WO2022259288A1 - Heat exchanger and outdoor unit - Google Patents

Heat exchanger and outdoor unit Download PDF

Info

Publication number
WO2022259288A1
WO2022259288A1 PCT/JP2021/021489 JP2021021489W WO2022259288A1 WO 2022259288 A1 WO2022259288 A1 WO 2022259288A1 JP 2021021489 W JP2021021489 W JP 2021021489W WO 2022259288 A1 WO2022259288 A1 WO 2022259288A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
opening
auxiliary
transfer tube
heat exchanger
Prior art date
Application number
PCT/JP2021/021489
Other languages
French (fr)
Japanese (ja)
Inventor
暁 八柳
剛志 前田
伸 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/021489 priority Critical patent/WO2022259288A1/en
Priority to EP21944969.1A priority patent/EP4354069A1/en
Priority to JP2023527133A priority patent/JPWO2022259288A1/ja
Publication of WO2022259288A1 publication Critical patent/WO2022259288A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers

Definitions

  • the present disclosure relates to a heat exchanger having a header and an outdoor unit having the heat exchanger.
  • Patent Document 1 As such a heat exchanger, a plurality of fins connecting a plurality of heat transfer tubes arranged in the ventilation direction are provided in a meandering manner to increase the contact ratio between the fins and the air flow. disclosed.
  • the heat transfer tubes are made thinner and arranged at a narrow pitch, it becomes difficult to form openings in the header into which the heat transfer tubes are inserted.
  • the present disclosure has been made to solve the above-described problems, and provides a heat exchanger and an outdoor unit that improve the formability of openings in headers into which heat transfer tubes are inserted.
  • a heat exchanger includes a first heat transfer tube and a second heat transfer tube in which a flow path through which a refrigerant flows is formed, and connected to ends of the first heat transfer tube and the second heat transfer tube in the tube axis direction.
  • a header having a body portion for circulating the refrigerant between the first heat transfer tube, the second heat transfer tube, and the refrigerant pipe through which the refrigerant flows; and a plate-like insertion portion having a first opening. , and the first heat transfer tube and the second heat transfer tube are inserted into the first opening.
  • the first heat transfer tubes and the second heat transfer tubes are inserted into the first openings provided in the insertion portion of the header. That is, the first opening of the insertion portion is formed larger than when one heat transfer tube is inserted. Therefore, the heat exchanger and the outdoor unit can improve the moldability of the openings in the header into which the heat transfer tubes are inserted.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. Fig. 2 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1;
  • Fig. 3 is a side view showing the outdoor heat exchanger 7 according to Embodiment 1;
  • 1 is a perspective view showing an outdoor heat exchanger 7 according to Embodiment 1.
  • FIG. Fig. 2 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1; 4 is a top view showing first header 21 according to Embodiment 1.
  • FIG. Fig. 2 is a cross-sectional view showing the outdoor heat exchanger 7 according to Embodiment 1;
  • FIG. 7 is a front view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1;
  • FIG. 7 is a side view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1;
  • FIG. 9 is a front view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1;
  • FIG. 9 is a side view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1;
  • Fig. 10 is a front view showing an outdoor heat exchanger 107 according to Embodiment 2;
  • Fig. 10 is a side view showing an outdoor heat exchanger 107 according to Embodiment 2;
  • Fig. 10 is a perspective view showing an outdoor heat exchanger 107 according to Embodiment 2;
  • Fig. 10 is a front view showing an outdoor heat exchanger 107 according to Embodiment 2;
  • FIG. 10 is a front view showing an outdoor heat exchanger 107 according to Embodiment 2;
  • FIG. 10 is a front view showing an outdoor heat exchanger 107 according to Embodiment 2;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 according to Embodiment 2; 8 is a schematic diagram showing an auxiliary insertion portion 51 according to Embodiment 2; FIG. FIG. 9 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Embodiment 2; FIG. 4 is a cross-sectional view showing an outdoor heat exchanger 107 according to Embodiment 2; FIG. 11 is a front view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2; FIG. 9 is a cross-sectional view of an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2; FIG. 11 is a schematic diagram showing an insertion portion 41 according to Modification 1 of Embodiment 2; FIG.
  • FIG. 11 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2;
  • FIG. 9 is a cross-sectional view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 according to Modification 2 of Embodiment 2;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 2 of Embodiment 2;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 according to Modification 3 of Embodiment 2;
  • FIG. 11 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 3 of Embodiment 2;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 107B according to Modification 4 of Embodiment 2;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 107C according to Modification 5 of Embodiment 2;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 107D according to Modification 6 of Embodiment 2;
  • FIG. 11 is a front view showing an outdoor heat exchanger 207 according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing an auxiliary insertion portion 51 according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Embodiment 3;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207 according to Embodiment 3;
  • FIG. 11 is a front view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207B according to Modification 2 of Embodiment 3;
  • FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207C according to Modification 3 of Embodiment 3;
  • FIG. 1 is a circuit diagram showing a refrigeration cycle apparatus 1 according to Embodiment 1.
  • the refrigeration cycle device 1 has an outdoor unit 2 and an indoor unit 3 .
  • the outdoor unit 2 has a compressor 5, a channel switching valve 6, an outdoor heat exchanger 7, an outdoor fan 8 and an expansion valve 9.
  • the indoor unit 3 has an outdoor heat exchanger 7 and an outdoor fan 8 .
  • the flow path switching valve 6, the outdoor heat exchanger 7, the expansion valve 9, and the outdoor heat exchanger 7 are connected by refrigerant pipes to form a refrigerant circuit.
  • the compressor 5 sucks in low-temperature and low-pressure refrigerant, compresses the sucked-in refrigerant, converts it into high-temperature and high-pressure refrigerant, and discharges it.
  • the channel switching valve 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
  • the outdoor heat exchanger 7 exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 7 acts as a condenser during cooling operation, and acts as an evaporator during heating operation.
  • the outdoor blower 8 is a device that sends outdoor air to the outdoor heat exchanger 7 .
  • the expansion valve 9 decompresses and expands the refrigerant, and is, for example, an electronic expansion valve.
  • the indoor heat exchanger 10 exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger 10 acts as an evaporator during cooling operation, and acts as a condenser during heating operation.
  • the indoor fan 11 is a device that sends indoor air to the indoor heat exchanger 10, and is, for example, a cross-flow fan.
  • the refrigeration cycle device 1 performs cooling operation by switching the flow path switching valve 6 so that the discharge side of the compressor 5 and the outdoor heat exchanger 7 are connected.
  • the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the flow path switching valve 6 and flows into the outdoor heat exchanger 7 acting as a condenser.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 exchanges heat with the outdoor air sent by the outdoor fan 8, condenses, and liquefies.
  • the liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 10 acting as an evaporator.
  • the refrigerant that has flowed into the indoor heat exchanger 10 exchanges heat with indoor air sent by the indoor fan 11, evaporates, and gasifies. At that time, the room air is cooled to cool the room. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 6 and is sucked into the compressor 5 .
  • the refrigeration cycle device 1 performs heating operation by switching the flow path switching valve 6 so that the discharge side of the compressor 5 and the indoor heat exchanger 10 are connected.
  • the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the flow path switching valve 6 and flows into the indoor heat exchanger 10 acting as a condenser.
  • the refrigerant that has flowed into the indoor heat exchanger 10 exchanges heat with indoor air sent by the indoor fan 11, condenses, and liquefies.
  • the room air is warmed, and the room is heated.
  • the liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 7 acting as an evaporator.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 exchanges heat with the outdoor air sent by the outdoor fan 8 to evaporate and gasify. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 6 and is sucked into the compressor 5 .
  • FIG. 2 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1.
  • FIG. FIG. 3 is a side view showing the outdoor heat exchanger 7 according to Embodiment 1.
  • FIG. FIG. 4 is a perspective view showing the outdoor heat exchanger 7 according to Embodiment 1.
  • FIG. The white arrows in FIG. 2 indicate the flow of air.
  • the outdoor heat exchanger 7 has a first header 21, a second header 22, and a plurality of heat transfer tubes.
  • the first heat transfer tube 23a and the second heat transfer tube 23b may be described as representatives of the plurality of heat transfer tubes.
  • the first heat transfer tube 23 a is an arbitrary heat transfer tube among the plurality of heat transfer tubes included in the outdoor heat exchanger 7 .
  • the second heat transfer tube 23b is a heat transfer tube adjacent to the first heat transfer tube 23a. Also, heat transfer tubes other than the first heat transfer tube 23a and the second heat transfer tube 23b have the same configuration as the first heat transfer tube 23a and the second heat transfer tube 23b.
  • the first header 21 is positioned below the outdoor heat exchanger 7
  • the second header 22 is positioned above the outdoor heat exchanger 7
  • the first header 21 and the second header 22 are elongated. It is based on the case where the outdoor heat exchanger 7 is arranged so that the direction is the horizontal direction.
  • the orientation in which the outdoor heat exchanger 7 is arranged is not limited to the orientation described above.
  • the first header 21 is provided below the outdoor heat exchanger 7 . Lower ends of a plurality of heat transfer tubes are inserted into the upper surface of the first header 21, and an outflow tube 25 is connected to the side surface.
  • the outflow pipe 25 is a part of the refrigerant pipe, through which the refrigerant flowing out from the outdoor heat exchanger 7 flows. In the first header 21 , the refrigerant that has flowed from the plurality of heat transfer tubes gathers and flows to the outflow tube 25 .
  • the second header 22 is provided above the outdoor heat exchanger 7 . Upper ends of a plurality of heat transfer tubes are inserted into the lower surface of the second header 22, and an inflow tube 24 is connected to the side surface.
  • the inflow pipe 24 is a part of the refrigerant pipe, through which the refrigerant flowing into the outdoor heat exchanger 7 flows.
  • the second header 22 distributes the refrigerant flowing from the inflow pipe 24 to a plurality of heat transfer pipes.
  • a plurality of heat transfer tubes are internally formed with channels through which the refrigerant flows.
  • the plurality of heat transfer tubes are connected to headers at their ends in the tube axial direction, that is, in the vertical direction.
  • a flat tube is used as the heat transfer tube.
  • One or more channels are formed inside the flattened tube.
  • FIG. 5 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1.
  • FIG. FIG. 5 shows the vicinity of the first header 21 of the outdoor heat exchanger 7 in an enlarged manner.
  • the first header 21 is composed of a body portion 31 and an insertion portion 41 .
  • the body portion 31 has a box shape with an open top.
  • An outflow pipe 25 is connected to a side portion of the body portion 31 .
  • the insertion portion 41 is plate-shaped, and a plurality of heat transfer tubes are inserted therein.
  • the insertion portion 41 is provided in the main body portion 31 so as to cover the upper surface of the main body portion 31 . Note that the body portion 31 and the insertion portion 41 may be integrally formed.
  • FIG. 6 is a top view showing the first header 21 according to Embodiment 1.
  • the first opening 42a and the second opening 42b may be described as representatives of the plurality of openings.
  • the first opening 42 a is an arbitrary opening among the plurality of openings formed in the insertion portion 41 .
  • the second opening 42b is an opening adjacent to the first opening 42a.
  • the first opening 42a and the second opening 42b are rectangular. Note that openings other than the first opening 42a and the second opening 42b have the same configuration as the first opening 42a and the second opening 42b.
  • the insertion portion 41 has a plurality of partitions, each of which separates two openings.
  • first partition 43a between the first opening 42a and the second opening 42b may be described as a representative of the plurality of partitions. Partitions other than the first partition 43a also have the same configuration as the first partition 43a.
  • the locations indicated by dashed lines in FIG. 6 respectively indicate areas into which one heat transfer tube is inserted. That is, two heat transfer tubes are inserted into each opening of the insertion portion 41 .
  • FIG. 7 is a cross-sectional view showing the outdoor heat exchanger 7 according to Embodiment 1.
  • FIG. FIG. 7 corresponds to the AA section of FIG.
  • a first heat transfer tube 23a and a second heat transfer tube 23b are inserted into the first opening 42a of the insertion portion 41.
  • the first heat transfer tube 23a and the second heat transfer tube 23b are provided in close contact with each other. That is, the width of the first opening 42a, that is, the dimension in the left-right direction is substantially equal to the sum of the width of the first heat transfer tube 23a and the width of the second heat transfer tube 23b. Also, the interval between the first opening 42a and the second opening 42b, that is, the width of the first partition portion 43a is wider than when one heat transfer tube is inserted into one opening.
  • the outdoor heat exchanger 7 of Embodiment 1 the first heat transfer tubes 23a and the second heat transfer tubes 23b are inserted into the first openings 42a provided in the insertion portion 41 of the first header 21. . That is, the first opening 42a of the insertion portion 41 is formed larger than when one heat transfer tube is inserted. Therefore, the outdoor heat exchanger 7 can improve the formability of the openings in the first header 21 into which the heat transfer tubes are inserted.
  • the outdoor heat exchanger 7 can further improve the moldability of the openings in the first header 21 into which the heat transfer tubes are inserted.
  • various effects can be obtained in manufacturing the outdoor heat exchanger 7, such as improved work efficiency, shortened manufacturing time, and reduced costs. .
  • FIG. 8 is a front view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1.
  • FIG. 9 is a side view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1.
  • each of the heat transfer tubes has a bent portion 71 .
  • the bent portion 71 is provided near the first header 21 and the second header 22 .
  • the first heat transfer tube 23a and the second heat transfer tube 23b are bent in opposite directions in the left-right direction.
  • the first heat transfer tubes 23 a and the second heat transfer tubes 23 b are arranged so as to be in close contact with each other at portions of the bent portion 71 near the first header 21 and the second header 22 . Further, the first heat transfer tube 23 a and the second heat transfer tube 23 b are separated from the first header 21 and second header 22 exposed portions by bending portions 71 on the first header side and bending portions 71 on the second header 22 side. has a gap between Thereby, air flows between the first heat transfer tube 23a and the second heat transfer tube 23b.
  • the heat transfer tubes are arranged at a substantially narrow pitch, and the heat exchange performance can be improved.
  • FIG. 10 is a front view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1.
  • FIG. 11 is a side view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1.
  • the bent portion 71 of the heat transfer tube is inclined with respect to the vertical direction, that is, the tube axis direction.
  • the bent portion 71 of the heat transfer tube on the side of the first header 21 is inclined from the upstream side to the downstream side in the blowing direction of the outdoor fan 8, that is, upward from the front to the rear.
  • the bent portion 71 of the heat transfer tube on the side of the second header 22 is inclined downward from the upstream side to the downstream side in the air blowing direction from the outdoor fan 8 .
  • frost may adhere to the contact portion between the bent portion 71 of the first heat transfer tube 23a and the bent portion 71 of the second heat transfer tube 23b.
  • Modification 2 of Embodiment 1 by inclining bent portion 71 with respect to the tube axis direction, retention of water generated when frost is melted is suppressed. By suppressing the retention of the melted water of frost, it is possible to suppress the refreezing of the melted water and the deterioration of the heat exchange performance caused by the refreezing.
  • the bent portion 71 of the heat transfer tube on the side of the second header 22 is inclined from the upstream side to the downstream side in the blowing direction of the air from the outdoor fan 8 . Therefore, at the bent portions 71 of the heat transfer tubes on the side of the second header 22, the discharge of melted frost water is facilitated, and refreezing of the melted water and deterioration of heat exchange performance due to refreezing are further suppressed.
  • the inclination directions of the bent portion 71 on the first header 21 side and the bent portion 71 on the second header 22 side may be exchanged, or the bent portion 71 on the first header 21 side may also be the bent portion 71 on the second header 22 side. may also be formed so as to descend from the upstream side toward the downstream side in the blowing direction.
  • FIG. 12 is a front view showing the outdoor heat exchanger 107 according to Embodiment 2.
  • FIG. 13 is a side view showing the outdoor heat exchanger 107 according to Embodiment 2.
  • FIG. 14 is a perspective view showing an outdoor heat exchanger 107 according to Embodiment 2.
  • FIG. 12 to 14 in the second embodiment, a plurality of heat transfer tubes are arranged with a gap therebetween.
  • the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
  • FIG. 15 is a front view showing the outdoor heat exchanger 107 according to Embodiment 2.
  • FIG. FIG. 15 shows the vicinity of the first header 21 of the outdoor heat exchanger 107 in an enlarged manner.
  • the header of the second embodiment has an auxiliary insertion portion 51 between the insertion portion 41 and the main body portion 31.
  • the auxiliary insertion portion 51 has a plate shape and is provided in the body portion 31 so as to cover the upper surface of the body portion 31 .
  • the insertion portion 41 is overlapped and joined to the upper surface of the auxiliary insertion portion 51 .
  • the body portion 31 and the auxiliary insertion portion 51 may be integrally formed.
  • FIG. 16 is a schematic diagram showing an insertion portion 41 according to Embodiment 2.
  • the insertion portion 41 is plate-shaped with a plurality of openings.
  • the insertion portion 41 is shorter in width than the auxiliary insertion portion 51 .
  • the width of the insertion portion 41 is shorter than that of the insertion portion 41 of the first embodiment.
  • FIG. 17 is a schematic diagram showing an auxiliary insertion portion 51 according to Embodiment 2.
  • FIG. A plurality of auxiliary openings are formed in the auxiliary insertion portion 51 .
  • the first auxiliary opening 52a and the second auxiliary opening 52b may be described as representatives of the plurality of auxiliary openings.
  • the first auxiliary opening 52 a is an arbitrary auxiliary opening among the plurality of auxiliary openings formed in the auxiliary insertion portion 51 .
  • the second auxiliary opening 52b is an auxiliary opening adjacent to the first auxiliary opening 52a.
  • the first auxiliary opening 52a and the second auxiliary opening 52b are rectangular. Openings other than the first auxiliary opening 52a and the second auxiliary opening 52b have the same configuration as the first auxiliary opening 52a and the second auxiliary opening 52b.
  • the auxiliary insertion portion 51 has a plurality of auxiliary partitions, each partitioning two auxiliary openings.
  • first auxiliary partition 53a between the first auxiliary opening 52a and the second auxiliary opening 52b may be described as a representative of the plurality of auxiliary partitions.
  • Partitions other than the first auxiliary partition 53a also have the same configuration as the first auxiliary partition 53a.
  • FIG. 18 is a schematic diagram showing the insertion portion 41 and the auxiliary insertion portion 51 according to Embodiment 2.
  • FIG. 18 the insertion portion 41 and the auxiliary insertion portion 51 are hatched for convenience of explanation.
  • the first opening 42 a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53 a of the auxiliary insertion portion 51 when viewed from the tube axis direction.
  • the second auxiliary opening 52b of the auxiliary insertion portion 51 is divided into two parts by the first partition portion 43a of the insertion portion 41.
  • FIG. 18 is a schematic diagram showing the insertion portion 41 and the auxiliary insertion portion 51 according to Embodiment 2.
  • the insertion portion 41 and the auxiliary insertion portion 51 are hatched for convenience of explanation.
  • the first opening 42 a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53 a of the auxiliary insertion portion 51 when viewed from the tube axis direction.
  • the plurality of openings of the insertion portion 41 and the plurality of auxiliary openings of the auxiliary insertion portion 51 have the same shape.
  • the width of the first opening 42a of the insertion portion 41 is substantially equal to the sum of the width of the two heat transfer tubes and the width of the first auxiliary partition portion 53a.
  • the width of the second auxiliary opening 52b is substantially equal to the sum of the width of the two heat transfer tubes and the width of the first partition portion 43a of the insertion portion 41 .
