WO2021233464A1 - 用于降低空调噪音的控制方法及使用其的空调 - Google Patents

用于降低空调噪音的控制方法及使用其的空调 Download PDF

Info

Publication number
WO2021233464A1
WO2021233464A1 PCT/CN2021/099544 CN2021099544W WO2021233464A1 WO 2021233464 A1 WO2021233464 A1 WO 2021233464A1 CN 2021099544 W CN2021099544 W CN 2021099544W WO 2021233464 A1 WO2021233464 A1 WO 2021233464A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
room
air conditioner
predetermined
control method
Prior art date
Application number
PCT/CN2021/099544
Other languages
English (en)
French (fr)
Inventor
王河坡
王海胜
张铭
刘启顺
李召勇
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021233464A1 publication Critical patent/WO2021233464A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/40Noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a method of controlling an air conditioning system, and in particular to a control method for reducing air conditioner noise and an air conditioner using the same.
  • Air conditioners including but not limited to integrated air conditioners and split air conditioners, usually include compressors, outdoor heat exchangers (acting as condensers in cooling mode), throttling mechanisms (such as expansion valves), and one or more indoor air conditioners Heater.
  • the compressor, the outdoor heat exchanger, and the throttling mechanism together can form an outdoor unit or an outdoor unit; the indoor heat exchanger can form an indoor unit or an indoor unit.
  • the air conditioner may only have a cooling function, may also have a cooling and heating function, or may also have other special functions. When the air conditioner is running, the compressor, outdoor fan, and indoor fan included in the air conditioner all enter the operating state and generate certain noise.
  • the noise in the conditioned room will increase. Users have higher requirements for noise values in certain environments (such as when sleeping or resting or when other quiet environments are required). In this case, noise that exceeds the user's expectations will cause interference to the user and affect the user's experience of the air conditioner.
  • the existing air conditioner system In order to control the noise generated by the air conditioner, the existing air conditioner system generally controls the operation of the air conditioner according to the indoor and outdoor ambient temperature of the air conditioner. Specifically, the existing air conditioning system performs control according to the indoor and outdoor ambient temperature and the operating capacity of the indoor unit. When the ambient temperature and the number of indoor units are turned on, the operating frequency of the compressor of the outdoor unit remains unchanged, and the noise generated does not change. This control method cannot automatically identify and meet the special needs of users in the regulated room for low noise values.
  • existing air conditioners generally have a silent mode. This silent mode is generally manually controlled by the outdoor unit's wire controller, remote control, or mobile phone smart module, which is very inconvenient to operate and causes great inconvenience to users. For example, when users want a low-noise environment, they can only manually adjust the air conditioner to a silent mode.
  • the present invention provides a control method for reducing the noise of the air conditioner.
  • the control method includes:
  • the frequency of the compressor of the air conditioner is reduced based on the heat radiated by the human body.
  • the control method for reducing air-conditioning noise of the present invention firstly, it is recognized whether there are people in the adjusted room. Only when there are people in the room can there be special needs for low noise levels. After confirming that there are people in the room, the control method then judges the light intensity in the room. When the light intensity in the room is higher than the predetermined light intensity, it means that the light in the room is bright, so the people in the room should not be sleeping. When the light intensity in the room is higher than the predetermined light intensity, the control method judges whether the heat radiated by the human body is lower than the predetermined heat value.
  • the control method starts to determine whether the noise in the room is higher than a predetermined noise value.
  • the noise in the room is higher than the predetermined noise value, the frequency of the compressor of the air conditioner is reduced based on the heat radiated by the human body.
  • the compressor can be reduced based on the heat emitted by the human body.
  • the frequency of the way to reduce the noise in the room. This method can not only meet the user's demand for the temperature in the room, but also meet the user's special demand for the noise value, thereby improving the user's quality of life.
  • the control method when the light intensity in the room is equal to or lower than the predetermined light intensity, the control method controls the air conditioner to enter a silent mode.
  • the light intensity in the room is equal to or lower than the predetermined light intensity, it means that the light in the room is dim. In this case, the user is likely to be in a sleep or other resting state, so this control method automatically adjusts the air conditioner to a silent mode, and no manual adjustment by the user is required.
  • the control method for reducing the noise of the air conditioner, after the air conditioner enters the silent mode, the control method continuously monitors the heat emitted by the human body, and adjusts the frequency of the compressor based on the heat emitted by the human body. In this way, a quiet and comfortable temperature environment can be provided for users to rest.
  • the control method controls the air conditioner to operate in a predetermined mode. There is no one in the room, which means that there is no special requirement for the noise value. Therefore, the control method controls the air conditioner to operate in a preset mode (for example, a mode preset by the user or a preset mode stored in the control system).
  • a preset mode for example, a mode preset by the user or a preset mode stored in the control system.
  • the step of judging whether there are people in the regulated room includes:
  • the human analogue If the human analogue generates heat, it is determined that there is someone in the room. First scan through infrared rays and perform three-dimensional imaging of the scanned objects to find human-like objects; when it is confirmed that there are human-like objects, infrared rays are used to confirm whether the human-like objects are hot; only when the human-like objects are hot Confirm that someone exists in the room. Obviously, this judgment method combines three-dimensional imaging and infrared thermal effect sensing technology, which can accurately judge whether there are people in the room.
  • the step of judging whether the light intensity in the room is higher than a predetermined light intensity includes:
  • the measured light intensity is compared with the predetermined light intensity to determine whether the light intensity in the room is higher than the predetermined light intensity.
  • the existing light sensor is used to convert the light signal into an electrical signal to facilitate the confirmation of the light intensity in the room.
  • the predetermined light intensity is the dividing line that distinguishes whether the light in the room is bright or dim.
  • the step of judging whether the heat radiated by the human body is lower than a predetermined heat value includes:
  • the measured heat is compared with a predetermined heat value to determine whether the heat radiated by the human body is lower than the predetermined heat value.
