s]をG、主伝熱管の1流路あたりの流路断面の相当直径[m]をD、副伝熱管の1流路あたりの流路断面の相当直径[m]をD、主伝熱管を流れる液冷媒の密度[kG/m]をρL、副伝熱管を流れる液冷媒の密度[kG/m]をρL、主伝熱管を流れるガス冷媒の密度[kG/m]をρG、副伝熱管を流れるガス冷媒の密度[kG/m]をρG、主熱交換器を流れる冷媒の乾き度[-]をX、副熱交換器を流れる冷媒の乾き度[-]をX、とした際に、下記式(4)及び(5)を満たす。
 0.1<N/(N+N)<0.4・・・(1)
 0.03<Ta/Ha<0.3・・・(2)
 0.03<Ta/Ha<0.3・・・(3)
 AT<Gr/(G×D(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(4)
 AT<Gr/(G×D(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(5)
The heat exchanger according to the present disclosure includes a main heat exchanger and an auxiliary heat exchanger connected to the main heat exchanger. The main heat exchanger extends in the vertical direction and has a flow path through which the refrigerant flows. A plurality of formed main heat transfer tubes, a main first header into which one end of each main heat transfer tube is inserted, and heat exchange between the refrigerant and air provided in the main heat transfer tube and flowing inside the main heat transfer tube. It has a main fin to promote and a main second header facing the main first header and having the other end of the main heat transfer tube inserted, and the sub heat exchanger extends in the vertical direction, and the refrigerant is contained therein. A plurality of sub heat transfer tubes having flow paths formed, sub fins provided in the sub heat transfer tubes to promote heat exchange between the refrigerant flowing inside the sub heat transfer tubes and air, and one end of each sub heat transfer tube. and but inserted sub first header opposed to the secondary first header includes a sub-second header to which the other end portion of Fukuden heat pipe is inserted, a, N 1 the number of main heat transfer tubes, Fukuden When the number of heat transfer tubes is N 2 , the following formula (1) is satisfied, the flow path cross-sectional area per main heat transfer tube is Ta 1 , and the flow path cross-sectional area per secondary heat transfer tube is Ta. 2. When the cross-sectional area of the main first header per main heat transfer tube is Ha 1 and the cross-sectional area of the sub-first header per sub-heat transfer tube is Ha 2 , the following equation (2) And (3) are satisfied, the total flow path cross-sectional area of the main heat transfer tube is AT 1 , the total flow path cross-sectional area of the sub heat transfer tube is AT 2 , and the flow rate of all refrigerants flowing through the main heat exchanger [kG / h]. ] Is Gr 1 , the flow rate [kG / h] of all the refrigerants flowing through the secondary heat exchanger is Gr 2 , the gravity acceleration [m / s 2 ] is G, and the equivalent of the flow path cross section per main heat transfer tube. The diameter [m] is D 1 , the equivalent diameter [m] of the flow path cross section per flow path of the secondary heat transfer tube is D 2 , the density [kG / m 3 ] of the liquid refrigerant flowing through the main heat transfer tube is ρL 1 , and the secondary. pL 2 the density of the liquid refrigerant [kG / m 3] through the heat transfer tubes, the density of gas refrigerant flowing through RoG 1, the Fukuden heat pipe density of gas refrigerant flowing through the main heat transfer tube [kG / m 3] [kG / m 3 ] is ρG 2 , the dryness [-] of the refrigerant flowing through the main heat exchanger is X 1 , and the dryness [-] of the refrigerant flowing through the secondary heat exchanger is X 2 , the following equation (4) And (5) are satisfied.
0.1 <N 2 / (N 1 + N 2 ) <0.4 ... (1)
0.03 <Ta 1 / Ha 1 <0.3 ... (2)
0.03 <Ta 2 / Ha 2 <0.3 ... (3)
AT 1 <Gr 1 / (G × D 1 (ρL 1 -ρG 1)) (1/2) × (X 1 (1/2) × ρG 1 (-1/4) + (1-X 1) ( 1/2) × ρL 1 (-1/4) ) 2 ... (4)
AT 2 <Gr 2 / (G × D 2 (ρL 2- ρG 2 )) (1/2) × (X 2 (1/2) × ρG 2 (-1/4) + (1-X 2 ) ( 1/2) × ρL 2 (-1/4) ) 2 ... (5)
 本開示によれば、主伝熱管の本数と副伝熱管との本数の関係が下記式(1)を満たす熱交換器において、主熱交換器が下記式(2)及び(4)を満たすと共に、副熱交換器が(3)及び(5)を満たしている。このため、伝熱管を流れる冷媒は、上昇流の停滞及び逆流が抑制されている。したがって、熱交換器は、伝熱管において、冷媒の圧力損失を生じさせず、熱交換性能を向上させることができる。
 0.1<N/(N+N)<0.4・・・(1)
 0.03<Ta/Ha<0.3・・・(2)
 0.03<Ta/Ha<0.3・・・(3)
 AT<Gr/(G×D(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(4)
 AT<Gr/(G×D(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(5)
According to the present disclosure, in a heat exchanger in which the relationship between the number of main heat transfer tubes and the number of sub heat transfer tubes satisfies the following formula (1), the main heat exchanger satisfies the following formulas (2) and (4). , The secondary heat exchanger satisfies (3) and (5). Therefore, in the refrigerant flowing through the heat transfer tube, the stagnation of the ascending flow and the backflow are suppressed. Therefore, the heat exchanger can improve the heat exchange performance without causing the pressure loss of the refrigerant in the heat transfer tube.
0.1 <N 2 / (N 1 + N 2 ) <0.4 ... (1)
0.03 <Ta 1 / Ha 1 <0.3 ... (2)
0.03 <Ta 2 / Ha 2 <0.3 ... (3)
AT 1 <Gr 1 / (G × D 1 (ρL 1 -ρG 1)) (1/2) × (X 1 (1/2) × ρG 1 (-1/4) + (1-X 1) ( 1/2) × ρL 1 (-1/4) ) 2 ... (4)
AT 2 <Gr 2 / (G × D 2 (ρL 2- ρG 2 )) (1/2) × (X 2 (1/2) × ρG 2 (-1/4) + (1-X 2 ) ( 1/2) × ρL 2 (-1/4) ) 2 ... (5)
実施の形態1に係る空気調和機1を示す回路図である。It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器7を示す斜視図である。It is a perspective view which shows the heat exchanger 7 which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器7を示す平面図である。It is a top view which shows the heat exchanger 7 which concerns on Embodiment 1. FIG. 実施の形態1に係る主伝熱管31及び主第1ヘッダ33を示す構成図である。It is a block diagram which shows the main heat transfer tube 31 and the main first header 33 which concerns on Embodiment 1. FIG. 実施の形態1に係る副伝熱管41及び副第1ヘッダ43を示す構成図である。It is a block diagram which shows the secondary heat transfer tube 41 and the secondary first header 43 which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器7の熱交換性能を示すグラフである。It is a graph which shows the heat exchange performance of the heat exchanger 7 which concerns on Embodiment 1. FIG. 実施の形態1に係るフラッディングの発生条件を示すグラフである。It is a graph which shows the occurrence condition of flooding which concerns on Embodiment 1. FIG.
実施の形態1.
 以下、実施の形態1に係る空気調和機1について、図面を参照しながら説明する。図1は、実施の形態1に係る空気調和機1を示す回路図である。図1に示すように、空気調和機1は、室外機2、室内機3及び冷媒配管4を有している。なお、図1では、1台の室内機3を例示しているが、室内機3の台数は、2台以上でもよい。
Embodiment 1.
