JP2017116152A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2017116152A
JP2017116152A JP2015250208A JP2015250208A JP2017116152A JP 2017116152 A JP2017116152 A JP 2017116152A JP 2015250208 A JP2015250208 A JP 2015250208A JP 2015250208 A JP2015250208 A JP 2015250208A JP 2017116152 A JP2017116152 A JP 2017116152A
Authority
JP
Japan
Prior art keywords
refrigerant
header
core portion
heat exchanger
following equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015250208A
Other languages
Japanese (ja)
Inventor
金子 智
Satoshi Kaneko
智 金子
智久 今藤
Tomohisa Kondo
智久 今藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2015250208A priority Critical patent/JP2017116152A/en
Priority to PCT/JP2016/086375 priority patent/WO2017110474A1/en
Publication of JP2017116152A publication Critical patent/JP2017116152A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of unifying flow of a refrigerant without using a complicated structure, in a structure where the refrigerant circulates in a lifting core part and a lowering core part.SOLUTION: A form of a heat exchanger in which the flow of a refrigerant is unified by factors specifying the shape of the heat exchanger is determined, owing to that there are put into a prescribed range: in a lifting core part or a lowering core part, the minimal value and maximum value of a shape coefficient of a lifting core part, obtained by prescribed mathematical formula comprising the relationship among the number of tubes 20, a total channel cross sectional area of the tube 20, a header axial length of a refrigerant circulation space of a header 10, a header radial direction maximum cross sectional area of the refrigerant circulation space 10a of the header 10, and a header radial direction minimum cross sectional area of the refrigerant circulation space 10a of the header 10; and the minimal value and maximum value of a shape coefficient of the lowering core part obtained by the prescribed mathematical formula.SELECTED DRAWING: Figure 4

Description

本発明は、例えばヒートポンプ式給湯装置の蒸発器として用いられる熱交換器に関するものである。   The present invention relates to a heat exchanger used as, for example, an evaporator of a heat pump hot water supply apparatus.

従来、この種の熱交換器としては、互いに径方向に間隔をおいて上下に配置され、水平方向に延びる筒状の一対のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置されるとともに、各ヘッダーに両端をそれぞれ接続され、上下方向に延びる扁平状の複数のチューブと、各チューブの間に設けられた伝熱フィンとを備え、各ヘッダー間で各チューブを介して熱媒体を流通することにより、各チューブの外部を流通する空気と各チューブ内の冷媒とを熱交換するようにしたものが知られている。   Conventionally, as this type of heat exchanger, a pair of cylindrical headers are arranged vertically above each other in the radial direction, and are arranged at intervals in the axial direction of the headers. , Each header is connected to both ends, and has a plurality of flat tubes extending in the vertical direction and heat transfer fins provided between the tubes, and the heat medium is circulated between the headers via the tubes By doing so, there is known one in which heat is exchanged between the air flowing outside each tube and the refrigerant in each tube.

また、前記熱交換器としては、ヘッダー内を冷媒流通方向の所定箇所で仕切ることにより、下方のヘッダーから上方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの上昇コア部と、上方のヘッダーから下方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの下降コア部とを形成し、冷媒を上昇コア部と下降コア部に交互に流通させるようにしたものが知られている(例えば、特許文献1参照)。   Further, as the heat exchanger, by dividing the inside of the header at a predetermined position in the refrigerant distribution direction, at least one rising core portion including a refrigerant distribution path through which the refrigerant flows from the lower header toward the upper header; It is known that at least one descending core part consisting of a coolant circulation path through which the coolant flows from the upper header to the lower header is formed, and the coolant is alternately circulated through the ascending core part and the descending core part. (For example, refer to Patent Document 1).

この熱交換器では、冷媒が上昇コア部と下降コア部を交互に流通することにより熱交換器全体を蛇行状に流通するので、冷媒流路を長くすることができ、熱交換量を多くすることができる。また、この熱交換器を蒸発器として用いる場合、各チューブが上下方向に延びるように配置されているため、各チューブの表面に結露水が溜まることがなく、排水性を向上させることができる。   In this heat exchanger, the refrigerant circulates in a meandering manner by alternately circulating the rising core portion and the falling core portion, so that the refrigerant flow path can be lengthened and the amount of heat exchange is increased. be able to. Moreover, when this heat exchanger is used as an evaporator, each tube is arranged so as to extend in the vertical direction, so that dew condensation does not accumulate on the surface of each tube, and drainage can be improved.

特開2008−292022JP2008-292022

しかしながら、前記熱交換器では、冷媒が各チューブを上下方向に流通するため、重力の影響により上昇コア部と下降コア部で冷媒の流れが不均一になり、熱交換効率が低下するという問題があった。   However, in the heat exchanger, since the refrigerant flows through each tube in the vertical direction, the flow of the refrigerant becomes uneven in the rising core portion and the lowering core portion due to the influence of gravity, and the heat exchange efficiency is lowered. there were.

そこで、従来では、ヘッダーに縮流板を配置したり、或いはヘッダーへのチューブの差込量を変えることにより、各チューブの冷媒の流れが均一になるようにヘッダー内の冷媒の流速を調整するようにしている。   Therefore, conventionally, the flow rate of the refrigerant in the header is adjusted so that the refrigerant flow in each tube is uniform by arranging a contracted plate in the header or changing the amount of insertion of the tube into the header. I am doing so.

しかしながら、縮流板を用いる場合は、ヘッダーの構造が複雑になるため、製造が困難になるとともにコストが高くなる。更に、構造が複雑になることで冷媒流路内の圧力損失が増加し、熱交換性能が低下するという問題点もある。また、チューブの差込量を変える場合は、製造工程におけるチューブの差込作業が煩雑になり、生産性が低下するという問題点がある。   However, in the case of using the reduced flow plate, the structure of the header becomes complicated, so that the manufacture becomes difficult and the cost becomes high. Furthermore, since the structure becomes complicated, there is a problem that the pressure loss in the refrigerant flow path is increased and the heat exchange performance is lowered. Moreover, when changing the amount of insertion of a tube, the tube insertion operation | work in a manufacturing process becomes complicated and there exists a problem that productivity falls.

本発明は前記課題に鑑みてなされたものであり、その目的とするところは、冷媒が上昇コア部と下降コア部とを流通する構成においても、複雑な構造を用いずに冷媒の流れを均一化することのできる熱交換器を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to evenly distribute the flow of the refrigerant without using a complicated structure even in the configuration in which the refrigerant flows through the rising core portion and the falling core portion. An object of the present invention is to provide a heat exchanger that can be converted into a heat exchanger.