  • the existing infrared heat sensor can easily measure the heat emitted by the human body.
  • the step of judging whether the noise in the room is higher than a predetermined noise value includes:
  • the measured noise is compared with the predetermined noise value to determine whether the noise in the room is higher than the predetermined noise value. Measure the actual noise in the room and compare it with the user's expected noise value in order to determine whether it is necessary to reduce the air-conditioning noise.
  • the control method when the noise in the room is higher than a predetermined noise value, the control method further reduces the wind speed of the air-conditioning fan based on the heat radiated by the human body.
  • Fans are another noise source of air conditioners. Therefore, by reducing the wind speed of the fan, the noise value of the air conditioner can be further reduced, and the user's expectation for a lower noise value can be better met.
  • the control method controls the air conditioner to operate in a predetermined mode.
  • the heat radiated by the human body is relatively large, it means that the user is more sensitive to the temperature in the room at this time, so the air conditioner can be operated according to the user's predetermined mode without noise reduction operation.
  • the present invention also discloses an air conditioner, the air conditioner has a compressor, and the air conditioner uses the above-mentioned control method for reducing the noise of the air conditioner to reduce the compression under specified conditions.
  • the air conditioner can automatically evaluate the noise needs of the users in the room, and automatically control the operation of the air conditioner according to the noise needs of the users and the actual noise level in the room, when necessary, by reducing the frequency of the compressor based on the heat emitted by the human body.
  • the noise in the room can significantly improve the user experience.
  • Figure 1 is a system schematic diagram of an embodiment of the air conditioner of the present invention
  • Figure 2 is a flow chart of the control method for reducing air-conditioning noise according to the present invention
  • Fig. 3 is a flowchart of an embodiment of a control method for reducing air-conditioning noise according to the present invention.
  • the present invention provides a control method for reducing the noise of the air conditioner.
  • the control method includes: judging whether there are people in the adjusted room (S1); when there are people in the room, judging whether the light intensity in the room is higher than the predetermined light intensity (S2); when the light intensity in the room is higher than the predetermined light intensity When the heat radiated by the human body is lower than the predetermined heat value (S3); when the heat radiated by the human body is lower than the predetermined heat value, it is determined whether the noise in the room is higher than the predetermined noise value (S4); and when the noise in the room When it is higher than the predetermined noise value, the frequency of the compressor of the air conditioner is reduced based on the heat radiated by the human body (S5).
  • This control method can automatically evaluate the noise demand of the user in the room, and automatically control the operation of the air conditioner according to the noise demand of the user and the actual noise level in the room, when necessary, by reducing the frequency of the compressor based on the heat emitted by the human body. Reduce the noise in the room.
  • Fig. 1 is a system schematic diagram of an embodiment of the air conditioner of the present invention.
  • the air conditioner 1 of the present invention includes, but is not limited to, an integrated air conditioner or a split air conditioner, and at least has a cooling function or a cooling and heating function.
  • the air conditioner 1 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, a liquid pipe stop valve 15, an indoor heat exchanger 16, Air pipe stop valve 17, and gas-liquid separator 18. These components are connected to each other through a refrigerant pipeline to form a refrigeration circuit that allows refrigerant (for example, R134a) to circulate in it.
  • refrigerant for example, R134a
  • the combination of the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the expansion valve 14, the liquid pipe shut-off valve 15, and the gas pipe shut-off valve 17 together can be called an outdoor unit or an outdoor unit, while the indoor heat exchanger 16 is usually Place in indoor unit or indoor unit.
  • the outdoor heat exchanger 13 and the indoor heat exchanger 16 are usually each equipped with a fan (not shown in the figure). When the air conditioner 1 is working, the fan also works to force air to flow through the outdoor heat exchanger 13 and the indoor heat exchanger 16 respectively.
  • the four-way valve 12 has four ports: D port, C port, S port, and E port.
  • the exhaust port of the compressor 11 is connected to the D port of the four-way valve 12 through the exhaust pipe 111, and the suction port of the compressor 11 is connected to the outlet of the gas-liquid separator 18 through the suction pipe 112;
  • the outdoor heat exchanger 13 One of the interface pipes is connected to the C port of the four-way valve 12, and the other interface pipe of the outdoor heat exchanger 13 is connected to the expansion valve 14;
  • the S port of the four-way valve 12 is connected to the inlet of the gas-liquid separator 18;
  • the E port of the valve 12 is connected to the gas pipe of the indoor heat exchanger 16 via the gas pipe shut-off valve 17;
  • the expansion valve 14 is connected to the liquid pipe of the indoor heat exchanger 16 via the liquid pipe shut-off valve 15.
  • the compressor 11 compresses the gas refrigerant from low temperature and low pressure to high temperature and high pressure; the high temperature and high pressure gas refrigerant is discharged from the exhaust port of the compressor 11 into the exhaust pipe 111, and then enters from the D port Four-way valve 12.
  • the D port is connected to the C port, and the S port is connected to the E port. Therefore, the high-temperature and high-pressure gas refrigerant leaves the four-way valve 12 from the C port and flows into the outdoor heat exchanger 13.
  • the outdoor heat exchanger 13 acts as a condenser in the cooling mode, so the high-temperature and high-pressure refrigerant is cooled in the outdoor heat exchanger 13 into a high-temperature and high-pressure liquid refrigerant.
  • the high-temperature and high-pressure liquid refrigerant is then throttled into a low-temperature and low-pressure liquid refrigerant through an expansion valve 14 (for example, a thermal expansion valve or an electronic expansion valve).
  • the low-temperature and low-pressure liquid refrigerant flows into the indoor heat exchanger 16 through the liquid pipe shut-off valve 15.
  • the indoor heat exchanger 16 functions as an evaporator in the cooling mode.
  • the low-temperature and low-pressure liquid refrigerant is evaporated in the indoor heat exchanger 16 into a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flows into the four-way valve 12 through the E port, and then leaves the four-way valve 12 from the S port and enters the gas-liquid separator 18. After gas-liquid separation, the low-temperature and low-pressure refrigerant is sucked and compressed by the compressor 11 through the suction pipe 112 to start a new cycle.
  • the flow direction of the refrigerant in the air conditioner is completely opposite to the flow direction during cooling.