  • the depth dimension of the first opening 42a and the first auxiliary opening 52a is substantially equal to the depth dimension of the heat transfer tube.
  • FIG. 19 is a cross-sectional view showing an outdoor heat exchanger 107 according to Embodiment 2.
  • FIG. FIG. 19 shows the outdoor heat exchanger 107 cut along a cross section corresponding to the BB cross section of FIG.
  • the first heat transfer tube 23 a is inserted into the first opening 42 a of the insertion portion 41 and the first auxiliary opening 52 a of the auxiliary insertion portion 51 .
  • the second heat transfer tube 23 b is inserted into the first opening 42 a of the insertion portion 41 and the second opening 42 b of the auxiliary insertion portion 51 .
  • the first heat transfer tube 23a is inserted into one of the two portions partitioned by the first auxiliary partition portion 53a in the first opening 42a of the insertion portion 41 .
  • the second heat transfer tube 23b is inserted into the other of the two portions partitioned by the first auxiliary partition portion 53a in the first opening 42a of the insertion portion 41 . That is, also in Embodiment 2, the first heat transfer tubes 23a and the second heat transfer tubes 23b are inserted into the first openings 42a of the insertion portion 41 .
  • the outdoor heat exchanger 107 of Embodiment 2 the first heat transfer tubes 23a and the second heat transfer tubes 23b are inserted into the first openings 42a provided in the insertion portion 41 of the first header 21. . That is, the first opening 42a of the insertion portion 41 is formed larger than when one heat transfer tube is inserted. Therefore, the outdoor heat exchanger 107 of Embodiment 2 can also improve the formability of the openings in the first header 21 into which the heat transfer tubes are inserted.
  • FIG. 20 is a front view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2.
  • FIG. FIG. 20 shows an enlarged view of the vicinity of the first header 21 of the outdoor heat exchanger 107A.
  • 21 is a cross-sectional view of an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2.
  • FIG. 21 corresponds to the CC section of FIG.
  • a circular tube is used as the heat transfer tube.
  • FIG. 22 is a schematic diagram showing an insertion portion 41 according to Modification 1 of Embodiment 2.
  • FIG. 22 the plurality of openings of the insertion portion 41 are circular at both ends in the arrangement direction, and rectangular with rounded corners except for both ends in the arrangement direction.
  • FIG. 23 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2.
  • FIG. 23 the plurality of openings are all rectangular with rounded corners.
  • FIG. 24 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2.
  • FIG. 24 the first opening 42a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53a of the auxiliary insertion portion 51 when viewed from the tube axis direction.
  • the second auxiliary opening 52b of the auxiliary insertion portion 51 is divided into two parts by the first partition portion 43a of the insertion portion 41. As shown in FIG.
  • the width of the longest portion of the first opening 42a of the insertion portion 41 is substantially equal to the sum of the outer diameter of two heat transfer tubes and the width of the shortest portion of the first auxiliary partition portion 53a. Also, the width of the longest portion of the second auxiliary opening 52b is substantially equal to the sum of the outer diameters of the two heat transfer tubes and the width of the shortest portion of the first partition portion 43a of the insertion portion 41 .
  • the depth dimension of the opening in which the shape of the insertion portion 41 is a rectangle with rounded corners is substantially the same as the depth dimension of the heat transfer tube.
  • the diameter of the circular opening of the insertion portion 41 is substantially the same as the outer diameter of the heat transfer tube.
  • the depth dimension of the auxiliary opening of the auxiliary insertion portion 51 is substantially the same as the depth dimension of the heat transfer tube.
  • FIG. 25 is a cross-sectional view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2.
  • FIG. 25 the first heat transfer tube 23 a is inserted into the first opening 42 a of the insertion portion 41 and the first auxiliary opening 52 a of the auxiliary insertion portion 51 .
  • the second heat transfer tube 23 b is inserted into the first opening 42 a of the insertion portion 41 and the second opening 42 b of the auxiliary insertion portion 51 . That is, even when circular tubes are used as the heat transfer tubes as in Modification 1 of Embodiment 2, the first heat transfer tubes 23 a and the second heat transfer tubes 23 b are inserted into the first openings 42 a of the insertion portion 41 .
  • the circular pipes of the first heat transfer pipe 23a and the second heat transfer pipe 23b are also the first heat transfer pipes. It is inserted into the first opening 42 a provided in the insertion portion 41 of the header 21 . Thereby, the moldability of the opening of the insertion portion 41 can be improved.
  • FIG. 26 is a schematic diagram showing an insertion portion 41 according to Modification 2 of Embodiment 2.
  • dummy openings 44 are formed in the insertion portion 41 .
  • the dummy opening 44 is formed side by side with the first opening 42 a of the insertion portion 41 .
  • the width of the dummy opening 44 is shorter than that of the first opening 42a of the insertion portion 41, and substantially the same as the width of the flat tube. Since the auxiliary insertion portion 51 has the same shape as that of the second embodiment, its illustration and description are omitted.
  • FIG. 27 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 2 of Embodiment 2.
  • FIG. 27 the dummy opening 44 and the first auxiliary opening 52a overlap.
  • a dummy tube is inserted into the dummy opening 44 and the first auxiliary opening 52a.
  • the dummy pipes inserted into the dummy openings 44 may have a configuration in which the coolant flow path is omitted, or may not be inserted into either the first header 21 or the second header 22. .
  • the shape of the dummy opening 44 may be appropriately changed according to the shape of the member to be inserted into the dummy opening 44 .
  • Circular tubes may be used as the heat transfer tubes and the dummy tubes.
  • FIG. 28 is a schematic diagram showing an insertion portion 41 according to Modification 3 of Embodiment 2.
  • FIG. 29 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 3 of Embodiment 2.
  • the insertion portion 41 is formed with a protrusion 72 .
  • the auxiliary insertion portion 51 is provided with a concave portion 73 .
  • the convex portion 72 of the insertion portion 41 and the concave portion 73 of the auxiliary insertion portion 51 face each other. As a result, it is possible to easily align the insertion portion 41 with the auxiliary insertion portion 51 when assembling the header.
  • the recess 73 may be formed in the insertion portion 41 and the protrusion 72 may be formed in the auxiliary insertion portion 51 .
  • a circular tube may be used as the heat transfer tube.
  • FIG. 30 is a cross-sectional view showing an outdoor heat exchanger 107B according to Modification 4 of Embodiment 2.
  • FIG. FIG. 30 shows the outdoor heat exchanger 107B cut along a cross section corresponding to the BB cross section of FIG.
  • two insertion portions 41 and two auxiliary insertion portions 51 are provided. Accordingly, when forming the opening and the auxiliary opening in the insertion portion 41 and the auxiliary insertion portion 51, the plate thickness can be reduced, and molding can be easily performed. Further, when manufactured as the first header 21, the plate thickness can be increased, and the pressure resistance against the refrigerant flowing through the first header 21 is ensured.
  • the insertion portion 41 or the auxiliary insertion portion 51 may be provided two pieces. Also, three or more insertion portions 41 or auxiliary insertion portions 51 or both may be provided.
  • FIG. 31 is a cross-sectional view showing an outdoor heat exchanger 107C according to Modification 5 of Embodiment 2.
  • FIG. 31 shows the outdoor heat exchanger 107C cut along the cross section corresponding to the BB cross section of FIG.
  • a contact portion 61 is provided between the auxiliary insertion portion 51 and the body portion 31 .
  • two insertion portions 41 are provided.
  • the contact portion 61 is plate-shaped with a plurality of contact openings.
  • the contact portion 61 is provided on the main body portion 31 so as to cover the upper surface of the main body portion 31 .
  • the first contact opening 62a and the second contact opening 62b may be described as representatives of the plurality of contact openings.
  • the first contact opening 62 a is an arbitrary opening among the plurality of contact openings formed in the contact portion 61 .
  • the second contact opening 62b is an opening adjacent to the first contact opening 62a.
  • the first contact opening 62a and the second contact opening 62b are rectangular. Openings other than the first contact opening 62a and the second contact opening 62b have the same configuration as the first contact opening 62a and the second contact opening 62b.
  • the width of the first contact opening 62a and the second contact opening 62b is smaller than the width of the first auxiliary opening 52a and the second auxiliary opening 52b, that is, the dimension in the longitudinal direction.
  • the depth length of the contact opening is substantially the same as the depth length of the heat transfer tube.
  • the contact part 61 has a plurality of contact partition parts, each of which separates the two openings.
  • the first contact partitioning portion 63a between the first contact opening 62a and the second contact opening 62b may be described as a representative of the plurality of contact partitioning portions. Partitions other than the first contact partition 63a have the same configuration as the first contact partition 63a.
  • the distance between the center of the first contact opening 62a and the center of the second contact opening 62b is equal to the distance between the center of the first auxiliary opening 52a and the center of the second auxiliary opening 52b. That is, the pitch of the plurality of auxiliary openings is the same as the pitch of the plurality of contact openings. Also, as described above, the width of the contact opening is smaller than the width of the auxiliary opening. Therefore, the first heat transfer tube 23a inserted into the first opening 42a of the insertion portion 41 is also inserted into the first opening 42a of the auxiliary insertion portion 51. is not inserted into the contact portion 61 and contacts the upper surface of the contact portion 61 . As a result, the lengths by which the plurality of heat transfer tubes are inserted into the first header 21 can be made uniform. Note that the body portion 31 and the contact portion 61 may be integrally formed. A circular tube may be used as the heat transfer tube.
  • Modification 6 of Embodiment 2 is a cross-sectional view showing an outdoor heat exchanger 107D according to Modification 6 of Embodiment 2.
  • FIG. FIG. 32 shows the outdoor heat exchanger 107D cut along a cross section corresponding to the BB cross section of FIG.
  • FIG. 32 shows a case where circular tubes are used as heat transfer tubes, and two insertion portions 41 and two auxiliary insertion portions 51 are provided.
  • Modification 6 of Embodiment 2 corresponds to a configuration in which Modification 1 of Embodiment 2 and Modification 4 of Embodiment 2 are combined.
  • the plate thickness can be reduced when forming the opening and the auxiliary opening in the insertion portion 41 and the auxiliary insertion portion 51, and molding can be easily performed. . Further, when manufactured as the first header 21, the plate thickness can be increased, and the pressure resistance against the refrigerant flowing through the first header 21 is ensured.
  • Embodiment 3. 33 is a front view showing an outdoor heat exchanger 207 according to Embodiment 3.
  • FIG. 33 the third embodiment corresponds to a combination of the first and second embodiments.
  • FIG. 34 is a schematic diagram showing an insertion portion 41 according to Embodiment 3.
  • FIG. 34 the insertion portion 41 is plate-shaped with a plurality of openings.
  • FIG. 35 is a schematic diagram showing the auxiliary insertion portion 51 according to Embodiment 3.
  • FIG. 35 the auxiliary insertion portion 51 is plate-shaped with a plurality of auxiliary openings.
  • FIG. 36 is a schematic diagram showing the insertion portion 41 and the auxiliary insertion portion 51 according to Embodiment 3.
  • FIG. 36 the insertion portion 41 and the auxiliary insertion portion 51 are hatched for convenience of explanation.
  • the first opening 42a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53a of the auxiliary insertion portion 51 when viewed from the tube axis direction.
  • the second auxiliary opening 52b of the auxiliary insertion portion 51 is divided into two parts by the first partition portion 43a of the insertion portion 41.
  • FIG. 36 is a schematic diagram showing the insertion portion 41 and the auxiliary insertion portion 51 according to Embodiment 3.
  • the insertion portion 41 and the auxiliary insertion portion 51 are hatched for convenience of explanation.
  • the first opening 42a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53a of the auxiliary insertion portion 51 when viewed from the tube axis direction.
  • the plurality of openings of the insertion portion 41 and the plurality of auxiliary openings of the auxiliary insertion portion 51 have the same shape.
  • the width of the first opening 42 a is substantially equal to the sum of the width of the four heat transfer tubes and the width of the first auxiliary partition portion 53 a of the auxiliary insertion portion 51 .
  • the width of the second auxiliary opening 52b is approximately equal to the sum of the width of the four heat transfer tubes and the width of the first partition portion 43a of the insertion portion 41 .
  • the depth dimension of the first opening 42a and the first auxiliary opening 52a is substantially equal to the depth dimension of the heat transfer tube.
  • FIG. 37 is a cross-sectional view showing an outdoor heat exchanger 207 according to Embodiment 3.
  • FIG. FIG. 37 shows the outdoor heat exchanger 207 cut along a cross section corresponding to the BB cross section of FIG.
  • the first heat transfer tube 23 a and the second heat transfer tube 23 b are inserted into the first opening 42 a of the insertion portion 41 and the first auxiliary opening 52 a of the auxiliary insertion portion 51 .
  • the first heat transfer tube 23a and the second heat transfer tube 23b are provided in close contact with each other.
  • the third heat transfer tube 23 c and the fourth heat transfer tube 23 d are inserted into the first opening 42 a of the insertion portion 41 and the second auxiliary opening 52 b of the auxiliary insertion portion 51 .
  • the third heat transfer tube 23c and the fourth heat transfer tube 23d are provided in close contact with each other.
  • the third heat transfer tube 23c is a heat transfer tube adjacent to the second heat transfer tube 23b.
  • the fourth heat transfer tube 23d is a heat transfer tube adjacent to the third heat transfer tube 23c.
  • the first heat transfer tube 23a and the second heat transfer tube 23b are inserted into one of the two portions partitioned by the first auxiliary partition 53a in the first opening 42a of the insertion portion 41.
  • the third heat transfer tube 23c and the fourth heat transfer tube 23d are inserted into the other of the two portions partitioned by the first auxiliary partition 53a in the first opening 42a of the insertion portion 41 . That is, in Embodiment 3, the first heat transfer tube 23a, the second heat transfer tube 23b, the third heat transfer tube 23c, and the fourth heat transfer tube 23d are inserted into the first opening 42a of the insertion portion 41. As shown in FIG.
  • the outdoor heat exchanger 207 of Embodiment 3 the first heat transfer tube 23a, the second heat transfer tube 23b, the third heat transfer tube 23c, and the fourth heat transfer tube 23d are inserted into the first header 21. 41 is inserted into a first opening 42a. That is, the first opening 42a of the insertion portion 41 is formed larger than when one heat transfer tube is inserted. Therefore, the outdoor heat exchanger 207 of Embodiment 3 can also improve the formability of the openings in the first header 21 into which the heat transfer tubes are inserted.
  • FIG. 38 is a front view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3.
  • FIG. 39 is a cross-sectional view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3.
  • FIG. 39 shows the outdoor heat exchanger 207A cut along a cross section corresponding to the BB cross section of FIG.
  • the multiple heat transfer tubes have bends 71 .
  • the bent portion 71 is provided in the vicinity of the first header 21, and is a portion where the first heat transfer tube 23a and the second heat transfer tube 23b are bent in opposite directions in the left-right direction.
  • the bent portion 71 is a portion where the third heat transfer tube 23c and the fourth heat transfer tube 23d are bent in opposite directions in the horizontal direction.
  • the first heat transfer tube 23a and the second heat transfer tube 23b are in close contact with each other at the portion of the bent portion 71 near the first header 21 and the second header 22, and the third heat transfer tube 23c and the fourth heat transfer tube 23d are in close contact with each other.
  • the first header 21 and the second header 22 are arranged so as to be in close contact with each other.
  • the first heat transfer tube 23 a and the second heat transfer tube 23 b are separated from the first header 21 and second header 22 exposed portions by bending portions 71 on the first header side and bending portions 71 on the second header 22 side.
  • the third heat transfer tube 23c and the fourth heat transfer tube 23d have a bent portion 71 on the first header side and a bent portion on the second header 22 side. 71 has a gap. Thereby, air flows between the third heat transfer tube 23c and the fourth heat transfer tube 23d.
  • the heat transfer tubes are substantially arranged at a narrow pitch, and the heat exchange performance can be improved.
  • FIG. 40 is a cross-sectional view showing an outdoor heat exchanger 207B according to Modification 2 of Embodiment 3.
  • FIG. FIG. 40 shows the outdoor heat exchanger 207B cut along the cross section corresponding to the BB cross section of FIG.
  • two insertion portions 41 and two auxiliary insertion portions 51 are provided. Accordingly, when forming the opening and the auxiliary opening in the insertion portion 41 and the auxiliary insertion portion 51, the plate thickness can be reduced, and molding can be easily performed. Further, when the first header 21 is manufactured, the plate thickness can be increased, and when the widths of the first openings 42a and the second openings 42b are expanded corresponding to the insertion of four heat transfer tubes. Even so, the first header 21 ensures pressure resistance against the refrigerant flowing therein.
  • Modification 3 of Embodiment 3 is a cross-sectional view showing an outdoor heat exchanger 207C according to Modification 3 of Embodiment 3.
  • FIG. FIG. 41 shows the outdoor heat exchanger 207C cut along the cross section corresponding to the BB cross section of FIG.
  • the plurality of heat transfer tubes have bent portions 71, and two insertion portions 41 and two auxiliary insertion portions 51 are provided. That is, Modification 3 of Embodiment 3 corresponds to a configuration in which Modification 1 of Embodiment 3 and Modification 2 of Embodiment 3 are combined. Accordingly, by forming the bent portion 71, the heat transfer tubes are substantially arranged at a narrow pitch, and the heat exchange performance can be improved.
  • the plate thickness can be reduced, and molding can be easily performed. Furthermore, when manufactured as the first header 21, the plate thickness can be increased, and when the widths of the first opening 42a and the second opening 42b are expanded corresponding to the insertion of four heat transfer tubes, Even so, the first header 21 ensures pressure resistance against the refrigerant flowing therein.
  • the outdoor heat exchanger of the present disclosure can be modified in various ways other than the configuration disclosed in the first embodiment.
  • the insertion portion 41 and the auxiliary insertion portion 51 may have the same shape.
  • the insertion portion 41 is formed into a shape that can be used as an auxiliary insertion portion 51 by reversing the front and back. In this case, the number of types of header parts can be reduced, and an improvement in yield or a reduction in management costs can be achieved.
  • the outdoor heat exchanger having only the heat transfer tubes
  • the outdoor heat exchanger may have the heat transfer tubes and the fins, or the heat transfer tubes and the fins may be integrated. It may also be a formed finless heat exchanger.
  • the content of the present disclosure can be applied not only to outdoor heat exchangers but also to indoor heat exchangers. Further, the content of the present disclosure can be applied not only to the first header 21 provided at the bottom of the outdoor heat exchanger, but also to the second header 22 provided at the top of the outdoor heat exchanger.
  • headers that branch the refrigerant, as long as the refrigerant flows directly or indirectly between a plurality of heat transfer tubes and refrigerant pipes in which the refrigerant flows. can be applied.
  • 1 refrigeration cycle device 2 outdoor unit, 3 indoor unit, 5 compressor, 6 flow path switching valve, 7 outdoor heat exchanger, 7A outdoor heat exchanger, 7B outdoor heat exchanger, 107 outdoor heat exchanger, 107A outdoor heat Exchanger, 107B Outdoor heat exchanger, 107C Outdoor heat exchanger, 107D Outdoor heat exchanger, 207 Outdoor heat exchanger, 207A Outdoor heat exchanger, 207B Outdoor heat exchanger, 207C Outdoor heat exchanger, 8 Outdoor fan, 9 Expansion valve, 10 indoor heat exchanger, 11 indoor blower, 21 first header, 22 second header, 23a first heat transfer tube, 23b second heat transfer tube, 23c third heat transfer tube, 23d fourth heat transfer tube, 24 inflow tube , 25 outflow pipe, 31 main body, 41 insertion portion, 42a first opening, 42b second opening, 43a first partition, 44 dummy opening, 51 auxiliary insertion portion, 52a first auxiliary opening, 52b second auxiliary opening, 53a first auxiliary partition, 61 abutment, 62a first abutment opening,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This heat exchanger comprises a first heat transfer pipe and a second heat transfer pipe inside of which are formed flow paths through which a refrigerant flows, and a header that is connected to the pipe-axis-direction end sections of the first and second heat transfer pipes. The header has a main unit that channels the refrigerant between the first and second heat transfer pipes and refrigerant piping through which the refrigerant flows, and a plate-form insertion part having a first opening. The first and second heat transfer pipes are inserted into the first opening.