本発明は前記目的を達成するために、互いに径方向に間隔をおいて上下に配置され、水平方向に延びる筒状の一対のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置されるとともに、各ヘッダーに両端をそれぞれ接続され、上下方向に延びる扁平状の複数のチューブと、下方のヘッダーから上方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの上昇コア部と、上方のヘッダーから下方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの下降コア部とを備え、冷媒を上昇コア部と下降コア部に交互に流通させるとともに、各チューブの外部を流通する空気と、各チューブ内の流路を流通する冷媒とを熱交換する熱交換器において、 一つの上昇コア部または下降コア部における、チューブの本数をN、N本のチューブの総流路断面積をSt [mm]、ヘッダーの冷媒流通空間のヘッダー軸方向長さをL[mm]、ヘッダーの冷媒流通空間のヘッダー径方向最大断面積をSh1 [mm]、ヘッダーの冷媒流通空間のヘッダー径方向最小断面積をSh2 [mm]とすると、下記の式(1)で求められる上昇コア部の形状係数εu1の最小値が0.06×10、最大値が429.33×10であり、下記の式(2)で求められる下降コア部の形状係数εd1の最小値が3.73×10、最大値が230.67×10になるようにしている。 In order to achieve the above-mentioned object, the present invention has a pair of cylindrical headers that are vertically spaced apart from each other and extend in the horizontal direction, and are spaced apart from each other in the axial direction of the header. A plurality of flat tubes each connected at both ends to each header and extending in the vertical direction; at least one rising core portion comprising a refrigerant circulation path through which refrigerant flows from the lower header toward the upper header; And at least one descending core portion comprising a coolant circulation path through which the coolant flows from the header to the lower header, and the coolant is alternately circulated through the ascending core portion and the descending core portion, and is circulated outside each tube. In the heat exchanger for exchanging heat between the air to be circulated and the refrigerant flowing through the flow path in each tube, The number of tubes is N, the total channel cross-sectional area of N tubes is St [mm 2 ], the header axial direction length of the refrigerant circulation space of the header is L [mm], and the header radial direction maximum of the header refrigerant circulation space Assuming that the cross-sectional area is Sh1 [mm 2 ] and the header radial direction minimum cross-sectional area of the header refrigerant distribution space is Sh2 [mm 2 ], the minimum value of the shape factor εu1 of the rising core portion obtained by the following equation (1) is 0.06 × 10 6 , the maximum value is 429.33 × 10 6 , the minimum value of the shape factor εd1 of the descending core portion obtained by the following equation (2) is 3.73 × 10 6 , and the maximum value is 230. .67 × 10 6 .

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

これにより、熱交換器の形状を特定する因子、即ちヘッダー軸方向長さL、ヘッダー径方向最大断面積Sh1 、ヘッダー径方向最小断面積Sh2 、チューブ総流路断面積St 、チューブ本数Nにより、冷媒の流れが均一になる熱交換器の形状を決めることができる。   As a result, the factors specifying the shape of the heat exchanger, that is, the header axial length L, the header radial direction maximum cross-sectional area Sh1, the header radial direction minimum cross-sectional area Sh2, the total tube flow path cross-sectional area St, the number of tubes N, The shape of the heat exchanger that makes the flow of the refrigerant uniform can be determined.

また、本発明は前記目的を達成するために、互いに径方向に間隔をおいて上下に配置され、水平方向に延びる筒状の一対のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置されるとともに、各ヘッダーに両端をそれぞれ接続され、上下方向に延びる扁平状の複数のチューブと、下方のヘッダーから上方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの上昇コア部と、上方のヘッダーから下方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの下降コア部とを備え、冷媒を上昇コア部と下降コア部に交互に流通させるとともに、各チューブの外部を流通する空気と、各チューブ内の流路を流通する冷媒とを熱交換する熱交換器において、一つの上昇コア部または下降コア部における、チューブの本数をN、N本のチューブの総流路断面積をSt [mm]、ヘッダーの冷媒流通空間のヘッダー軸方向長さをL[mm]、ヘッダーの冷媒流通空間のヘッダー径方向最大断面積をSh1 [mm]、ヘッダーの冷媒流通空間のヘッダー径方向最小断面積をSh2 [mm]、冷媒の質量流束をGr[kg/ms]、冷媒の質量流量をMr[kg/s]、コア部入口の冷媒の乾き度をx、ヘッダー内の液相速度をv1 [m/s]、ヘッダー内の気相速度をv2 [m/s]、スリップ比をs、コア部入口の液冷媒密度をρ1 [kg/m]、コア部入口のガス冷媒密度をρ2 [kg/m]、ボイド率をα、重力加速度をg[m/s]、eを0.4とすると、ボイド率αは下記の式(3)、液相速度v1 は下記の式(4)、気相速度v2 は下記の式(5)、質量流束Grは下記の式(6)、スリップ比sは下記の式(7)の関係をそれぞれ満たし、下記の式(8)で求められる上昇コア部の特性係数εu が0.02以上、下記の式(9)で求められる下降コア部の特性係数εd が0.005以上になるようにしている。 In order to achieve the above-mentioned object, the present invention is arranged vertically above and below each other in the radial direction, and is arranged with a pair of cylindrical headers extending in the horizontal direction and spaced apart from each other in the axial direction of the header. And a plurality of flat tubes that are connected to each header at both ends and extend in the vertical direction, and at least one ascending core portion including a refrigerant flow path through which the refrigerant flows from the lower header toward the upper header, And at least one descending core portion consisting of a coolant circulation path through which the coolant flows from the upper header toward the lower header, and the coolant is alternately circulated through the ascending core portion and the descending core portion, and the outside of each tube. In the heat exchanger that exchanges heat between the air that flows through the refrigerant and the refrigerant that flows through the flow path in each tube, , The number of tubes N, the total flow path cross-sectional area of the N tubes St [mm 2], the header axial length of the refrigerant circulation space of the header L [mm], the header radial refrigerant circulation space of the header The maximum cross-sectional area is Sh1 [mm 2 ], the header radial minimum cross-sectional area of the header refrigerant distribution space is Sh2 [mm 2 ], the refrigerant mass flux is Gr [kg / m 2 s], and the refrigerant mass flow rate is Mr. [Kg / s], the dryness of the refrigerant at the core inlet x, the liquid phase velocity in the header v1 [m / s], the gas phase velocity in the header v2 [m / s], the slip ratio s, The liquid refrigerant density at the core inlet is ρ1 [kg / m 3 ], the gas refrigerant density at the core inlet is ρ2 [kg / m 3 ], the void fraction is α, the gravitational acceleration is g [m / s 2 ], e Assuming 0.4, the void ratio α is the following formula (3), the liquid phase velocity v1 is the following formula (4), and the gas phase The velocity v2 is the following formula (5), the mass flux Gr is the following formula (6), and the slip ratio s is the following formula (7). The characteristic coefficient εu of the falling core is 0.02 or more, and the characteristic coefficient εd of the descending core obtained by the following equation (9) is 0.005 or more.

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

これにより、上昇コア部の特性係数εu が0.02以上となり、且つ下降コア部の特性係数εd が0.005以上となるので、前述と同様、冷媒の流れが均一になる熱交換器の形状及び冷媒の物性を決めることができる。   As a result, the characteristic coefficient εu of the rising core portion is 0.02 or more and the characteristic coefficient εd of the descending core portion is 0.005 or more. The physical properties of the refrigerant can be determined.