Hereinafter, the air conditioner 1 according to the first embodiment will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 has an outdoor unit 2, an indoor unit 3, and a refrigerant pipe 4. Although one indoor unit 3 is illustrated in FIG. 1, the number of indoor units 3 may be two or more.
 (室外機2、室内機3、冷媒配管4)
 室外機2は、圧縮機5、流路切替装置6、熱交換器7、室外送風機8及び膨張部9を有している。室内機3は、室内熱交換器11及び室内送風機12を有している。冷媒配管4は、圧縮機5、流路切替装置6、熱交換器7、膨張部9及び室内熱交換器11を接続すると共に、内部に冷媒が流れることで冷媒回路を構成するものである。
(Outdoor unit 2, indoor unit 3, refrigerant piping 4)
The outdoor unit 2 includes a compressor 5, a flow path switching device 6, a heat exchanger 7, an outdoor blower 8, and an expansion unit 9. The indoor unit 3 has an indoor heat exchanger 11 and an indoor blower 12. The refrigerant pipe 4 connects the compressor 5, the flow path switching device 6, the heat exchanger 7, the expansion unit 9, and the indoor heat exchanger 11, and constitutes a refrigerant circuit by flowing the refrigerant inside.
 (圧縮機5、流路切替装置6、熱交換器7、室外送風機8、膨張部9)
 圧縮機5は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置6は、冷媒回路において、冷媒の流通方向を切り替えるものであり、例えば四方弁である。熱交換器7は、冷媒と室外空気との間で熱交換を行うものである。熱交換器7は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機8は、熱交換器7に室外空気を送る機器である。膨張部9は、冷媒を減圧して膨張させる減圧弁又は膨張弁である。
(Compressor 5, flow path switching device 6, heat exchanger 7, outdoor blower 8, expansion unit 9)
The compressor 5 sucks in a refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the sucked refrigerant. The flow path switching device 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve. The heat exchanger 7 exchanges heat between the refrigerant and the outdoor air. The heat exchanger 7 acts as a condenser during the cooling operation and as an evaporator during the heating operation. The outdoor blower 8 is a device that sends outdoor air to the heat exchanger 7. The expansion unit 9 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
 (室内熱交換器11、室内送風機12)
 室内熱交換器11は、室内空気と冷媒との間で熱交換を行うものである。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機12は、室内熱交換器11に室内空気を送る機器である。
(Indoor heat exchanger 11, indoor blower 12)
The indoor heat exchanger 11 exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation. The indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
 (冷房運転)
 ここで、空気調和機1の動作について説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機5から吐出された高温且つ高圧のガス冷媒は、流路切替装置6を通過して、凝縮器として作用する熱交換器7に流入する。熱交換器7に流入した冷媒は、室外送風機8によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、膨張部9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室内熱交換器11に流入する。室内熱交換器11に流入した冷媒は、室内送風機12によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス冷媒は、流路切替装置6を通過して、圧縮機5に吸入される。
(Cooling operation)
Here, the operation of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 5 passes through the flow path switching device 6 and flows into the heat exchanger 7 acting as a condenser. The refrigerant flowing into the heat exchanger 7 exchanges heat with the outdoor air sent by the outdoor blower 8, condenses and liquefies. The liquid-state refrigerant flows into the expansion unit 9, is depressurized and expanded, and becomes a low-temperature and low-pressure gas-liquid two-phase state refrigerant. The gas-liquid two-phase state refrigerant flows into the indoor heat exchanger 11 that acts as an evaporator. The refrigerant flowing into the indoor heat exchanger 11 exchanges heat with the indoor air sent by the indoor blower 12, evaporates, and gasifies. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas refrigerant passes through the flow path switching device 6 and is sucked into the compressor 5.
 (暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機5から吐出された高温且つ高圧のガス冷媒は、流路切替装置6を通過して、凝縮器として作用する室内熱交換器11に流入する。室内熱交換器11に流入した冷媒は、室内送風機12によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、膨張部9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する熱交換器7に流入する。熱交換器7に流入した冷媒は、室外送風機8によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス冷媒は、流路切替装置6を通過して、圧縮機5に吸入される。
(Heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 5 passes through the flow path switching device 6 and flows into the indoor heat exchanger 11 acting as a condenser. The refrigerant flowing into the indoor heat exchanger 11 exchanges heat with the indoor air sent by the indoor blower 12, condenses and liquefies. At that time, the indoor air is warmed and the indoor heating is carried out. The liquid-state refrigerant flows into the expansion unit 9, is depressurized and expanded, and becomes a low-temperature and low-pressure gas-liquid two-phase state refrigerant. The gas-liquid two-phase state refrigerant flows into the heat exchanger 7, which acts as an evaporator. The refrigerant flowing into the heat exchanger 7 is heat-exchanged with the outdoor air sent by the outdoor blower 8 to evaporate and gasify. After that, the evaporated low-temperature and low-pressure gas refrigerant passes through the flow path switching device 6 and is sucked into the compressor 5.
 (熱交換器7)
 図2は、実施の形態1に係る熱交換器7を示す斜視図である。図3は、実施の形態1に係る熱交換器7を示す平面図である。図2の白抜きの矢印は、熱交換器7が蒸発器として作用する際の冷媒の流れを示している。また、ハッチングされた矢印は、熱交換器7を通る空気の流れを示している。ここで、熱交換器7の構成について、詳細に説明する。なお、熱交換器7と同等の構成を室内熱交換器11に適用させてもよい。図2に示すように、熱交換器7は、主熱交換器21及び副熱交換器22を有している。熱交換器7が凝縮器として作用する際に、主熱交換器21は、副熱交換器22の上流側に位置している。また、副熱交換器22は、熱交換器7が凝縮器として作用する際に、過冷却器として作用する。なお、熱交換器7は、室外機2の筐体の背面及び側面に沿うように、上面視においてL字型をなしていてもよい。また、この場合、熱交換器7において筐体の背面側及び側面側に位置する部分は、接続管を介して接続されていてもよいし、一体的に成型されていてもよい。
(Heat exchanger 7)
FIG. 2 is a perspective view showing the heat exchanger 7 according to the first embodiment. FIG. 3 is a plan view showing the heat exchanger 7 according to the first embodiment. The white arrows in FIG. 2 indicate the flow of the refrigerant when the heat exchanger 7 acts as an evaporator. The hatched arrows indicate the flow of air through the heat exchanger 7. Here, the configuration of the heat exchanger 7 will be described in detail. The same configuration as that of the heat exchanger 7 may be applied to the indoor heat exchanger 11. As shown in FIG. 2, the heat exchanger 7 has a main heat exchanger 21 and an auxiliary heat exchanger 22. When the heat exchanger 7 acts as a condenser, the main heat exchanger 21 is located on the upstream side of the sub heat exchanger 22. Further, the auxiliary heat exchanger 22 acts as a supercooler when the heat exchanger 7 acts as a condenser. The heat exchanger 7 may be L-shaped in top view so as to be along the back surface and the side surface of the housing of the outdoor unit 2. Further, in this case, the portions of the heat exchanger 7 located on the back surface side and the side surface side may be connected via a connecting pipe or may be integrally molded.