Description

熱交換器及び室外機Heat exchanger and outdoor unit
 本開示は、ヘッダを有する熱交換器、及び熱交換器を備える室外機に関する。 The present disclosure relates to a heat exchanger having a header and an outdoor unit having the heat exchanger.
 従来、熱交換器においては、冷媒充填量の削減等のため、伝熱管の細径化が進められている。また、伝熱管の細径化に伴う熱交換性能の低下を抑制するため、伝熱管が狭いピッチで配列されることがある。特許文献1には、このような熱交換器として、通風方向に並ぶ複数の伝熱管を接続する複数のフィンを蛇行するように設けることで、フィンと空気流との接触率を高めたものが開示されている。 Conventionally, in heat exchangers, the diameter of heat transfer tubes has been reduced in order to reduce the amount of refrigerant charged. Moreover, in order to suppress deterioration in heat exchange performance due to the reduction in diameter of the heat transfer tubes, the heat transfer tubes are sometimes arranged at a narrow pitch. In Patent Document 1, as such a heat exchanger, a plurality of fins connecting a plurality of heat transfer tubes arranged in the ventilation direction are provided in a meandering manner to increase the contact ratio between the fins and the air flow. disclosed.
特開2018-155481号公報JP 2018-155481 A
 伝熱管を細径化し、狭いピッチで配置した場合、ヘッダにおける伝熱管が挿入される開口の成形が困難になる。 If the heat transfer tubes are made thinner and arranged at a narrow pitch, it becomes difficult to form openings in the header into which the heat transfer tubes are inserted.
 本開示は、上記のような課題を解決するためになされたもので、ヘッダにおける伝熱管が挿入される開口の成形性を向上させる熱交換器及び室外機を提供するものである。 The present disclosure has been made to solve the above-described problems, and provides a heat exchanger and an outdoor unit that improve the formability of openings in headers into which heat transfer tubes are inserted.
 本開示に係る熱交換器は、冷媒が流れる流路が内部に形成された、第1伝熱管及び第2伝熱管と、第1伝熱管及び第2伝熱管の管軸方向の端部に接続されたヘッダと、を備え、ヘッダは、第1伝熱管及び第2伝熱管と、冷媒が流れる冷媒配管との間で冷媒を流通させる本体部と、第1開口を有する板状の挿入部と、を有し、第1伝熱管及び第2伝熱管は、第1開口に挿入されている。 A heat exchanger according to the present disclosure includes a first heat transfer tube and a second heat transfer tube in which a flow path through which a refrigerant flows is formed, and connected to ends of the first heat transfer tube and the second heat transfer tube in the tube axis direction. a header, the header having a body portion for circulating the refrigerant between the first heat transfer tube, the second heat transfer tube, and the refrigerant pipe through which the refrigerant flows; and a plate-like insertion portion having a first opening. , and the first heat transfer tube and the second heat transfer tube are inserted into the first opening.
 本開示の熱交換器及び室外機では、第1伝熱管及び第2伝熱管がヘッダの挿入部に設けられた第1開口に挿入される。つまり、挿入部の第1開口は、1本の伝熱管が挿入される場合よりも大きく形成される。したがって、熱交換器及び室外機は、ヘッダにおける伝熱管が挿入される開口の成形性を向上させることができる。 In the heat exchanger and outdoor unit of the present disclosure, the first heat transfer tubes and the second heat transfer tubes are inserted into the first openings provided in the insertion portion of the header. That is, the first opening of the insertion portion is formed larger than when one heat transfer tube is inserted. Therefore, the heat exchanger and the outdoor unit can improve the moldability of the openings in the header into which the heat transfer tubes are inserted.
実施の形態1に係る冷凍サイクル装置を示す回路図である。1 is a circuit diagram showing a refrigeration cycle apparatus according to Embodiment 1; FIG. 実施の形態1に係る室外熱交換器7を示す正面図である。Fig. 2 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1; 実施の形態1に係る室外熱交換器7を示す側面図である。Fig. 3 is a side view showing the outdoor heat exchanger 7 according to Embodiment 1; 実施の形態1に係る室外熱交換器7を示す斜視図である。1 is a perspective view showing an outdoor heat exchanger 7 according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器7を示す正面図である。Fig. 2 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1; 実施の形態1に係る第1ヘッダ21を示す上面図である。4 is a top view showing first header 21 according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器7を示す断面図である。Fig. 2 is a cross-sectional view showing the outdoor heat exchanger 7 according to Embodiment 1; 実施の形態1の変形例1に係る室外熱交換器7Aを示す正面図である。FIG. 7 is a front view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1; 実施の形態1の変形例1に係る室外熱交換器7Aを示す側面図である。FIG. 7 is a side view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1; 実施の形態1の変形例2に係る室外熱交換器7Bを示す正面図である。FIG. 9 is a front view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1; 実施の形態1の変形例2に係る室外熱交換器7Bを示す側面図である。FIG. 9 is a side view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1; 実施の形態2に係る室外熱交換器107を示す正面図である。Fig. 10 is a front view showing an outdoor heat exchanger 107 according to Embodiment 2; 実施の形態2に係る室外熱交換器107を示す側面図である。Fig. 10 is a side view showing an outdoor heat exchanger 107 according to Embodiment 2; 実施の形態2に係る室外熱交換器107を示す斜視図である。Fig. 10 is a perspective view showing an outdoor heat exchanger 107 according to Embodiment 2; 実施の形態2に係る室外熱交換器107を示す正面図である。Fig. 10 is a front view showing an outdoor heat exchanger 107 according to Embodiment 2; 実施の形態2に係る挿入部41を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 according to Embodiment 2; 実施の形態2に係る補助挿入部51を示す概略図である。8 is a schematic diagram showing an auxiliary insertion portion 51 according to Embodiment 2; FIG. 実施の形態2に係る挿入部41及び補助挿入部51を示す概略図である。FIG. 9 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Embodiment 2; 実施の形態2に係る室外熱交換器107を示す断面図である。FIG. 4 is a cross-sectional view showing an outdoor heat exchanger 107 according to Embodiment 2; 実施の形態2の変形例1に係る室外熱交換器107Aを示す正面図である。FIG. 11 is a front view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る室外熱交換器107Aの断面図である。FIG. 9 is a cross-sectional view of an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る挿入部41を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る補助挿入部51を示す概略図である。FIG. 11 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る挿入部41及び補助挿入部51を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2; 実施の形態2の変形例1に係る室外熱交換器107Aを示す断面図である。FIG. 9 is a cross-sectional view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2; 実施の形態2の変形例2に係る挿入部41を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 according to Modification 2 of Embodiment 2; 実施の形態2の変形例2に係る挿入部41及び補助挿入部51を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 2 of Embodiment 2; 実施の形態2の変形例3に係る挿入部41を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 according to Modification 3 of Embodiment 2; 実施の形態2の変形例3に係る補助挿入部51を示す概略図である。FIG. 11 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 3 of Embodiment 2; 実施の形態2の変形例4に係る室外熱交換器107Bを示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 107B according to Modification 4 of Embodiment 2; 実施の形態2の変形例5に係る室外熱交換器107Cを示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 107C according to Modification 5 of Embodiment 2; 実施の形態2の変形例6に係る室外熱交換器107Dを示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 107D according to Modification 6 of Embodiment 2; 実施の形態3に係る室外熱交換器207を示す正面図である。FIG. 11 is a front view showing an outdoor heat exchanger 207 according to Embodiment 3; 実施の形態3に係る挿入部41を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 according to Embodiment 3; 実施の形態3に係る補助挿入部51を示す概略図である。FIG. 11 is a schematic diagram showing an auxiliary insertion portion 51 according to Embodiment 3; 実施の形態3に係る挿入部41及び補助挿入部51を示す概略図である。FIG. 11 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Embodiment 3; 実施の形態3に係る室外熱交換器207を示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207 according to Embodiment 3; 実施の形態3の変形例1に係る室外熱交換器207Aを示す正面図である。FIG. 11 is a front view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3; 実施の形態3の変形例1に係る室外熱交換器207Aを示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3; 実施の形態3の変形例2に係る室外熱交換器207Bを示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207B according to Modification 2 of Embodiment 3; 実施の形態3の変形例3に係る室外熱交換器207Cを示す断面図である。FIG. 11 is a cross-sectional view showing an outdoor heat exchanger 207C according to Modification 3 of Embodiment 3;
 実施の形態1.
 以下、実施の形態1に係る室外熱交換器7及び冷凍サイクル装置1について、図面を用いて説明する。図1は、実施の形態1に係る冷凍サイクル装置1を示す回路図である。図1に示すように、冷凍サイクル装置1は、室外機2、及び室内機3を有している。
Embodiment 1.
The outdoor heat exchanger 7 and the refrigeration cycle device 1 according to Embodiment 1 will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing a refrigeration cycle apparatus 1 according to Embodiment 1. FIG. As shown in FIG. 1 , the refrigeration cycle device 1 has an outdoor unit 2 and an indoor unit 3 .
 図1に示すように、室外機2は、圧縮機5、流路切替弁6、室外熱交換器7、室外送風機8及び膨張弁9を有している。室内機3は、室外熱交換器7及び室外送風機8を有している。流路切替弁6、室外熱交換器7、膨張弁9及び室外熱交換器7は、冷媒配管によって接続され、冷媒回路を構成している。 As shown in FIG. 1, the outdoor unit 2 has a compressor 5, a channel switching valve 6, an outdoor heat exchanger 7, an outdoor fan 8 and an expansion valve 9. The indoor unit 3 has an outdoor heat exchanger 7 and an outdoor fan 8 . The flow path switching valve 6, the outdoor heat exchanger 7, the expansion valve 9, and the outdoor heat exchanger 7 are connected by refrigerant pipes to form a refrigerant circuit.
 圧縮機5は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替弁6は、冷媒回路において、冷媒の流通方向を切り替えるものであり、例えば四方弁である。室外熱交換器7は、冷媒と室外空気との間で熱交換を行うものである。室外熱交換器7は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機8は、室外熱交換器7に室外空気を送る機器である。膨張弁9は、冷媒を減圧して膨張させるものであり、例えば、電子膨張弁である。 The compressor 5 sucks in low-temperature and low-pressure refrigerant, compresses the sucked-in refrigerant, converts it into high-temperature and high-pressure refrigerant, and discharges it. The channel switching valve 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve. The outdoor heat exchanger 7 exchanges heat between the refrigerant and the outdoor air. The outdoor heat exchanger 7 acts as a condenser during cooling operation, and acts as an evaporator during heating operation. The outdoor blower 8 is a device that sends outdoor air to the outdoor heat exchanger 7 . The expansion valve 9 decompresses and expands the refrigerant, and is, for example, an electronic expansion valve.
 室内熱交換器10は、室内空気と冷媒との間で熱交換を行うものである。室内熱交換器10は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機11は、室内熱交換器10に室内空気を送る機器であり、例えば、クロスフローファンである。 The indoor heat exchanger 10 exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger 10 acts as an evaporator during cooling operation, and acts as a condenser during heating operation. The indoor fan 11 is a device that sends indoor air to the indoor heat exchanger 10, and is, for example, a cross-flow fan.
 (冷房運転)
 ここで、冷凍サイクル装置1の動作について説明する。先ず、冷房運転について説明する。冷凍サイクル装置1は、圧縮機5の吐出側と室外熱交換器7とが接続されるように流路切替弁6を切り替えることで、冷房運転を行う。冷房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機5から吐出された高温且つ高圧のガス状態の冷媒は、流路切替弁6を通過して、凝縮器として作用する室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は、室外送風機8によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、膨張弁9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室内熱交換器10に流入する。室内熱交換器10に流入した冷媒は、室内送風機11によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替弁6を通過して、圧縮機5に吸入される。
(cooling operation)
Here, the operation of the refrigeration cycle device 1 will be described. First, the cooling operation will be explained. The refrigeration cycle device 1 performs cooling operation by switching the flow path switching valve 6 so that the discharge side of the compressor 5 and the outdoor heat exchanger 7 are connected. In the cooling operation, the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the flow path switching valve 6 and flows into the outdoor heat exchanger 7 acting as a condenser. The refrigerant that has flowed into the outdoor heat exchanger 7 exchanges heat with the outdoor air sent by the outdoor fan 8, condenses, and liquefies. The liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the indoor heat exchanger 10 acting as an evaporator. The refrigerant that has flowed into the indoor heat exchanger 10 exchanges heat with indoor air sent by the indoor fan 11, evaporates, and gasifies. At that time, the room air is cooled to cool the room. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 6 and is sucked into the compressor 5 .
 (暖房運転)
 次に、暖房運転について説明する。冷凍サイクル装置1は、圧縮機5の吐出側と室内熱交換器10とが接続されるように流路切替弁6を切り替えることで、暖房運転を行う。暖房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機5から吐出された高温且つ高圧のガス状態の冷媒は、流路切替弁6を通過して、凝縮器として作用する室内熱交換器10に流入する。室内熱交換器10に流入した冷媒は、室内送風機11によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、膨張弁9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は、室外送風機8によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替弁6を通過して、圧縮機5に吸入される。
(heating operation)
Next, the heating operation will be explained. The refrigeration cycle device 1 performs heating operation by switching the flow path switching valve 6 so that the discharge side of the compressor 5 and the indoor heat exchanger 10 are connected. In the heating operation, the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high-temperature and high-pressure gas state. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 5 passes through the flow path switching valve 6 and flows into the indoor heat exchanger 10 acting as a condenser. The refrigerant that has flowed into the indoor heat exchanger 10 exchanges heat with indoor air sent by the indoor fan 11, condenses, and liquefies. At that time, the room air is warmed, and the room is heated. The liquid refrigerant flows into the expansion valve 9 and is decompressed and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 7 acting as an evaporator. The refrigerant that has flowed into the outdoor heat exchanger 7 exchanges heat with the outdoor air sent by the outdoor fan 8 to evaporate and gasify. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching valve 6 and is sucked into the compressor 5 .
 図2は、実施の形態1に係る室外熱交換器7を示す正面図である。図3は、実施の形態1に係る室外熱交換器7を示す側面図である。図4は、実施の形態1に係る室外熱交換器7を示す斜視図である。図2の白抜き矢印は、空気の流れを示している。室外熱交換器7は、第1ヘッダ21、第2ヘッダ22、及び複数の伝熱管を有している。以下では、図2~図4に示すように、第1伝熱管23a及び第2伝熱管23bを複数の伝熱管の代表として説明することがある。第1伝熱管23aは、室外熱交換器7が有する複数の伝熱管のうち、任意の伝熱管である。第2伝熱管23bは、第1伝熱管23aに隣接する伝熱管である。また、第1伝熱管23a及び第2伝熱管23b以外のその他の伝熱管も、第1伝熱管23a及び第2伝熱管23bと同様の構成である。 FIG. 2 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1. FIG. FIG. 3 is a side view showing the outdoor heat exchanger 7 according to Embodiment 1. FIG. FIG. 4 is a perspective view showing the outdoor heat exchanger 7 according to Embodiment 1. FIG. The white arrows in FIG. 2 indicate the flow of air. The outdoor heat exchanger 7 has a first header 21, a second header 22, and a plurality of heat transfer tubes. Hereinafter, as shown in FIGS. 2 to 4, the first heat transfer tube 23a and the second heat transfer tube 23b may be described as representatives of the plurality of heat transfer tubes. The first heat transfer tube 23 a is an arbitrary heat transfer tube among the plurality of heat transfer tubes included in the outdoor heat exchanger 7 . The second heat transfer tube 23b is a heat transfer tube adjacent to the first heat transfer tube 23a. Also, heat transfer tubes other than the first heat transfer tube 23a and the second heat transfer tube 23b have the same configuration as the first heat transfer tube 23a and the second heat transfer tube 23b.
 また、以下では上下(各図のY軸方向)、左右(各図のX軸方向)又は奥行(各図のZ軸方向)等の方向を用いて説明を行う。これらの方向は、第1ヘッダ21が室外熱交換器7の下側に位置し、第2ヘッダ22が室外熱交換器7の上側に位置し、第1ヘッダ21及び第2ヘッダ22の長尺方向が左右方向となるように、室外熱交換器7を配置した場合を基準にしたものである。室外熱交換器7が配置される向きは、上述の向きに限定されない。 In the following description, directions such as up and down (Y-axis direction in each figure), left and right (X-axis direction in each figure), and depth (Z-axis direction in each figure) will be used. In these directions, the first header 21 is positioned below the outdoor heat exchanger 7, the second header 22 is positioned above the outdoor heat exchanger 7, and the first header 21 and the second header 22 are elongated. It is based on the case where the outdoor heat exchanger 7 is arranged so that the direction is the horizontal direction. The orientation in which the outdoor heat exchanger 7 is arranged is not limited to the orientation described above.
 第1ヘッダ21は、室外熱交換器7の下部に設けられている。第1ヘッダ21の上面には複数の伝熱管の下端が挿入され、側面には流出管25が接続されている。流出管25は、冷媒配管の一部であり、室外熱交換器7から流出した冷媒が流れる。第1ヘッダ21では、複数の伝熱管から流れた冷媒が集合し、流出管25に流れる。 The first header 21 is provided below the outdoor heat exchanger 7 . Lower ends of a plurality of heat transfer tubes are inserted into the upper surface of the first header 21, and an outflow tube 25 is connected to the side surface. The outflow pipe 25 is a part of the refrigerant pipe, through which the refrigerant flowing out from the outdoor heat exchanger 7 flows. In the first header 21 , the refrigerant that has flowed from the plurality of heat transfer tubes gathers and flows to the outflow tube 25 .