本発明によれば、熱交換器の形状を特定する因子により、冷媒の流れが均一になる熱交換器の形状を決めることができるので、冷媒が上昇コア部と下降コア部を流通する構成においても、複雑な構造を用いずに冷媒の流れを均一化することができ、熱交換効率の高い熱交換器を容易且つ低コストに製造することができる。   According to the present invention, since the shape of the heat exchanger in which the flow of the refrigerant becomes uniform can be determined by a factor that specifies the shape of the heat exchanger, in the configuration in which the refrigerant flows through the rising core portion and the falling core portion However, the flow of the refrigerant can be made uniform without using a complicated structure, and a heat exchanger with high heat exchange efficiency can be manufactured easily and at low cost.

本発明の一実施形態を示す熱交換器の正面図The front view of the heat exchanger which shows one Embodiment of this invention チューブの断面図Cross section of tube ヘッダー及びチューブの一部断面部分斜視図Partial cross-sectional perspective view of header and tube 冷媒流通経路を示す熱交換器の正面図Front view of heat exchanger showing refrigerant flow path ヘッダーのA−A線矢視方向断面図AA arrow direction sectional view of the header チューブの正面図Front view of tube ヘッダーのB−B線矢視方向断面図BB cross-sectional view of the header ヘッダーのC−C線矢視方向断面図CC cross-sectional view of the header εu と冷却能力との関係を示す図Diagram showing the relationship between εu and cooling capacity εd と冷却能力との関係を示す図Diagram showing the relationship between εd and cooling capacity 冷媒流通経路数が「2」の熱交換器の概略正面図Schematic front view of heat exchanger with 2 refrigerant flow paths 冷媒流通経路数が「2」の熱交換器の概略正面図Schematic front view of heat exchanger with 2 refrigerant flow paths 冷媒流通経路数が「3」の熱交換器の概略正面図Schematic front view of heat exchanger with 3 refrigerant flow paths 冷媒流通経路数が「3」の熱交換器の概略正面図Schematic front view of heat exchanger with 3 refrigerant flow paths 冷媒流通経路数が「4」の熱交換器の概略正面図Schematic front view of heat exchanger with 4 refrigerant distribution channels 冷媒流通経路数が「4」の熱交換器の概略正面図Schematic front view of heat exchanger with 4 refrigerant distribution channels 冷媒流通経路数が「5」の熱交換器の概略正面図Schematic front view of heat exchanger with 5 refrigerant flow paths 冷媒流通経路数が「5」の熱交換器の概略正面図Schematic front view of heat exchanger with 5 refrigerant flow paths 冷媒流通経路数が「6」の熱交換器の概略正面図Schematic front view of heat exchanger with "6" refrigerant distribution channels 冷媒流通経路数が「6」の熱交換器の概略正面図Schematic front view of heat exchanger with "6" refrigerant distribution channels 冷媒流通経路数が「7」の熱交換器の概略正面図Schematic front view of heat exchanger with 7 refrigerant flow paths 冷媒流通経路数が「7」の熱交換器の概略正面図Schematic front view of heat exchanger with 7 refrigerant flow paths 冷媒流通経路数が「8」の熱交換器の概略正面図Schematic front view of heat exchanger with 8 refrigerant flow paths 冷媒流通経路数が「8」の熱交換器の概略正面図Schematic front view of heat exchanger with 8 refrigerant flow paths 冷媒流通経路数が「9」の熱交換器の概略正面図Schematic front view of heat exchanger with 9 refrigerant distribution channels 冷媒流通経路数が「9」の熱交換器の概略正面図Schematic front view of heat exchanger with 9 refrigerant distribution channels 冷媒流通経路数が「10」の熱交換器の概略正面図Schematic front view of heat exchanger with "10" refrigerant distribution channels 冷媒流通経路数が「10」の熱交換器の概略正面図Schematic front view of heat exchanger with "10" refrigerant distribution channels 冷媒流通経路数が「2」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger with the number of refrigerant | coolant distribution paths of "2" 冷媒流通経路数が「2」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger with the number of refrigerant | coolant distribution paths of "2" 冷媒流通経路数が「3」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "3" 冷媒流通経路数が「3」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "3" 冷媒流通経路数が「4」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "4" 冷媒流通経路数が「4」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "4" 冷媒流通経路数が「5」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "5" 冷媒流通経路数が「5」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "5" 冷媒流通経路数が「6」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "6" 冷媒流通経路数が「6」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "6" 冷媒流通経路数が「7」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "7" 冷媒流通経路数が「7」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "7" 冷媒流通経路数が「8」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "8" 冷媒流通経路数が「8」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "8" 冷媒流通経路数が「9」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "9" 冷媒流通経路数が「9」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "9" 冷媒流通経路数が「10」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "10" 冷媒流通経路数が「10」の熱交換器における形状係数を示す図The figure which shows the shape factor in the heat exchanger whose refrigerant | coolant distribution channel number is "10"

図1乃至図46は本発明の一実施形態を示すもので、例えば冷凍回路の蒸発器として用いられ、冷媒としての二酸化炭素冷媒を流通する熱交換器を示すものである。   1 to 46 show an embodiment of the present invention, which shows a heat exchanger that is used as an evaporator of a refrigeration circuit, for example, and circulates a carbon dioxide refrigerant as a refrigerant.

本実施形態の熱交換器は、互いに径方向に間隔をおいて上下に配置された円筒状の一対のヘッダー10と、互いにヘッダー10の軸方向に間隔をおいて配置され、各ヘッダー10に両端をそれぞれ接続された扁平状の複数のチューブ20とを備えている。   The heat exchanger according to the present embodiment includes a pair of cylindrical headers 10 that are vertically spaced apart from each other in the radial direction, and are spaced apart from each other in the axial direction of the header 10. And a plurality of flat tubes 20 connected to each other.

各ヘッダー10は、アルミニウム等の金属を左右方向(水平方向)に延びる円筒状に形成した部材からなり、その側面(周壁面)には、各チューブ20の端部がそれぞれ接続される複数の接続孔11が互いにヘッダー10の軸方向に等間隔で設けられている。接続孔11はヘッダー10の周方向に延びる長孔状に形成され、ヘッダー10の周壁部を貫通するように形成されている。また、各ヘッダー10の軸方向の両端は、蓋部材12によってそれぞれ閉塞されている。更に、上方のヘッダー10の一端には図示しない流入パイプが接続され、上方のヘッダー10の他端には図示しない流出パイプが接続されている。   Each header 10 is made of a member formed of a metal such as aluminum in a cylindrical shape extending in the left-right direction (horizontal direction), and a plurality of connections to which end portions of the tubes 20 are connected to the side surfaces (circumferential wall surfaces). The holes 11 are provided at equal intervals in the axial direction of the header 10. The connection hole 11 is formed in a long hole shape extending in the circumferential direction of the header 10, and is formed so as to penetrate the peripheral wall portion of the header 10. Further, both ends of each header 10 in the axial direction are respectively closed by the lid member 12. Further, an inflow pipe (not shown) is connected to one end of the upper header 10, and an outflow pipe (not shown) is connected to the other end of the upper header 10.