 (主熱交換器21)
 図2に示すように、主熱交換器21は、主伝熱管31、主フィン32、主第1ヘッダ33、主第2ヘッダ34及び主第3ヘッダ35を有している。主伝熱管31は、内部に冷媒が流れる流路が複数形成された伝熱管であり、例えば、扁平管である。主伝熱管31は、上下方向に延びている。また、主伝熱管31は、N本設けられている。本実施の形態1において、主伝熱管31は、第1の列及び第2の列として2列に並行している。なお、主伝熱管31は、1列のみであってもよい。主フィン32は、例えば、コルゲートフィンであり、主伝熱管31に設けられ、主伝熱管31の内部を流れる冷媒と空気との熱交換を促進する。
(Main heat exchanger 21)
As shown in FIG. 2, the main heat exchanger 21 has a main heat transfer tube 31, a main fin 32, a main first header 33, a main second header 34, and a main third header 35. The main heat transfer tube 31 is a heat transfer tube in which a plurality of flow paths through which the refrigerant flows are formed, and is, for example, a flat tube. The main heat transfer tube 31 extends in the vertical direction. Further, main heat transfer pipe 31 is provided 1 present N. In the first embodiment, the main heat transfer tubes 31 are arranged in two rows as a first row and a second row. The main heat transfer tube 31 may have only one row. The main fin 32 is, for example, a corrugated fin, which is provided in the main heat transfer tube 31 and promotes heat exchange between the refrigerant flowing inside the main heat transfer tube 31 and air.
 主第1ヘッダ33は、第1の列として並んだそれぞれの主伝熱管31の一端部が挿入されたヘッダである。主第1ヘッダ33には、冷媒配管4が接続されている。主第1ヘッダ33は、熱交換器7が凝縮器として作用する際に、冷媒配管4から流入した冷媒を第1の列として並んだ主伝熱管31に分配する。また、主第1ヘッダ33は、熱交換器7が蒸発器として作用する際に、第1の列として並んだ主伝熱管31から合流した冷媒を冷媒配管4に流出させる。 The main first header 33 is a header into which one end of each main heat transfer tube 31 arranged as the first row is inserted. A refrigerant pipe 4 is connected to the main first header 33. When the heat exchanger 7 acts as a condenser, the main first header 33 distributes the refrigerant flowing from the refrigerant pipe 4 to the main heat transfer pipes 31 arranged in the first row. Further, when the heat exchanger 7 acts as an evaporator, the main first header 33 causes the refrigerant merged from the main heat transfer pipes 31 arranged in the first row to flow out to the refrigerant pipe 4.
 主第2ヘッダ34は、主第1ヘッダ33及び主第3ヘッダ35に対向して設けられ、第1の列及び第2の列として並んだそれぞれの主伝熱管31の他端部が挿入されたヘッダである。主第2ヘッダ34は、熱交換器7が凝縮器として作用する際に、第1の列として並んだ主伝熱管31から合流した冷媒を第2の列として並んだ主伝熱管31に分配する。また、主第2ヘッダ34は、熱交換器7が蒸発器として作用する際に、第2の列として並んだ主伝熱管31から合流した冷媒を第1の列として並んだ主伝熱管31に分配する。 The main second header 34 is provided so as to face the main first header 33 and the main third header 35, and the other ends of the main heat transfer tubes 31 arranged as the first row and the second row are inserted. Header. When the heat exchanger 7 acts as a condenser, the main second header 34 distributes the refrigerant merged from the main heat transfer tubes 31 arranged in the first row to the main heat transfer tubes 31 arranged in the second row. .. Further, the main second header 34 is attached to the main heat transfer tube 31 in which the refrigerant merged from the main heat transfer tubes 31 arranged in the second row is arranged in the first row when the heat exchanger 7 acts as an evaporator. Distribute.
 主第3ヘッダ35は、主第1ヘッダ33に並行して設けられ、第2の列として並んだそれぞれの主伝熱管31の一端部が挿入されたヘッダである。主第3ヘッダ35は、熱交換器7が凝縮器として作用する際に、第2の列として並んだ主伝熱管31から流入した冷媒を後述する副熱交換器22の副第3ヘッダ45に流入させる。また、主第3ヘッダ35は、熱交換器7が蒸発器として作用する際に、副第3ヘッダ45から流入した冷媒を第2の列として並んだ主伝熱管31に分配する。なお、主熱交換器21は、主第1ヘッダ33と主第3ヘッダ35とが一体的に成型され、中央部に内部の空間を区画する区画部(図示せず)を有する構成であってもよい。 The main third header 35 is a header provided in parallel with the main first header 33 and into which one end of each main heat transfer tube 31 arranged as a second row is inserted. The main third header 35 uses the refrigerant flowing in from the main heat transfer tubes 31 arranged in the second row as the sub-third header 45 of the sub-heat exchanger 22, which will be described later, when the heat exchanger 7 acts as a condenser. Inflow. Further, when the heat exchanger 7 acts as an evaporator, the main third header 35 distributes the refrigerant flowing from the sub-third header 45 to the main heat transfer tubes 31 arranged in the second row. The main heat exchanger 21 has a configuration in which the main first header 33 and the main third header 35 are integrally molded, and has a partition portion (not shown) for partitioning the internal space in the central portion. May be good.
 図4は、実施の形態1に係る主伝熱管31及び主第1ヘッダ33を示す構成図である。図4は、図3に示されたA-A方向の主第1ヘッダ33の断面を示している。ここで、図4を用いて、主熱交換器21の各部材の寸法及び、主伝熱管31を流れる冷媒の性質等について説明する。なお、以下の説明において、「断面」は、主伝熱管31に形成された流路に対して垂直な向きの断面を示している。図4に示すように、主伝熱管31の1本あたりの流路断面の相当直径[m]は、Dである。主伝熱管31の1流路あたりの流路断面積は、Taである。流路断面積Taは、主伝熱管31に形成された複数の流路の断面積の合計である。 FIG. 4 is a configuration diagram showing a main heat transfer tube 31 and a main first header 33 according to the first embodiment. FIG. 4 shows a cross section of the main first header 33 in the AA direction shown in FIG. Here, with reference to FIG. 4, the dimensions of each member of the main heat exchanger 21 and the properties of the refrigerant flowing through the main heat transfer tube 31 will be described. In the following description, the "cross section" indicates a cross section in a direction perpendicular to the flow path formed in the main heat transfer tube 31. As shown in FIG. 4, the corresponding diameter [m] of the cross section of the flow path per main heat transfer tube 31 is D 1 . The flow path cross-sectional area per flow path of the main heat transfer tube 31 is Ta 1 . The flow path cross-sectional area Ta 1 is the total cross-sectional area of a plurality of flow paths formed in the main heat transfer tube 31.
主伝熱管31の流路断面積の総和は、ATである。流路断面積の総和ATとは、主伝熱管31の1本あたりの流路断面積Taに主伝熱管31の本数Nを乗じた値である。主伝熱管31の1本あたりの主第1ヘッダ33の断面積は、Haである。主伝熱管31本あたりの主第1ヘッダ33の断面積Haとは、主第1ヘッダ33の内部空間の断面積を主伝熱管31の本数Nで除した値である。主伝熱管31本あたりの主第1ヘッダ33の断面積Haは、図4において、紙面横方向のハッチングで示された領域の面積である。ここで、主熱交換器21は、下記式(2)を満たしている。
 [数6]
 0.03<Ta/Ha<0.3・・・(2)
The total cross-sectional area of the flow path of the main heat transfer tube 31 is AT 1 . The total channel cross-sectional area AT 1 is a value obtained by multiplying the channel cross-sectional area Ta 1 per main heat transfer tube 31 by the number N 1 of the main heat transfer tubes 31. The cross-sectional area of the main first header 33 per main heat transfer tube 31 is Ha 1 . The cross-sectional area Ha 1 of main heat transfer tubes per 31 present main first header 33, the main value obtained by dividing the sectional area of the inner space in the number N 1 of main heat transfer tube 31 of the first header 33. The cross-sectional area Ha 1 of the main first header 33 per 31 main heat transfer tubes is the area of the region shown by hatching in the lateral direction of the paper in FIG. Here, the main heat exchanger 21 satisfies the following equation (2).