  • the D port and the E port of the four-way valve 12 are in communication, and the C port and the S port are in communication.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 first flows into the indoor heat exchanger 16 acting as a condenser through the four-way valve 12 to heat the indoor air; the condensed high-temperature and high-pressure liquid refrigerant is throttled by the expansion valve 14 It flows into the outdoor heat exchanger 13 serving as an evaporator; the low-temperature and low-pressure gas refrigerant formed by evaporation enters the four-way valve 12 from the C port, and then exits from the S port and enters the gas-liquid separator 18.
  • the low-temperature and low-pressure refrigerant is sucked and compressed by the compressor 11 through the suction pipe 112 to start a new cycle.
  • the compressor 11 and the indoor and outdoor fans work, thus forming a noise source of the air conditioner.
  • the air conditioner 1 of the present invention can use the control method for reducing air conditioner noise of the present invention to reduce the noise generated by the air conditioner by reducing the frequency of the compressor under predetermined conditions. Furthermore, the air conditioner can also reduce the noise of the air conditioner by reducing the wind speed of the fan.
  • Fig. 2 is a flowchart of a control method for reducing air-conditioning noise according to the present invention.
  • step S1 it is first judged whether there are people in the regulated room.
  • the control method proceeds to step S2 to determine whether the light intensity in the room is higher than the predetermined light intensity.
  • the predetermined light intensity can be determined through experiments or set by the user.
  • step S3 determine whether the heat emitted by the human body is lower than the predetermined heat value.
  • the predetermined calorific value can be determined through experiments or set by the user.
  • the control method proceeds to step S4 to determine whether the noise in the room is higher than the predetermined noise value.
  • the predetermined noise value can be a default value set in advance, or it can be set by the user.
  • the control method proceeds to step S5 to reduce the frequency of the compressor of the air conditioner based on the heat radiated by the human body.
  • Fig. 3 is a flowchart of an embodiment of a control method for reducing air-conditioning noise according to the present invention.
  • the control method uses an infrared light sensing system to scan the environment in the room, and performs three-dimensional imaging of the scanned objects in the room, so as to determine whether there is a human-like similarity. If there is a humanoid analogue, the control method uses infrared rays to determine whether the humanoid analogue generates heat. If the humanoid analog is hot, it can be judged that there is someone in the room.
  • step S12 control the air conditioner to work in a preset mode. If it is confirmed that there are people in the room, the control method proceeds to step S13 to measure the light intensity in the room.
  • a light sensor is used to measure the light intensity in the room. The light sensor is made using the principle of photoelectric effect.
  • the light in the room forms a light projector, and a light receiver and lens are installed on the indoor unit or indoor part of the air conditioner. If the light in the room is bright, enough light will be collected by the lens and transmitted to the light receiver. The light receiver converts light into electrical signals according to the photoelectric effect. This electrical signal is then passed to the air conditioning control system in order to determine the actual light intensity in the room.
  • the control method compares the measured actual light intensity with a predetermined light intensity to determine whether the actual light intensity is lower than the predetermined light intensity. If the actual light intensity is lower than the predetermined light intensity, the control method proceeds to step S15 to adjust the air conditioner to the silent mode.
  • step S16 the control method proceeds to step S16 to measure the heat emitted by the human body.
  • an infrared thermal sensor for example, a thermal sensor for measuring body temperature
  • the control method still continuously monitors the heat emitted by the human body, for example, using an infrared heat sensor, and adjusts the frequency of the compressor according to the heat emitted by the human body. The more heat the human body emits, the higher the frequency of the compressor; conversely, the less heat the human body emits, the lower the frequency of the compressor. This can provide a quiet and comfortable temperature environment for users to rest.
  • step S17 the measured heat emitted by the human body is compared with a predetermined heat value.
  • the predetermined calorific value may be determined based on the normal body temperature of the human body in a predetermined temperature environment (for example, 22°C to 25°C). If the measured heat is not lower than the predetermined heat value, it means that the user is more sensitive to the temperature control in the room at this time. Therefore, the control method proceeds to step S18 to control the air conditioner to operate in a preset mode. If the measured heat is lower than the predetermined heat value, the control method proceeds to step S19 to start the noise measurement system (for example, a noise meter) to measure the actual noise in the room.
  • the noise measurement system for example, a noise meter
  • the measured noise is compared with a predetermined noise value.
  • the noise value is divided into multiple levels in advance, for example, divided into 10 levels, and the noise value may be from 55 dB to 15 dB. Users can choose different files according to their needs. Once selected by the user, when the user uses the air conditioner, the control system automatically defaults that the noise value does not exceed the noise value of the setting, until the user changes the setting. everyone has different sensitivity to sound, so this kind of predetermined noise value scheme can meet the different requirements of different users for noise. If the measured noise value is lower than the predetermined noise value, it means that the actual noise value in the room meets the needs of the user.
  • step S18 control the air conditioner to work in a preset mode. If the measured noise value is not lower than the predetermined noise value, it means that the actual noise value in the room cannot meet the needs of the user. Therefore, the control method proceeds to step S21 to reduce the frequency of the compressor to reduce the noise generated by the air conditioner.
  • the frequency of the compressor is reduced based on the amount of heat dissipated by the human body. The lower the heat emitted by the human body, the greater the reduction in compressor frequency. Conversely, the higher the heat emitted by the human body, the smaller the reduction in compressor frequency.
  • the control method under the condition that the measured noise value is not lower than the predetermined noise value, not only reduces the frequency of the compressor, but also reduces the speed of the fan, thereby further reducing the indoor noise until the noise value reaches Scheduled requirements. Therefore, through the control method of the present invention, a comfortable and convenient living environment can be created for the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及一种用于降低空调噪音的控制方法及使用其的空调。该控制方法控制方法包括:判断受调节的房间内是否有人;当所述房间内有人时,判断所述房间内的光线强度是否高于预定光线强度;当所述房间内的光线强度高于所述预定光线强度时,判断人体散发的热量是否低于预定热量值;当人体散发的热量低于所述预定热量值时,判断所述房间内的噪音是否高于预定噪音值;以及当所述房间内的噪音高于所述预定噪音值时,基于人体散发的热量降低所述空调的压缩机的频率。通过本发明的该控制方法,可自动评估房间内用户的噪音需求,并且自动根据用户的噪音需求和室内的实际噪音水平来控制空调的运行,从而能够提高用户的生活品质。