各チューブ20は、アルミニウム等の金属の押出成形品等からなり、厚さ方向の寸法が幅方向の寸法に対して小さい扁平状に形成されている。また、チューブ20の幅方向両端は半円形の曲面状に形成されている。チューブ20には、チューブ20内の流路を形成する複数の冷媒流通孔21が互いにチューブ20の幅方向に等間隔で設けられ、各冷媒流通孔21は上下方向に長い断面長円形状に形成されている。   Each tube 20 is made of an extruded product of a metal such as aluminum, and is formed in a flat shape in which the dimension in the thickness direction is smaller than the dimension in the width direction. Moreover, the width direction both ends of the tube 20 are formed in the semicircle curved surface shape. The tube 20 is provided with a plurality of refrigerant flow holes 21 that form a flow path in the tube 20 at equal intervals in the width direction of the tube 20, and each refrigerant flow hole 21 is formed in an elliptical cross section that is long in the vertical direction. Has been.

各伝熱フィン30は、アルミニウム等の金属板を波形状に形成した部材からなり、それぞれ各チューブ20の間に配置されている。   Each heat transfer fin 30 is made of a member in which a metal plate such as aluminum is formed in a corrugated shape, and is disposed between each tube 20.

また、各ヘッダー10内にはヘッダー10内を軸方向に仕切る仕切板13がそれぞれ設けられている。上方のヘッダー10内は、軸方向二箇所(ヘッダー10の軸方向両端側)に仕切板13が配置され、各仕切板13によって3つの冷媒流通空間10aに仕切られている。下方のヘッダー10内は、軸方向一箇所(ヘッダー10の軸方向略中央)に仕切板13が配置され、仕切板13によって2つの冷媒流通空間10aに仕切られている。これにより、各チューブ20は、各ヘッダー10の一端(図中左側端部)から上方のヘッダー10の一方の仕切板13(図中左側)まで配列された複数のチューブ20からなる第1の冷媒流通経路P1と、上方のヘッダー10の一方の仕切板13から下方のヘッダー10の仕切板13まで配列された複数のチューブ20からなる第2の冷媒流通経路P2と、下方のヘッダー10の仕切板13から上方のヘッダー10の他方の仕切板13(図中右側)まで配列された複数のチューブ20からなる第3の冷媒流通経路P3と、上方のヘッダー10の他方の仕切板13から各ヘッダー10の他端(図中右側端部)まで配列された複数のチューブ20からなる第4の冷媒流通経路P4とを形成している。   Each header 10 is provided with a partition plate 13 for partitioning the header 10 in the axial direction. In the upper header 10, partition plates 13 are disposed at two axial positions (both axial ends of the header 10), and are partitioned into three refrigerant circulation spaces 10 a by the partition plates 13. In the lower header 10, a partition plate 13 is disposed at one axial position (substantially the center in the axial direction of the header 10), and is partitioned into two refrigerant circulation spaces 10 a by the partition plate 13. Thereby, each tube 20 is the 1st refrigerant | coolant which consists of the several tube 20 arranged from one end (left side edge part in the figure) of each header 10 to one partition plate 13 (left side in the figure) of the upper header 10. The distribution path P1, the second refrigerant distribution path P2 including a plurality of tubes 20 arranged from one partition plate 13 of the upper header 10 to the partition plate 13 of the lower header 10, and the partition plate of the lower header 10 13 to the other partition plate 13 (the right side in the figure) of the upper header 10, the third refrigerant flow path P <b> 3 including a plurality of tubes 20, and the other partition plate 13 of the upper header 10 to each header 10. And a fourth refrigerant flow path P4 composed of a plurality of tubes 20 arranged up to the other end (right end portion in the figure).

以上のように構成された熱交換器は、図4の白抜き矢印で示すように、冷凍回路(図示せず)の冷媒が図示しない流入パイプから上方のヘッダー10の軸方向一端側に流入し、第1〜第4の冷媒流通経路P1〜P4のチューブ20を順次流通した後、上方のヘッダー10の軸方向他端側から図示しない流出パイプを介して外部に流出する。この場合、第1及び第3の冷媒流通経路P1,P3では冷媒が上方から下方に向かって流通し、第2及び第4の冷媒流通経路P2,P4では冷媒が下方から上方に向かって流通する。即ち、第2及び第4の冷媒流通経路P2,P4はそれぞれ上昇コア部となり、第1及び第3の冷媒流通経路P1,P3はそれぞれ下降コア部となる。   In the heat exchanger configured as described above, the refrigerant of the refrigeration circuit (not shown) flows into one axial end of the upper header 10 from an inflow pipe (not shown) as indicated by the white arrow in FIG. Then, after sequentially flowing through the tubes 20 of the first to fourth refrigerant flow paths P1 to P4, it flows out from the other axial end of the upper header 10 to the outside via an outflow pipe (not shown). In this case, the refrigerant flows from the upper side to the lower side in the first and third refrigerant flow paths P1, P3, and the refrigerant flows from the lower side to the upper side in the second and fourth refrigerant flow paths P2, P4. . That is, the second and fourth refrigerant circulation paths P2 and P4 are respectively rising core parts, and the first and third refrigerant circulation paths P1 and P3 are respectively descending core parts.

本実施形態のように冷媒が上昇コア部と下降コア部を交互に流通する構成では、冷媒が各チューブ20を上下方向に流通するため、重力の影響により上昇コア部と下降コア部とを分流する冷媒の流れが不均一になり、蒸発器としての冷却能力が低下することになる。   In the configuration in which the refrigerant flows alternately through the ascending core portion and the descending core portion as in the present embodiment, since the refrigerant circulates through the tubes 20 in the vertical direction, the ascending core portion and the descending core portion are separated by the influence of gravity. As a result, the flow of the refrigerant becomes non-uniform, and the cooling capacity of the evaporator decreases.

そこで、多くの実験データから、冷媒の分流に大きく影響を与える形状因子を特定し、冷媒の流れが均一化する数値範囲を以下の関係式により導き出した。   Therefore, from many experimental data, the shape factor that greatly affects the flow of the refrigerant is identified, and the numerical range in which the flow of the refrigerant becomes uniform is derived by the following relational expression.