 第2ヘッダ22は、室外熱交換器7の上部に設けられている。第2ヘッダ22の下面には複数の伝熱管の上端が挿入され、側面には流入管24が接続されている。流入管24は、冷媒配管の一部であり、室外熱交換器7に流入する冷媒が流れる。第2ヘッダ22では、流入管24から流れた冷媒を複数の伝熱管に分配する。 The second header 22 is provided above the outdoor heat exchanger 7 . Upper ends of a plurality of heat transfer tubes are inserted into the lower surface of the second header 22, and an inflow tube 24 is connected to the side surface. The inflow pipe 24 is a part of the refrigerant pipe, through which the refrigerant flowing into the outdoor heat exchanger 7 flows. The second header 22 distributes the refrigerant flowing from the inflow pipe 24 to a plurality of heat transfer pipes.
 複数の伝熱管は、冷媒が流れる流路が内部に形成されている。複数の伝熱管は、管軸方向、即ち上下方向の端部がヘッダに接続されている。実施の形態1では、伝熱管に扁平管が用いられている。扁平管の内部には、1つ又は複数の流路が形成されている。 A plurality of heat transfer tubes are internally formed with channels through which the refrigerant flows. The plurality of heat transfer tubes are connected to headers at their ends in the tube axial direction, that is, in the vertical direction. In Embodiment 1, a flat tube is used as the heat transfer tube. One or more channels are formed inside the flattened tube.
 図5は、実施の形態1に係る室外熱交換器7を示す正面図である。図5は、室外熱交換器7の第1ヘッダ21付近を拡大して示している。第1ヘッダ21は、本体部31、及び挿入部41からなる。本体部31は、上面が開放された箱状である。本体部31の側部には、流出管25が接続される。挿入部41は、板状であり、複数の伝熱管が挿入される。挿入部41は、本体部31の上面を覆うようにして、本体部31に設けられている。なお、本体部31と挿入部41とは、一体的に形成されたものであってもよい。 FIG. 5 is a front view showing the outdoor heat exchanger 7 according to Embodiment 1. FIG. FIG. 5 shows the vicinity of the first header 21 of the outdoor heat exchanger 7 in an enlarged manner. The first header 21 is composed of a body portion 31 and an insertion portion 41 . The body portion 31 has a box shape with an open top. An outflow pipe 25 is connected to a side portion of the body portion 31 . The insertion portion 41 is plate-shaped, and a plurality of heat transfer tubes are inserted therein. The insertion portion 41 is provided in the main body portion 31 so as to cover the upper surface of the main body portion 31 . Note that the body portion 31 and the insertion portion 41 may be integrally formed.
 挿入部41には複数の開口が形成されている。図6は、実施の形態1に係る第1ヘッダ21を示す上面図である。以下では、図6に示すように、第1開口42a及び第2開口42bを複数の開口の代表として説明する場合がある。第1開口42aは、挿入部41に形成された複数の開口のうち任意の開口である。第2開口42bは、第1開口42aに隣接する開口である。第1開口42a及び第2開口42bは、矩形である。なお、第1開口42a及び第2開口42b以外のその他の開口も、第1開口42a及び第2開口42bと同様の構成である。 A plurality of openings are formed in the insertion portion 41 . FIG. 6 is a top view showing the first header 21 according to Embodiment 1. FIG. Below, as shown in FIG. 6, the first opening 42a and the second opening 42b may be described as representatives of the plurality of openings. The first opening 42 a is an arbitrary opening among the plurality of openings formed in the insertion portion 41 . The second opening 42b is an opening adjacent to the first opening 42a. The first opening 42a and the second opening 42b are rectangular. Note that openings other than the first opening 42a and the second opening 42b have the same configuration as the first opening 42a and the second opening 42b.
 挿入部41は、複数の仕切部を有し、それぞれの仕切部が2つの開口を仕切っている。以下では、図6に示すように、第1開口42aと第2開口42bとの間の第1仕切部43aを複数の仕切部の代表として説明する場合がある。なお、第1仕切部43a以外のその他の仕切部も、第1仕切部43aと同様の構成である。図6の破線で示した箇所は、それぞれ、1本の伝熱管が挿入される領域を示している。つまり、挿入部41の開口のそれぞれには、伝熱管が2本ずつ挿入される。 The insertion portion 41 has a plurality of partitions, each of which separates two openings. Below, as shown in FIG. 6, the first partition 43a between the first opening 42a and the second opening 42b may be described as a representative of the plurality of partitions. Partitions other than the first partition 43a also have the same configuration as the first partition 43a. The locations indicated by dashed lines in FIG. 6 respectively indicate areas into which one heat transfer tube is inserted. That is, two heat transfer tubes are inserted into each opening of the insertion portion 41 .
 図7は、実施の形態1に係る室外熱交換器7を示す断面図である。図7は、図5のA-A断面に相当する。図7に示すように、挿入部41の第1開口42aには、第1伝熱管23a及び第2伝熱管23bが挿入されている。第1伝熱管23a及び第2伝熱管23bは、密着して設けられている。即ち、第1開口42aの幅、即ち左右方向の寸法は、第1伝熱管23aの幅と第2伝熱管23bの幅との合計に略等しい。また、第1開口42aと第2開口42bとの間隔、即ち第1仕切部43aの幅は、1つの開口に1本の伝熱管が挿入される場合と比較して広げられている。 7 is a cross-sectional view showing the outdoor heat exchanger 7 according to Embodiment 1. FIG. FIG. 7 corresponds to the AA section of FIG. As shown in FIG. 7, a first heat transfer tube 23a and a second heat transfer tube 23b are inserted into the first opening 42a of the insertion portion 41. As shown in FIG. The first heat transfer tube 23a and the second heat transfer tube 23b are provided in close contact with each other. That is, the width of the first opening 42a, that is, the dimension in the left-right direction is substantially equal to the sum of the width of the first heat transfer tube 23a and the width of the second heat transfer tube 23b. Also, the interval between the first opening 42a and the second opening 42b, that is, the width of the first partition portion 43a is wider than when one heat transfer tube is inserted into one opening.
 以上説明したように、実施の形態1の室外熱交換器7では、第1伝熱管23a及び第2伝熱管23bが第1ヘッダ21の挿入部41に設けられた第1開口42aに挿入される。つまり、挿入部41の第1開口42aは、1本の伝熱管が挿入される場合よりも大きく形成される。したがって、室外熱交換器7は、第1ヘッダ21における伝熱管が挿入される開口の成形性を向上させることができる。 As described above, in the outdoor heat exchanger 7 of Embodiment 1, the first heat transfer tubes 23a and the second heat transfer tubes 23b are inserted into the first openings 42a provided in the insertion portion 41 of the first header 21. . That is, the first opening 42a of the insertion portion 41 is formed larger than when one heat transfer tube is inserted. Therefore, the outdoor heat exchanger 7 can improve the formability of the openings in the first header 21 into which the heat transfer tubes are inserted.
 また、実施の形態1によれば、複数の開口同士の間隔が、1つの開口に1本の伝熱管が挿入される場合と比較して広げられている。したがって、室外熱交換器7は、第1ヘッダ21における伝熱管が挿入される開口の成形性を更に向上させることができる。また、伝熱管が挿入される開口の成形性が向上することで、室外熱交換器7の製造にあたり、作業効率の改善、製造時間の短縮、及びコスト削減等の種々の効果を得ることができる。 Also, according to Embodiment 1, the distance between the plurality of openings is widened compared to the case where one heat transfer tube is inserted into one opening. Therefore, the outdoor heat exchanger 7 can further improve the moldability of the openings in the first header 21 into which the heat transfer tubes are inserted. In addition, since the formability of the openings into which the heat transfer tubes are inserted is improved, various effects can be obtained in manufacturing the outdoor heat exchanger 7, such as improved work efficiency, shortened manufacturing time, and reduced costs. .
 (実施の形態1の変形例1)
 図8は、実施の形態1の変形例1に係る室外熱交換器7Aを示す正面図である。図9は、実施の形態1の変形例1に係る室外熱交換器7Aを示す側面図である。図8及び図9に示すように、複数の伝熱管のそれぞれは、屈曲部71を有している。屈曲部71は、第1ヘッダ21及び第2ヘッダ22の近傍に設けられている。屈曲部71では、第1伝熱管23a及び第2伝熱管23bが左右方向における互いの反対の方向に屈曲している。第1伝熱管23a及び第2伝熱管23bは、屈曲部71の第1ヘッダ21及び第2ヘッダ22寄りの部分で互いに密着するように配置されている。また、第1伝熱管23aと第2伝熱管23bとは、第1ヘッダ21及び第2ヘッダ22から露出した部分のうち、第1ヘッダ側の屈曲部71と第2ヘッダ22側の屈曲部71との間に隙間を有している。これにより、第1伝熱管23aと第2伝熱管23bとの間に空気が流通する。
(Modification 1 of Embodiment 1)
FIG. 8 is a front view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1. FIG. 9 is a side view showing an outdoor heat exchanger 7A according to Modification 1 of Embodiment 1. FIG. As shown in FIGS. 8 and 9, each of the heat transfer tubes has a bent portion 71 . The bent portion 71 is provided near the first header 21 and the second header 22 . At the bent portion 71, the first heat transfer tube 23a and the second heat transfer tube 23b are bent in opposite directions in the left-right direction. The first heat transfer tubes 23 a and the second heat transfer tubes 23 b are arranged so as to be in close contact with each other at portions of the bent portion 71 near the first header 21 and the second header 22 . Further, the first heat transfer tube 23 a and the second heat transfer tube 23 b are separated from the first header 21 and second header 22 exposed portions by bending portions 71 on the first header side and bending portions 71 on the second header 22 side. has a gap between Thereby, air flows between the first heat transfer tube 23a and the second heat transfer tube 23b.
 実施の形態1の変形例1のように、屈曲部71を形成することで、伝熱管は、実質的に狭ピッチで配置されることになり、熱交換性能を向上させることができる。 By forming the bent portion 71 as in Modification 1 of Embodiment 1, the heat transfer tubes are arranged at a substantially narrow pitch, and the heat exchange performance can be improved.
 (実施の形態1の変形例2)
 図10は、実施の形態1の変形例2に係る室外熱交換器7Bを示す正面図である。図11は、実施の形態1の変形例2に係る室外熱交換器7Bを示す側面図である。図10及び図11に示すように、伝熱管の屈曲部71は、上下方向、即ち管軸方向に対して傾斜している。第1ヘッダ21側の伝熱管の屈曲部71は、室外送風機8からの送風方向の上流側から下流側に向かって、即ち前方から後方に向かって上るように傾斜している。第2ヘッダ22側の伝熱管の屈曲部71は、室外送風機8からの送風方向の上流側から下流側に向かって下るように傾斜している。
(Modification 2 of Embodiment 1)
FIG. 10 is a front view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1. FIG. 11 is a side view showing an outdoor heat exchanger 7B according to Modification 2 of Embodiment 1. FIG. As shown in FIGS. 10 and 11, the bent portion 71 of the heat transfer tube is inclined with respect to the vertical direction, that is, the tube axis direction. The bent portion 71 of the heat transfer tube on the side of the first header 21 is inclined from the upstream side to the downstream side in the blowing direction of the outdoor fan 8, that is, upward from the front to the rear. The bent portion 71 of the heat transfer tube on the side of the second header 22 is inclined downward from the upstream side to the downstream side in the air blowing direction from the outdoor fan 8 .
 低外気温度下で冷凍サイクル装置1を運転させた際に、第1伝熱管23aの屈曲部71と第2伝熱管23bの屈曲部71とが接触する部分には霜が付着しうる。実施の形態1の変形例2では、屈曲部71を管軸方向に対して傾斜させることで、霜を融解させた際に発生した水の滞留が抑制されている。霜の融解水の滞留を抑制することで、融解水の再凍結、及び再凍結による熱交換性能の低下を抑制することができる。 When the refrigeration cycle apparatus 1 is operated under a low outside air temperature, frost may adhere to the contact portion between the bent portion 71 of the first heat transfer tube 23a and the bent portion 71 of the second heat transfer tube 23b. In Modification 2 of Embodiment 1, by inclining bent portion 71 with respect to the tube axis direction, retention of water generated when frost is melted is suppressed. By suppressing the retention of the melted water of frost, it is possible to suppress the refreezing of the melted water and the deterioration of the heat exchange performance caused by the refreezing.
 特に、第2ヘッダ22側の伝熱管の屈曲部71は、室外送風機8からの送風方向の上流側から下流側に向かって下るように傾斜している。このため、第2ヘッダ22側の伝熱管の屈曲部71では、霜の融解水の排水が促進され、融解水の再凍結、及び再凍結による熱交換性能の低下が更に抑制されている。なお、第1ヘッダ21側の屈曲部71と第2ヘッダ22側の屈曲部71の傾斜方向を入れ替えてもよいし、第1ヘッダ21側の屈曲部71も第2ヘッダ22側の屈曲部71も送風方向の上流側から下流側に向かって下るように形成されていてもよい。 In particular, the bent portion 71 of the heat transfer tube on the side of the second header 22 is inclined from the upstream side to the downstream side in the blowing direction of the air from the outdoor fan 8 . Therefore, at the bent portions 71 of the heat transfer tubes on the side of the second header 22, the discharge of melted frost water is facilitated, and refreezing of the melted water and deterioration of heat exchange performance due to refreezing are further suppressed. The inclination directions of the bent portion 71 on the first header 21 side and the bent portion 71 on the second header 22 side may be exchanged, or the bent portion 71 on the first header 21 side may also be the bent portion 71 on the second header 22 side. may also be formed so as to descend from the upstream side toward the downstream side in the blowing direction.
 実施の形態2.
 図12は、実施の形態2に係る室外熱交換器107を示す正面図である。図13は、実施の形態2に係る室外熱交換器107を示す側面図である。図14は、実施の形態2に係る室外熱交換器107を示す斜視図である。図12~図14に示すように、実施の形態2では、複数の伝熱管同士は隙間を空けて配列されている。本実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 12 is a front view showing the outdoor heat exchanger 107 according to Embodiment 2. FIG. FIG. 13 is a side view showing the outdoor heat exchanger 107 according to Embodiment 2. FIG. FIG. 14 is a perspective view showing an outdoor heat exchanger 107 according to Embodiment 2. FIG. As shown in FIGS. 12 to 14, in the second embodiment, a plurality of heat transfer tubes are arranged with a gap therebetween. In the second embodiment, the same reference numerals are assigned to the same parts as in the first embodiment, and the description thereof is omitted.
 図15は、実施の形態2に係る室外熱交換器107を示す正面図である。図15は、室外熱交換器107の第1ヘッダ21付近を拡大して示している。図15に示すように、実施の形態2のヘッダは、挿入部41と本体部31との間に補助挿入部51を有している。補助挿入部51は、板状であり、本体部31の上面を覆うようにして、本体部31に設けられている。挿入部41は、補助挿入部51の上面に重ねられて接合されている。なお、本体部31と補助挿入部51とは、一体的に形成されたものであってもよい。 15 is a front view showing the outdoor heat exchanger 107 according to Embodiment 2. FIG. FIG. 15 shows the vicinity of the first header 21 of the outdoor heat exchanger 107 in an enlarged manner. As shown in FIG. 15, the header of the second embodiment has an auxiliary insertion portion 51 between the insertion portion 41 and the main body portion 31. As shown in FIG. The auxiliary insertion portion 51 has a plate shape and is provided in the body portion 31 so as to cover the upper surface of the body portion 31 . The insertion portion 41 is overlapped and joined to the upper surface of the auxiliary insertion portion 51 . Note that the body portion 31 and the auxiliary insertion portion 51 may be integrally formed.
 図16は、実施の形態2に係る挿入部41を示す概略図である。図16に示すように、挿入部41は、複数の開口が形成された板状である。挿入部41は、補助挿入部51よりも幅が短い。また、挿入部41は、実施の形態1の挿入部41よりも幅が短い。 FIG. 16 is a schematic diagram showing an insertion portion 41 according to Embodiment 2. FIG. As shown in FIG. 16, the insertion portion 41 is plate-shaped with a plurality of openings. The insertion portion 41 is shorter in width than the auxiliary insertion portion 51 . Moreover, the width of the insertion portion 41 is shorter than that of the insertion portion 41 of the first embodiment.
 図17は、実施の形態2に係る補助挿入部51を示す概略図である。補助挿入部51には複数の補助開口が形成されている。以下では、図17に示すように、第1補助開口52a及び第2補助開口52bを複数の補助開口の代表として説明する場合がある。第1補助開口52aは、補助挿入部51に形成された複数の補助開口のうち任意の補助開口である。第2補助開口52bは、第1補助開口52aに隣接する補助開口である。第1補助開口52a及び第2補助開口52bは、矩形である。なお、第1補助開口52a及び第2補助開口52b以外のその他の開口も、第1補助開口52a及び第2補助開口52bと同様の構成である。 FIG. 17 is a schematic diagram showing an auxiliary insertion portion 51 according to Embodiment 2. FIG. A plurality of auxiliary openings are formed in the auxiliary insertion portion 51 . Below, as shown in FIG. 17, the first auxiliary opening 52a and the second auxiliary opening 52b may be described as representatives of the plurality of auxiliary openings. The first auxiliary opening 52 a is an arbitrary auxiliary opening among the plurality of auxiliary openings formed in the auxiliary insertion portion 51 . The second auxiliary opening 52b is an auxiliary opening adjacent to the first auxiliary opening 52a. The first auxiliary opening 52a and the second auxiliary opening 52b are rectangular. Openings other than the first auxiliary opening 52a and the second auxiliary opening 52b have the same configuration as the first auxiliary opening 52a and the second auxiliary opening 52b.
 補助挿入部51は、複数の補助仕切部を有し、それぞれの補助仕切部が2つの補助開口を仕切っている。以下では、第1補助開口52aと第2補助開口52bとの間の第1補助仕切部53aを複数の補助仕切部の代表として説明する場合がある。なお、第1補助仕切部53a以外のその他の仕切部も、第1補助仕切部53aと同様の構成である。 The auxiliary insertion portion 51 has a plurality of auxiliary partitions, each partitioning two auxiliary openings. Below, the first auxiliary partition 53a between the first auxiliary opening 52a and the second auxiliary opening 52b may be described as a representative of the plurality of auxiliary partitions. Partitions other than the first auxiliary partition 53a also have the same configuration as the first auxiliary partition 53a.
 図18は、実施の形態2に係る挿入部41及び補助挿入部51を示す概略図である。図18では、説明の便宜上、挿入部41及び補助挿入部51にハッチングを施している。図18に示すように、管軸方向から見た際に、挿入部41の第1開口42aは、補助挿入部51の第1補助仕切部53aによって2つの部分に区画されている。また、補助挿入部51の第2補助開口52bは、挿入部41の第1仕切部43aによって2つの部分に区画されている。 FIG. 18 is a schematic diagram showing the insertion portion 41 and the auxiliary insertion portion 51 according to Embodiment 2. FIG. In FIG. 18, the insertion portion 41 and the auxiliary insertion portion 51 are hatched for convenience of explanation. As shown in FIG. 18 , the first opening 42 a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53 a of the auxiliary insertion portion 51 when viewed from the tube axis direction. The second auxiliary opening 52b of the auxiliary insertion portion 51 is divided into two parts by the first partition portion 43a of the insertion portion 41. As shown in FIG.
 挿入部41の複数の開口と補助挿入部51の複数の補助開口とは同じ形状である。挿入部41の第1開口42aの幅は、伝熱管2本分の幅と第1補助仕切部53aの幅との合計に略等しい。また、第2補助開口52bの幅は、伝熱管2本分の幅と挿入部41の第1仕切部43aの幅との合計に略等しい。第1開口42a及び第1補助開口52aの奥行寸法は、伝熱管の奥行寸法と略等しい。 The plurality of openings of the insertion portion 41 and the plurality of auxiliary openings of the auxiliary insertion portion 51 have the same shape. The width of the first opening 42a of the insertion portion 41 is substantially equal to the sum of the width of the two heat transfer tubes and the width of the first auxiliary partition portion 53a. Also, the width of the second auxiliary opening 52b is substantially equal to the sum of the width of the two heat transfer tubes and the width of the first partition portion 43a of the insertion portion 41 . The depth dimension of the first opening 42a and the first auxiliary opening 52a is substantially equal to the depth dimension of the heat transfer tube.