[Number 6]
0.03 <Ta 1 / Ha 1 <0.3 ... (2)
 また、主熱交換器21は、主熱交換器21を流通する全冷媒の流量[kG/h]をGr、主伝熱管31を流れる液冷媒の密度[kG/m]をρL、主伝熱管31を流れるガス冷媒の密度[kG/m]をρG、主熱交換器21を流れる冷媒の乾き度[-]をX、重力加速度[m/s]をGとした際に、下記式(4)を満たしている。
 [数7]
 AT<Gr/(G×D×(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(4)
Further, in the main heat exchanger 21, the flow rate [kG / h] of all the refrigerants flowing through the main heat exchanger 21 is Gr 1 , and the density [kG / m 3 ] of the liquid refrigerant flowing through the main heat transfer tube 31 is ρL 1 . The density [kG / m 3 ] of the gas refrigerant flowing through the main heat transfer tube 31 was ρG 1 , the dryness [-] of the refrigerant flowing through the main heat exchanger 21 was X 1 , and the gravity acceleration [m / s 2 ] was G. At that time, the following formula (4) is satisfied.
[Number 7]
AT 1 <Gr 1 / (G x D 1 x (ρL 1- ρG 1 )) (1/2) x (X 1 (1/2) x ρG 1 (-1/4) + (1-X 1 )) (1/2) × ρL 1 (-1/4) ) 2 ... (4)
 (副熱交換器22)
 図2に示すように、副熱交換器22は、副伝熱管41、副フィン42、副第1ヘッダ43、副第2ヘッダ44及び副第3ヘッダ45を有している。副伝熱管41は、内部に冷媒が流れる流路が複数形成された伝熱管であり、例えば、扁平管である。副伝熱管41は、上下方向に延びている。また、副伝熱管41は、N本設けられている。本実施の形態1において、副伝熱管41は、第1の列及び第2の列として2列に並行している。なお、副伝熱管41は、1列のみであってもよい。副フィン42は、例えば、コルゲートフィンであり、副伝熱管41に設けられ、副伝熱管41の内部を流れる冷媒と空気との熱交換を促進する。
(Secondary heat exchanger 22)
As shown in FIG. 2, the sub heat exchanger 22 has a sub heat transfer tube 41, a sub fin 42, a sub first header 43, a sub second header 44, and a sub third header 45. The sub heat transfer tube 41 is a heat transfer tube in which a plurality of flow paths through which the refrigerant flows are formed, and is, for example, a flat tube. The auxiliary heat transfer tube 41 extends in the vertical direction. Further, two secondary heat transfer tubes 41 are provided. In the first embodiment, the auxiliary heat transfer tubes 41 are parallel to each other in two rows as a first row and a second row. The auxiliary heat transfer tubes 41 may have only one row. The sub-fin 42 is, for example, a corrugated fin, which is provided in the sub-heat transfer tube 41 and promotes heat exchange between the refrigerant flowing inside the sub-heat transfer tube 41 and air.
 副第1ヘッダ43は、第1の列として並んだそれぞれの副伝熱管41の一端部が挿入されたヘッダである。副第1ヘッダ43は、主第1ヘッダ33と第1仕切り板23を介して接続されている。第1仕切り板23は、主第1ヘッダ33と副第1ヘッダ43の内部の空間を区画するものである。副第1ヘッダ43には、冷媒配管4が接続されている。副第1ヘッダ43は、熱交換器7が蒸発器として作用する際に、冷媒配管4から流入した冷媒を第1の列として並んだ副伝熱管41に分配する。また、副第1ヘッダ43は、熱交換器7が凝縮器として作用する際に、第1の列として並んだ副伝熱管41から合流した冷媒を冷媒配管4に流出させる。 The sub-first header 43 is a header into which one end of each sub-heat transfer tube 41 arranged as the first row is inserted. The sub first header 43 is connected to the main first header 33 via the first partition plate 23. The first partition plate 23 partitions the space inside the main first header 33 and the sub first header 43. A refrigerant pipe 4 is connected to the sub-first header 43. When the heat exchanger 7 acts as an evaporator, the sub-first header 43 distributes the refrigerant flowing from the refrigerant pipe 4 to the sub-heat transfer tubes 41 arranged in the first row. Further, when the heat exchanger 7 acts as a condenser, the sub-first header 43 causes the refrigerant merged from the sub-heat transfer tubes 41 arranged in the first row to flow out to the refrigerant pipe 4.
 副第2ヘッダ44は、副第1ヘッダ43及び副第3ヘッダ45に対向して設けられ、第1の列及び第2の列として並んだそれぞれの副伝熱管41の他端部が挿入されたヘッダである。副第2ヘッダ44は、主第2ヘッダ34と第2仕切り板24を介して接続されている。第2仕切り板24は、主第2ヘッダ34と副第2ヘッダ44の内部の空間を区画するものである。副第2ヘッダ44は、熱交換器7が蒸発器として作用する際に、第1の列として並んだ副伝熱管41から合流した冷媒を第2の列として並んだ副伝熱管41に分配する。また、副第2ヘッダ44は、熱交換器7が凝縮器として作用する際に、第2の列として並んだ副伝熱管41から合流した冷媒を第1の列として並んだ副伝熱管41に分配する。 The sub-second header 44 is provided facing the sub-first header 43 and the sub-third header 45, and the other end of each sub-heat transfer tube 41 arranged as the first row and the second row is inserted. Header. The sub second header 44 is connected to the main second header 34 via the second partition plate 24. The second partition plate 24 divides the space inside the main second header 34 and the sub second header 44. When the heat exchanger 7 acts as an evaporator, the sub-second header 44 distributes the refrigerant merged from the sub-heat transfer tubes 41 arranged in the first row to the sub-heat transfer tubes 41 arranged in the second row. .. Further, the sub-second header 44 is attached to the sub-heat transfer tubes 41 in which the refrigerant merged from the sub-heat transfer tubes 41 arranged in the second row is arranged in the first row when the heat exchanger 7 acts as a condenser. Distribute.
 副第3ヘッダ45は、副第1ヘッダ43に並行して設けられ、第2の列として並んだそれぞれの副伝熱管41の一端部が挿入されたヘッダである。副第3ヘッダ45は、主第3ヘッダ35と内部の空間が連通するように接続されている。副第3ヘッダ45は、熱交換器7が蒸発器として作用する際に、第2の列として並んだ副伝熱管41から流入した冷媒を主熱交換器21の主第3ヘッダ35に流入させる。また、副第3ヘッダ45は、熱交換器7が凝縮器として作用する際に、主第3ヘッダ35から流入した冷媒を第2の列として並んだ副伝熱管41に分配する。なお、副熱交換器22は、副第1ヘッダ43と副第3ヘッダ45とが一体的に成型され、中央部に内部の空間を区画する区画部(図示せず)を有する構成であってもよい。 The sub-third header 45 is a header provided in parallel with the sub-first header 43 and into which one end of each sub-heat transfer tube 41 arranged as a second row is inserted. The sub-third header 45 is connected so that the main third header 35 and the internal space communicate with each other. The sub-third header 45 causes the refrigerant flowing from the sub-heat transfer tubes 41 arranged in the second row to flow into the main third header 35 of the main heat exchanger 21 when the heat exchanger 7 acts as an evaporator. .. Further, the sub-third header 45 distributes the refrigerant flowing from the main third header 35 to the sub-heat transfer tubes 41 arranged in the second row when the heat exchanger 7 acts as a condenser. The sub-heat exchanger 22 has a configuration in which the sub-first header 43 and the sub-third header 45 are integrally molded, and has a partition portion (not shown) for partitioning the internal space in the central portion. May be good.