即ち、前記熱交換器の形状を特定する因子として、一つの上昇コア部または下降コア部における、チューブ20の本数をN、N本のチューブ20の総流路断面積をSt [mm]、ヘッダー10の冷媒流通空間10aのヘッダー軸方向長さをL[mm]、ヘッダー10の冷媒流通空間10aのヘッダー径方向最大断面積をSh1[mm]、ヘッダー10の冷媒流通空間10aのヘッダー径方向最小断面積をSh2[mm]とし、前記熱交換器を流通する冷媒の物性を特定する因子として、冷媒の質量流束をGr[kg/ms]、冷媒の質量流量をMr[kg/s]、コア部入口の冷媒の乾き度をx、ヘッダー10内の冷媒の液相速度をv1 [m/s]、ヘッダー10内の冷媒の気相速度をv2 [m/s]、スリップ比をs、コア部入口の液冷媒密度をρ1 [kg/m]、コア部入口のガス冷媒密度をρ2 [kg/m]、ボイド率をα、重力加速度をg[m/s]とすると、以下の式(10)で求められる上昇コア部の特性係数εu が0.02以上、以下の式(11)で求められる下降コア部の特性係数εd が0.005以上である場合は、図9及び図10に示す実験データにより、冷却能力が低下しないことが確認された。尚、チューブ20の総流路断面積St とは、図5及び図6に示すように、チューブ1本当たりの各冷媒流通孔21の流路断面積St1を合計した流路断面積St2にチューブ20の本数Nを乗じた流路断面積である。また、ヘッダー10の冷媒流通空間のヘッダー径方向最小断面積Sh2は、図8に示すようにヘッダー径方向最大断面積Sh1からチューブ20の挿入部分を除いた面積である。 That is, as a factor for specifying the shape of the heat exchanger, the number of tubes 20 in one rising core portion or the falling core portion is N, and the total flow passage cross-sectional area of the N tubes 20 is St [mm 2 ], The length in the header axial direction of the refrigerant circulation space 10a of the header 10 is L [mm], the maximum cross-sectional area in the header radial direction of the refrigerant circulation space 10a of the header 10 is Sh1 [mm 2 ], and the header diameter of the refrigerant circulation space 10a of the header 10 The minimum cross-sectional area in the direction is Sh2 [mm 2 ], and the factors that specify the physical properties of the refrigerant flowing through the heat exchanger are Gr [kg / m 2 s] for the mass flux of the refrigerant and Mr [ kg / s], the dryness of the refrigerant at the core inlet x, the liquid phase velocity of the refrigerant in the header 10 v1 [m / s], the vapor phase velocity of the refrigerant in the header 10 v2 [m / s], Slip ratio is s, at the core entrance The refrigerant density ρ1 [kg / m 3], the core portion inlet of the gas refrigerant density ρ2 [kg / m 3], a void fraction alpha, when the gravitational acceleration and g [m / s 2], the following equation (10 9 and FIG. 10 when the characteristic coefficient εu of the ascending core portion obtained by (1) is 0.02 or more and the characteristic coefficient εd of the descending core portion obtained by the following formula (11) is 0.005 or more. Experimental data confirmed that the cooling capacity did not decrease. As shown in FIGS. 5 and 6, the total channel cross-sectional area St of the tube 20 is obtained by adding the channel cross-sectional area St2 of each refrigerant flow hole 21 per tube to the total channel cross-sectional area St2. It is a channel cross-sectional area multiplied by the number N of 20. Moreover, the header radial direction minimum cross-sectional area Sh2 of the refrigerant | coolant distribution space of the header 10 is an area remove | excluding the insertion part of the tube 20 from the header radial direction maximum cross-sectional area Sh1, as shown in FIG.

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

尚、上記式(10)及び(11)において、以下の式(12)〜(16)を満たすものとする。但し、e=0.4とする。   In the above formulas (10) and (11), the following formulas (12) to (16) are satisfied. However, e = 0.4.

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

前記上昇コア部の特性係数εu の式(10)は、熱交換器の形状を特定する因子と、熱交換器を流通する冷媒の物性を特定する因子とが含まれるが、式(10)を、熱交換器の形状を特定する因子のみからなる形状係数εu1と、熱交換器を流通する冷媒の物性を特定する因子のみからなる物性係数εu2とに分けると、特性係数εu は以下の式(17)〜(19)であらわされる。   Equation (10) for the characteristic coefficient εu of the rising core portion includes a factor that specifies the shape of the heat exchanger and a factor that specifies the physical properties of the refrigerant flowing through the heat exchanger. The characteristic coefficient εu is expressed by the following formula (εu1), which is divided into a shape factor εu1 consisting only of a factor specifying the shape of the heat exchanger and a physical property coefficient εu2 consisting only of a factor specifying the physical property of the refrigerant flowing through the heat exchanger. 17) to (19).

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

また、前記下降コア部の特性係数εd の式(11)も同様、熱交換器の形状を特定する因子と、熱交換器を流通する冷媒の物性を特定する因子とが含まれるが、式(11)を、熱交換器の形状を特定する因子のみからなる形状係数εd1と、熱交換器を流通する冷媒の物性を特定する因子のみからなる物性係数εd2とに分けると、特性係数εd は以下の式(20)〜(22)であらわされる。   Similarly, the equation (11) of the characteristic coefficient εd of the descending core portion includes a factor for specifying the shape of the heat exchanger and a factor for specifying the physical properties of the refrigerant flowing through the heat exchanger. 11) is divided into a shape factor εd1 consisting only of a factor specifying the shape of the heat exchanger and a physical property factor εd2 consisting only of a factor specifying the physical property of the refrigerant flowing through the heat exchanger. (20) to (22).

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

Figure 2017116152
Figure 2017116152

前記式(17)〜(22)を用い、物性を特定する因子を所定範囲に設定し、上昇コア部の特性係数εu が0.02以上のときの形状係数εu1の最小値及び最大値と、下降コア部の特性係数εd が0.005以上のときの下降コア部の形状係数εd1の最小値及び最大値とを求めた結果を図29乃至図46に示す。この場合、図11乃至図28に示すように、冷媒流通経路の数が2〜10の熱交換器について形状係数εu1,εd1を求めた。また、物性を特定する因子の範囲は、冷媒の流量を40kg/h以上180kg/h以下、冷媒の圧力を2.5MPaG以上5.0MPaG以上とし、乾き度の範囲は0.08〜0.94の範囲内で冷媒流通経路ごとに設定した(図29乃至図46参照)。   Using the above formulas (17) to (22), the factor specifying the physical property is set within a predetermined range, and the minimum value and the maximum value of the shape factor εu1 when the characteristic coefficient εu of the rising core portion is 0.02 or more, FIGS. 29 to 46 show the results of obtaining the minimum value and the maximum value of the shape factor εd1 of the descending core portion when the characteristic coefficient εd of the descending core portion is 0.005 or more. In this case, as shown in FIGS. 11 to 28, the shape factors εu1 and εd1 were obtained for the heat exchanger having 2 to 10 refrigerant flow paths. The range of factors that specify the physical properties is that the flow rate of the refrigerant is 40 kg / h or more and 180 kg / h or less, the refrigerant pressure is 2.5 MPaG or more and 5.0 MPaG or more, and the dryness range is 0.08 to 0.94. (See FIG. 29 to FIG. 46).