 図19は、実施の形態2に係る室外熱交換器107を示す断面図である。図19は、室外熱交換器107を図13のB-B断面に相当する断面で切断したものを示している。図19に示すように、第1伝熱管23aは、挿入部41の第1開口42aと、補助挿入部51の第1補助開口52aとに挿入されている。第2伝熱管23bは、挿入部41の第1開口42aと、補助挿入部51の第2開口42bとに挿入されている。つまり、第1伝熱管23aは、挿入部41の第1開口42aにおいて、第1補助仕切部53aによって区画された2つの部分の一方に挿入されている。また、第2伝熱管23bは、挿入部41の第1開口42aにおいて、第1補助仕切部53aによって区画された2つの部分の他方に挿入されている。即ち、実施の形態2においても、挿入部41の第1開口42aには、第1伝熱管23a及び第2伝熱管23bが挿入されている。 FIG. 19 is a cross-sectional view showing an outdoor heat exchanger 107 according to Embodiment 2. FIG. FIG. 19 shows the outdoor heat exchanger 107 cut along a cross section corresponding to the BB cross section of FIG. As shown in FIG. 19 , the first heat transfer tube 23 a is inserted into the first opening 42 a of the insertion portion 41 and the first auxiliary opening 52 a of the auxiliary insertion portion 51 . The second heat transfer tube 23 b is inserted into the first opening 42 a of the insertion portion 41 and the second opening 42 b of the auxiliary insertion portion 51 . That is, the first heat transfer tube 23a is inserted into one of the two portions partitioned by the first auxiliary partition portion 53a in the first opening 42a of the insertion portion 41 . Also, the second heat transfer tube 23b is inserted into the other of the two portions partitioned by the first auxiliary partition portion 53a in the first opening 42a of the insertion portion 41 . That is, also in Embodiment 2, the first heat transfer tubes 23a and the second heat transfer tubes 23b are inserted into the first openings 42a of the insertion portion 41 .
 以上説明したように、実施の形態2の室外熱交換器107では、第1伝熱管23a及び第2伝熱管23bが第1ヘッダ21の挿入部41に設けられた第1開口42aに挿入される。つまり、挿入部41の第1開口42aは、1本の伝熱管が挿入される場合よりも大きく形成される。したがって、実施の形態2の室外熱交換器107も、第1ヘッダ21における伝熱管が挿入される開口の成形性を向上させることができる。 As described above, in the outdoor heat exchanger 107 of Embodiment 2, the first heat transfer tubes 23a and the second heat transfer tubes 23b are inserted into the first openings 42a provided in the insertion portion 41 of the first header 21. . That is, the first opening 42a of the insertion portion 41 is formed larger than when one heat transfer tube is inserted. Therefore, the outdoor heat exchanger 107 of Embodiment 2 can also improve the formability of the openings in the first header 21 into which the heat transfer tubes are inserted.
 (実施の形態2の変形例1)
 図20は、実施の形態2の変形例1に係る室外熱交換器107Aを示す正面図である。図20は、室外熱交換器107Aの第1ヘッダ21付近を拡大して示している。図21は、実施の形態2の変形例1に係る室外熱交換器107Aの断面図である。図21は、図20のC-C断面に相当する。図21に示すように、実施の形態2の変形例1では、伝熱管には円管が用いられている。
(Modification 1 of Embodiment 2)
FIG. 20 is a front view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2. FIG. FIG. 20 shows an enlarged view of the vicinity of the first header 21 of the outdoor heat exchanger 107A. 21 is a cross-sectional view of an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2. FIG. FIG. 21 corresponds to the CC section of FIG. As shown in FIG. 21, in Modification 1 of Embodiment 2, a circular tube is used as the heat transfer tube.
 図22は、実施の形態2の変形例1に係る挿入部41を示す概略図である。図22に示すように、挿入部41の複数の開口は、配列方向の両端部が円形であり、配列方向の両端部以外が角丸の長方形である。 FIG. 22 is a schematic diagram showing an insertion portion 41 according to Modification 1 of Embodiment 2. FIG. As shown in FIG. 22 , the plurality of openings of the insertion portion 41 are circular at both ends in the arrangement direction, and rectangular with rounded corners except for both ends in the arrangement direction.
 図23は、実施の形態2の変形例1に係る補助挿入部51を示す概略図である。図23に示すように、複数の開口は、何れも同じ角丸の長方形である。 FIG. 23 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2. FIG. As shown in FIG. 23, the plurality of openings are all rectangular with rounded corners.
 図24は、実施の形態2の変形例1に係る挿入部41及び補助挿入部51を示す概略図である。図24に示すように、管軸方向から見た際に、挿入部41の第1開口42aは、補助挿入部51の第1補助仕切部53aによって2つの部分に区画されている。また、補助挿入部51の第2補助開口52bは、挿入部41の第1仕切部43aによって2つの部分に区画されている。 FIG. 24 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 1 of Embodiment 2. FIG. As shown in FIG. 24, the first opening 42a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53a of the auxiliary insertion portion 51 when viewed from the tube axis direction. The second auxiliary opening 52b of the auxiliary insertion portion 51 is divided into two parts by the first partition portion 43a of the insertion portion 41. As shown in FIG.
 挿入部41の第1開口42aの最も長い部分の幅は、伝熱管2本分の外径と第1補助仕切部53aの最も短い部分の幅との合計に略等しい。また、第2補助開口52bの最も長い部分の幅は、伝熱管2本分の外径と挿入部41の第1仕切部43aの最も短い部分の幅との合計に略等しい。挿入部41の形状が角丸の長方形である開口の奥行寸法は、伝熱管の奥行寸法と略同一である。挿入部41の形状が円形である開口の直径は、伝熱管の外径と略同一である。補助挿入部51の補助開口の奥行方向の寸法は、伝熱管の奥行寸法と略同一である。 The width of the longest portion of the first opening 42a of the insertion portion 41 is substantially equal to the sum of the outer diameter of two heat transfer tubes and the width of the shortest portion of the first auxiliary partition portion 53a. Also, the width of the longest portion of the second auxiliary opening 52b is substantially equal to the sum of the outer diameters of the two heat transfer tubes and the width of the shortest portion of the first partition portion 43a of the insertion portion 41 . The depth dimension of the opening in which the shape of the insertion portion 41 is a rectangle with rounded corners is substantially the same as the depth dimension of the heat transfer tube. The diameter of the circular opening of the insertion portion 41 is substantially the same as the outer diameter of the heat transfer tube. The depth dimension of the auxiliary opening of the auxiliary insertion portion 51 is substantially the same as the depth dimension of the heat transfer tube.
 図25は、実施の形態2の変形例1に係る室外熱交換器107Aを示す断面図である。図25に示すように、第1伝熱管23aは、挿入部41の第1開口42aと、補助挿入部51の第1補助開口52aとに挿入されている。第2伝熱管23bは、挿入部41の第1開口42aと、補助挿入部51の第2開口42bとに挿入されている。つまり、実施の形態2の変形例1のように伝熱管に円管を用いた場合でも、挿入部41の第1開口42aには、第1伝熱管23a及び第2伝熱管23bが挿入されている。 25 is a cross-sectional view showing an outdoor heat exchanger 107A according to Modification 1 of Embodiment 2. FIG. As shown in FIG. 25 , the first heat transfer tube 23 a is inserted into the first opening 42 a of the insertion portion 41 and the first auxiliary opening 52 a of the auxiliary insertion portion 51 . The second heat transfer tube 23 b is inserted into the first opening 42 a of the insertion portion 41 and the second opening 42 b of the auxiliary insertion portion 51 . That is, even when circular tubes are used as the heat transfer tubes as in Modification 1 of Embodiment 2, the first heat transfer tubes 23 a and the second heat transfer tubes 23 b are inserted into the first openings 42 a of the insertion portion 41 . there is
 以上説明したように、挿入部41の開口及び補助挿入部51の補助開口の形状を円管に合わせて変形することで、円管である第1伝熱管23a及び第2伝熱管23bも第1ヘッダ21の挿入部41に設けられた第1開口42aに挿入される。これにより、挿入部41の開口の成形性を向上させることができる。 As described above, by deforming the shapes of the opening of the insertion portion 41 and the auxiliary opening of the auxiliary insertion portion 51 to conform to circular pipes, the circular pipes of the first heat transfer pipe 23a and the second heat transfer pipe 23b are also the first heat transfer pipes. It is inserted into the first opening 42 a provided in the insertion portion 41 of the header 21 . Thereby, the moldability of the opening of the insertion portion 41 can be improved.
 (実施の形態2の変形例2)
 図26は、実施の形態2の変形例2に係る挿入部41を示す概略図である。図26に示すように、挿入部41には、ダミー開口44が形成されている。ダミー開口44は、挿入部41の第1開口42aに並んで形成されている。ダミー開口44は、挿入部41の第1開口42aよりも幅が短く、扁平管の幅と略同一である。補助挿入部51は、実施の形態2と同一の形状であるため、図示及び説明を省略する。
(Modification 2 of Embodiment 2)
FIG. 26 is a schematic diagram showing an insertion portion 41 according to Modification 2 of Embodiment 2. As shown in FIG. As shown in FIG. 26, dummy openings 44 are formed in the insertion portion 41 . The dummy opening 44 is formed side by side with the first opening 42 a of the insertion portion 41 . The width of the dummy opening 44 is shorter than that of the first opening 42a of the insertion portion 41, and substantially the same as the width of the flat tube. Since the auxiliary insertion portion 51 has the same shape as that of the second embodiment, its illustration and description are omitted.
 図27は、実施の形態2の変形例2に係る挿入部41及び補助挿入部51を示す概略図である。図27に示すように、ダミー開口44と第1補助開口52aとは重なっている。ダミー開口44と第1補助開口52aとには、ダミーの管が挿入される。これにより、例えば、伝熱管と同一形状の他の部材を使用して、挿入部41を補助挿入部51に重ねる際の位置合わせを容易に行うことができる。ダミー開口44に挿入されるダミーの管は、冷媒が流れる流路が省略された構成であってもよいし、第1ヘッダ21又は第2ヘッダ22の何れかには挿入されていなくてもよい。なお、ダミー開口44の形状は、ダミー開口44に挿入される部材の形状に合わせて適宜変更するようにしてもよい。また、伝熱管及びダミーの管には、円管が用いられてもよい。 FIG. 27 is a schematic diagram showing an insertion portion 41 and an auxiliary insertion portion 51 according to Modification 2 of Embodiment 2. FIG. As shown in FIG. 27, the dummy opening 44 and the first auxiliary opening 52a overlap. A dummy tube is inserted into the dummy opening 44 and the first auxiliary opening 52a. This makes it possible to easily align the insertion portion 41 with the auxiliary insertion portion 51 by using another member having the same shape as the heat transfer tube, for example. The dummy pipes inserted into the dummy openings 44 may have a configuration in which the coolant flow path is omitted, or may not be inserted into either the first header 21 or the second header 22. . Note that the shape of the dummy opening 44 may be appropriately changed according to the shape of the member to be inserted into the dummy opening 44 . Circular tubes may be used as the heat transfer tubes and the dummy tubes.
 (実施の形態2の変形例3)
 図28は、実施の形態2の変形例3に係る挿入部41を示す概略図である。図29は、実施の形態2の変形例3に係る補助挿入部51を示す概略図である。図28に示すように、挿入部41には、凸部72が形成されている。また、図29に示すように、補助挿入部51には、凹部73が設けられている。挿入部41の凸部72と、補助挿入部51の凹部73は、対向している。これにより、ヘッダの組み立てを行うにあたって、挿入部41を補助挿入部51に重ねる際の位置合わせを容易に行うことができる。なお、挿入部41に凹部73を形成し、補助挿入部51に凸部72を形成するようにしてもよい。なお、伝熱管には、円管が用いられてもよい。
(Modification 3 of Embodiment 2)
28 is a schematic diagram showing an insertion portion 41 according to Modification 3 of Embodiment 2. FIG. FIG. 29 is a schematic diagram showing an auxiliary insertion portion 51 according to Modification 3 of Embodiment 2. As shown in FIG. As shown in FIG. 28, the insertion portion 41 is formed with a protrusion 72 . Further, as shown in FIG. 29, the auxiliary insertion portion 51 is provided with a concave portion 73 . The convex portion 72 of the insertion portion 41 and the concave portion 73 of the auxiliary insertion portion 51 face each other. As a result, it is possible to easily align the insertion portion 41 with the auxiliary insertion portion 51 when assembling the header. Alternatively, the recess 73 may be formed in the insertion portion 41 and the protrusion 72 may be formed in the auxiliary insertion portion 51 . A circular tube may be used as the heat transfer tube.
 (実施の形態2の変形例4)
 図30は、実施の形態2の変形例4に係る室外熱交換器107Bを示す断面図である。図30は、室外熱交換器107Bを図13のB-B断面に相当する断面で切断したものを示している。図30に示すように、挿入部41及び補助挿入部51は、それぞれ2枚ずつ設けられている。これにより、挿入部41及び補助挿入部51に開口及び補助開口を形成する際には、板厚を薄くすることができ、成形が容易に行われる。また、第1ヘッダ21として製造された際には、板厚を厚くすることができ、第1ヘッダ21を流れる冷媒に対する耐圧性が確保されている。なお、挿入部41又は補助挿入部51の何れかを2枚設けるようにしていてもよい。また、挿入部41若しくは補助挿入部51又はその両方を3枚以上設けるようにしてもよい。
(Modification 4 of Embodiment 2)
30 is a cross-sectional view showing an outdoor heat exchanger 107B according to Modification 4 of Embodiment 2. FIG. FIG. 30 shows the outdoor heat exchanger 107B cut along a cross section corresponding to the BB cross section of FIG. As shown in FIG. 30, two insertion portions 41 and two auxiliary insertion portions 51 are provided. Accordingly, when forming the opening and the auxiliary opening in the insertion portion 41 and the auxiliary insertion portion 51, the plate thickness can be reduced, and molding can be easily performed. Further, when manufactured as the first header 21, the plate thickness can be increased, and the pressure resistance against the refrigerant flowing through the first header 21 is ensured. It should be noted that either the insertion portion 41 or the auxiliary insertion portion 51 may be provided two pieces. Also, three or more insertion portions 41 or auxiliary insertion portions 51 or both may be provided.
 (実施の形態2の変形例5)
 図31は、実施の形態2の変形例5に係る室外熱交換器107Cを示す断面図である。図31は、室外熱交換器107Cを図13のB-B断面に相当する断面で切断したものを示している。図31に示すように、補助挿入部51と本体部31との間に当接部61が設けられている。また、挿入部41は、2枚設けられている。当接部61は、複数の当接開口が形成された板状である。当接部61は、本体部31の上面を覆うようにして、本体部31に設けられている。
(Modification 5 of Embodiment 2)
31 is a cross-sectional view showing an outdoor heat exchanger 107C according to Modification 5 of Embodiment 2. FIG. FIG. 31 shows the outdoor heat exchanger 107C cut along the cross section corresponding to the BB cross section of FIG. As shown in FIG. 31, a contact portion 61 is provided between the auxiliary insertion portion 51 and the body portion 31 . Also, two insertion portions 41 are provided. The contact portion 61 is plate-shaped with a plurality of contact openings. The contact portion 61 is provided on the main body portion 31 so as to cover the upper surface of the main body portion 31 .
 ここでは、図31に示すように、第1当接開口62a及び第2当接開口62bを複数の当接開口の代表として説明する場合がある。第1当接開口62aは、当接部61に形成された複数の当接開口のうち任意の開口である。第2当接開口62bは、第1当接開口62aに隣接する開口である。第1当接開口62a及び第2当接開口62bは、矩形である。なお、第1当接開口62a及び第2当接開口62b以外のその他の開口も、第1当接開口62a及び第2当接開口62bと同様の構成である。第1当接開口62a及び第2当接開口62bの幅、即ち長軸方向の寸法は、第1補助開口52a及び第2補助開口52bの幅、即ち長軸方向の寸法より小さい。当接開口の奥行長さは、伝熱管の奥行長さと略同一である。 Here, as shown in FIG. 31, the first contact opening 62a and the second contact opening 62b may be described as representatives of the plurality of contact openings. The first contact opening 62 a is an arbitrary opening among the plurality of contact openings formed in the contact portion 61 . The second contact opening 62b is an opening adjacent to the first contact opening 62a. The first contact opening 62a and the second contact opening 62b are rectangular. Openings other than the first contact opening 62a and the second contact opening 62b have the same configuration as the first contact opening 62a and the second contact opening 62b. The width of the first contact opening 62a and the second contact opening 62b, that is, the dimension in the longitudinal direction, is smaller than the width of the first auxiliary opening 52a and the second auxiliary opening 52b, that is, the dimension in the longitudinal direction. The depth length of the contact opening is substantially the same as the depth length of the heat transfer tube.
 当接部61は、複数の当接仕切部を有し、それぞれの当接仕切部が2つの開口を仕切っている。以下では、第1当接開口62aと第2当接開口62bとの間の第1当接仕切部63aを複数の当接仕切部の代表として説明する場合がある。なお、第1当接仕切部63a以外のその他の仕切部も、第1当接仕切部63aと同様の構成である。 The contact part 61 has a plurality of contact partition parts, each of which separates the two openings. Below, the first contact partitioning portion 63a between the first contact opening 62a and the second contact opening 62b may be described as a representative of the plurality of contact partitioning portions. Partitions other than the first contact partition 63a have the same configuration as the first contact partition 63a.
 図31に示すように、第1当接開口62aの中央と第2当接開口62bの中央との距離は、第1補助開口52aの中央と第2補助開口52bの中央との距離と等しい。つまり、複数の補助開口のピッチと、複数の当接開口のピッチとは同一である。また、上述したように当接開口の幅は、補助開口の幅より小さい。このため、挿入部41の第1開口42aに挿入された第1伝熱管23aは、補助挿入部51の第1開口42aにも挿入されることになるが、当接部61の第1開口42aには挿入されず、当接部61の上面に当接する。これにより、複数の伝熱管が第1ヘッダ21に挿入される長さを揃えることができる。なお、本体部31と当接部61とは、一体的に形成されたものであってもよい。また、伝熱管には、円管が用いられてもよい。 As shown in FIG. 31, the distance between the center of the first contact opening 62a and the center of the second contact opening 62b is equal to the distance between the center of the first auxiliary opening 52a and the center of the second auxiliary opening 52b. That is, the pitch of the plurality of auxiliary openings is the same as the pitch of the plurality of contact openings. Also, as described above, the width of the contact opening is smaller than the width of the auxiliary opening. Therefore, the first heat transfer tube 23a inserted into the first opening 42a of the insertion portion 41 is also inserted into the first opening 42a of the auxiliary insertion portion 51. is not inserted into the contact portion 61 and contacts the upper surface of the contact portion 61 . As a result, the lengths by which the plurality of heat transfer tubes are inserted into the first header 21 can be made uniform. Note that the body portion 31 and the contact portion 61 may be integrally formed. A circular tube may be used as the heat transfer tube.
 (実施の形態2の変形例6)