Description

用于降低空调噪音的控制方法及使用其的空调 技术领域
本发明涉及控制空调系统的方法,具体地涉及用于降低空调噪音的控制方法及使用其的空调。
背景技术
空调,包括但不限于一体式空调和分体式空调等,通常包括压缩机、室外换热器(在制冷模式下充当冷凝器)、节流机构(例如膨胀阀)、和一个或多个室内换热器。压缩机、室外换热器、和节流机构一起可形成室外机或室外单元;室内换热器可形成室内机或室内单元。空调可只具有制冷功能,也可具有制冷和制热功能,或者还可具有其它特别的功能。当空调运行时,其所包括的压缩机、室外风机、和室内风机都进入运行状态并且会产生一定噪音。当空调运行以对受调节房间的环境进行温度进行调节时,受调节房间内的噪音将会增加。用户在特定环境(例如睡觉时或休息时或其它需要很安静的环境时)下对噪音值会有更高的要求。在这种情况下,超过用户预期的噪音会对用户造成干扰,影响用户对空调的体验感。
为了控制空调所产生的噪音,现有空调系统一般是根据空调的室内外环境温度控制空调的运行。具体地,现有空调系统根据室内外环境温度和室内机运行能力的大小进行控制。当环境温度和室内机开机数量一定时,室外机的压缩机运转频率不变,产生的噪音也不变。这种控制方法无法自动地识别和满足受调节房间内用户对低噪音值的特别需求。另外,现有空调一般都设有静音模式。这种静音模式一般都是通过室外机的线控器、遥控器、或手机智能模块进行手动控制,操作起来很不方便,给用户造成很大的不便性。例如,当用户想要低噪音的环境时,只能手动地将空调调节到静音模式。
相应地,本领域需要一种新的技术方案来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调无法根据室内环境自动降低空调噪音的技术问题,本发明提供一种用于降低空调噪音的控制方法,所述控制方法包括:
判断受调节的房间内是否有人;
当所述房间内有人时,判断所述房间内的光线强度是否高于预定光线强度;
当所述房间内的光线强度高于所述预定光线强度时,判断人体散发的热量是否低于预定热量值;
当人体散发的热量低于所述预定热量值时,判断所述房间内的噪音是否高于预定噪音值;以及
当所述房间内的噪音高于所述预定噪音值时,基于人体散发的热量降低所述空调的压缩机的频率。
本领域技术人员能够理解的是,在本发明用于降低空调噪音的控制方法中,首先识别受调节的房间是否有人。只有当房间内有人时,才会有可能存在低噪音值的特别需求。在确定房间内有人后,该控制方法进而判断房间内的光线强度。当房间内的光线强度高于预定光线强度时,这意味着房间内光线明亮,因此房间内的人应该不会处于睡眠中。当房间内的光线强度高于预定光线强度时,该控制方法判断人体散发的热量是否低于预定热量值。如果人体散发的热量低于预定热量值,意味这房间内的人很可能处于静止状态或其它活动量很低的状态。对应于这些状态,房间内的人很可能需要低噪音值的环境。对应地,该控制方法开始判断房间内的噪音是否高于预定噪音值。当房间内的噪音高于预定噪音值时,基于人体散发的热量降低空调的压缩机的频率。通过本发明的该控制方法,可自动评估房间内用户的噪音需求,并且自动根据用户的噪音需求和室内的实际噪音水平来控制空调的运行,在必要的时候通过基于人体散发的热量降低压缩机的频率的方式来降低房间内的噪音。这种方法既能满足用户对房间内温度的需求,又能满足用户对噪音值的特别需求,从而能够提高用户的生活品质。
在上述用于降低空调噪音的控制方法的优选技术方案中,当所述房间内的光线强度等于或低于所述预定光线强度时,所述控制方法控制所述空调进入静音模式。当房间内的光线强度等于或低于预定光线强度时,说明 房间内的光线很暗淡。在这种情况下,用户很可能处于睡眠或其它休息状态,因此该控制方法自动地将空调调到静音模式,不再需要用户手动进行调节。
在上述用于降低空调噪音的控制方法的优选技术方案中,当所述空调进入静音模式后,所述控制方法持续监测人体散发的热量,并且基于人体散发的热量调节压缩机的频率。通过这种方法,可提供一个安静、舒适温度环境以供用户休息。
在上述用于降低空调噪音的控制方法的优选技术方案中,当所述房间内无人时,所述控制方法控制所述空调按照预定模式运行。房间内无人,说明对噪音值没有特别需求,因此该控制方法控制空调按预设模式(例如用户预先设定的模式或预设存储在控制系统的设定模式)运行。
在上述用于降低空调噪音的控制方法的优选技术方案中,所述判断受调节的房间内是否有人的步骤包括:
利用红外线扫描所述房间并对扫描到的物体进行三维成像以确认是否存在人体相似物;
当存在人体相似物时,利用红外线判断所述人体相似物是否发热;以及
如果所述人体相似物发热,则确定房间内有人。先通过红外线扫描并对扫描到的物体进行三维成像以寻找人体相似物;在确认有人体相似物存在的情况下,再利用红外线确认该人体相似物是否发热;只有当人体相似物发热时,才确认房间内有人存在。很显然,这种判断方法结合了三维成像和红外热效应感应技术,可准确地判断房间内是否有人存在。