上記の結果、図29乃至図46に示すように、上昇コア部の形状係数εu1の最小値は0.06×10、最大値は429.33×10、下降コア部の形状係数εd1の最小値は3.73×10、最大値は230.67×10となった。 As a result, as shown in FIGS. 29 to 46, the minimum value of the shape factor εu1 of the ascending core portion is 0.06 × 10 6 , the maximum value is 429.33 × 10 6 , and the shape factor εd1 of the descending core portion is The minimum value was 3.73 × 10 6 and the maximum value was 230.67 × 10 6 .

このように、本実施形態によれば、一つの上昇コア部または下降コア部における、チューブ20の本数をN、N本のチューブ20の総流路断面積をSt [mm]、ヘッダー10の冷媒流通空間10aのヘッダー軸方向長さをL[mm]、ヘッダー10の冷媒流通空間10aのヘッダー径方向最大断面積をSh1 [mm]、ヘッダー10の冷媒流通空間10aのヘッダー径方向最小断面積をSh2 [mm]とすると、前記式(11)で求められる上昇コア部の形状係数εu1の最小値が0.06×10、最大値が429.33×10であり、前記式(14)で求められる下降コア部の形状係数εd1の最小値が3.73×10、最大値が230.67×10になるようにしたので、熱交換器の形状を特定する因子、即ちヘッダー軸方向長さL、ヘッダー径方向最大断面積Sh1 、ヘッダー径方向最小断面積Sh2 、チューブ総流路断面積St 、チューブ本数Nにより、冷媒の流れが均一になる熱交換器の形状を決めることができる。これにより、冷媒が上昇コア部と下降コア部を交互に流通する構成においても、複雑な構造を用いずに冷媒の流れを均一化することができ、熱交換効率の高い熱交換器を容易且つ低コストに製造することができる。 Thus, according to the present embodiment, the number of tubes 20 in one rising core portion or the falling core portion is N, the total flow passage cross-sectional area of the N tubes 20 is St [mm 2 ], and the header 10 The header axial direction length of the refrigerant circulation space 10a is L [mm], the header radial direction maximum cross-sectional area of the refrigerant circulation space 10a of the header 10 is Sh1 [mm 2 ], and the header radial direction minimum cutoff of the refrigerant circulation space 10a of the header 10 is Assuming that the area is Sh2 [mm 2 ], the minimum value of the shape factor εu1 of the rising core portion obtained by the above equation (11) is 0.06 × 10 6 , and the maximum value is 429.33 × 10 6. Since the minimum value of the shape factor εd1 of the descending core portion obtained in (14) is 3.73 × 10 6 and the maximum value is 230.67 × 10 6 , a factor for specifying the shape of the heat exchanger, That is, the header axial direction Is L, the header radial maximum cross-sectional area Sh1, headers minimum radial sectional area Sh2, tube total flow path cross-sectional area St, the number of tubes N, can determine the shape of the heat exchanger the flow of refrigerant becomes uniform. Thereby, even in the configuration in which the refrigerant flows alternately through the rising core portion and the falling core portion, the flow of the refrigerant can be made uniform without using a complicated structure, and a heat exchanger with high heat exchange efficiency can be easily and It can be manufactured at a low cost.

この場合、熱交換器の形状を特定する因子のみを任意の数値にすることにより、各コア部の形状係数εu1,εd1を変えることができるので、例えばチューブ本数Nのみを変えることにより各コア部の形状係数εu1,εd1が前記数値範囲に入るようにすれば、熱交換器全体の大きさや能力等の仕様に応じて、冷媒の流れの均一な熱交換器を容易に設計することができる。   In this case, the shape factors εu1 and εd1 of each core part can be changed by setting only the factor that specifies the shape of the heat exchanger to an arbitrary numerical value. For example, each core part can be changed by changing only the number N of tubes. If the shape factors εu1 and εd1 are in the numerical range, a heat exchanger having a uniform refrigerant flow can be easily designed according to specifications such as the size and capacity of the entire heat exchanger.

また、冷媒の質量流束をGr[kg/ms]、冷媒の質量流量をMr[kg/s]、コア部入口の冷媒の乾き度をx、ヘッダー10内の液相速度をv1 [m/s]、ヘッダー10内の気相速度をv2 [m/s]、スリップ比をs、コア部入口の液冷媒密度をρ1 [kg/m]、コア部入口のガス冷媒密度をρ2 [kg/m]、ボイド率をα、重力加速度をg[m/s]、eを0.4とすると、形状係数εu1,εd1が前記数値範囲を満たす場合において、前記式(10)〜(16)で求められる上昇コア部の特性係数εu が0.02以上であることと、下降コア部の特性係数εd が0.005以上であることの少なくとも一方を満たすようにすることにより、熱交換器を流通する冷媒の物性を特定する因子、即ち冷媒の質量流束Gr、冷媒の質量流量Mr、コア部入口の冷媒の乾き度x、ヘッダー10内の液相速度v1、ヘッダー10内の気相速度v2、スリップ比s、コア部入口の液冷媒密度ρ1 、コア部入口のガス冷媒密度ρ2 、ボイド率αにより、冷媒の流れが均一になるように熱交換器を流通する冷媒の物性を決めることができる。 Further, the mass flux of the refrigerant is Gr [kg / m 2 s], the mass flow rate of the refrigerant is Mr [kg / s], the dryness of the refrigerant at the inlet of the core is x, and the liquidus velocity in the header 10 is v1 [ m / s], the gas phase velocity in the header 10 is v2 [m / s], the slip ratio is s, the liquid refrigerant density at the core inlet is ρ1 [kg / m 3 ], and the gas refrigerant density at the core inlet is ρ2 When [kg / m 3 ], the void ratio is α, the gravitational acceleration is g [m / s 2 ], and e is 0.4, when the shape factors εu1 and εd1 satisfy the numerical range, the equation (10) By satisfying at least one of the characteristic coefficient εu of the rising core portion obtained in (16) being 0.02 or more and the characteristic coefficient εd of the falling core portion being 0.005 or more, Factors specifying the physical properties of the refrigerant flowing through the heat exchanger, that is, the mass flux Gr of the refrigerant, the refrigerant Mass flow rate Mr, dryness x of refrigerant at the core inlet, liquid phase velocity v1 in the header 10, gas phase velocity v2 in the header 10, slip ratio s, liquid refrigerant density ρ1 at the core inlet, gas at the core inlet The physical properties of the refrigerant flowing through the heat exchanger can be determined by the refrigerant density ρ2 and the void ratio α so that the refrigerant flow is uniform.

更に、形状係数εu1,εd1の数値範囲に拘わらず、上昇コア部の特性係数εu が0.02以上となり、且つ下降コア部の特性係数εd が0.005以上となるようにすれば、前述と同様、冷媒の流れが均一になる熱交換器の形状及び冷媒の物性を決めることができる。   Further, if the characteristic coefficient εu of the ascending core portion is 0.02 or more and the characteristic coefficient εd of the descending core portion is 0.005 or more regardless of the numerical range of the shape factors εu1 and εd1, the above-mentioned Similarly, the shape of the heat exchanger that makes the flow of the refrigerant uniform and the physical properties of the refrigerant can be determined.