 図32は、実施の形態2の変形例6に係る室外熱交換器107Dを示す断面図である。図32は、室外熱交換器107Dを図13のB-B断面に相当する断面で切断したものを示している。図32では、伝熱管に円管が使用され、且つ挿入部41及び補助挿入部51がそれぞれ2枚ずつ設けられ場合を示している。即ち、実施の形態2の変形例6は、実施の形態2の変形例1と実施の形態2の変形例4とが組み合わされた構成に相当する。これにより、伝熱管が円管の場合であっても、挿入部41及び補助挿入部51に開口及び補助開口を形成する際には、板厚が薄くすることができ、成形が容易に行われる。また、第1ヘッダ21として製造された際には、板厚を厚くすることができ、第1ヘッダ21を流れる冷媒に対する耐圧性が確保されている。
(Modification 6 of Embodiment 2)
32 is a cross-sectional view showing an outdoor heat exchanger 107D according to Modification 6 of Embodiment 2. FIG. FIG. 32 shows the outdoor heat exchanger 107D cut along a cross section corresponding to the BB cross section of FIG. FIG. 32 shows a case where circular tubes are used as heat transfer tubes, and two insertion portions 41 and two auxiliary insertion portions 51 are provided. In other words, Modification 6 of Embodiment 2 corresponds to a configuration in which Modification 1 of Embodiment 2 and Modification 4 of Embodiment 2 are combined. As a result, even if the heat transfer tube is a circular tube, the plate thickness can be reduced when forming the opening and the auxiliary opening in the insertion portion 41 and the auxiliary insertion portion 51, and molding can be easily performed. . Further, when manufactured as the first header 21, the plate thickness can be increased, and the pressure resistance against the refrigerant flowing through the first header 21 is ensured.
 実施の形態3.
 図33は、実施の形態3に係る室外熱交換器207を示す正面図である。図33に示すように、実施の形態3は、実施の形態1および実施の形態2を組み合わせた形態に相当する。
Embodiment 3.
33 is a front view showing an outdoor heat exchanger 207 according to Embodiment 3. FIG. As shown in FIG. 33, the third embodiment corresponds to a combination of the first and second embodiments.
 図34は、実施の形態3に係る挿入部41を示す概略図である。図34に示すように、挿入部41は、複数の開口が形成された板状である。 FIG. 34 is a schematic diagram showing an insertion portion 41 according to Embodiment 3. FIG. As shown in FIG. 34, the insertion portion 41 is plate-shaped with a plurality of openings.
 図35は、実施の形態3に係る補助挿入部51を示す概略図である。図35に示すように、補助挿入部51は、複数の補助開口が形成された板状である。 FIG. 35 is a schematic diagram showing the auxiliary insertion portion 51 according to Embodiment 3. FIG. As shown in FIG. 35, the auxiliary insertion portion 51 is plate-shaped with a plurality of auxiliary openings.
 図36は、実施の形態3に係る挿入部41及び補助挿入部51を示す概略図である。図36では、説明の便宜上、挿入部41及び補助挿入部51にハッチングを施している。図36に示すように、管軸方向から見た際に、挿入部41の第1開口42aは、補助挿入部51の第1補助仕切部53aによって2つの部分に区画されている。また、補助挿入部51の第2補助開口52bは、挿入部41の第1仕切部43aによって2つの部分に区画されている。 FIG. 36 is a schematic diagram showing the insertion portion 41 and the auxiliary insertion portion 51 according to Embodiment 3. FIG. In FIG. 36, the insertion portion 41 and the auxiliary insertion portion 51 are hatched for convenience of explanation. As shown in FIG. 36, the first opening 42a of the insertion portion 41 is divided into two parts by the first auxiliary partition portion 53a of the auxiliary insertion portion 51 when viewed from the tube axis direction. The second auxiliary opening 52b of the auxiliary insertion portion 51 is divided into two parts by the first partition portion 43a of the insertion portion 41. As shown in FIG.
 挿入部41の複数の開口と補助挿入部51の複数の補助開口とは同じ形状である。第1開口42aの幅は、伝熱管4本分の幅と補助挿入部51の第1補助仕切部53aの幅との合計に略等しい。第2補助開口52bの幅は、伝熱管4本分の幅と挿入部41の第1仕切部43aの幅との合計に略等しい。第1開口42a及び第1補助開口52aの奥行寸法は、伝熱管の奥行寸法と略等しい。 The plurality of openings of the insertion portion 41 and the plurality of auxiliary openings of the auxiliary insertion portion 51 have the same shape. The width of the first opening 42 a is substantially equal to the sum of the width of the four heat transfer tubes and the width of the first auxiliary partition portion 53 a of the auxiliary insertion portion 51 . The width of the second auxiliary opening 52b is approximately equal to the sum of the width of the four heat transfer tubes and the width of the first partition portion 43a of the insertion portion 41 . The depth dimension of the first opening 42a and the first auxiliary opening 52a is substantially equal to the depth dimension of the heat transfer tube.
 図37は、実施の形態3に係る室外熱交換器207を示す断面図である。図37は、室外熱交換器207を図13のB-B断面に相当する断面で切断したものを示している。図37に示すように、第1伝熱管23a及び第2伝熱管23bは、挿入部41の第1開口42aと、補助挿入部51の第1補助開口52aとに挿入されている。第1伝熱管23a及び第2伝熱管23bは、密着して設けられている。第3伝熱管23c及び第4伝熱管23dは、挿入部41の第1開口42aと、補助挿入部51の第2補助開口52bとに挿入されている。第3伝熱管23c及び第4伝熱管23dは、密着して設けられている。なお、第3伝熱管23cは、第2伝熱管23bに隣接する伝熱管である。第4伝熱管23dは、第3伝熱管23cに隣接する伝熱管である。 37 is a cross-sectional view showing an outdoor heat exchanger 207 according to Embodiment 3. FIG. FIG. 37 shows the outdoor heat exchanger 207 cut along a cross section corresponding to the BB cross section of FIG. As shown in FIG. 37 , the first heat transfer tube 23 a and the second heat transfer tube 23 b are inserted into the first opening 42 a of the insertion portion 41 and the first auxiliary opening 52 a of the auxiliary insertion portion 51 . The first heat transfer tube 23a and the second heat transfer tube 23b are provided in close contact with each other. The third heat transfer tube 23 c and the fourth heat transfer tube 23 d are inserted into the first opening 42 a of the insertion portion 41 and the second auxiliary opening 52 b of the auxiliary insertion portion 51 . The third heat transfer tube 23c and the fourth heat transfer tube 23d are provided in close contact with each other. The third heat transfer tube 23c is a heat transfer tube adjacent to the second heat transfer tube 23b. The fourth heat transfer tube 23d is a heat transfer tube adjacent to the third heat transfer tube 23c.
 つまり、第1伝熱管23a及び第2伝熱管23bは、挿入部41の第1開口42aにおいて、第1補助仕切部53aによって区画された2つの部分の一方に挿入されている。また、第3伝熱管23c及び第4伝熱管23dは、挿入部41の第1開口42aにおいて、第1補助仕切部53aによって区画された2つの部分の他方に挿入されている。即ち、実施の形態3において、挿入部41の第1開口42aには、第1伝熱管23a、第2伝熱管23b、第3伝熱管23c、及び第4伝熱管23dが挿入されている。 That is, the first heat transfer tube 23a and the second heat transfer tube 23b are inserted into one of the two portions partitioned by the first auxiliary partition 53a in the first opening 42a of the insertion portion 41. Also, the third heat transfer tube 23c and the fourth heat transfer tube 23d are inserted into the other of the two portions partitioned by the first auxiliary partition 53a in the first opening 42a of the insertion portion 41 . That is, in Embodiment 3, the first heat transfer tube 23a, the second heat transfer tube 23b, the third heat transfer tube 23c, and the fourth heat transfer tube 23d are inserted into the first opening 42a of the insertion portion 41. As shown in FIG.
 以上説明したように、実施の形態3の室外熱交換器207では、第1伝熱管23a、第2伝熱管23b、第3伝熱管23c、及び第4伝熱管23dが第1ヘッダ21の挿入部41に設けられた第1開口42aに挿入される。つまり、挿入部41の第1開口42aは、1本の伝熱管が挿入される場合よりも大きく形成される。したがって、実施の形態3の室外熱交換器207も、第1ヘッダ21における伝熱管が挿入される開口の成形性を向上させることができる。 As described above, in the outdoor heat exchanger 207 of Embodiment 3, the first heat transfer tube 23a, the second heat transfer tube 23b, the third heat transfer tube 23c, and the fourth heat transfer tube 23d are inserted into the first header 21. 41 is inserted into a first opening 42a. That is, the first opening 42a of the insertion portion 41 is formed larger than when one heat transfer tube is inserted. Therefore, the outdoor heat exchanger 207 of Embodiment 3 can also improve the formability of the openings in the first header 21 into which the heat transfer tubes are inserted.
 (実施の形態3の変形例1)
 図38は、実施の形態3の変形例1に係る室外熱交換器207Aを示す正面図である。図39は、実施の形態3の変形例1に係る室外熱交換器207Aを示す断面図である。図39は、室外熱交換器207Aを図13のB-B断面に相当する断面で切断したものを示している。図38及び図39に示すように、複数の伝熱管は、屈曲部71を有している。屈曲部71は、第1ヘッダ21の近傍に設けられ、第1伝熱管23a及び第2伝熱管23bが左右方向において互いに反対の方向に屈曲する部分である。また、屈曲部71は、第3伝熱管23c及び第4伝熱管23dが左右方向において互いに反対の方向に屈曲する部分である。第1伝熱管23aと第2伝熱管23bとは屈曲部71の第1ヘッダ21及び第2ヘッダ22寄りの部分で互いに密着し、第3伝熱管23cと第4伝熱管23dとは屈曲部71の第1ヘッダ21及び第2ヘッダ22寄りの部分で互いに密着するように配置されている。また、第1伝熱管23aと第2伝熱管23bとは、第1ヘッダ21及び第2ヘッダ22から露出した部分のうち、第1ヘッダ側の屈曲部71と第2ヘッダ22側の屈曲部71との間に隙間を有している。これにより、第1伝熱管23aと第2伝熱管23bの間に空気が流通する。同様に、第3伝熱管23cと第4伝熱管23dとは、第1ヘッダ21及び第2ヘッダ22から露出した部分のうち、第1ヘッダ側の屈曲部71と第2ヘッダ22側の屈曲部71との間に隙間を有している。これにより、第3伝熱管23cと第4伝熱管23dとの間に空気が流通する。
(Modification 1 of Embodiment 3)
FIG. 38 is a front view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3. FIG. 39 is a cross-sectional view showing an outdoor heat exchanger 207A according to Modification 1 of Embodiment 3. FIG. FIG. 39 shows the outdoor heat exchanger 207A cut along a cross section corresponding to the BB cross section of FIG. As shown in FIGS. 38 and 39, the multiple heat transfer tubes have bends 71 . The bent portion 71 is provided in the vicinity of the first header 21, and is a portion where the first heat transfer tube 23a and the second heat transfer tube 23b are bent in opposite directions in the left-right direction. The bent portion 71 is a portion where the third heat transfer tube 23c and the fourth heat transfer tube 23d are bent in opposite directions in the horizontal direction. The first heat transfer tube 23a and the second heat transfer tube 23b are in close contact with each other at the portion of the bent portion 71 near the first header 21 and the second header 22, and the third heat transfer tube 23c and the fourth heat transfer tube 23d are in close contact with each other. , the first header 21 and the second header 22 are arranged so as to be in close contact with each other. Further, the first heat transfer tube 23 a and the second heat transfer tube 23 b are separated from the first header 21 and second header 22 exposed portions by bending portions 71 on the first header side and bending portions 71 on the second header 22 side. has a gap between Thereby, air flows between the first heat transfer tube 23a and the second heat transfer tube 23b. Similarly, of the portions exposed from the first header 21 and the second header 22, the third heat transfer tube 23c and the fourth heat transfer tube 23d have a bent portion 71 on the first header side and a bent portion on the second header 22 side. 71 has a gap. Thereby, air flows between the third heat transfer tube 23c and the fourth heat transfer tube 23d.
 このように、屈曲部71を形成することで、実質的には伝熱管が狭ピッチで配置されることになり、熱交換性能を向上させることができる。 By forming the bent portion 71 in this manner, the heat transfer tubes are substantially arranged at a narrow pitch, and the heat exchange performance can be improved.
 (実施の形態3の変形例2)
 図40は、実施の形態3の変形例2に係る室外熱交換器207Bを示す断面図である。図40は、室外熱交換器207Bを図13のB-B断面に相当する断面で切断したものを示している。図40に示すように、挿入部41及び補助挿入部51は、それぞれ2枚ずつ設けられている。これにより、挿入部41及び補助挿入部51に開口及び補助開口を形成する際には、板厚を薄くすることができ、成形が容易に行われる。また、第1ヘッダ21として製造された際には、板厚を厚くすることができ、4本の伝熱管の挿入に対応して第1開口42a及び第2開口42bの幅が拡張された場合であっても、第1ヘッダ21は、内部を流れる冷媒に対する耐圧性が確保されている。
(Modification 2 of Embodiment 3)
40 is a cross-sectional view showing an outdoor heat exchanger 207B according to Modification 2 of Embodiment 3. FIG. FIG. 40 shows the outdoor heat exchanger 207B cut along the cross section corresponding to the BB cross section of FIG. As shown in FIG. 40, two insertion portions 41 and two auxiliary insertion portions 51 are provided. Accordingly, when forming the opening and the auxiliary opening in the insertion portion 41 and the auxiliary insertion portion 51, the plate thickness can be reduced, and molding can be easily performed. Further, when the first header 21 is manufactured, the plate thickness can be increased, and when the widths of the first openings 42a and the second openings 42b are expanded corresponding to the insertion of four heat transfer tubes. Even so, the first header 21 ensures pressure resistance against the refrigerant flowing therein.
 (実施の形態3の変形例3)
 図41は、実施の形態3の変形例3に係る室外熱交換器207Cを示す断面図である。図41は、室外熱交換器207Cを図13のB-B断面に相当する断面で切断したものを示している。図41に示すように、複数の伝熱管は、屈曲部71を有し、且つ、挿入部41及び補助挿入部51がそれぞれ2枚ずつ設けられている。即ち、実施の形態3の変形例3は、実施の形態3の変形例1と実施の形態3の変形例2とが組み合わされた構成に相当する。これにより、屈曲部71を形成することで、実質的には伝熱管が狭ピッチで配置されることになり、熱交換性能を向上させることができる。また、挿入部41及び補助挿入部51に開口及び補助開口を形成する際には、板厚を薄くすることができ、成形が容易に行われる。更に、第1ヘッダ21として製造された際には、板厚を厚くすることができ、4本の伝熱管の挿入に対応して第1開口42a及び第2開口42bの幅が拡張された場合であっても、第1ヘッダ21は、内部を流れる冷媒に対する耐圧性が確保されている。
(Modification 3 of Embodiment 3)
41 is a cross-sectional view showing an outdoor heat exchanger 207C according to Modification 3 of Embodiment 3. FIG. FIG. 41 shows the outdoor heat exchanger 207C cut along the cross section corresponding to the BB cross section of FIG. As shown in FIG. 41, the plurality of heat transfer tubes have bent portions 71, and two insertion portions 41 and two auxiliary insertion portions 51 are provided. That is, Modification 3 of Embodiment 3 corresponds to a configuration in which Modification 1 of Embodiment 3 and Modification 2 of Embodiment 3 are combined. Accordingly, by forming the bent portion 71, the heat transfer tubes are substantially arranged at a narrow pitch, and the heat exchange performance can be improved. Further, when forming the openings and the auxiliary openings in the insertion portion 41 and the auxiliary insertion portion 51, the plate thickness can be reduced, and molding can be easily performed. Furthermore, when manufactured as the first header 21, the plate thickness can be increased, and when the widths of the first opening 42a and the second opening 42b are expanded corresponding to the insertion of four heat transfer tubes, Even so, the first header 21 ensures pressure resistance against the refrigerant flowing therein.
 以上が実施の形態及びその変形例の説明であるが、本開示の室外熱交換器は、実施の形態1に開示された構成以外に種々の変更を行うことができる。例えば、挿入部41と補助挿入部51とを同一の形状としてもよい。挿入部41は、表裏を反転させることで、補助挿入部51としても使用が可能な形状に形成されている。この場合、ヘッダの部品種類が削減され、歩留まりの向上、又は管理コストの削減などを達成することができる。 Although the above is the description of the embodiment and its modifications, the outdoor heat exchanger of the present disclosure can be modified in various ways other than the configuration disclosed in the first embodiment. For example, the insertion portion 41 and the auxiliary insertion portion 51 may have the same shape. The insertion portion 41 is formed into a shape that can be used as an auxiliary insertion portion 51 by reversing the front and back. In this case, the number of types of header parts can be reduced, and an improvement in yield or a reduction in management costs can be achieved.
 なお、実施の形態では、伝熱管のみを有する室外熱交換器について説明したが、室外熱交換器は、伝熱管とフィンとを有していてもよいし、伝熱管とフィンとが一体的に形成されたフィンレス熱交換器であってもよい。また、本開示の内容は、室外熱交換器だけではなく、室内熱交換器にも適用させることができる。また、本開示の内容は、室外熱交換器の下部に設けられた第1ヘッダ21だけではなく、室外熱交換器の上部に設けられた第2ヘッダ22にも適用することができる。更に、本開示の内容は、冷媒の分岐を行うヘッダ等、複数の伝熱管と冷媒が流れる冷媒配管との間で直接的又は間接的に冷媒を流通させるものであれば、その他のヘッダにも適用することができる。 Although the outdoor heat exchanger having only the heat transfer tubes has been described in the embodiment, the outdoor heat exchanger may have the heat transfer tubes and the fins, or the heat transfer tubes and the fins may be integrated. It may also be a formed finless heat exchanger. Further, the content of the present disclosure can be applied not only to outdoor heat exchangers but also to indoor heat exchangers. Further, the content of the present disclosure can be applied not only to the first header 21 provided at the bottom of the outdoor heat exchanger, but also to the second header 22 provided at the top of the outdoor heat exchanger. Furthermore, the contents of the present disclosure also apply to other headers, such as headers that branch the refrigerant, as long as the refrigerant flows directly or indirectly between a plurality of heat transfer tubes and refrigerant pipes in which the refrigerant flows. can be applied.
 1 冷凍サイクル装置、2 室外機、3 室内機、5 圧縮機、6 流路切替弁、7 室外熱交換器、7A 室外熱交換器、7B 室外熱交換器、107 室外熱交換器、107A 室外熱交換器、107B 室外熱交換器、107C 室外熱交換器、107D 室外熱交換器、207 室外熱交換器、207A 室外熱交換器、207B 室外熱交換器、207C 室外熱交換器、8 室外送風機、9 膨張弁、10 室内熱交換器、11 室内送風機、21 第1ヘッダ、22 第2ヘッダ、23a 第1伝熱管、23b 第2伝熱管、23c 第3伝熱管、23d 第4伝熱管、24 流入管、25 流出管、31 本体部、41 挿入部、42a 第1開口、42b 第2開口、43a 第1仕切部、44 ダミー開口、51 補助挿入部、52a 第1補助開口、52b 第2補助開口、53a 第1補助仕切部、61 当接部、62a 第1当接開口、62b 第2当接開口、63a 第1当接仕切部、71 屈曲部、72 凸部、73 凹部。 1 refrigeration cycle device, 2 outdoor unit, 3 indoor unit, 5 compressor, 6 flow path switching valve, 7 outdoor heat exchanger, 7A outdoor heat exchanger, 7B outdoor heat exchanger, 107 outdoor heat exchanger, 107A outdoor heat Exchanger, 107B Outdoor heat exchanger, 107C Outdoor heat exchanger, 107D Outdoor heat exchanger, 207 Outdoor heat exchanger, 207A Outdoor heat exchanger, 207B Outdoor heat exchanger, 207C Outdoor heat exchanger, 8 Outdoor fan, 9 Expansion valve, 10 indoor heat exchanger, 11 indoor blower, 21 first header, 22 second header, 23a first heat transfer tube, 23b second heat transfer tube, 23c third heat transfer tube, 23d fourth heat transfer tube, 24 inflow tube , 25 outflow pipe, 31 main body, 41 insertion portion, 42a first opening, 42b second opening, 43a first partition, 44 dummy opening, 51 auxiliary insertion portion, 52a first auxiliary opening, 52b second auxiliary opening, 53a first auxiliary partition, 61 abutment, 62a first abutment opening, 62b second abutment opening, 63a first abutment partition, 71 bend, 72 projection, 73 recess.