在上述用于降低空调噪音的控制方法的优先技术方案中,所述判断所述房间内的光线强度是否高于预定光线强度的步骤包括:
使用光线感应器测量房间内的光线强度;和
将测得的光线强度与所述预定光线强度进行比较以判断所述房间内的光线强度是否高于预定光线强度。利用现有的光线感应器将光信号转化为电信号以方便确认房间内的光线强度。预定光线强度是区分房间内的光线是明亮的还是暗淡的分界线。
在上述用于降低空调噪音的控制方法的优先技术方案中,所述判断人体散发的热量是否低于预定热量值的步骤包括:
利用红外热量感应器测量人体散发的热量;和
将测得的热量与预定热量值进行比较以判断人体散发的热量是否低于预定热量值。利用现有的红外热量感应器可方便地测量人体散发的热量。
在上述用于降低空调噪音的控制方法的优先技术方案中,所述判断所述房间内的噪音是否高于预定噪音值的步骤包括:
测量所述房间内的噪音;和
将测得的噪音与所述预定噪音值进行比较以判断所述房间内的噪音是否高于预定噪音值。测量房间内的实际噪音并将其与用户的期待的噪音值进行比较,以便确定是否需要降低空调噪音。
在上述用于降低空调噪音的控制方法的优先技术方案中,当所述房间内的噪音高于预定噪音值时,所述控制方法还基于人体散发的热量降低所述空调的风机的风速。风机是空调的另一个噪音源。因此,通过降低风机的风速,可进一步降低空调的噪音值,更好地满足用户对更低噪音值的期待。
在上述用于降低空调噪音的控制方法的优先技术方案中,当人体散发的热量等于或高于预定热量值时,所述控制方法控制所述空调按照预定模式工作。当人体散发的热量比较大时,说明用户此时对房间内的温度更敏感,因此空调可按照用户预定的模式进行运行,而不需要进行降噪操作。
为了解决上述技术问题,本发明还公开了一种空调,所述空调具有压缩机,并且所述空调使用上面所述的用于降低空调噪音的控制方法以在规定的条件下通过降低所述压缩机的频率来降低所述空调的噪音。该空调可自动评估房间内用户的噪音需要,并且自动根据用户的噪音需要和室内的实际噪音水平来控制空调的运行,在必要的时候通过基于人体散发的热量降低压缩机的频率的方式来降低房间内的噪音,从而可显著提高用户体验。
附图说明
下面参照附图来描述本发明的优选实施方式,附图中:
图1是本发明空调的实施例的系统示意图;
图2是本发明用于降低空调噪音的控制方法的流程图;
图3是本发明用于降低空调噪音的控制方法的实施例的流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
为了解决现有空调的控制系统无法根据室内环境自动降低空调噪音的技术问题,本发明提供一种用于降低空调噪音的控制方法。该控制方法包括:判断受调节的房间内是否有人(S1);当房间内有人时,判断房间内的光线强度是否高于预定光线强度(S2);当房间内的光线强度高于预定光线强度时,判断人体散发的热量是否低于预定热量值(S3);当人体散发的热量低于预定热量值时,判断房间内的噪音是否高于预定噪音值(S4);以及当房间内的噪音高于预定噪音值时,基于人体散发的热量降低空调的压缩机的频率(S5)。该控制方法可自动评估房间内用户的噪音需求,并且自动根据用户的噪音需求和室内的实际噪音水平来控制空调的运行,在必要的时候通过基于人体散发的热量降低压缩机的频率的方式来降低房间内的噪音。
在本文中提及的操作步骤除非有明确的说明,在操作顺序上没有先后的要求,例如有些操作步骤可以同时实施。
图1是本发明空调的实施例的系统示意图。本发明的空调1包括但不限于一体式空调或分体式空调,至少具有制冷功能或制冷和制热功能。如图1所示,在一种或多种实施例中,空调1包括压缩机11、四通阀12、室外换热器13、膨胀阀14、液管截止阀15、室内换热器16、气管截止阀17、和气液分离器18。这些部件通过冷媒管线相互连接一起形成可允许冷媒(例如R134a)在其中循环流动的制冷回路。压缩机11、四通阀12、室外换热器13、膨胀阀14、液管截止阀15和气管截止阀17组合在一起可被称为室外单元或室外机,而室内换热器16通常被置于室内单元或室内机中。室外换热器13和室内换热器16通常各自都配有风机(图中未示出)。当空调1工作的时候,风机也工作以迫使空气分别从室外换热器13和室内换热器16上流过。四通阀12具有四个端口:D端口,C端口,S端口,和E端口。压缩机11的排气口通过排气管111连接到四通阀12的D接口,而压缩机11的吸气口通过吸气管112连接到气液分离器18的出口;室外换热器13的一个接口管连接到四通阀12的C端口,而室外换热器13的另一个接口管连接到膨胀阀14;四通阀12的S端口连接到气液分离器18的进口;四通阀12的E端口经由气管截至阀17连通室内换热器16的气管;膨胀阀14经由液管截至阀15连通室内换热器16的液管。