10…ヘッダー、10a…冷媒流通空間、20…チューブ、P1〜P10…第1〜第10の冷媒流通経路。   DESCRIPTION OF SYMBOLS 10 ... Header, 10a ... Refrigerant distribution space, 20 ... Tube, P1-P10 ... 1st-10th refrigerant | coolant distribution path.

Claims (5)

互いに径方向に間隔をおいて上下に配置され、水平方向に延びる筒状の一対のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置されるとともに、各ヘッダーに両端をそれぞれ接続され、上下方向に延びる扁平状の複数のチューブと、下方のヘッダーから上方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの上昇コア部と、上方のヘッダーから下方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの下降コア部とを備え、冷媒を上昇コア部と下降コア部に交互に流通させるとともに、各チューブの外部を流通する空気と、各チューブ内の流路を流通する冷媒とを熱交換する熱交換器において、
一つの上昇コア部または下降コア部における、チューブの本数をN、N本のチューブの総流路断面積をSt [mm]、ヘッダーの冷媒流通空間のヘッダー軸方向長さをL[mm]、ヘッダーの冷媒流通空間のヘッダー径方向最大断面積をSh1 [mm]、ヘッダーの冷媒流通空間のヘッダー径方向最小断面積をSh2 [mm]とすると、
下記の式(1)で求められる上昇コア部の形状係数εu1の最小値が0.06×10、最大値が429.33×10であり、
下記の式(2)で求められる下降コア部の形状係数εd1の最小値が3.73×10、最大値が230.67×10である
ことを特徴とする熱交換器。
Figure 2017116152

Figure 2017116152
A pair of cylindrical headers that are arranged above and below in the radial direction and spaced apart from each other in the radial direction, and arranged at intervals in the axial direction of the header, and are connected to each header at both ends. A plurality of flat tubes extending in the direction, at least one rising core portion including a refrigerant flow path through which the refrigerant flows from the lower header toward the upper header, and the refrigerant from the upper header toward the lower header. And at least one descending core portion comprising a coolant circulation path for circulating the coolant, and alternately circulating the coolant through the ascending core portion and the descending core portion, and the air flowing outside each tube and the flow path in each tube In a heat exchanger that exchanges heat with the circulating refrigerant,
In one ascending core portion or descending core portion, the number of tubes is N, the total flow passage cross-sectional area of the N tubes is St [mm 2 ], and the header axial direction length of the refrigerant circulation space of the header is L [mm] The header radial direction maximum cross-sectional area of the header refrigerant distribution space is Sh1 [mm 2 ], and the header radial direction minimum cross-sectional area of the header refrigerant distribution space is Sh2 [mm 2 ].
The minimum value of the shape factor εu1 of the rising core portion obtained by the following formula (1) is 0.06 × 10 6 , and the maximum value is 429.33 × 10 6 ,
The minimum value of the shape factor εd1 of the descending core portion obtained by the following formula (2) is 3.73 × 10 6 , and the maximum value is 230.67 × 10 6 .
Figure 2017116152

Figure 2017116152
前記冷媒の質量流束をGr[kg/ms]、冷媒の質量流量をMr[kg/s]、コア部入口の冷媒の乾き度をx、ヘッダー内の液相速度をv1 [m/s]、ヘッダー内の気相速度をv2 [m/s]、スリップ比をs、コア部入口の液冷媒密度をρ1 [kg/m]、コア部入口のガス冷媒密度をρ2 [kg/m]、ボイド率をα、重力加速度をg[m/s]、eを0.4とすると、
ボイド率αは下記の式(3)、液相速度v1 は下記の式(4)、気相速度v2 は下記の式(5)、質量流束Grは下記の式(6)、スリップ比sは下記の式(7)の関係をそれぞれ満たし、
下記の式(8)で求められる上昇コア部の特性係数εu が0.02以上である
ことを特徴とする請求項1記載の熱交換器。
Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152
The mass flux of the refrigerant is Gr [kg / m 2 s], the mass flow rate of the refrigerant is Mr [kg / s], the dryness of the refrigerant at the core inlet is x, and the liquidus velocity in the header is v1 [m / s], the gas phase velocity in the header is v2 [m / s], the slip ratio is s, the liquid refrigerant density at the core inlet is ρ1 [kg / m 3 ], and the gas refrigerant density at the core inlet is ρ2 [kg / m 3 ], the void ratio is α, the gravitational acceleration is g [m / s 2 ], and e is 0.4.
The void ratio α is the following equation (3), the liquid phase velocity v1 is the following equation (4), the gas phase velocity v2 is the following equation (5), the mass flux Gr is the following equation (6), and the slip ratio s. Satisfies the relationship of the following formula (7),
The heat exchanger according to claim 1, wherein a characteristic coefficient εu of the rising core portion obtained by the following formula (8) is 0.02 or more.
Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152
前記冷媒の質量流束をGr[kg/ms]、冷媒の質量流量をMr[kg/s]、コア部入口の冷媒の乾き度をx、ヘッダー内の液相速度をv1 [m/s]、ヘッダー内の気相速度をv2 [m/s]、スリップ比をs、コア部入口の液冷媒密度をρ1 [kg/m]、コア部入口のガス冷媒密度をρ2 [kg/m]、ボイド率をα、重力加速度をg[m/s]、eを0.4とすると、
ボイド率αは下記の式(9)、液相速度v1 は下記の式(10)、気相速度v2 は下記の式(11)、質量流束Grは下記の式(12)、スリップ比sは下記の式(13)の関係をそれぞれ満たし、
下記の式(14)で求められる下降コア部の特性係数εd が0.005以上である
ことを特徴とする請求項1記載の熱交換器。
Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152
The mass flux of the refrigerant is Gr [kg / m 2 s], the mass flow rate of the refrigerant is Mr [kg / s], the dryness of the refrigerant at the core inlet is x, and the liquidus velocity in the header is v1 [m / s], the gas phase velocity in the header is v2 [m / s], the slip ratio is s, the liquid refrigerant density at the core inlet is ρ1 [kg / m 3 ], and the gas refrigerant density at the core inlet is ρ2 [kg / m 3 ], the void ratio is α, the gravitational acceleration is g [m / s 2 ], and e is 0.4.
The void ratio α is the following equation (9), the liquid phase velocity v1 is the following equation (10), the gas phase velocity v2 is the following equation (11), the mass flux Gr is the following equation (12), and the slip ratio s. Satisfy the relationship of the following formula (13),
The heat exchanger according to claim 1, wherein a characteristic coefficient εd of the descending core portion obtained by the following formula (14) is 0.005 or more.
Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152
互いに径方向に間隔をおいて上下に配置され、水平方向に延びる筒状の一対のヘッダーと、互いにヘッダーの軸方向に間隔をおいて配置されるとともに、各ヘッダーに両端をそれぞれ接続され、上下方向に延びる扁平状の複数のチューブと、下方のヘッダーから上方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの上昇コア部と、上方のヘッダーから下方のヘッダーに向かって冷媒が流通する冷媒流通経路からなる少なくとも一つの下降コア部とを備え、冷媒を上昇コア部と下降コア部に交互に流通させるとともに、各チューブの外部を流通する空気と、各チューブ内の流路を流通する冷媒とを熱交換する熱交換器において、
一つの上昇コア部または下降コア部における、チューブの本数をN、N本のチューブの総流路断面積をSt [mm]、ヘッダーの冷媒流通空間のヘッダー軸方向長さをL[mm]、ヘッダーの冷媒流通空間のヘッダー径方向最大断面積をSh1 [mm]、ヘッダーの冷媒流通空間のヘッダー径方向最小断面積をSh2 [mm]、冷媒の質量流束をGr[kg/ms]、冷媒の質量流量をMr[kg/s]、コア部入口の冷媒の乾き度をx、ヘッダー内の液相速度をv1 [m/s]、ヘッダー内の気相速度をv2 [m/s]、スリップ比をs、コア部入口の液冷媒密度をρ1 [kg/m]、コア部入口のガス冷媒密度をρ2 [kg/m]、ボイド率をα、重力加速度をg[m/s]、eを0.4とすると、
ボイド率αは下記の式(15)、液相速度v1 は下記の式(16)、気相速度v2 は下記の式(17)、質量流束Grは下記の式(18)、スリップ比sは下記の式(19)の関係をそれぞれ満たし、下記の式(20)で求められる上昇コア部の特性係数εu が0.02以上、下記の式(21)で求められる下降コア部の特性係数εd が0.005以上である
ことを特徴とする熱交換器。
Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152
A pair of cylindrical headers that are arranged above and below in the radial direction and spaced apart from each other in the radial direction, and arranged at intervals in the axial direction of the header, and are connected to each header at both ends. A plurality of flat tubes extending in the direction, at least one rising core portion including a refrigerant flow path through which the refrigerant flows from the lower header toward the upper header, and the refrigerant from the upper header toward the lower header. And at least one descending core portion comprising a coolant circulation path for circulating the coolant, and alternately circulating the coolant through the ascending core portion and the descending core portion, and the air flowing outside each tube and the flow path in each tube In a heat exchanger that exchanges heat with the circulating refrigerant,
In one ascending core portion or descending core portion, the number of tubes is N, the total flow passage cross-sectional area of the N tubes is St [mm 2 ], and the header axial direction length of the refrigerant circulation space of the header is L [mm] , The header radial maximum cross-sectional area of the header refrigerant distribution space is Sh1 [mm 2 ], the header radial direction minimum cross-sectional area of the header refrigerant distribution space is Sh2 [mm 2 ], and the refrigerant mass flux is Gr [kg / m]. 2 s], the mass flow rate of the refrigerant Mr [kg / s], the dryness of the refrigerant at the core inlet x, the liquid phase velocity in the header v1 [m / s], and the gas phase velocity in the header v2 [ m / s], slip ratio s, liquid refrigerant density at the core inlet ρ1 [kg / m 3 ], gas refrigerant density at the core inlet ρ2 [kg / m 3 ], void fraction α, gravity acceleration When g [m / s 2 ] and e is 0.4,
The void ratio α is the following equation (15), the liquid phase velocity v1 is the following equation (16), the gas phase velocity v2 is the following equation (17), the mass flux Gr is the following equation (18), and the slip ratio s. Satisfies the relationship of the following equation (19), the characteristic coefficient εu of the rising core portion obtained by the following equation (20) is 0.02 or more, and the characteristic coefficient of the falling core portion obtained by the following equation (21) εd is 0.005 or more.
Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152