 図5は、実施の形態1に係る副伝熱管41及び副第1ヘッダ43を示す構成図である。図5は、図3に示されたA-A方向の副第1ヘッダ43の断面を示している。ここで、図5を用いて、副熱交換器22の各部材の寸法及び、副伝熱管41を流れる冷媒の性質等について説明する。なお、以下の説明において、「断面」は、副伝熱管41に形成された流路に対して垂直な向きの断面を示す。また、以下の説明において、副熱交換器22の添字「」を「」に読み替えた構成は、主熱交換器21の対応する構成に相当する。副伝熱管41の1本あたりの流路断面の相当直径[m]は、Dである。副伝熱管41の1流路あたりの流路断面積は、Taである。流路断面積Taは、副伝熱管41に形成された複数の流路の断面積の合計である。 FIG. 5 is a configuration diagram showing a sub heat transfer tube 41 and a sub first header 43 according to the first embodiment. FIG. 5 shows a cross section of the sub-first header 43 in the AA direction shown in FIG. Here, with reference to FIG. 5, the dimensions of each member of the sub-heat exchanger 22 and the properties of the refrigerant flowing through the sub-heat transfer tube 41 will be described. In the following description, the "cross section" indicates a cross section in a direction perpendicular to the flow path formed in the auxiliary heat transfer tube 41. Further, in the following description, the configuration in which the subscript " 2 " of the subheat exchanger 22 is replaced with " 1 " corresponds to the corresponding configuration of the main heat exchanger 21. The equivalent diameter [m] of the cross section of the flow path per sub heat transfer tube 41 is D 2 . The flow path cross-sectional area per flow path of the auxiliary heat transfer tube 41 is Ta 2 . The flow path cross-sectional area Ta 2 is the total cross-sectional area of a plurality of flow paths formed in the auxiliary heat transfer tube 41.
 副伝熱管41の流路断面積の総和は、ATである。流路断面積の総和ATとは、副伝熱管41の1本あたりの流路断面積Taに副伝熱管41の本数Nを乗じた値である。副伝熱管41の1本あたりの副第1ヘッダ43の断面積は、Haである。副伝熱管41の1本あたりの副第1ヘッダ43の断面積Haとは、副第1ヘッダ43の内部空間の断面積を副伝熱管41の本数Nで除した値である。また、副伝熱管41の1本あたりの副第1ヘッダ43の断面積Haは、図5において、紙面横方向のハッチングで示された領域の面積である。ここで、副熱交換器22は、下記式(3)を満たしている。
 [数8]
 0.03<Ta/Ha<0.3・・・(3)
The total cross-sectional area of the flow path of the auxiliary heat transfer tube 41 is AT 2 . The total channel cross-sectional area AT 2 is a value obtained by multiplying the flow path cross-sectional area Ta 2 per sub-heat transfer tube 41 by the number N 2 of the sub-heat transfer tubes 41. The cross-sectional area of the sub-first header 43 per sub-heat transfer tube 41 is Ha 2 . The cross-sectional area Ha 2 of the sub-first header 43 per sub-heat transfer tube 41 is a value obtained by dividing the cross-sectional area of the internal space of the sub-first header 43 by the number N 2 of the sub-heat transfer tubes 41. Further, the cross-sectional area Ha 2 of the sub-first header 43 per sub-heat transfer tube 41 is the area of the region shown by hatching in the lateral direction of the paper in FIG. Here, the secondary heat exchanger 22 satisfies the following formula (3).
[Number 8]
0.03 <Ta 2 / Ha 2 <0.3 ... (3)
 また、副熱交換器22は、副熱交換器22を流通する全冷媒の流量[kG/h]をGr、副伝熱管41を流れる液冷媒の密度[kG/m]をρL、副伝熱管41を流れるガス冷媒の密度[kG/m]をρG、副熱交換器22を流れる冷媒の乾き度[-]をXとした際に、下記式(5)を満たしている。
 [数9]
 AT<Gr/(G×D×(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(5)
Further, in the sub-heat exchanger 22, the flow rate [kG / h] of all the refrigerants flowing through the sub-heat exchanger 22 is Gr 2 , and the density [kG / m 3 ] of the liquid refrigerant flowing through the sub-heat transfer tube 41 is ρL 2 . When the density [kG / m 3 ] of the gas refrigerant flowing through the sub heat transfer tube 41 is ρG 2 and the dryness [-] of the refrigerant flowing through the sub heat exchanger 22 is X 2 , the following equation (5) is satisfied. There is.
[Number 9]
AT 2 <Gr 2 / (G × D 1 × (ρL 1 −ρG 2 )) (1/2) × (X 2 (1/2) × ρG 2 (-1/4) + (1-X 2 )) (1/2) × ρL 2 (-1/4) ) 2 ... (5)
 図6は、実施の形態1に係る熱交換器7の熱交換性能を示すグラフである。図6の縦軸は、熱交換器7の熱交換性能を示している。また、横軸は、熱交換器7における副熱交換器22の割合を示している。副熱交換器22の割合は、主伝熱管31と副伝熱管41との合計の本数N+Nに対する、副伝熱管41の本数Nの割合である。図6に示すように、熱交換器7は、副熱交換器22の割合が10%~40%である場合、高い熱交換効率を有する。ここで、熱交換器7は、主伝熱管31及び副伝熱管41の本数について、下記式(1)を満たしている。このため、熱交換器7は、高い熱交換性能が得られる。
 [数10]
 0.1<N/(N+N)<0.4・・・(1)
FIG. 6 is a graph showing the heat exchange performance of the heat exchanger 7 according to the first embodiment. The vertical axis of FIG. 6 shows the heat exchange performance of the heat exchanger 7. Further, the horizontal axis shows the ratio of the auxiliary heat exchanger 22 in the heat exchanger 7. The ratio of the sub heat exchanger 22 is the ratio of the number N 2 of the sub heat transfer tubes 41 to the total number N 1 + N 2 of the main heat transfer tubes 31 and the sub heat transfer tubes 41. As shown in FIG. 6, the heat exchanger 7 has a high heat exchange efficiency when the ratio of the sub heat exchanger 22 is 10% to 40%. Here, the heat exchanger 7 satisfies the following formula (1) with respect to the number of main heat transfer tubes 31 and sub heat transfer tubes 41. Therefore, the heat exchanger 7 can obtain high heat exchange performance.