当空调在制冷模式下运行时,压缩机11将气体冷媒从低温低压压缩到高温高压;该高温高压的气体冷媒从压缩机11的排气口排出到排气管111中,然后从D端口进入四通阀12。在制冷模式下,D端口与C端口连通,并且S端口与E端口连通。因此高温高压的气体冷媒从C端口离开四通阀12并流入室外换热器13。室外换热器13在制冷模式下充当冷凝器,因此高温高压的冷媒在室外换热器13中被冷却成高温高压的液体冷媒。高温高压的液体冷媒然后通过膨胀阀14(例如热力膨胀阀或电子膨胀阀)被节流成低温低压的液体冷媒。低温低压的液体冷媒经由液管截止阀15流入室内换热器16。室内换热器16在制冷模式下充当蒸发器。因此,低温低压的液体冷媒在室内换热器16中被蒸发成低温低压的气体冷媒。低温低压的气体冷媒经由E端口流入四通阀12,然后从S端口离开四通阀12并进入气液分离器18。经过气液分离后,低温低压的冷媒经吸气管112被压缩机11吸入和压缩,以便开始新的循环。在制热模式下,冷媒在空调内的流向与制冷时的流向完全相反。因此,在制热模式下,四通阀12的D端口与E端口形成连通,而C端口与S端口形成连通。从压缩机11排出的高温高压的气体冷媒经由四通阀12先流入充当冷凝器的室内换热器16,以便给室内空气加热;经过冷凝的高温高压的液体冷媒通过膨胀阀14节流后再流入充当蒸发器的室外换热器13;蒸发形成的低温低压的气体冷媒从C端口进入四通阀12,再从S端口离开并进入气液分离器18。经过气液分离后,低温低压的冷媒经吸气管112被压缩机11吸入和压缩,以便开始新的循环。由于在空调1的运行中,压缩机11和室内外的风机都工作,因此形成空调的噪音源。
本发明的上述空调1可使用本发明的用于降低空调噪音的控制方法在规定的条件下通过降低压缩机的频率来降低空调所产生的噪音。进一步,该空调还可通过降低风机的风速来降低空调的噪音。
图2是本发明用于降低空调噪音的控制方法的流程图。如图2所示,该控制方法在开始后,在步骤S1中,先判断受调节的房间内是否有人。当确定房间内有人时,该控制方法前进到步骤S2,判断房间内的光线强度是否高于预定光线强度。预定光线强度可通过实验确定或由用户设置。当房间内的光线强度高于预定光线强度时,该控制方法前进到步骤S3,判断人体散发的热量是否低于预定热量值。预定热量值可通过实验确定或由用户设置。当人体散发的热量低于预定热量值时,该控制方法前进到步骤S4,判断房间 内的噪音是否高于预定噪音值。预定噪音值可以是提前设置好的默认值,也可由用户进行设置。当房间内的噪音高于预定噪音值时,控制方法就前进到步骤S5,基于人体散发的热量降低空调的压缩机的频率。
图3是本发明用于降低空调噪音的控制方法的实施例的流程图。如图3所示,在空调开机后,该控制方法开始判断受调节的房间内是否有人(步骤S11)。在一种或多种实施例中,该控制方法使用红外光感系统扫描房间内的环境,并且将扫描出来的房间内的物体进行三维立体成像,以便确定是否存在人形相似物。如果有人形相似物,该控制方法再通过红外线判断该人形相似物是否发热。如果该人形相似物发热,则可以判断房间内有人。通过结合红外热效应感应和三维立体成像相结合来判断房间内是否有人,可得到更准确的判断结果。替代地,可使用现有的三维立体成像系统来扫描房间内的物体以判断房间内是否有人。如果确认房间内没人,就不需要对房间内的噪音进行控制,因此该控制方法前进到步骤S12,控制空调按照预设模式工作。如果确认房间内有人,控制方法就前进到步骤S13,测量房间内的光线强度。在一种或多种实施例中,使用光线感应器来测量房间内的光线强度。光线感应器是利用光电效应原理制成的。房间内的光形成投光器,在空调的室内机上或室内部分上安装一个受光器和透镜。如果房间内的光线明亮,就有足够多的光线通过透镜聚集传送到受光器上。受光器根据光电效应,把光转化为电信号。该电信号然后被传递给空调的控制系统,以便确定房间内的实际光线强度。在步骤S14中,控制方法将测得的实际光线强度与预定光线强度进行比较以判断实际光线强度是否低于预定光线强度。如果实际光线强度低于预定光线强度,控制方法就前进到步骤S15,将空调调节到静音模式。如果实际光线强度不低于预定光线强度,控制方法就前进到步骤S16,测量人体散发的热量。在一种或多种实施例中,使用红外热感应器(例如用于测量体温的热感应仪)测量人体散发的热量。可选地,当空调进入静音模式后,该控制方法仍然持续监测人体散发的热量,例如使用红外热感应器,并且根据人体散发的热量调整压缩机的频率。人体散发的热量越多,压缩机的频率越高;反之,人体散发的热量越少,压缩机的频率越低。这样可提供一个安静、舒适的温度环境以供用户休息。