Figure 2017116152
前記冷媒は二酸化炭素冷媒である
ことを特徴とする請求項1、2、3または4記載の熱交換器。
The heat exchanger according to claim 1, 2, 3, or 4, wherein the refrigerant is a carbon dioxide refrigerant.
JP2015250208A 2015-12-22 2015-12-22 Heat exchanger Pending JP2017116152A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015250208A JP2017116152A (en) 2015-12-22 2015-12-22 Heat exchanger
PCT/JP2016/086375 WO2017110474A1 (en) 2015-12-22 2016-12-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015250208A JP2017116152A (en) 2015-12-22 2015-12-22 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2017116152A true JP2017116152A (en) 2017-06-29

Family

ID=59089367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015250208A Pending JP2017116152A (en) 2015-12-22 2015-12-22 Heat exchanger

Country Status (2)

Country Link
JP (1) JP2017116152A (en)
WO (1) WO2017110474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637629A (en) * 2020-05-27 2020-09-08 广东芬尼电器技术有限公司 Flow path adjustable water storage inner container and heat pump water heater
WO2021234955A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE529717T1 (en) * 2005-02-02 2011-11-15 Carrier Corp HEAT EXCHANGER WITH FLUID EXPANSION IN THE END CHAMBER
JP2008292022A (en) * 2007-05-22 2008-12-04 Denso Corp Refrigerant evaporator
JP3163477U (en) * 2010-08-05 2010-10-14 株式会社 テスク資材販売 All plastic resin heating / cooling radiator
JP5890705B2 (en) * 2012-02-27 2016-03-22 株式会社日本クライメイトシステムズ Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234955A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger and air conditioner
CN111637629A (en) * 2020-05-27 2020-09-08 广东芬尼电器技术有限公司 Flow path adjustable water storage inner container and heat pump water heater

Also Published As

Publication number Publication date
WO2017110474A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP2017519961A (en) Heat exchanger
JP5858478B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP2005326136A (en) Heat transfer fin for air heat exchanger
WO2017107490A1 (en) Heat exchanger and air conditioning system
JP2015203506A (en) heat exchanger
JPWO2013191056A1 (en) Heat exchanger
KR20170067351A (en) Heat exchanger
JP2018532093A (en) Heat exchanger
WO2017110474A1 (en) Heat exchanger
JP2018021756A (en) Heat transfer tube for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP6360791B2 (en) Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
JP2013174398A (en) Heat exchanger
JP2015059669A (en) Laminated heat exchanger
JP6843707B2 (en) Heat exchanger header tank
JP2010255864A (en) Flat tube and heat exchanger
JP2017129360A (en) Heat exchanger
EP3859263B1 (en) Heat exchanger
JP6409147B1 (en) Multi-coil heat exchanger
KR20120097143A (en) Heat exchanger
CN105571348A (en) Finned heat exchanger provided with tubes forming gradually-changing included angle
US10151538B2 (en) Heat exchanger
JP2016186398A (en) Tube for heat exchanger and heat exchanger using the same
KR101543522B1 (en) Flate tube for heat exchanger and heat exchanger with the same
CN110849180A (en) Heat exchanger with non-circular cross section of heat exchange tube and heat exchange method thereof
Huang et al. Design optimization of variable geometry microchannel heat exchangers