[Number 10]
0.1 <N 2 / (N 1 + N 2 ) <0.4 ... (1)
 図7は、実施の形態1に係るフラッディングの発生条件を示すグラフである。フラッディングは、気液二相状態の冷媒が伝熱管内を上昇する際、気液界面近傍の液状態の部分の冷媒がガス状態の部分の冷媒の流れに対して逆流することで、気液二相状態の冷媒が伝熱管内に停滞する現象である。伝熱管内でフラッディングが生じた場合、伝熱管を流れる冷媒は、圧力が損失される。ここで、図7を用いて、実施の形態1に係る主伝熱管31及び副伝熱管41において、上昇流として流れる冷媒の停滞及び逆流が抑制されていることを説明する。なお、以下の説明において、「」及び「」の添字が、適宜省略されている。「」及び「」の添字が省略された記載は、主熱交換器21及び副熱交換器22のそれぞれについて、説明をしているものと読み替えられる。 FIG. 7 is a graph showing the conditions for generating flooding according to the first embodiment. Flooding is caused by the fact that when the refrigerant in the gas-liquid two-phase state rises in the heat transfer tube, the refrigerant in the liquid state near the gas-liquid interface flows backward with respect to the flow of the refrigerant in the gas state. This is a phenomenon in which the refrigerant in the phase state stagnates in the heat transfer tube. When flooding occurs in the heat transfer tube, the pressure of the refrigerant flowing through the heat transfer tube is lost. Here, it will be described with reference to FIG. 7 that the stagnation and backflow of the refrigerant flowing as an ascending flow are suppressed in the main heat transfer tube 31 and the sub heat transfer tube 41 according to the first embodiment. In the following description, the subscripts "1 " and " 2 " are omitted as appropriate. The description in which the subscripts "1 " and " 2 " are omitted is read as the explanation for each of the main heat exchanger 21 and the sub heat exchanger 22.
 図7は、式(1)~(3)を満たす熱交換器7において、伝熱管を流れる冷媒の速度を変化させた際のフラッディングの発生条件を検証した結果を示している。図7の縦軸は、伝熱管を流れるガス冷媒の流速[m/s]をjGとした際に、下記式(6)から求められる無次元量jG*(1/2)を示している。横軸は、伝熱管を流れる液冷媒の流速[m/s]をjLとした際に、下記式(7)から求められる無次元量jL*(1/2)を示している。また、縦軸と横軸との交点は、無次元量C=jG*(1/2)+jL*(1/2)を示している。
 [数11]
 jG=jG×(ρG/(G×D×(ρL-ρG)))(1/2)・・・(6)
 [数12]
 jL=jL×(ρL/(G×D×(ρL-ρG)))(1/2)・・・(7)
FIG. 7 shows the results of verifying the conditions for generating flooding when the speed of the refrigerant flowing through the heat transfer tube is changed in the heat exchanger 7 satisfying the equations (1) to (3). The vertical axis of FIG. 7 shows a dimensionless quantity jG * (1/2) obtained from the following equation (6) when the flow velocity [m / s] of the gas refrigerant flowing through the heat transfer tube is jG. The horizontal axis shows a dimensionless quantity jL * (1/2) obtained from the following equation (7) when the flow velocity [m / s] of the liquid refrigerant flowing through the heat transfer tube is jL. The intersection of the vertical axis and the horizontal axis indicates a dimensionless quantity C = jG * (1/2) + jL * (1/2) .
[Number 11]
jG * = jG × (ρG / (G × D × (ρL-ρG))) (1/2) ... (6)
[Number 12]
jL * = jL × (ρL / (G × D × (ρL-ρG))) (1/2) ... (7)
 図7に示された△印及び+印は、フラッディングが発生した際のjG*(1/2)及びjL*(1/2)の値を示している。また、□印及び▽印は、フラッディングが終了した際のjG*(1/2)及びjL*(1/2)の値を示している。即ち、図7には、0.88<C≦1の範囲でフラッディングが発生していることが示されている。また、C≦0.88の際は、液冷媒が伝熱管を完全に下降することが知られている。したがって、熱交換器7は、C>1、即ち、下記式(8)を満たす際に、主伝熱管31及び副伝熱管41内において、上昇流として流れる冷媒の停滞及び逆流が抑制されている。
 [数13]
 jG*(1/2)+jL*(1/2)>1・・・(8)
The Δ and + marks shown in FIG. 7 indicate the values of jG * (1/2) and jL * (1/2) when flooding occurs. Further, the □ mark and the ▽ mark indicate the values of jG * (1/2) and jL * (1/2) when the flooding is completed. That is, FIG. 7 shows that flooding occurs in the range of 0.88 <C ≦ 1. Further, it is known that when C ≦ 0.88, the liquid refrigerant completely descends from the heat transfer tube. Therefore, in the heat exchanger 7, when C> 1, that is, when the following equation (8) is satisfied, the stagnation and backflow of the refrigerant flowing as an ascending flow are suppressed in the main heat transfer tube 31 and the sub heat transfer tube 41. ..
[Number 13]
jG * (1/2) + jL * (1/2) > 1 ... (8)
 ここで、伝熱管を流れる液冷媒の流量[kg/h]をGLとし、伝熱管を流れるガス冷媒の流量[kg/h]をGGとした際に、下記式(9)~(13)が成立する。
 [数14]
 GG=G×X・・・(9)
 [数15]
 GL=G×(1-X)・・・(10)
 [数16]
 G=Gr/AT・・・(11)
 [数17]
 jG=GG/ρG・・・(12)
 [数18]
 jL=GL/ρL・・・(13)
Here, when the flow rate [kg / h] of the liquid refrigerant flowing through the heat transfer tube is GL and the flow rate [kg / h] of the gas refrigerant flowing through the heat transfer tube is GG, the following equations (9) to (13) are obtained. To establish.
[Number 14]
GG = G × X ... (9)
[Number 15]
GL = G × (1-X) ・ ・ ・ (10)
[Number 16]
G = Gr / AT ... (11)
[Number 17]
jG = GG / ρG ... (12)
[Number 18]
jL = GL / ρL ... (13)
 次に、式(9)及び(11)から下記式(14)が成立する。また、式(10)及び(11)から下記式(15)が成立する。
 [数19]
 GG=(Gr×X)/AT・・・(14)
 [数20]
 GL=(Gr×(1-X))/AT・・・(15)
Next, the following equation (14) is established from the equations (9) and (11). Further, the following equation (15) is established from the equations (10) and (11).
[Number 19]
GG = (Gr × X) / AT ... (14)
[Number 20]
GL = (Gr × (1-X)) / AT ... (15)
 更に、式(12)及び(14)から下記式(16)が成立する。また、式(13)及び(15)から下記式(17)が成立する。
 [数21]
 jG=(Gr×X)/(AT×ρG)・・・(16)
 [数22]
 jL=(Gr×(1-X))/(AT×ρL)・・・(17)
Further, the following equation (16) is established from the equations (12) and (14). Further, the following equation (17) is established from the equations (13) and (15).
[Number 21]
jG = (Gr × X) / (AT × ρG) ・ ・ ・ (16)
[Number 22]
jL = (Gr × (1-X)) / (AT × ρL) ・ ・ ・ (17)
 そして、式(6)~(8)、(16)及び(17)から下記式(18)が成立する。式(18)は、式(4)及び(5)に相当している。即ち、実施の形態1に係る主熱交換器21及び副熱交換器22は、図7の実験によって導かれたC>1となる構成を満たす。このため、実施の形態1に係る主熱交換器21及び副熱交換器22は、主伝熱管31及び副伝熱管41において、上昇流として流れる冷媒の停滞及び逆流が抑制されている。
 [数23]
 AT<Gr/(G×D(ρL-ρG))(1/2)×(X(1/2)×ρG(-1/4)+(1-X)(1/2)×ρL(-1/4)・・・(18)
Then, the following equation (18) is established from the equations (6) to (8), (16) and (17). Equation (18) corresponds to equations (4) and (5). That is, the main heat exchanger 21 and the sub heat exchanger 22 according to the first embodiment satisfy the configuration in which C> 1 derived by the experiment of FIG. 7. Therefore, in the main heat exchanger 21 and the sub heat exchanger 22 according to the first embodiment, the stagnation and backflow of the refrigerant flowing as an ascending flow are suppressed in the main heat transfer tube 31 and the sub heat transfer tube 41.