如图3所示,在步骤S17中,将测得的人体散发的热量与预定热量值进行比较。该预定热量值可基于人体在预定温度环境(例如22℃至25℃) 下的正常体温确定。如果测得的热量不低于预定热量值,说明此时用户对房间内的温度控制更敏感,因此控制方法就前进到步骤S18,控制空调按照预设模式运行。如果测得的热量低于预定热量值,控制方法就前进到步骤S19,启动噪音测量系统(例如噪音测量仪)测量房间内的实际噪音。在步骤S20中,将测得的噪音与预定噪音值进行比较。在一种或多种实施例中,在空调的控制系统中,预先将噪音值分为多个档,例如分为10个档,噪音值可以是从55dB到15dB。用户可根据自己的需要选择不同档。一旦用户选定后,当用户使用空调时控制系统自动默认噪音值不超过该设置的噪音值,直到用户改变该设置。每个人对声音的敏感度不同,因此这种预定噪音值方案可满足不同用户对噪音的不同要求。如果测得的噪音值低于预定噪音值,说明房间内的实际噪音值满足用户的需求,因此控制方法就前进到步骤S18,控制空调按照预设模式工作。如果测得的噪音值不低于预定噪音值,说明房间内的实际噪音值还不能满足用户的需求,因此控制方法就前进到步骤S21,降低压缩机的频率以便降低空调所产生的噪音。在一种或多种实施例中,基于人体散发的热量大小降低压缩机的频率。人体散发的热量越低,压缩机频率降低的幅度越大。相反,人体散发的热量越高,压缩机频率降低的幅度越小。
在替代的实施例中,在测得的噪音值不低于预定噪音值的条件下,该控制方法不仅降低压缩机的频率,而且还降低风机的转速,从而进一步降低室内的噪音直到噪音值达到预定的要求。因此,通过本发明的控制方法,可给用户制造一个舒适、便利的生活环境。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于降低空调噪音的控制方法,其特征在于,所述控制方法包括:
    判断受调节的房间内是否有人;
    当所述房间内有人时,判断所述房间内的光线强度是否高于预定光线强度;
    当所述房间内的光线强度高于所述预定光线强度时,判断人体散发的热量是否低于预定热量值;
    当人体散发的热量低于所述预定热量值时,判断所述房间内的噪音是否高于预定噪音值;以及
    当所述房间内的噪音高于所述预定噪音值时,基于人体散发的热量降低所述空调的压缩机的频率。
  2. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,当所述房间内的光线强度等于或低于所述预定光线强度时,所述控制方法控制所述空调进入静音模式。
  3. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,当所述房间内无人时,所述控制方法控制所述空调按照预定模式运行。
  4. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,所述判断受调节的房间内是否有人的步骤包括:
    利用红外线扫描所述房间并对扫描到的物体进行三维成像以确认是否存在人体相似物;
    当存在人体相似物时,利用红外线判断所述人体相似物是否发热;以及
    如果所述人体相似物发热,则确定房间内有人。
  5. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,所述判断所述房间内的光线强度是否高于预定光线强度的步骤包括:
    使用光线感应器测量房间内的光线强度;和
    将测得的光线强度与所述预定光线强度进行比较以判断所述房间内的光线强度是否高于预定光线强度。
  6. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,所述判断人体散发的热量是否低于预定热量值的步骤包括:
    利用红外热量感应器测量人体散发的热量;和
    将测得的热量与预定热量值进行比较以判断人体散发的热量是否低于预定热量值。
  7. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,所述判断所述房间内的噪音是否高于预定噪音值的步骤包括:
    测量所述房间内的噪音;和
    将测得的噪音与所述预定噪音值进行比较以判断所述房间内的噪音是否高于预定噪音值。
  8. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,当所述房间内的噪音高于预定噪音值时,所述控制方法还基于人体散发的热量降低所述空调的风机的风速。
  9. 根据权利要求1所述的用于降低空调噪音的控制方法,其特征在于,当人体散发的热量等于或高于预定热量值时,所述控制方法控制所述空调按照预定模式工作。
  10. 一种空调,其特征在于,所述空调具有压缩机,并且所述空调使用根据权利要求1-9任一项所述的用于降低空调噪音的控制方法以在规定的条件下通过降低所述压缩机的频率来降低所述空调的噪音。
PCT/CN2021/099544 2020-10-29 2021-06-11 用于降低空调噪音的控制方法及使用其的空调 WO2021233464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011179670.6A CN112303849B (zh) 2020-10-29 2020-10-29 用于降低空调噪音的控制方法及使用其的空调
CN202011179670.6 2020-10-29