Claims (15)

  1.  冷媒が流れる流路が内部に形成された、第1伝熱管及び第2伝熱管と、
     前記第1伝熱管及び前記第2伝熱管の管軸方向の端部に接続されたヘッダと、を備え、
     前記ヘッダは、
     前記第1伝熱管及び前記第2伝熱管と、冷媒が流れる冷媒配管との間で冷媒を流通させる本体部と、
     第1開口を有する板状の挿入部と、を有し、
     前記第1伝熱管及び前記第2伝熱管は、前記第1開口に挿入されている
     熱交換器。
    a first heat transfer tube and a second heat transfer tube, each of which has a flow path through which a refrigerant flows;
    a header connected to the ends of the first heat transfer tube and the second heat transfer tube in the tube axis direction,
    The header is
    a main body for circulating a refrigerant between the first heat transfer tube, the second heat transfer tube, and a refrigerant pipe through which the refrigerant flows;
    a plate-like insertion portion having a first opening;
    The first heat transfer tube and the second heat transfer tube are inserted into the first opening of the heat exchanger.
  2.  前記ヘッダは、
     前記本体部と前記挿入部との間に設けられた板状の補助挿入部を更に有し、
     前記挿入部は、
     前記第1開口に並んで形成された第2開口と、
     前記第1開口と前記第2開口を仕切る第1仕切部と、を更に有し、
     前記補助挿入部は、
     第1補助開口と、
     前記第1補助開口に並んで形成された第2補助開口と、
     前記第1補助開口と前記第2補助開口を仕切る第1補助仕切部と、を有し、
     前記挿入部の前記第1開口は、前記管軸方向から見た際に、前記補助挿入部の前記第1補助仕切部で2つに区画され、
     前記補助挿入部の前記第2補助開口は、前記挿入部の前記第1仕切部で2つに区画されている
     請求項1に記載の熱交換器。
    The header is
    further comprising a plate-shaped auxiliary insertion portion provided between the body portion and the insertion portion;
    The insertion section is
    a second opening formed in parallel with the first opening;
    further comprising a first partition that partitions the first opening and the second opening;
    The auxiliary insertion section is
    a first auxiliary opening;
    a second auxiliary opening formed in parallel with the first auxiliary opening;
    a first auxiliary partition that partitions the first auxiliary opening and the second auxiliary opening;
    The first opening of the insertion portion is divided into two by the first auxiliary partition portion of the auxiliary insertion portion when viewed from the tube axis direction,
    The heat exchanger according to claim 1, wherein the second auxiliary opening of the auxiliary insertion portion is divided into two by the first partition portion of the insertion portion.
  3.  前記挿入部には、凹部又は凸部が形成され、
     前記補助挿入部には、前記挿入部の前記凹部に対向する凸部、又は前記挿入部の前記凸部に対向する凹部が形成されている
     請求項2に記載の熱交換器。
    A concave portion or a convex portion is formed in the insertion portion,
    3. The heat exchanger according to claim 2, wherein the auxiliary insertion portion is formed with a convex portion facing the concave portion of the insertion portion or a concave portion facing the convex portion of the insertion portion.
  4.  前記挿入部又は前記補助挿入部は、複数重ねられている
     請求項2又は3に記載の熱交換器。
    The heat exchanger according to claim 2 or 3, wherein a plurality of said insertion portions or said auxiliary insertion portions are stacked.
  5.  前記ヘッダは、
     前記本体部と、前記補助挿入部との間に設けられ、第1当接開口と、前記第1当接開口に並んで形成された第2当接開口とを有する板状の当接部を、更に備え、
     前記第1当接開口の中央と前記第2当接開口の中央との距離は、前記第1補助開口の中央と前記第2補助開口の中央との距離と等しく、
     前記第1当接開口の長軸方向の寸法は、前記第1補助開口の前記ヘッダの長軸方向の寸法より短く、
     前記第2当接開口の長軸方向の寸法は、前記第2補助開口の前記ヘッダの長軸方向の寸法より短い
     請求項2~4の何れか1項に記載の熱交換器。
    The header is
    a plate-like contact portion provided between the main body portion and the auxiliary insertion portion and having a first contact opening and a second contact opening formed in parallel with the first contact opening; , further prepared,
    The distance between the center of the first contact opening and the center of the second contact opening is equal to the distance between the center of the first auxiliary opening and the center of the second auxiliary opening,
    the longitudinal dimension of the first contact opening is shorter than the longitudinal dimension of the header of the first auxiliary opening;
    The heat exchanger according to any one of claims 2 to 4, wherein the longitudinal dimension of the second contact opening is shorter than the longitudinal dimension of the header of the second auxiliary opening.
  6.  前記補助挿入部は、前記挿入部と同一の形状であり、前記挿入部の表裏が反転したものである
     請求項2~5の何れか1項に記載の熱交換器。
    The heat exchanger according to any one of claims 2 to 5, wherein the auxiliary inserting portion has the same shape as the inserting portion, and the inserting portion is turned upside down.
  7.  前記第1伝熱管は、前記第1開口の前記第1補助仕切部で区画された部分の一方に挿入され、
     前記第2伝熱管は、前記第1開口の前記第1補助仕切部で区画された部分の他方に挿入されている
     請求項2~6の何れか1項に記載の熱交換器。
    The first heat transfer tube is inserted into one of the portions of the first opening partitioned by the first auxiliary partition,
    The heat exchanger according to any one of claims 2 to 6, wherein the second heat transfer pipe is inserted into the other part of the first opening partitioned by the first auxiliary partition.
  8.  前記第1伝熱管及び前記第2伝熱管は、円管である
     請求項2~7の何れか1項に記載の熱交換器。
    The heat exchanger according to any one of claims 2 to 7, wherein the first heat transfer tube and the second heat transfer tube are circular tubes.
  9.  冷媒が流れる流路が内部に形成された、第3伝熱管及び第4伝熱管を更に備え、
     前記第1伝熱管及び前記第2伝熱管は、前記第1開口の前記第1補助仕切部で区画された部分の一方に挿入され、
     前記第3伝熱管及び前記第4伝熱管は、前記第1開口の前記第1補助仕切部で区画された部分の他方に挿入されている
     請求項2~6の何れか1項に記載の熱交換器。
    further comprising a third heat transfer tube and a fourth heat transfer tube, in which a flow path through which the refrigerant flows is formed;
    The first heat transfer tube and the second heat transfer tube are inserted into one of the portions of the first opening partitioned by the first auxiliary partition,
    The heat according to any one of claims 2 to 6, wherein the third heat transfer tube and the fourth heat transfer tube are inserted into the other part of the first opening partitioned by the first auxiliary partition. exchanger.
  10.  前記挿入部は、
     前記第1開口及び前記第2開口とは別に形成され、冷媒が流れないダミーの管が挿入されるダミー開口を有する
     請求項2~9の何れか1項に記載の熱交換器。
    The insertion section is
    The heat exchanger according to any one of claims 2 to 9, further comprising a dummy opening formed separately from the first opening and the second opening and into which a dummy pipe through which no refrigerant flows is inserted.
  11.  前記第1伝熱管及び前記第2伝熱管は密着するように配置されている
     請求項1~10の何れか1項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 10, wherein the first heat transfer tube and the second heat transfer tube are arranged so as to be in close contact with each other.
  12.  前記第1伝熱管及び前記第2伝熱管は、前記ヘッダの近傍において、互いに反対の方向に屈曲する屈曲部を有し、
     前記第1伝熱管と前記第2伝熱管との前記ヘッダから露出した部分には、空気が流通する隙間が形成されている
     請求項11に記載の熱交換器。
    the first heat transfer tube and the second heat transfer tube have bending portions that bend in directions opposite to each other in the vicinity of the header;
    The heat exchanger according to claim 11, wherein gaps through which air flows are formed in portions of the first heat transfer tube and the second heat transfer tube exposed from the header.
  13.  前記屈曲部は、前記管軸方向に対して傾斜している
     請求項12に記載の熱交換器。
    The heat exchanger according to claim 12, wherein the bent portion is inclined with respect to the tube axis direction.
  14.  請求項1~13の何れか1項に記載の熱交換器と、
     前記熱交換器に空気を送る室外送風機と、を備える
     室外機。
    A heat exchanger according to any one of claims 1 to 13;
    an outdoor fan that sends air to the heat exchanger.
  15.  前記屈曲部は、送風方向の上流側から下流側に向かって下るように傾斜としている
     請求項11に従属する請求項14に記載の室外機。
    15. The outdoor unit according to claim 14, which is dependent on claim 11, wherein the bent portion is inclined so as to descend from the upstream side toward the downstream side in the blowing direction.
PCT/JP2021/021489 2021-06-07 2021-06-07 Heat exchanger and outdoor unit WO2022259288A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/021489 WO2022259288A1 (en) 2021-06-07 2021-06-07 Heat exchanger and outdoor unit
EP21944969.1A EP4354069A1 (en) 2021-06-07 2021-06-07 Heat exchanger and outdoor unit
JP2023527133A JPWO2022259288A1 (en) 2021-06-07 2021-06-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021489 WO2022259288A1 (en) 2021-06-07 2021-06-07 Heat exchanger and outdoor unit