[Number 23]
AT <Gr / (G × D (ρL-ρG)) (1/2) × (X (1/2) × ρG (-1/4) + (1-X) (1/2) × ρL (- 1/4) ) 2 ... (18)
 本開示によれば、主伝熱管31の本数と副伝熱管41との本数の関係が下記式(1)を満たす熱交換器において、主熱交換器21が下記式(2)及び(4)を満たすと共に、副熱交換器22が(3)及び(5)を満たしている。このため、伝熱管を流れる冷媒は、上昇流の停滞及び逆流が抑制されている。したがって、熱交換器は、伝熱管において、冷媒の圧力損失を生じさせず、熱交換性能を向上させることができる。
 0.1<N/(N+N)<0.4・・・(1)
 0.03<Ta/Ha<0.3・・・(2)
 0.03<Ta/Ha<0.3・・・(3)
 AT<Gr/(G×D×(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(4)
 AT<Gr/(G×D×(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(5)
According to the present disclosure, in a heat exchanger in which the relationship between the number of main heat transfer tubes 31 and the number of sub heat transfer tubes 41 satisfies the following formula (1), the main heat exchanger 21 has the following formulas (2) and (4). At the same time, the auxiliary heat exchanger 22 satisfies (3) and (5). Therefore, in the refrigerant flowing through the heat transfer tube, the stagnation of the ascending flow and the backflow are suppressed. Therefore, the heat exchanger can improve the heat exchange performance without causing the pressure loss of the refrigerant in the heat transfer tube.
0.1 <N 2 / (N 1 + N 2 ) <0.4 ... (1)
0.03 <Ta 1 / Ha 1 <0.3 ... (2)
0.03 <Ta 2 / Ha 2 <0.3 ... (3)
AT 1 <Gr 1 / (G x D 1 x (ρL 1- ρG 1 )) (1/2) x (X 1 (1/2) x ρG 1 (-1/4) + (1-X 1 )) (1/2) × ρL 1 (-1/4) ) 2 ... (4)
AT 2 <Gr 2 / (G × D 2 × (ρL 2- ρG 2 )) (1/2) × (X 2 (1/2) × ρG 2 (-1/4) + (1-X 2 )) (1/2) × ρL 2 (-1/4) ) 2 ... (5)
 また、主熱交換器21及び副熱交換器22においてフラッディングが発生しないことから、冷媒の流速は、低下していない。このため、熱交換器7は、凝縮器として動作し、副熱交換器22が過冷却器として動作する場合においても、副熱交換器22の凝縮性能を向上させることができる。 Further, since flooding does not occur in the main heat exchanger 21 and the sub heat exchanger 22, the flow velocity of the refrigerant does not decrease. Therefore, the heat exchanger 7 operates as a condenser, and even when the sub-heat exchanger 22 operates as a supercooler, the condensing performance of the sub-heat exchanger 22 can be improved.
 1 空気調和機、2 室外機、3 室内機、4 冷媒配管、5 圧縮機、6 流路切替装置、7 熱交換器、8 室外送風機、9 膨張部、11 室内熱交換器、12 室内送風機、21 主熱交換器、22 副熱交換器、23 第1仕切り板、24 第2仕切り板、31 主伝熱管、32 主フィン、33 主第1ヘッダ、34 主第2ヘッダ、35 主第3ヘッダ、41 副伝熱管、42 副フィン、43 副第1ヘッダ、44 副第2ヘッダ、45 副第3ヘッダ。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant pipe, 5 compressor, 6 flow path switching device, 7 heat exchanger, 8 outdoor blower, 9 expansion part, 11 indoor heat exchanger, 12 indoor blower, 21 Main heat exchanger, 22 Secondary heat exchanger, 23 1st partition plate, 24 2nd partition plate, 31 Main heat transfer tube, 32 Main fins, 33 Main 1st header, 34 Main 2nd header, 35 Main 3rd header , 41 sub-heat transfer tube, 42 sub-fin, 43 sub-first header, 44 sub-second header, 45 sub-third header.

Claims (2)

  1.  主熱交換器と、前記主熱交換器に接続する副熱交換器と、を備え、
     前記主熱交換器は、
     上下方向に延び、内部に冷媒が流れる流路が形成された複数の主伝熱管と、
     それぞれの前記主伝熱管の一端部が挿入された主第1ヘッダと、
     前記主伝熱管に設けられ、前記主伝熱管の内部を流れる冷媒と空気との熱交換を促進する主フィンと、
     前記主第1ヘッダに対向し、前記主伝熱管の他端部が挿入された主第2ヘッダと、を有し、
     前記副熱交換器は、
     上下方向に延び、内部に冷媒が流れる流路が形成された複数の副伝熱管と、
     前記副伝熱管に設けられ、前記副伝熱管の内部を流れる冷媒と空気との熱交換を促進する副フィンと、
     それぞれの前記副伝熱管の一端部が挿入された副第1ヘッダと、
     前記副第1ヘッダに対向し、前記副伝熱管の他端部が挿入された副第2ヘッダと、を有し、
     前記主伝熱管の本数をN
     前記副伝熱管の本数をN、とした際に、
     下記式(1)を満たし、
     前記主伝熱管の1本あたりの流路断面積をTa
     前記副伝熱管の1本あたりの流路断面積をTa
     前記主伝熱管の1本あたりの前記主第1ヘッダの断面積をHa
     前記副伝熱管の1本あたりの前記副第1ヘッダの断面積をHa、とした際に、
     下記式(2)及び(3)を満たし、
     前記主伝熱管の流路断面積の総和をAT
     前記副伝熱管の流路断面積の総和をAT
     前記主熱交換器を流通する全冷媒の流量[kG/h]をGr
     前記副熱交換器を流通する全冷媒の流量[kG/h]をGr
     重力加速度[m/s]をG、
     前記主伝熱管の1流路あたりの流路断面の相当直径[m]をD
     前記副伝熱管の1流路あたりの流路断面の相当直径[m]をD
     前記主伝熱管を流れる液冷媒の密度[kG/m]をρL
     前記副伝熱管を流れる液冷媒の密度[kG/m]をρL
     前記主伝熱管を流れるガス冷媒の密度[kG/m]をρG
     前記副伝熱管を流れるガス冷媒の密度[kG/m]をρG
     前記主熱交換器を流れる冷媒の乾き度[-]をX
     前記副熱交換器を流れる冷媒の乾き度[-]をX、とした際に、
     下記式(4)及び(5)を満たす
     熱交換器。
    [数1]
     0.1<N/(N+N)<0.4・・・(1)
    [数2]
     0.03<Ta/Ha<0.3・・・(2)
    [数3]
     0.03<Ta/Ha<0.3・・・(3)
    [数4]
     AT<Gr/(G×D(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(4)
    [数5]
     AT<Gr/(G×D(ρL-ρG))(1/2)×(X (1/2)×ρG (-1/4)+(1-X(1/2)×ρL (-1/4)・・・(5)
    A main heat exchanger and an auxiliary heat exchanger connected to the main heat exchanger are provided.
    The main heat exchanger is
    Multiple main heat transfer tubes that extend in the vertical direction and have a flow path for the refrigerant to flow inside.
    The main first header into which one end of each main heat transfer tube is inserted, and
    A main fin provided in the main heat transfer tube and promoting heat exchange between the refrigerant flowing inside the main heat transfer tube and air,
    It has a main second header facing the main first header and having the other end of the main heat transfer tube inserted.