Publications (1)

Publication Number Publication Date
WO2021233464A1 true WO2021233464A1 (zh) 2021-11-25

Family

ID=74330840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099544 WO2021233464A1 (zh) 2020-10-29 2021-06-11 用于降低空调噪音的控制方法及使用其的空调

Country Status (2)

Country Link
CN (1) CN112303849B (zh)
WO (1) WO2021233464A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303849B (zh) * 2020-10-29 2022-05-20 青岛海尔空调电子有限公司 用于降低空调噪音的控制方法及使用其的空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090051479A (ko) * 2007-11-19 2009-05-22 삼성전자주식회사 공기조화기 및 그 제어 방법
CN102645004A (zh) * 2012-04-23 2012-08-22 宁波奥克斯空调有限公司 一种静音空调及其控制方法
CN202648062U (zh) * 2012-06-21 2013-01-02 海尔集团公司 一种噪音控制装置
CN103062867A (zh) * 2013-02-04 2013-04-24 广州松下空调器有限公司 空调器睡眠模式的控制方法
CN109282478A (zh) * 2018-09-07 2019-01-29 奥克斯空调股份有限公司 一种降噪方法、降噪装置及空调器
KR20190010766A (ko) * 2017-07-20 2019-01-31 엘지전자 주식회사 일체형 공기 조화기
CN112303849A (zh) * 2020-10-29 2021-02-02 青岛海尔空调电子有限公司 用于降低空调噪音的控制方法及使用其的空调

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147504A (ja) * 2003-11-14 2005-06-09 Sharp Corp 空気調和機
CN104296318B (zh) * 2014-10-08 2017-11-10 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN106839341B (zh) * 2017-03-22 2020-01-17 青岛海尔空调电子有限公司 一种空调静音控制方法
JP2019199994A (ja) * 2018-05-16 2019-11-21 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN111141014A (zh) * 2019-12-30 2020-05-12 宁波奥克斯电气股份有限公司 静音模式控制方法和静音控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090051479A (ko) * 2007-11-19 2009-05-22 삼성전자주식회사 공기조화기 및 그 제어 방법
CN102645004A (zh) * 2012-04-23 2012-08-22 宁波奥克斯空调有限公司 一种静音空调及其控制方法
CN202648062U (zh) * 2012-06-21 2013-01-02 海尔集团公司 一种噪音控制装置
CN103062867A (zh) * 2013-02-04 2013-04-24 广州松下空调器有限公司 空调器睡眠模式的控制方法
KR20190010766A (ko) * 2017-07-20 2019-01-31 엘지전자 주식회사 일체형 공기 조화기
CN109282478A (zh) * 2018-09-07 2019-01-29 奥克斯空调股份有限公司 一种降噪方法、降噪装置及空调器
CN112303849A (zh) * 2020-10-29 2021-02-02 青岛海尔空调电子有限公司 用于降低空调噪音的控制方法及使用其的空调

Also Published As

Publication number Publication date
CN112303849A (zh) 2021-02-02
CN112303849B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
CN106931587B (zh) 空调的控制方法及空调
CN102865646B (zh) 空气调节器
EP1598606A2 (en) Air conditioner and method for controlling operation thereof
KR102262245B1 (ko) 공기조화기 및 그 제어방법
KR20040069613A (ko) 냉난방기의 절전 제습 운전방법
EP1632737A2 (en) Air-conditioner and method for controlling driving thereof
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
KR20040069614A (ko) 냉난방기의 파워 제습 운전방법
US20220325931A1 (en) Liquid transfer pump cycle
KR20040069615A (ko) 냉난방기의 건강 제습 운전방법
JPWO2015001607A1 (ja) 空調システム
CN113883678A (zh) 用于空调器的噪音控制方法及空调器
WO2021233464A1 (zh) 用于降低空调噪音的控制方法及使用其的空调
CN113339978A (zh) 全品质空调的基准运行频率确定方法、装置和全品质空调
CN113639416A (zh) 变频空调的控制方法
JP2009014321A (ja) 空気調和機
KR20080073602A (ko) 멀티형 공기조화기 및 그 운전방법
CN113566375B (zh) 空调器控制方法和控制装置和空调器
KR20080001293A (ko) 공기 조화기의 슬립 모드 제어 장치 및 방법
JP2003254583A (ja) 空気調和機
US20050257544A1 (en) Unitary air-conditioning system and operation control method thereof
JP3500128B2 (ja) 空気調和装置の制御方法及び空気調和装置
KR20200073471A (ko) 공기조화기의 제어 방법
JP2716559B2 (ja) 冷暖混在型多室空気調和装置
US20220307755A1 (en) Control scheme for automatic fan mode for use with variable refrigerant flow systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807897

Country of ref document: EP

Kind code of ref document: A1