Publications (1)

Publication Number Publication Date
WO2022259288A1 true WO2022259288A1 (en) 2022-12-15

Family

ID=84425939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021489 WO2022259288A1 (en) 2021-06-07 2021-06-07 Heat exchanger and outdoor unit

Country Status (3)

Country Link
EP (1) EP4354069A1 (en)
JP (1) JPWO2022259288A1 (en)
WO (1) WO2022259288A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322493A (en) * 2002-04-26 2003-11-14 Komatsu Ltd Method for manufacturing heat exchanger, tool used for the method and heat exchanger manufactured by the method
JP2004218969A (en) * 2003-01-16 2004-08-05 Univ Tokyo Heat exchanger
JP2007163004A (en) * 2005-12-13 2007-06-28 Calsonic Kansei Corp Heat exchanger
JP2007232339A (en) * 2006-01-31 2007-09-13 Univ Of Tokyo Micro heat exchanger and its manufacturing method
JP2007271182A (en) * 2006-03-31 2007-10-18 Denso Corp Heat exchanger
WO2013015186A1 (en) * 2011-07-28 2013-01-31 ダイキン工業株式会社 Heat exchanger
WO2015063875A1 (en) * 2013-10-30 2015-05-07 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioning apparatus
JP2018155481A (en) 2017-03-16 2018-10-04 ダイキン工業株式会社 Heat exchanger having heat transfer pipe unit
WO2020202560A1 (en) * 2019-04-05 2020-10-08 三菱電機株式会社 Air conditioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322493A (en) * 2002-04-26 2003-11-14 Komatsu Ltd Method for manufacturing heat exchanger, tool used for the method and heat exchanger manufactured by the method
JP2004218969A (en) * 2003-01-16 2004-08-05 Univ Tokyo Heat exchanger
JP2007163004A (en) * 2005-12-13 2007-06-28 Calsonic Kansei Corp Heat exchanger
JP2007232339A (en) * 2006-01-31 2007-09-13 Univ Of Tokyo Micro heat exchanger and its manufacturing method
JP2007271182A (en) * 2006-03-31 2007-10-18 Denso Corp Heat exchanger
WO2013015186A1 (en) * 2011-07-28 2013-01-31 ダイキン工業株式会社 Heat exchanger
WO2015063875A1 (en) * 2013-10-30 2015-05-07 三菱電機株式会社 Laminated header, heat exchanger, and air-conditioning apparatus
JP2018155481A (en) 2017-03-16 2018-10-04 ダイキン工業株式会社 Heat exchanger having heat transfer pipe unit
WO2020202560A1 (en) * 2019-04-05 2020-10-08 三菱電機株式会社 Air conditioning device

Also Published As

Publication number Publication date
JPWO2022259288A1 (en) 2022-12-15
EP4354069A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
JP6005267B2 (en) Laminated header, heat exchanger, and air conditioner
EP3650798B1 (en) Heat exchanger
EP2868999A2 (en) Refrigeration cycle of refrigerator
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JP6005266B2 (en) Laminated header, heat exchanger, and air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
JP6005268B2 (en) Laminated header, heat exchanger, and air conditioner
US20200072478A1 (en) Air-conditioner outdoor heat exchanger and air-conditioner including the same
JP2019011923A (en) Heat exchanger
JP7292510B2 (en) heat exchangers and air conditioners
JP2012026615A (en) Outdoor unit, and refrigeration cycle apparatus with the same
WO2022259288A1 (en) Heat exchanger and outdoor unit
US11788799B2 (en) Heat exchanger and air conditioner
JP3632248B2 (en) Refrigerant evaporator
JP2016121839A (en) Heat exchanger and heat exchanger unit using the same
WO2021234962A1 (en) Heat exchanger
JP2021191996A (en) Heat transfer pipe and heat exchanger
CN116057333A (en) Heat exchanger
JP2004028393A (en) Heat exchanger
JP7496832B2 (en) HEAT EXCHANGER, HEAT EXCHANGER UNIT, REFRIGERATION CYCLE DEVICE, AND METHOD FOR MANUFACTURING HEAT EXCHANGE MEMBER
JP7486671B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle device
JP7330294B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP7353489B2 (en) Heat exchanger and refrigeration cycle equipment
JP2020148346A (en) Heat exchanger and air conditioner
JP7462832B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527133

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021944969

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021944969

Country of ref document: EP

Effective date: 20240108