    The secondary heat exchanger is
    Multiple auxiliary heat transfer tubes that extend in the vertical direction and have a flow path for the refrigerant to flow inside.
    A sub-fin provided in the sub-heat transfer tube and promoting heat exchange between the refrigerant flowing inside the sub-heat transfer tube and air,
    A sub-first header into which one end of each sub-heat transfer tube is inserted, and
    It has a sub-second header facing the sub-first header and into which the other end of the sub-heat transfer tube is inserted.
    The number of main heat transfer tubes is N 1 ,
    When the number of secondary heat transfer tubes is N 2 ,
    Satisfy the following formula (1)
    The cross-sectional area of the flow path per main heat transfer tube is Ta 1 ,
    The cross-sectional area of the flow path per sub heat transfer tube is Ta 2 ,
    The cross-sectional area of the main first header per one of the main heat transfer tubes is Ha 1 .
    When the cross-sectional area of the sub-first header per sub-heat transfer tube is Ha 2 ,
    Satisfy the following formulas (2) and (3),
    The total area of the flow path cross-sectional areas of the main heat transfer tube is AT 1 ,
    The total cross-sectional area of the flow path of the secondary heat transfer tube is AT 2 ,
    The flow rate [kG / h] of all the refrigerants flowing through the main heat exchanger is Gr 1 .
    The flow rate [kG / h] of all the refrigerants flowing through the secondary heat exchanger is set to Gr 2 .
    Gravitational acceleration [m / s 2 ] is G,
    The equivalent diameter [m] of the cross section of the flow path per flow path of the main heat transfer tube is D 1 .
    The equivalent diameter [m] of the cross section of the flow path per flow path of the secondary heat transfer tube is D 2 .
    The density [kG / m 3 ] of the liquid refrigerant flowing through the main heat transfer tube is set to ρL 1 .
    The density [kG / m 3 ] of the liquid refrigerant flowing through the secondary heat transfer tube is set to ρL 2 .
    The density [kG / m 3 ] of the gas refrigerant flowing through the main heat transfer tube is ρG 1 .
    The density [kG / m 3 ] of the gas refrigerant flowing through the secondary heat transfer tube is set to ρG 2 .
    The dryness [-] of the refrigerant flowing through the main heat exchanger is X 1 ,
    Dryness of the refrigerant flowing through the auxiliary heat exchanger [-] to upon X 2, and,
    A heat exchanger that satisfies the following formulas (4) and (5).
    [Number 1]
    0.1 <N 2 / (N 1 + N 2 ) <0.4 ... (1)
    [Number 2]
    0.03 <Ta 1 / Ha 1 <0.3 ... (2)
    [Number 3]
    0.03 <Ta 2 / Ha 2 <0.3 ... (3)
    [Number 4]
    AT 1 <Gr 1 / (G × D 1 (ρL 1 -ρG 1)) (1/2) × (X 1 (1/2) × ρG 1 (-1/4) + (1-X 1) ( 1/2) × ρL 1 (-1/4) ) 2 ... (4)
    [Number 5]
    AT 2 <Gr 2 / (G × D 2 (ρL 2- ρG 2 )) (1/2) × (X 2 (1/2) × ρG 2 (-1/4) + (1-X 2 ) ( 1/2) × ρL 2 (-1/4) ) 2 ... (5)
  2.  冷媒を圧縮する圧縮機と、
     請求項1に記載の熱交換器と、
     冷媒を膨張させる膨張部と、
     前記熱交換器が蒸発器として作用する際に、凝縮器として作用すると共に、前記熱交換器が凝縮器として作用する際に、蒸発器として作用する熱交換器と、を備える
     空気調和機。
    A compressor that compresses the refrigerant and
    The heat exchanger according to claim 1 and
    The expansion part that expands the refrigerant and
    An air conditioner comprising a heat exchanger that acts as a condenser when the heat exchanger acts as an evaporator and also acts as an evaporator when the heat exchanger acts as a condenser.
PCT/JP2020/020348 2020-05-22 2020-05-22 Heat exchanger and air conditioner WO2021234955A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20937009.7A EP4155625A4 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner
JP2022524843A JPWO2021234955A1 (en) 2020-05-22 2020-05-22
PCT/JP2020/020348 WO2021234955A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner
US17/910,914 US20230147134A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020348 WO2021234955A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2021234955A1 true WO2021234955A1 (en) 2021-11-25

Family

ID=78708398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020348 WO2021234955A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner

Country Status (4)

Country Link
US (1) US20230147134A1 (en)
EP (1) EP4155625A4 (en)
JP (1) JPWO2021234955A1 (en)
WO (1) WO2021234955A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686062B2 (en) 2000-06-26 2011-05-18 昭和電工株式会社 Evaporator
WO2015125743A1 (en) * 2014-02-18 2015-08-27 三菱電機株式会社 Air-conditioning device
JP2017116152A (en) * 2015-12-22 2017-06-29 サンデンホールディングス株式会社 Heat exchanger
WO2018047332A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Header, heat exchanger, and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013083419A (en) * 2011-09-30 2013-05-09 Daikin Industries Ltd Heat exchanger and air conditioner
JP6216113B2 (en) * 2012-04-02 2017-10-18 サンデンホールディングス株式会社 Heat exchanger and heat pump system using the same
JP2016035376A (en) * 2014-08-04 2016-03-17 株式会社デンソー Evaporator
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686062B2 (en) 2000-06-26 2011-05-18 昭和電工株式会社 Evaporator
WO2015125743A1 (en) * 2014-02-18 2015-08-27 三菱電機株式会社 Air-conditioning device
JP2017116152A (en) * 2015-12-22 2017-06-29 サンデンホールディングス株式会社 Heat exchanger
WO2018047332A1 (en) * 2016-09-12 2018-03-15 三菱電機株式会社 Header, heat exchanger, and air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155625A4

Also Published As

Publication number Publication date
JPWO2021234955A1 (en) 2021-11-25
EP4155625A4 (en) 2023-06-21
EP4155625A1 (en) 2023-03-29
US20230147134A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
US9657996B2 (en) Flat tube heat exchanger and outdoor unit of air-conditioning apparatus including the heat exchanger
US9651317B2 (en) Heat exchanger and air conditioner
US10309701B2 (en) Heat exchanger and air conditioner
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
US20150101363A1 (en) Refrigerant distributing device and heat exchanger including the same
US10041710B2 (en) Heat exchanger and air conditioner
EP3156752B1 (en) Heat exchanger
US20140124183A1 (en) Heat exchanger for an air conditioner and an air conditioner having the same
WO2015005352A1 (en) Heat exchanger, and heat pump device
US11022372B2 (en) Air conditioner
JPWO2017183180A1 (en) Heat exchanger
WO2017149950A1 (en) Heat exchanger and air conditioner
CN110998215B (en) Heat exchanger
JP2012052676A (en) Heat exchanger and air conditioner using the same
WO2021234955A1 (en) Heat exchanger and air conditioner
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP2014001882A (en) Heat exchanger and air conditioner
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JP2020115070A (en) Heat exchanger
WO2023281656A1 (en) Heat exchanger and refrigeration cycle device
JP6853867B2 (en) Heat exchanger and air conditioner
WO2022215193A1 (en) Refrigeration cycle device
EP3971507B1 (en) Heat exchanger and refrigeration cycle device
JP7399286B2 (en) Heat exchanger and refrigeration cycle equipment
WO2022259288A1 (en) Heat exchanger and outdoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524843

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020937009

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE