WO2021233195A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021233195A1
WO2021233195A1 PCT/CN2021/093577 CN2021093577W WO2021233195A1 WO 2021233195 A1 WO2021233195 A1 WO 2021233195A1 CN 2021093577 W CN2021093577 W CN 2021093577W WO 2021233195 A1 WO2021233195 A1 WO 2021233195A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
qos
network element
network
terminal device
Prior art date
Application number
PCT/CN2021/093577
Other languages
English (en)
French (fr)
Inventor
彭文杰
仇力炜
魏冬冬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21808449.9A priority Critical patent/EP4145901A4/en
Publication of WO2021233195A1 publication Critical patent/WO2021233195A1/zh
Priority to US17/989,879 priority patent/US20230084686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • the terminal device In the dual connectivity (DC) mode, the terminal device will maintain connection with the main network device and the auxiliary network device at the same time, and the main network device can decide to establish the quality of service (QoS) flow of the terminal device on the auxiliary network device.
  • QoS quality of service
  • the primary network device can select a set of QoS parameters for the QoS flow based on its own implementation and instruct it to the secondary network device.
  • the primary network device may not know the air interface link status of the secondary network device or the status of the secondary network device. Single-board capability, therefore, the QoS parameters selected by the primary network device may not match the QoS that the secondary network device can actually guarantee, which will result in the QoS of the user’s service being unable to be guaranteed and affecting the service experience.
  • the embodiments of the present application provide a communication method and device, which are used to select a QoS parameter that can guarantee the quality of service for a QoS flow when there are two nodes on the access side, thereby improving the user's service experience.
  • the embodiments of the present application provide a communication method, which may be executed by a first network element, or may be executed by a component (such as a chip or a circuit) configured in the first network element, and the method includes: The element sends N groups of QoS feature information corresponding to the first QoS flow to the second network element, where N is an integer greater than or equal to 1.
  • the first network element receives first indication information from the second network element, and the first indication information is used for Indicate a group of QoS characteristic information selected by the second network element for the first QoS flow, the group of QoS characteristic information selected for the first QoS flow is one of the N groups of QoS characteristic information;
  • the network element sends second indication information, where the second indication information is used to indicate the set of QoS feature information selected for the first QoS flow.
  • the first network element sends N sets of QoS feature information corresponding to the first QoS flow to the second network element, so that the second network element can participate in the selection of QoS feature information, thereby ensuring the performance of the first QoS flow.
  • the QoS parameters can be matched with the QoS that the auxiliary network equipment can meet, effectively guarantee the service quality of the business, and improve the user's business experience.
  • the first network element may be the main network device accessed by the terminal device, the second network element may be the auxiliary network device accessed by the terminal device, and the third network element may be the core network.
  • the first network element may be a central unit (CU) in the auxiliary network device that the terminal device accesses, and the second network element may be a distributed unit (distributed unit) in the auxiliary network device that the terminal device accesses unit, DU)
  • the third network element may be the main network device accessed by the terminal device; or, the first network element may be the CU in the network device accessed by the terminal device, and the second network element may be the terminal device accessed For the DU in the network equipment, the third network element may be a core network equipment.
  • the two nodes on the access side may be the main network device and the auxiliary network device accessed by the terminal device, and may also be the CU and DU in the network device accessed by the terminal device.
  • the primary network device decides to offload the first QoS flow to the secondary network device for transmission, then the primary network device can send multiple sets of QoS feature information corresponding to the first QoS flow to the secondary network device, and the secondary network device The device selects the applied QoS feature information for the first QoS flow, and then indicates the selected group of QoS feature information to the main network device.
  • the auxiliary network device can participate in the selection of QoS feature information, thereby ensuring that the QoS parameters of the first QoS stream that is offloaded to the auxiliary network device can match the QoS that the auxiliary network device can meet, effectively guaranteeing the service quality of the service , To improve the user’s business experience.
  • the QoS flow of the service is usually carried on the DU
  • multiple sets of QoS characteristic information corresponding to the QoS flow are sent to the DU through the CU, and the DU selects a suitable set of QoS characteristic information from them, and feeds it back to the CU. It can make the finally selected QoS feature information match the service quality guaranteed by the DU, thereby effectively guaranteeing the service quality of the service and improving the user's service experience.
  • the method further includes: the first network element receives from the third network element M groups of QoS characteristic information corresponding to the first QoS flow, and then determines according to the M groups of QoS characteristic information In the N groups of QoS feature information, M is an integer greater than or equal to N.
  • the method further includes: the first network element receives auxiliary information from the second network element, and the auxiliary information is used to indicate the quality of service QoS that the second network element can satisfy.
  • a network element may determine the N groups of QoS characteristic information according to the M groups of QoS characteristic information by determining the N groups of QoS characteristic information from the M groups of QoS characteristic information according to the auxiliary information.
  • the method may further include: the first network element may also perform a calculation of one or more QoS parameters in one or more sets of QoS characteristic information in the N sets of QoS characteristic information. The value of is modified.
  • the first network element may filter the M groups of QoS characteristic information corresponding to the first QoS flow received from the third network element, and send part or all of the QoS characteristic information that meets the conditions to the second network. Yuan.
  • the screening may refer to screening the quantity of QoS feature information or changing one or more QoS in one or more sets of QoS feature information.
  • each group of QoS feature information may include the values of one or more of the following QoS parameters: upstream maximum flow bit rate (MFBR), downstream MFBR, and upstream Guaranteed flow bit rate (GFBR), downstream GFBR, upstream maximum packet loss rate (MPLR), downstream MPLR, packet delay budget (PDB), packet error rate (packet error) rate, PER), fifth-generation QoS indicator (5G QoS identifier, 5QI), maximum data burst volume (MDBV), and QoS flow priority.
  • QoS parameters upstream maximum flow bit rate (MFBR), downstream MFBR, and upstream Guaranteed flow bit rate (GFBR), downstream GFBR, upstream maximum packet loss rate (MPLR), downstream MPLR, packet delay budget (PDB), packet error rate (packet error) rate, PER), fifth-generation QoS indicator (5G QoS identifier, 5QI), maximum data burst volume (MDBV), and QoS flow priority.
  • MFBR upstream maximum flow bit rate
  • GFBR
  • the embodiments of the present application provide a communication method.
  • the method may be executed by a second network element, or may be executed by a component (such as a chip or a circuit) configured in the second network element.
  • the method includes: a second network element.
  • the element receives N sets of QoS characteristic information corresponding to the first QoS flow from the first network element, where N is an integer greater than or equal to 1; the second network element selects a set of QoS characteristics for the first QoS flow from the N sets of QoS characteristic information Information; the second network element sends first indication information to the first network element, the first indication information is used to indicate a group of QoS feature information selected by the second network element for the first QoS flow.
  • the first network element may be the main network device accessed by the terminal device, the second network element may be the auxiliary network device accessed by the terminal device, and the third network element may be the core network.
  • the first network element may be the central unit CU in the auxiliary network device that the terminal device accesses, the second network element may be the distributed unit DU in the auxiliary network device that the terminal device accesses, and the third network element may It is the main network device that the terminal device accesses; or, the first network element can be the CU in the network device that the terminal device accesses, and the second network element can be the DU in the network device that the terminal device accesses, and the third network element It can be a core network device.
  • the method further includes: the second network element sends auxiliary information to the first network element, where the auxiliary information is used to indicate the quality of service QoS that the second network element can satisfy.
  • each group of QoS feature information may include the values of one or more of the following QoS parameters: upstream maximum stream bit rate MFBR, downstream MFBR, upstream guaranteed stream bit rate GFBR, downstream GFBR, uplink maximum packet loss rate MPLR, downlink MPLR, packet delay budget PDB, packet error rate PER, fifth-generation QoS indicator 5QI, maximum data burst volume MDBV, QoS flow priority.
  • QoS parameters upstream maximum stream bit rate MFBR, downstream MFBR, upstream guaranteed stream bit rate GFBR, downstream GFBR, uplink maximum packet loss rate MPLR, downlink MPLR, packet delay budget PDB, packet error rate PER, fifth-generation QoS indicator 5QI, maximum data burst volume MDBV, QoS flow priority.
  • the embodiments of the present application provide another communication method.
  • the method can be executed by the main network device or a component (such as a chip or circuit) configured on the main network device.
  • the method includes: The secondary network device sends first instruction information, which is used to instruct the secondary network device to turn on the high-speed mode of the terminal device; the primary network device receives the high-speed configuration generated by the secondary network device for the terminal device from the secondary network device.
  • the main network device and the auxiliary network device can maintain high-speed mode synchronization, thereby effectively enhancing the stability and reliability of service transmission and improving user experience.
  • the first indication information is included in the auxiliary station addition request message, and the high-speed configuration is included in the auxiliary station addition request confirmation message; or, the first indication information is included in the auxiliary station modification request In the message, and the high-speed configuration is included in the auxiliary station modification request confirmation message.
  • the main network device can synchronize the high-speed mode during the process of configuring or changing the dual connection for the terminal device, thereby effectively improving the flexibility of the method.
  • the method further includes: the main network device sends an RRC reconfiguration message to the terminal device, and the RRC reconfiguration message includes the high-speed configuration; the main network device receives the RRC reconfiguration message from the terminal device. The configuration complete message is sent, and the RRC reconfiguration complete message is sent to the secondary network device. The RRC reconfiguration complete message is used to indicate that the terminal device has completed the high-speed configuration.
  • the method further includes: the main network device turns off the high-speed mode of the terminal device; the main network device sends second indication information to the auxiliary network device, and the second indication information is used to instruct the auxiliary network The device turns off the high-speed mode of the terminal device.
  • the method further includes: the main network device receives third indication information from the auxiliary network device, the third indication information is used to instruct the main network device to turn off the high-speed mode of the terminal device; the main network The device turns off the high-speed mode of the terminal device according to the third instruction information.
  • the main network device and the auxiliary network device can also synchronously turn off the high-speed mode of the terminal device.
  • the method further includes: the main network device receives fourth indication information from the terminal device or the core network device, and the fourth indication information is used to indicate that the terminal device supports high-speed in a dual-connection scenario. model.
  • the embodiments of the present application provide another communication method.
  • the method can be executed by the auxiliary network device or a component (such as a chip or circuit) configured in the auxiliary network device.
  • the method includes: The primary network device receives first instruction information, which is used to instruct the secondary network device to turn on the high-speed mode of the terminal device; the secondary network device generates a high-speed configuration for the terminal device according to the first instruction information; the secondary network device sends to the primary network The device sends the high-speed configuration.
  • the first indication information is included in the auxiliary station addition request message, and the high-speed configuration is included in the auxiliary station addition request confirmation message; or, the first indication information is included in the auxiliary station modification request In the message, and the high-speed configuration is included in the auxiliary station modification request confirmation message.
  • the method further includes: the secondary network device receives an RRC reconfiguration complete message from the primary network device, where the RRC reconfiguration complete message is used to indicate that the terminal device has completed the high-speed configuration.
  • the method further includes: the auxiliary network device receives second indication information from the main network device, the second indication information is used to instruct the auxiliary network device to turn off the high-speed mode of the terminal device; the auxiliary network The device turns off the high-speed mode of the terminal device according to the second instruction information.
  • the method further includes: the auxiliary network device turns off the high-speed mode of the terminal device; the auxiliary network device sends third indication information to the main network device, and the third indication information is used to indicate the main network The device turns off the high-speed mode of the terminal device.
  • the auxiliary network device includes a central unit CU and a distributed unit DU; the auxiliary network device receives the first indication information from the main network device, which may include: the CU of the auxiliary network device from the main network device Receive the first indication information; the auxiliary network device generates a high-speed configuration for the terminal device according to the first indication information, which may include: the CU of the auxiliary network device sends the first indication information to the DU of the auxiliary network device, and the DU of the auxiliary network device The first indication information is to generate a high-speed configuration; the auxiliary network device sends the high-speed configuration to the main network device, which may include: the DU of the auxiliary network device sends the high-speed configuration to the CU of the auxiliary network device, and the CU of the auxiliary network device sends the high-speed configuration to the main network device High-speed configuration.
  • an embodiment of the present application provides a communication device that has the function of implementing the first network element in any possible design of the first aspect or the first aspect, or has the function of implementing the second aspect or the first aspect.
  • the function of the auxiliary network device in any possible design of the fourth aspect.
  • the device can be a network device or a chip contained in the network device.
  • the functions of the above-mentioned communication device may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units or means corresponding to the above-mentioned functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to execute the first aspect or the first network element corresponding to any one of the first aspects in the design. , Or perform the corresponding function of the second network element in any of the above-mentioned second aspect or the second aspect of the design, or perform the corresponding function of the main network device in the above-mentioned third aspect or any of the possible designs of the third aspect Function, or perform the corresponding function of the auxiliary network device in any possible design of the fourth aspect or the fifth aspect described above.
  • the transceiver module is used to support communication between the device and other communication devices.
  • the communication device may also include a storage module, which is coupled with the processing module, which stores program instructions and data necessary for the device.
  • the processing module may be a processor
  • the communication module may be a transceiver
  • the storage module may be a memory.
  • the memory may be integrated with the processor or may be provided separately from the processor, which is not limited in this application.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled with the memory, and can be used to execute the computer program instructions stored in the memory, so that the device executes the above-mentioned first aspect or any one of the possible design methods of the first aspect, or executes the above-mentioned second aspect or the second aspect.
  • the method in any possible design of the aspect, or the method in any possible design of the above third aspect or the third aspect, or the method in any possible design of the fourth aspect or the fourth aspect above In the method.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • an embodiment of the present application provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or an instruction is executed by the processor , Enabling the chip system to implement the method in any possible design of the first aspect or the first aspect, or implement the method in any possible design of the second aspect or the second aspect, or implement the method in the foregoing first aspect A method in any possible design of the third aspect or the third aspect, or a method in any possible design of the foregoing fourth aspect or the fourth aspect.
  • the chip system further includes an interface circuit, which is used to exchange code instructions to the processor.
  • processors in the chip system, and the processors may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program or instruction is stored.
  • the computer executes the first aspect or any one of the first aspect.
  • embodiments of the present application provide a computer program product.
  • the computer reads and executes the computer program product, the computer executes the first aspect or any one of the possible design methods in the first aspect, Or implement the method in any possible design of the above second aspect or the second aspect, or implement the method in any possible design of the above third aspect or the third aspect, or implement the fourth or first aspect above Any of the four possible design methods.
  • an embodiment of the present application provides a communication system, which includes the first network element and the second network element described in the first and second aspects above.
  • the communication system may also include at least one terminal device.
  • the communication system may further include a third network element.
  • an embodiment of the present application provides a communication system, which includes the main network device and the auxiliary network device described in the third aspect and the fourth aspect.
  • the communication system may also include at least one terminal device.
  • the communication system may also include core network equipment.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable;
  • Fig. 2a, Fig. 2b, Fig. 2c and Fig. 2d are schematic diagrams of dual connection scenarios provided by an embodiment of the application;
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • 4a, 4b, and 4c are schematic diagrams of application scenarios of a communication method according to an embodiment of the application.
  • 5a and 5b are specific examples of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 7 is a specific implementation manner of a synchronous high-speed mode between a primary network device and a secondary network device in another communication method provided by an embodiment of this application;
  • FIG. 8 is another specific implementation manner of a synchronous high-speed mode between a primary network device and a secondary network device in another communication method provided by an embodiment of this application;
  • FIG. 9 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another communication device provided by an embodiment of this application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a schematic diagram of a network architecture of a communication system to which an embodiment of this application is applicable.
  • the communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or it can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device. It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the communication system.
  • the terminal device is a device with a wireless transceiver function, which is connected to a wireless access network device in a wireless manner, so as to be connected to the communication system.
  • the terminal device may also be called a terminal, user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminal equipment can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the Internet, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be an on-board module, on-board component, on-board chip, or on-board unit built into the vehicle as one or more components or units.
  • the vehicle passes through the built-in on-board module, on-board module, on-board component, on-board chip or The unit can implement the method of this application.
  • the wireless access network device is a device used to connect a terminal device to a wireless network device in the network.
  • the radio access network device is a node in the radio access network, which can also be called a base station, or a RAN node (or device).
  • the radio access network device can be referred to as a network device for short. Note that the network devices in the following all refer to wireless access network devices.
  • the radio access network equipment can be a base station, an LTE system or an evolved NodeB (eNodeB) in an evolved LTE system (LTE-Advanced, LTE-A), and a next-generation base station (eNodeB) in a 5G communication system ( Next generation NodeB (gNB), transmission reception point (TRP), baseband unit (BBU), WiFi access point (AP), base station in future mobile communication system or WiFi system Access node, etc.
  • the radio access network device may also be a module or unit that completes part of the functions of the base station, for example, it may be a central unit (CU) or a distributed unit (DU).
  • CU central unit
  • DU distributed unit
  • one CU can be connected to one or more DUs, and there is a control plane interface between the CU and the DU.
  • CU is used to support radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP), service data adaptation protocol (service data adaptation protocol, SDAP) and other protocols;
  • DU is used for It supports radio link control (RLC) layer protocol, medium access control (MAC) layer protocol and physical layer protocol.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • RLC radio link control
  • MAC medium access control
  • the network devices and terminal devices in the embodiments of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airplanes, balloons, and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • Network equipment and terminal equipment can communicate through licensed spectrum, or communicate through unlicensed spectrum, or communicate through licensed spectrum and unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of this application does not limit the spectrum resource used between the network device and the terminal device.
  • the embodiments of this application can be applied in the scenario of dual connectivity (DC).
  • the dual connectivity means that a terminal device is connected to two network devices at the same time.
  • One network device is the main network device, and the other network device is the Secondary network equipment
  • the primary network equipment may also be referred to as a master station or a master node (master node, MN)
  • the secondary network equipment may also be referred to as a secondary station or a secondary node (secondary node, SN).
  • FIGS. 2a to 2d are schematic diagrams of dual connectivity scenarios provided by embodiments of the application.
  • the dual connectivity when the core network is an evolved packet core (EPC) can also be referred to as an evolved universal land surface wireless access and new air interface dual connectivity (E-UTRA NR dual connectivity, EN-DC) mode.
  • EPC evolved packet core
  • E-UTRA NR dual connectivity, EN-DC evolved universal land surface wireless access and new air interface dual connectivity
  • the core network is an EPC
  • the main network device is an LTE base station
  • the auxiliary network device is an NR base station.
  • the LTE base station may provide air interface resources for the terminal device through at least one LTE cell.
  • the at least one LTE cell is called a master cell group (MCG).
  • the NR base station may also provide air interface resources for the terminal device through at least one NR cell.
  • the at least one NR cell is called a secondary cell group (SCG).
  • the core network is the 5th generation core (5GC), that is, the dual connectivity of the core network in the 5G communication system can also be called the dual connectivity of the new air interface and the evolved universal land surface radio access (NR E-UTRA). dual connectivity, NE-DC) mode.
  • 5GC 5th generation core
  • NR E-UTRA evolved universal land surface radio access
  • dual connectivity, NE-DC dual connectivity, NE-DC mode.
  • the core network is 5GC
  • the LTE base station is the main network device
  • the NR base station is the auxiliary network device.
  • the LTE base station may provide air interface resources for the terminal device through at least one LTE cell, and in this case, the at least one LTE cell is called an MCG.
  • the NR base station can also provide air interface resources for the terminal through at least one NR cell, and in this case, the at least one NR cell is called an SCG.
  • the core network is 5GC
  • the NR base station is the main network device
  • the LTE base station is the auxiliary network device.
  • the NR base station can provide air interface resources for the terminal device through at least one NR cell, and at this time, the at least one NR cell is called an MCG.
  • the LTE base station may also provide air interface resources for the terminal device through at least one LTE cell, and in this case, the at least one LTE cell is called an SCG.
  • both the main network equipment and the auxiliary network equipment are NR base stations.
  • the interface between the NR primary base station and the NR secondary base station is the Xn interface, which has at least a control plane connection and can also have a user plane connection; there is an NG interface between the NR primary base station and 5GC, at least a control plane connection, and there can be users Plane connection; there is an NG-U interface between the NR secondary base station and the 5GC, that is, only the user plane connection.
  • the NR primary base station can provide air interface resources for the terminal device through at least one NR cell, and at this time, the at least one NR cell is called an MCG.
  • the NR secondary base station may also provide air interface resources for the terminal device through at least one NR cell, and in this case, the at least one NR cell is called an SCG.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the descriptions of “first” and “second” do not limit the objects to be different.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • the method includes:
  • Step S301 The first network element sends N groups of QoS profile information (QoS profiles) corresponding to the first QoS flow to the second network element, where N is an integer greater than or equal to 1.
  • the first network element may also send the identification of the first QoS flow (that is, the QoS flow ID) to the second network element.
  • the terminal device can be configured for dual connectivity
  • the first network element can be the primary network device that the terminal device accesses
  • the second network element can be the secondary network device that the terminal device accesses.
  • the third network element may be a core network device
  • the auxiliary network device is connected to the main network device
  • the main network device further has a control plane connection with the core network device.
  • the core network device may be an access and A mobility management function (access and mobility management function, AMF) entity.
  • the primary network device may send the identification of the first QoS flow and the N sets of QoS characteristic information corresponding to the first QoS flow when deciding to offload the first QoS flow of the terminal device to the secondary network device for transmission.
  • the main network device may adopt a CU-DU separated architecture.
  • the main network device may specifically refer to the CU in the main network device; similarly, the auxiliary network device may also adopt CU-DU In this case, the auxiliary network device specifically refers to the CU in the auxiliary network device.
  • the primary network device may perform step S301 after configuring dual connections for the terminal device to send N groups of QoS feature information corresponding to the first QoS flow to the secondary network device;
  • the primary network device can also perform the method in step S301 to step S306 during the process of preparing the terminal device to configure dual connectivity.
  • the primary network device can perform QoS feature information with the secondary network device when the secondary network device is added. The negotiation is to report a set of QoS feature information selected by the auxiliary network device to the core network device, and then provide the terminal device with a dual-connection configuration, which is not limited by this application.
  • the terminal device can be configured with dual connectivity, and the secondary network device that the terminal device accesses adopts the CU-DU separated architecture, and the first network element can be the terminal device access
  • the CU in the auxiliary network device, the second network element may be the DU in the auxiliary network device accessed by the terminal device, the auxiliary network device is connected to the main network device, and the main network device is further connected to the core network device, exemplarily ,
  • the core network device may be AMF.
  • the CU in the secondary network device can receive the identification of the first QoS flow and the first QoS flow from the primary network device. N sets of QoS characteristic information corresponding to a QoS flow, and then the identification of the first QoS flow and the N sets of QoS characteristic information corresponding to the first QoS flow are sent to the DU in the secondary network device.
  • the network device accessed by the terminal device adopts a CU-DU separated architecture
  • the first network element may be the CU in the network device accessed by the terminal device
  • the second network element The element may be a DU in a network device accessed by the terminal device
  • the third network element may be a core network device, and the network device is connected to the core network device.
  • the core network device may be an AMF.
  • the CU in the network device accessed by the terminal device can receive the identification of the first QoS flow and the N sets of QoS feature information corresponding to the first QoS flow from the core network device, and then combine the identification of the first QoS flow And the N groups of QoS feature information corresponding to the first QoS flow are sent to the DU in the network device.
  • a set of QoS characteristic information corresponding to the QoS flow may include the values of one or more of the following QoS parameters: maximum flow bit rate (MFBR), downlink MFBR, and uplink guarantee Flow bit rate (guaranteed flow bit rate, GFBR), downlink GFBR, uplink maximum packet loss rate (MPLR), downlink MPLR, packet delay budget (PDB), packet error rate (packet error rate) , PER), fifth-generation QoS indicator (5G QoS identifier, 5QI), maximum data burst volume (MDBV), and QoS flow priority.
  • MFBR maximum flow bit rate
  • GFBR uplink guarantee Flow bit rate
  • MPLR uplink maximum packet loss rate
  • MPLR packet delay budget
  • PDB packet error rate
  • PER fifth-generation QoS indicator
  • 5G QoS identifier 5QI
  • MDBV maximum data burst volume
  • QoS flow priority QoS flow priority
  • a set of QoS feature information corresponding to a QoS flow may also be referred to as a set/set of QoS parameters or QoS profile corresponding to a QoS flow, or have other names, which are not limited in this application.
  • a set of QoS feature information may include uplink MFBR, downlink MFBR, uplink GFBR, and downlink GFBR, where the maximum value of uplink MFBR, downlink MFBR, uplink GFBR, and downlink GFBR is 4 Gbps.
  • Step S302 The second network element receives N sets of QoS feature information corresponding to the first QoS flow from the first network element.
  • Step S303 The second network element selects a group of QoS characteristic information for the first QoS flow from the N groups of QoS characteristic information.
  • Step S304 The second network element sends first indication information to the first network element, where the first indication information is used to indicate the set of QoS feature information selected by the second network element for the first QoS flow, and the set of QoS feature information is One of the N groups of QoS feature information.
  • the second network element may select a group of QoS characteristic information that can meet the highest QoS requirement from the N groups of QoS characteristic information according to the QoS that it can satisfy, and then select the group of QoS characteristic information that can meet the highest QoS requirement through the first indication information.
  • the first indication information may be the index of the selected group of QoS characteristic information in the N groups of QoS characteristic information, or may also be the specific value of each QoS parameter included in the group of QoS characteristic information. Not limited.
  • the CU can perform the specific QoS feature information selection process.
  • the DU can also specifically perform the judgment of the QoS parameters in the QoS feature information, or the CU can perform the judgment of a part of the QoS parameters, and the DU can perform the other part of the QoS.
  • the judgment of the parameters is not limited in this application.
  • Step S305 The first network element receives the first indication information from the second network element.
  • the first network element may also receive the identifier of the first QoS flow and the M groups of QoS characteristic information corresponding to the first QoS flow from the third network element, and then determine the N according to the received M groups of QoS characteristic information.
  • Group QoS feature information may be a subset of the M groups of QoS characteristic information.
  • the first network element may receive auxiliary information indicating the QoS that the second network element can satisfy from the second network element, and then determine the N from the M groups of QoS characteristic information according to the received auxiliary information.
  • the N groups of QoS feature information are part or all of the M groups of QoS feature information, or in other words, one or more sets of QoS feature information and the first network element sent by the first network element to the second network element
  • One or more sets of QoS feature information received by a network element from a third network element may be the same or different.
  • the auxiliary information may include a specific value of each QoS parameter in a group of QoS feature information, which indicates the QoS that can be guaranteed by the second network element.
  • the first network element may directly forward the M groups of QoS characteristic information corresponding to the first QoS flow received from the third network element to the second network element as the N groups of QoS characteristic information, where N is equal to M
  • the first network element may also filter the M groups of QoS characteristic information corresponding to the first QoS flow received from the third network element, and send part of the group of QoS characteristic information (that is, the N groups of QoS characteristic information) to For the second network element, N is less than M at this time.
  • the first network element determines N sets of QoS characteristic information from the M sets of QoS characteristic information, it may further further one or more sets of QoS characteristics in the N sets of QoS characteristic information The value of one or more QoS parameters in the information is modified to obtain the final N groups of QoS characteristic information.
  • the first network element is the main network device accessed by the terminal device
  • the second network element is the auxiliary network device accessed by the terminal device
  • the third network element is the core network device.
  • the main network device can be from the core network device. Receive the identifier of the first QoS flow and the M groups of QoS feature information corresponding to the first QoS flow.
  • the primary network device decides to configure the first QoS flow as the bearer of the anchor point on the secondary network device, then the primary network device can send the M groups of QoS feature information received from the core network device to the secondary network device, which will be selected by the secondary network device A set of QoS feature information applied by the first QoS flow, and the index of the selected set of QoS feature information is carried in the first indication information and sent to the main network device.
  • the main network device can determine N sets of QoS characteristic information from the received M sets of QoS characteristic information, and then set the N sets of QoS characteristic information.
  • the QoS feature information is sent to the secondary network device, and the secondary network device selects a set of QoS feature information applied by the first QoS flow, and carries the index of the selected set of QoS feature information in the first indication information and sends it to the primary network device.
  • the N groups of QoS characteristic information may be different from the M groups of QoS characteristic information, and the difference may mean that the number of N groups is different from that of M groups, or any one or more groups of the N groups of QoS characteristic information
  • the value of the specific QoS parameter is different from the value of the specific QoS parameter in one or more groups in the M groups of QoS characteristic information.
  • the primary network device can remove several sets of QoS feature information from the M sets of QoS feature information, and then send the remaining N sets of QoS feature information to the secondary network device, or the primary network device can further impose the remaining N sets of QoS feature information.
  • the main network device can also directly modify the specific values of one or more QoS parameters in one or more sets of QoS feature information in the M groups of QoS feature information to obtain the final M groups of QoS feature information.
  • N is equal to M, and the M groups of QoS characteristic information are N groups of QoS characteristic information.
  • Step S306 The first network element sends second indication information to the third network element, where the second indication information is used to indicate the group of QoS feature information selected for the first QoS flow.
  • the second indication information may be the index of the selected group of QoS characteristic information in the M groups of QoS characteristic information, or may also be the index of each QoS parameter included in the group of QoS characteristic information.
  • the specific value is not limited in this application.
  • the values of the first indication information and the second indication information may be the same or different, but one indication The group QoS characteristic information is the same. That is, the first indication information and the second indication information are used to indicate the same group of QoS characteristic information, but the index of the group of QoS characteristic information in the N groups of QoS characteristic information sent by the first network element to the second network element is the same as The index of the set of QoS characteristic information in the M sets of QoS characteristic information received by the first network element from the third network element may be the same or different.
  • N groups of QoS characteristic information sent by the first network element to the third network element are different from the number of the M groups of QoS characteristic information received by the first network element from the third network element, that is, N is less than M. .
  • the first network element sends the M groups of QoS characteristic information received from the third network element to the second network element without deletion. Then, when the first network element sends the M groups of QoS characteristic information, It is also possible to change the sequence of the M groups of QoS feature information, thereby causing the index of the same group of QoS feature information to change.
  • Figures 5a and 5b are two specific examples of a communication method provided by an embodiment of the application.
  • the terminal device has been configured with dual connections
  • the first network element is the main network device that the terminal device accesses
  • the second network element is the auxiliary network device that the terminal device accesses
  • the third network element is the AMF.
  • the AMF may send the identification of the first QoS flow (for example, QFI) and the selected multiple sets of QoS feature information to the main network device.
  • the AMF may also send the first PDU to the main network device.
  • PDU protocol data unit
  • the primary network device may send the identifier of the first QoS flow received from the AMF and multiple sets of QoS feature information for selection to the secondary network device.
  • the secondary network device may send the identification of the first QoS flow and a set of reference QoS feature information selected from multiple sets of QoS feature information according to the quality of service that the secondary network device can satisfy to the primary network equipment.
  • the main network device may send the identification of the first QoS flow and the selected set of reference QoS feature information to the AMF.
  • the terminal device is not configured with dual connectivity
  • the first network element is the CU of the network device that the terminal device accesses
  • the second network element is the terminal
  • the third network element is AMF
  • the terminal is configured with dual connections
  • the network device specifically refers to the main network device that the terminal device accesses.
  • the first application scenario is: the terminal device is configured with dual connections, the first network element is the CU of the auxiliary network device that the terminal device accesses, the second network element is the DU in the auxiliary network device that the terminal device accesses, and the third network element
  • the element is the main network device that the terminal device accesses; the process shown in Fig. 5b is similar to that in Fig. 5a, and will not be further described here.
  • the first network element may receive auxiliary information from the second network element, and the auxiliary information is used to indicate the QoS that the second network element can meet.
  • the auxiliary information is used It indicates the highest QoS that the second network element can meet.
  • the first network element may send second indication information to the third network element after receiving confirmation information (for example, ACK) from the second network element for the group of QoS feature information, and the second indication information is used to indicate selection QoS feature information of the group.
  • the two nodes on the access side may be the primary network device and the secondary network device accessed by the terminal device. If the primary network device decides to offload the first QoS flow to the secondary network device for transmission, then the primary network device can send multiple sets of QoS feature information corresponding to the first QoS flow to the secondary network device, and the secondary network device will be the first QoS flow from it Select the QoS feature information of the application, and then indicate the selected group of QoS feature information to the main network device.
  • the auxiliary network device can participate in the selection of QoS feature information, thereby ensuring that the QoS parameters of the first QoS stream that is offloaded to the auxiliary network device can match the QoS that the auxiliary network device can meet, effectively guaranteeing The service quality of the business improves the user's business experience.
  • the two nodes on the access side may be the CU and DU in the network device accessed by the terminal device. Since the QoS flow of the service is usually carried on the DU for transmission, the CU sends multiple sets of QoS feature information corresponding to the QoS flow to the DU, and the DU selects a set of appropriate QoS feature information from them, and feeds it back to the CU, which can make the final selection
  • the QoS characteristic information can match the quality of service that the DU can guarantee, thereby effectively guaranteeing the service quality of the business and improving the user's business experience.
  • the selection of part of the QoS parameters in the QoS feature information may be completed by the CU, and the selection of the remaining part of the QoS parameters may be completed by the DU.
  • the QoS feature information sent by the CU to the DU may be different from the QoS feature information that the CU receives from the core network or the main network device.
  • the QoS feature information that the CU sends to the DU includes the QoS parameters that may be the QoS received by the CU. Part of the QoS parameters included in the characteristic information.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • the method includes:
  • Step S601 The primary network device sends first instruction information to the secondary network device, where the first instruction information is used to instruct the secondary network device to turn on the high-speed mode of the terminal device.
  • the primary network device may also be referred to as a primary node, for example, it may be a primary base station;
  • the secondary network device may also be referred to as a secondary node, for example, it may be a secondary base station.
  • the embodiments of the present application can be applied to scenarios where the terminal device is in a high-speed moving state, such as high-speed railways, highways, and so on.
  • the network device (such as the main network device or the auxiliary network device) can enable the high-speed mode for the connected terminal device.
  • the network device can determine whether the terminal device is moving at a high speed through a certain preset algorithm Or whether it belongs to a high-speed user, and then decide whether to open the high-speed mode for the terminal device.
  • the network device may detect the moving speed of the terminal device, and determine the terminal device whose detected moving speed exceeds a certain set threshold as a high-speed user, and then turn on the high-speed mode for the terminal device.
  • the high-speed mode means that the network device can provide dedicated physical layer configuration for the terminal device. These configurations can also be called high-speed configuration.
  • the high-speed configuration is used to instruct the terminal device to follow the enhanced radio resource management in the high-speed mode. management (RRM) requires work, and/or instructs the terminal device to work according to the demodulation performance requirements in the high-speed mode, and the high-speed configuration may also be referred to as a high-speed enhanced configuration.
  • the network device can also decide to configure dual connections for the connected terminal device. It should be noted that the sequence of enabling the high-speed mode for the terminal device and configuring the dual connection for the terminal device is not limited in the embodiment of the present application.
  • the primary network device may send first indication information to the secondary network device to instruct the secondary network device to also turn on the high-speed mode of the terminal device, so that the primary network
  • the high-speed mode synchronization can be maintained between the device and the auxiliary network device, that is, the consistency of opening the high-speed mode can be maintained.
  • the first indication information can also be understood as used to instruct the main network device to decide to turn on the high-speed mode of the terminal device.
  • the main network device can immediately turn on the high-speed mode of the terminal device, such as sending the high-speed configuration generated by the main network device to the terminal device, so that the terminal device can use it as soon as possible
  • the primary network device can also negotiate with the secondary network device to determine a turn-on time, and then turn on the high-speed mode of the terminal device at the turn-on time, for example, combine the high-speed configuration generated by the self-generated high-speed configuration with the high-speed configuration generated by the secondary network device.
  • the configuration is sent to the terminal device together, and this application is not limited.
  • Step S602 The secondary network device receives the first indication information from the primary network device.
  • Step S603 The auxiliary network device generates a high-speed configuration for the terminal device according to the first indication information.
  • Step S604 The secondary network device sends the high-speed configuration to the main network device.
  • the CU in the secondary network device may receive the first indication information from the primary network device, and then the first The instruction information is sent to the DU in the auxiliary network device. Furthermore, the DU in the auxiliary network device can generate a high-speed configuration for the terminal device according to the first indication information, and then send the generated high-speed configuration to the CU in the auxiliary network device, and the CU then sends the high-speed configuration to the main network device .
  • Step S605 The main network device receives from the auxiliary network device the high-speed configuration generated by the auxiliary network device for the terminal device.
  • the first indication information may be included in the auxiliary station addition request message, and the high-speed configuration generated by the auxiliary network device may be included in the auxiliary station addition request confirmation message. That is to say, the main network device can execute the above method during the process of configuring the dual connection for the terminal device to synchronize the high-speed mode between the main network device and the auxiliary network device. As shown in Figure 7, in step S701, if the primary network device decides to configure dual connections for the terminal device, the primary network device may send a secondary station addition request message to the secondary network device, and the secondary station addition request message includes the first One instruction information.
  • the secondary network device may decide to turn on the high-speed mode of the terminal device, and generate a corresponding high-speed configuration for the terminal device, and then send a secondary station addition request confirmation message to the primary network device in step S702.
  • the auxiliary station addition request confirmation message includes the high-speed configuration generated by the auxiliary network device.
  • the first indication information may be included in the secondary station modification request message, and the high-speed configuration generated by the secondary network device may be included in the secondary station modification request message.
  • the primary network device can also execute the above method during the process of modifying the dual connection configuration to synchronize the high-speed mode between the primary network device and the secondary network device.
  • step S801 if the primary network device decides to modify the dual-connection configuration of the terminal device, the primary network device may send a secondary station modification request message to the secondary network device, and the secondary station modification request message includes the The first instruction information.
  • the secondary network device After receiving the first indication information, the secondary network device can decide to turn on the high-speed mode of the terminal device, and generate a corresponding high-speed configuration for the terminal device, and then send a secondary station modification request confirmation message to the primary network device in step S802.
  • the auxiliary station modification request confirmation message includes the high-speed configuration generated by the auxiliary network device.
  • the master network device may also send an RRC reconfiguration message to the terminal device.
  • the RRC reconfiguration message includes the high-speed configuration generated by the auxiliary network device.
  • the terminal device may send an RRC reconfiguration complete message to the primary network device, where the RRC reconfiguration complete message is used to indicate that the terminal device has completed the high-speed configuration provided by the secondary network device.
  • the primary network device may also send the received RRC reconfiguration complete message to the secondary network device.
  • the primary network device determines to turn off the high-speed mode of the terminal device, and sends second instruction information to the secondary network device, and the second instruction information is used to instruct the secondary network device to turn off the high-speed mode of the terminal device ,
  • the second indication information is used to notify the secondary network device that the primary network device decides to turn off the high-speed mode of the terminal device.
  • the primary network device can also generate a high-speed mode release configuration for the terminal device.
  • the secondary network device can also generate a high-speed mode release configuration for the terminal device, and then send the release configuration to Main network equipment.
  • the main network device can send the release configuration of the high-speed mode generated by itself and the release configuration of the high-speed mode generated by the auxiliary network device to the terminal device together, so that the main network device and the auxiliary network device are also consistent on whether to close the high-speed mode .
  • the secondary network device may also determine to turn off the high-speed mode of the terminal device, and send third instruction information to the primary network device.
  • the third instruction information is used to instruct the primary network device to turn off the high-speed mode of the terminal device.
  • Mode or it can also be understood that the third indication information is used to notify the primary network device that the secondary network device decides to turn off the high-speed mode of the terminal device.
  • the secondary network device can also generate a high-speed mode release configuration for the terminal device and send it to the main network device.
  • it can be sent to the main network device together with the above third instruction information, so that after the main network device receives the third instruction information, It is also possible to generate the high-speed mode release configuration for the terminal device, and then send the self-generated high-speed mode release configuration and the high-speed mode release configuration generated by the auxiliary network device to the terminal device, so that the main network device and the auxiliary network device are It is also consistent on turning off the high-speed mode.
  • the main network equipment and the auxiliary network equipment connected by the terminal equipment can be kept consistent on the on and off of the high-speed mode, thereby effectively enhancing the stability and reliability of the service transmission of the terminal equipment and improving the service experience .
  • the main network device may receive fourth indication information from the terminal device or the core network device, where the fourth indication information is used to indicate that the terminal device supports a high-speed mode in a dual-connection scenario.
  • the fourth indication information may also be understood as the capability information of the terminal device, which is used to indicate whether the terminal device has the capability of supporting high-speed enhanced configuration in a dual-connection scenario.
  • the auxiliary network device may also trigger the opening of the high-speed mode, that is, the auxiliary network device may also detect that the terminal device is in a high-speed movement state by itself, and decide to turn on the high-speed mode of the terminal device. Then, the instruction information for instructing to turn on the high-speed mode of the terminal device and the high-speed configuration generated for the terminal device are sent to the main network device.
  • the secondary network device may actively send a secondary station modification request message to the primary network device, and the secondary station modification request message carries indication information for instructing to turn on the high-speed mode of the terminal device and the high-speed configuration generated by the secondary network device.
  • the specific implementation of the indication information is similar to the first indication information, and will not be repeated here.
  • the primary network device can determine to turn off the high-speed mode of the terminal device, and send second indication information to the secondary network device to instruct the secondary network device to turn off the high-speed mode of the terminal device .
  • the secondary network device may determine to turn off the high-speed mode of the terminal device, and send third instruction information to the primary network device to instruct the primary network device to turn off the high-speed mode of the terminal device.
  • the two operations of triggering the opening of the high-speed mode of the terminal device and triggering the closing of the high-speed mode of the terminal device can be independent of each other.
  • the main network device can initiate the opening or closing of the high-speed mode, or
  • the auxiliary network device can initiate the on or off of the high-speed mode.
  • the main network device may trigger the closing of the high-speed mode, or the auxiliary network device may trigger the closing of the high-speed mode.
  • the main network device can trigger the high-speed mode closing, or the auxiliary network device can trigger the high-speed mode closing.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 900 includes a transceiver module 910 and a processing module 920.
  • the communication device can be used to implement the functions related to the network equipment in any of the foregoing method embodiments.
  • the communication device may be a network device, or a chip included in the network device.
  • the communication device may be used as the first network element or the second network element to execute the method embodiment shown in FIG. 3.
  • the first network element may be the main network device accessed by the terminal device.
  • the second network element may be the auxiliary network device accessed by the terminal device
  • the third network element may be the core network device.
  • the first network element may be corresponding to the central unit CU in the auxiliary network device accessed by the terminal device
  • the second network element may be the distributed unit DU in the auxiliary network device accessed by the terminal device.
  • the network element can be the main network device that the terminal device accesses.
  • the first network element may be a CU in a network device accessed by the terminal device.
  • the second network element may be a DU in a network device accessed by the terminal device
  • the third network element may be a core network device.
  • the transceiver module 910 is configured to send N groups of QoS feature information corresponding to the first QoS flow to the second network element, N Is an integer greater than or equal to 1; and receiving first indication information from the second network element, where the first indication information is used to indicate a set of QoS feature information selected by the second network element for the first QoS flow, where the first The group of QoS characteristic information selected by the QoS flow is one of the N groups of QoS characteristic information; the processing module 920 is configured to send second indication information to the third network element through the transceiver module 910, and the second indication information is used to indicate A set of QoS feature information selected by the first QoS flow.
  • the transceiver module 910 is further configured to receive M groups of QoS characteristic information corresponding to the first QoS flow from a third network element; the processing module 920 is also configured to determine according to the M groups of QoS characteristic information In the N groups of QoS feature information, M is an integer greater than or equal to N.
  • the transceiver module 910 is also used to receive auxiliary information from the second network element, the auxiliary information is used to indicate the quality of service QoS that the second network element can meet; the processing module 920 is also used to The auxiliary information determines the N groups of QoS characteristic information from the M groups of QoS characteristic information.
  • the processing module 920 is further configured to modify the value of one or more QoS parameters in one or more sets of QoS characteristic information in the N sets of QoS characteristic information.
  • the transceiver module 910 is configured to receive N sets of QoS feature information corresponding to the first QoS flow from the first network element, where N is greater than or equal to
  • the processing module 920 is configured to select a group of QoS feature information for the first QoS flow from the N groups of QoS feature information; the transceiver module 910 is configured to send first indication information to the first network element, the first The indication information is used to indicate a group of QoS feature information selected by the second network element for the first QoS flow.
  • the transceiver module 910 is further configured to send auxiliary information to the first network element, where the auxiliary information is used to indicate the quality of service QoS that the second network element can satisfy.
  • the communication device can also be used as a main network device or an auxiliary network device to perform the method embodiment shown in FIG.
  • the terminal device is in dual connection, it is connected to the auxiliary network device.
  • the transceiver module 910 is configured to send first instruction information to the secondary network device, and the first instruction information is used to instruct the secondary network device.
  • the network device starts the high-speed mode of the terminal device; the processing module 920 is configured to receive the high-speed configuration generated by the auxiliary network device for the terminal device from the auxiliary network device through the transceiver module 910.
  • the first indication information is included in the auxiliary station addition request message, and the high-speed configuration is included in the auxiliary station addition request confirmation message; or, the first indication information is included in the auxiliary station modification request message, and The high-speed configuration is included in the auxiliary station modification request confirmation message.
  • the transceiver module is used to send an RRC reconfiguration message to the terminal device, where the RRC reconfiguration message includes the high-speed configuration; and receive the RRC reconfiguration complete message from the terminal device, and reconfigure the RRC The configuration complete message is sent to the secondary network device, and the RRC reconfiguration complete message is used to indicate that the terminal device has completed the high-speed configuration.
  • the processing module 920 is used to turn off the high-speed mode of the terminal device; the transceiver module 910 is used to send second instruction information to the auxiliary network device, and the second instruction information is used to instruct the auxiliary network device to turn off the terminal device High-speed mode.
  • the transceiver module 910 is configured to receive third indication information from the auxiliary network device, and the third indication information is used to instruct the main network device to turn off the high-speed mode of the terminal device; the processing module 920 is configured to, according to the third Instructions, turn off the high-speed mode of the terminal device.
  • the transceiver module 910 is further configured to receive fourth indication information from a terminal device or a core network device, where the fourth indication information is used to indicate that the terminal device supports a high-speed mode in a dual-connection scenario.
  • the transceiver module 910 is configured to receive first indication information from the primary network device, and the first indication information is used to instruct the secondary network device to turn on the terminal The high-speed mode of the device; the processing module 920 is configured to generate a high-speed configuration for the terminal device according to the first instruction information; the transceiver module 910 is also configured to send the high-speed configuration to the main network device.
  • the first indication information is included in the auxiliary station addition request message, and the high-speed configuration is included in the auxiliary station addition request confirmation message; or, the first indication information is included in the auxiliary station modification request message, and The high-speed configuration is included in the auxiliary station modification request confirmation message.
  • the transceiver module 910 is further configured to receive an RRC reconfiguration complete message from the main network device, where the RRC reconfiguration complete message is used to indicate that the terminal device has completed the high-speed configuration.
  • the transceiver module 910 is also used to receive second indication information from the main network device, the second indication information is used to instruct the secondary network device to turn off the high-speed mode of the terminal device; the processing module 920 is also used to: According to the second instruction information, the high-speed mode of the terminal device is turned off.
  • the processing module 920 is also used to turn off the high-speed mode of the terminal device; the transceiver module 910 is also used to send third instruction information to the main network device, and the third instruction information is used to instruct the main network device to turn off The high-speed mode of the terminal device.
  • the processing module 920 involved in the communication device may be implemented by a processor or a processor-related circuit component
  • the transceiver module 910 may be implemented by a transceiver or a transceiver-related circuit component.
  • the operation and/or function of each module in the communication device is to implement the corresponding process of the method shown in FIG. 3, FIG. 5a, FIG. 5b, FIG. 6, FIG. 7 or FIG. .
  • FIG. 10 is a schematic diagram of another structure of a communication device provided in an embodiment of this application.
  • the communication device may be specifically a type of network equipment, such as a base station, which is used to implement the functions of the network equipment in any of the above method embodiments.
  • the network equipment may be implemented by the methods shown in FIG. 3, FIG. 5a, and FIG. 5b.
  • the first network element or the second network element in the example may also be the main network device or the auxiliary network device in the method embodiments shown in FIG. 6, FIG. 7, and FIG. 8.
  • the network device 1000 includes: one or more radio frequency units, such as a remote radio unit (RRU) 1001 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU)1002.
  • the RRU 1001 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 10011 and a radio frequency unit 10012.
  • the RRU 1001 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the 1002 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1001 and the BBU 1002 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1002 is the control center of the base station, and may also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1002 may be used to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the BBU 1002 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), or may support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1002 may also include a memory 10021 and a processor 10022, and the memory 10021 is used to store necessary instructions and data.
  • the processor 10022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the sending operation in the foregoing method embodiment. For example, when the base station is the first network element in the method embodiment shown in FIG.
  • the processor may be used to control the base station to send N groups of QoS features corresponding to the first QoS flow to the second network element. Information, and sending operations such as sending the second instruction information to the third network element.
  • the memory 10021 and the processor 10022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor, the The chip system implements the method in any of the foregoing method embodiments.
  • processors in the chip system there may be one or more processors in the chip system.
  • the processor can be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may be a non-transitory processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip, or may be set on different chips.
  • the setting method of the processor is not specifically limited.
  • the chip system may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can also be a central processor unit (CPU), a network processor (NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (microcontroller).
  • the controller unit, MCU may also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • each step in the foregoing method embodiment may be completed by a logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-readable instructions, and when the computer reads and executes the computer-readable instructions, the computer is caused to execute any of the above-mentioned method embodiments In the method.
  • the embodiments of the present application also provide a computer program product.
  • the computer reads and executes the computer program product, the computer is caused to execute the method in any of the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes a first network element and a second network element.
  • the communication system may also include at least one terminal device.
  • the communication system may further include a third network element.
  • the first network element may be the main network device accessed by the terminal device, and correspondingly, the second network element may be the auxiliary network device accessed by the terminal device, and the third network element may be the core network device; or A network element can be the central unit CU in the auxiliary network device accessed by the terminal device.
  • the second network element can be the distributed unit DU in the auxiliary network device accessed by the terminal device, and the third network element can be The main network device accessed by the terminal device; or, the first network element may be the CU in the network device accessed by the terminal device.
  • the second network element may be the DU in the network device accessed by the terminal device.
  • the three network elements may be core network equipment.
  • the first network element, the second network element, and the third network element may cooperate with each other to execute the method embodiment shown in FIG. 3, FIG. 5a, and FIG. 5b.
  • I won’t repeat it here.
  • the embodiment of the present application also provides a communication system, which includes a main network device and an auxiliary network device.
  • the communication system may also include at least one terminal device.
  • the communication system may also include core network equipment.
  • the main network device and the auxiliary network device can cooperate with each other to execute the method embodiments shown in FIG. 6, FIG. 7, and FIG. 8. For details, please refer to the above description of the method embodiments, which will not be repeated here.
  • processors mentioned in the embodiments of the present application may be a CPU, or other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:第一网元向第二网元发送第一QoS流对应的N组QoS特征信息,然后从第二网元接收第一指示信息,该第一指示信息用于指示第二网元为第一QoS流选择的一组QoS特征信息,所述为第一QoS流选择的一组QoS特征信息为所述N组QoS特征信息之一;第一网元向第三网元发送第二指示信息,该第二指示信息用于指示为第一QoS流选择的一组QoS特征信息。第一QoS流可具体承载于第二网元上,采用上述技术方案,可使第二网元也能够参与到QoS特征信息的选择中,从而确保第一QoS流的QoS参数可与辅网络设备能够满足的QoS相匹配,有效保障业务的服务质量,改善用户的业务体验。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年05月22日提交中国国家知识产权局、申请号为202010441955.6、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在双连接(dual connectivity,DC)模式下,终端设备会同时与主网络设备和辅网络设备保持连接,而且主网络设备可以决定将终端设备的服务质量(Quality of Service,QoS)流建立在辅网络设备上。现有技术中,主网络设备可以基于自己的实现为QoS流选择一组QoS参数并指示给辅网络设备,但由于主网络设备可能并不知道辅网络设备的空口链路状况或辅网络设备的单板能力,因此,可能会出现主网络设备选择的QoS参数与辅网络设备实际能够保障的QoS不符的情况,进而导致用户业务的QoS无法得到保障,影响业务体验。
发明内容
本申请实施例提供一种通信方法及装置,用于在接入侧存在两个节点的情况下,为QoS流选择能够保障其服务质量的QoS参数,从而改善用户的业务体验。
第一方面,本申请实施例提供一种通信方法,该方法可以由第一网元执行,也可以由配置于第一网元的部件(例如芯片或电路)执行,该方法包括:第一网元向第二网元发送第一QoS流对应的N组QoS特征信息,N为大于或等于1的整数;第一网元从第二网元接收第一指示信息,该第一指示信息用于指示第二网元为第一QoS流选择的一组QoS特征信息,所述为第一QoS流选择的一组QoS特征信息为所述N组QoS特征信息之一;第一网元向第三网元发送第二指示信息,该第二指示信息用于指示所述为第一QoS流选择的一组QoS特征信息。
采用该技术方案,第一网元通过向第二网元发送第一QoS流对应的N组QoS特征信息,可使第二网元参与到QoS特征信息的选择中,从而确保第一QoS流的QoS参数可与辅网络设备能够满足的QoS相匹配,有效保障业务的服务质量,改善用户的业务体验。
在第一方面的一种可能的设计中,第一网元可以为终端设备接入的主网络设备,第二网元可以为终端设备接入的辅网络设备,第三网元可以为核心网设备;或者,第一网元可以为终端设备接入的辅网络设备中的中心单元(central unit,CU),第二网元可以为终端设备接入的辅网络设备中的分布式单元(distributed unit,DU),第三网元可以为终端设备接入的主网络设备;或者,第一网元可以为终端设备接入的网络设备中的CU,第二网元可以为终端设备接入的网络设备中的DU,第三网元可以为核心网设备。
本申请实施例中,接入侧的两个节点可以是终端设备接入的主网络设备和辅网络设备,也可以是终端设备接入的网络设备中的CU和DU。在第一种场景下,若主网络设备决定将第一QoS流分流到辅网络设备传输,那么主网络设备可将第一QoS流对应的多组QoS特征信息发送给辅网络设备,由辅网络设备从中为第一QoS流选择应用的QoS特征信息,然后再向主网络设备指示选择的该组QoS特征信息。如此,可使辅网络设备可参与到QoS特征信息的选择中,从而确保分流到辅网络设备的第一QoS流的QoS参数可与辅网络设备能够满足的QoS相匹配,有效保障业务的服务质量,改善用户的业务体验。
在第二种场景下,由于业务的QoS流通常承载在DU上,通过CU向DU发送QoS流对应的多组QoS特征信息,由DU从中选择一组合适的QoS特征信息,并反馈给CU,可使得最终选择的QoS特征信息能够与DU能够保障的服务质量相匹配,从而有效保障业务的服务质量,改善用户的业务体验。
在第一方面的一种可能的设计中,该方法还包括:第一网元从第三网元接收第一QoS流对应的M组QoS特征信息,然后根据所述M组QoS特征信息,确定所述N组QoS特征信息,M为大于或等于N的整数。
在第一方面的一种可能的设计中,该方法还包括:第一网元从第二网元接收辅助信息,该辅助信息用于指示第二网元能够满足的服务质量QoS,如此,第一网元根据M组QoS特征信息,确定所述N组QoS特征信息可以为,根据所述辅助信息,从所述M组QoS特征信息中确定出所述N组QoS特征信息。
在第一方面的一种可能的设计中,该方法还包括:第一网元还可以对所述N组QoS特征信息中的一组或多组QoS特征信息中的一项或多项QoS参数的取值进行修改。
本申请实施例中,第一网元可将从第三网元接收到的第一QoS流对应的M组QoS特征信息进行筛选,将满足条件的部分或全部组QoS特征信息发送给第二网元。所述筛选可以是指筛选QoS特征信息的数量或改变一组或多组QoS特征信息中的一个或多个QoS。由此可有效提高第二网元的处理效果。
在第一方面的一种可能的设计中,每组QoS特征信息中可包括下列一项或多项QoS参数的取值:上行最大流比特率(maximum flow bit rate,MFBR)、下行MFBR、上行保证流比特率(guaranteed flow bit rate,GFBR)、下行GFBR、上行最大丢包率(maximum packet loss rate,MPLR)、下行MPLR、包延迟预算(packet delay budget,PDB)、错包率(packet error rate,PER)、第五代QoS指示(5G QoS identifier,5QI)、最大数据爆发量(maximum data burst volume,MDBV)、QoS流的优先级。
第二方面,本申请实施例提供一种通信方法,该方法可以由第二网元执行,也可以由配置于第二网元的部件(例如芯片或电路)执行,该方法包括:第二网元从第一网元接收第一QoS流对应的N组QoS特征信息,N为大于等于1的整数;第二网元从所述N组QoS特征信息中为第一QoS流选择一组QoS特征信息;第二网元向第一网元发送第一指示信息,该第一指示信息用于指示第二网元为第一QoS流选择的一组QoS特征信息。
在第二方面的一种可能的设计中,第一网元可以为终端设备接入的主网络设备,第二网元可以为终端设备接入的辅网络设备,第三网元可以为核心网设备;或者,第一网元可以为终端设备接入的辅网络设备中的中心单元CU,第二网元可以为终端设备接入的辅网络设备中的分布式单元DU,第三网元可以为终端设备接入的主网络设备;或者,第一网元可以为终端设备接入的网络设备中的CU,第二网元可以为终端设备接入的网络设备中 的DU,第三网元可以为核心网设备。
在第二方面的一种可能的设计中,该方法还包括:第二网元向第一网元发送辅助信息,该辅助信息用于指示第二网元能够满足的服务质量QoS。
在第二方面的一种可能的设计中,每组QoS特征信息中可包括下列一项或多项QoS参数的取值:上行最大流比特率MFBR、下行MFBR、上行保证流比特率GFBR、下行GFBR、上行最大丢包率MPLR、下行MPLR、包延迟预算PDB、错包率PER、第五代QoS指示5QI、最大数据爆发量MDBV、QoS流的优先级。
第二方面的各种可能的设计中的有益效果,均可参考第一方面中对应的描述,在此不再赘述。
第三方面,本申请实施例提供另一种通信方法,该方法可以由主网络设备执行,也可以由配置于主网络设备的部件(例如芯片或电路)执行,该方法包括:主网络设备向辅网络设备发送第一指示信息,该第一指示信息用于指示辅网络设备开启终端设备的高速模式;主网络设备从辅网络设备接收辅网络设备为该终端设备生成的高速配置。
采用该技术方案,主网络设备与辅网络设备可保持高速模式的同步,从而有效增强业务传输的稳定性和可靠性,提高用户体验。
在第三方面的一种可能的设计中,第一指示信息包含在辅站添加请求消息中,且高速配置包含在辅站添加请求确认消息中;或者,第一指示信息包含在辅站修改请求消息中,且高速配置包含在辅站修改请求确认消息中。
本申请实施例中,主网络设备可以在为终端设备配置双连接或是更改双连接的过程中进行高速模式的同步,从而有效提高该方法的灵活性。
在第三方面的一种可能的设计中,该方法还包括:主网络设备向终端设备发送RRC重配消息,该RRC重配消息中包括所述高速配置;主网络设备从终端设备接收RRC重配完成消息,并将该RRC重配完成消息发送给辅网络设备,该RRC重配完成消息用于指示终端设备已完成高速配置。
在第三方面的一种可能的设计中,该方法还包括:主网络设备关闭终端设备的高速模式;主网络设备向辅网络设备发送第二指示信息,该第二指示信息用于指示辅网络设备关闭终端设备的高速模式。
在第三方面的一种可能的设计中,该方法还包括:主网络设备从辅网络设备接收第三指示信息,该第三指示信息用于指示主网络设备关闭终端设备的高速模式;主网络设备根据第三指示信息,关闭终端设备的高速模式。
本申请实施例中,主网络设备与辅网络设备也可同步关闭终端设备的高速模式。
在第三方面的一种可能的设计中,该方法还包括:主网络设备从终端设备或核心网设备接收第四指示信息,该第四指示信息用于指示终端设备支持双连接场景下的高速模式。
第四方面,本申请实施例提供另一种通信方法,该方法可以由辅网络设备执行,也可以由配置于辅网络设备的部件(例如芯片或电路)执行,该方法包括:辅网络设备从主网络设备接收第一指示信息,该第一指示信息用于指示辅网络设备开启终端设备的高速模式;辅网络设备根据该第一指示信息,为终端设备生成高速配置;辅网络设备向主网络设备发送所述高速配置。
在第四方面的一种可能的设计中,第一指示信息包含在辅站添加请求消息中,且高速配置包含在辅站添加请求确认消息中;或者,第一指示信息包含在辅站修改请求消息中, 且高速配置包含在辅站修改请求确认消息中。
在第四方面的一种可能的设计中,该方法还包括:辅网络设备从主网络设备接收RRC重配完成消息,该RRC重配完成消息用于指示终端设备已完成高速配置。
在第四方面的一种可能的设计中,该方法还包括:辅网络设备从主网络设备接收第二指示信息,该第二指示信息用于指示辅网络设备关闭终端设备的高速模式;辅网络设备根据该第二指示信息,关闭终端设备的高速模式。
在第四方面的一种可能的设计中,该方法还包括:辅网络设备关闭终端设备的高速模式;辅网络设备向主网络设备发送第三指示信息,该第三指示信息用于指示主网络设备关闭终端设备的高速模式。
在第四方面的一种可能的设计中,辅网络设备包括中心单元CU和分布式单元DU;辅网络设备从主网络设备接收第一指示信息,可包括:辅网络设备的CU从主网络设备接收第一指示信息;辅网络设备根据第一指示信息,为终端设备生成高速配置,可包括:辅网络设备的CU将第一指示信息发送至辅网络设备的DU,由辅网络设备的DU根据第一指示信息,生成高速配置;辅网络设备向主网络设备发送高速配置,可包括:辅网络设备的DU将高速配置发送至辅网络设备的CU,由辅网络设备的CU向主网络设备发送高速配置。
第四方面的各种可能的设计中的有益效果,均可参考第三方面中对应的描述,在此不再赘述。
第五方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面或第一方面的任一种可能的设计中第一网元的功能,或具有实现上述第二方面或第二方面的任一种可能的设计中第二网元的功能,或具有实现上述第三方面或第三方面的任一种可能的设计中主网络设备的功能,或具有实现上述第四方面或第四方面的任一种可能的设计中辅网络设备的功能。该装置可以为网络设备,也可以为网络设备中包含的芯片。上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,所述硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。
在一种可能的设计中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面或第一方面的任一种设计中第一网元相应的功能,或者执行上述第二方面或第二方面的任一种设计中第二网元相应的功能,或者执行上述第三方面或第三方面的任一种可能的设计中主网络设备相应的功能,或者执行上述第四方面或第五方面的任一种可能的设计中辅网络设备相应的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为第一网元时,可向第二网元发送第一QoS流对应的N组QoS特征信息。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置,本申请并不限定。
在另一种可能的设计中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面、或第一方面的任一种可能的设计中的方法,或者执行上述第二方面或第二方面的任一种可能的设计中的方法,或者执行上述第三方面或第三方面的任一种可能的设计中的方法,或者执行上述第四方面或第四方面的任一种可能的设计中的方法。可选地,该装置还包括通 信接口,处理器与通信接口耦合。当装置为网络设备时,该通信接口可以是收发器或输入/输出接口;当该装置为网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第六方面,本申请实施例提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述第一方面或第一方面的任一种可能的设计中的方法,或实现上述第二方面或第二方面的任一种可能的设计中的方法,或实现上述第三方面或第三方面的任一种可能的设计中的方法,或实现上述第四方面或第四方面的任一种可能的设计中的方法。
可选地,该芯片系统还包括接口电路,该接口电路用于交互代码指令至所述处理器。
可选地,该芯片系统中的处理器可以为一个或多个,该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
第七方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序或指令,当该计算机程序或指令被执行时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法,或执行上述第二方面或第二方面的任一种可能的设计中的方法,或执行上述第三方面或第三方面的任一种可能的设计中的方法,或执行上述第四方面或第四方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第一方面的任一种可能的设计中的方法,或执行上述第二方面或第二方面的任一种可能的设计中的方法,或执行上述第三方面或第三方面的任一种可能的设计中的方法,或执行上述第四方面或第四方面的任一种可能的设计中的方法。
第九方面,本申请实施例提供一种通信系统,该通信系统包括上述第一方面和第二方面中所述的第一网元和第二网元。可选的,该通信系统中还可包括至少一个终端设备。可选的,该通信系统中还可以包括第三网元。
第十方面,本申请实施例提供一种通信系统,该通信系统包括上述第三方面和第四方面中所述的主网络设备和辅网络设备。可选的,该通信系统中还可包括至少一个终端设备。可选的,该通信系统中还可包括核心网设备。
附图说明
图1为本申请实施例适用的一种通信系统的网络架构示意图;
图2a、图2b、图2c和图2d为本申请实施例提供的双连接的场景示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4a、图4b和图4c为本申请实施例的一种通信方法的应用场景示意图;
图5a和图5b为本申请实施例提供的一种通信方法的具体示例;
图6为本申请实施例提供的另一种通信方法的流程示意图;
图7为本申请实施例提供的另一种通信方法中主网络设备与辅网络设备之间同步高速模式的一种具体实施方式;
图8为本申请实施例提供的另一种通信方法中主网络设备与辅网络设备之间同步高速模式的另一种具体实施方式;
图9为本申请实施例提供的一种通信装置的示意图;
图10为本申请实施例提供的另一种通信装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)通信系统或新无线(new radio,NR)系统,或者应用于未来的通信系统或其它类似的通信系统等。
请参考图1,为本申请实施例适用的一种通信系统的网络架构示意图。该通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不作限定。
所述终端设备是一种具有无线收发功能的设备,通过无线方式与无线接入网设备相连,从而接入到通信系统中。终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请实施例对终端设备所采用的具体技术和具体设备形态不作限定。
作为示例而非限定,终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能 全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
所述无线接入网设备是网络中用于将终端设备接入到无线网络设备的设备。无线接入网设备为无线接入网中的节点,又可以称为基站,还可以称为RAN节点(或设备),在本申请中,无线接入网设备可以简称为网络设备,如无特殊说明,下文中的网络设备均指无线接入网设备。无线接入网设备可以是基站(base station)、LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(evolved NodeB,eNodeB)、5G通信系统中的下一代基站(next generation NodeB,gNB)、发送接收点(transmission reception point,TRP)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、未来移动通信系统中的基站或WiFi系统中的接入节点等。无线接入网设备也可以是完成基站部分功能的模块或单元,例如,可以是中心单元(central unit,CU),或者分布式单元(distributed unit,DU)。本申请实施例对无线接入网设备所采用的具体技术和具体设备形态不作限定。
在无线接入网设备包括CU和DU的分离式部署架构中,一个CU可与一个或多个DU连接,且CU与DU之间存在控制面接口。具体的,CU用于支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU用于支持无线链路控制(radio link control,RLC)层协议、媒体接入控制(medium access control,MAC)层协议和物理层协议。
本申请实施例中的网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对网络设备和终端设备的应用场景不作限定。
网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过非授权频谱进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
本申请实施例可应用在双连接(dual connectivity,DC)的场景下,所述双连接是指终端设备同时接入到两个网络设备,其中一个网络设备为主网络设备,另一个网络设备为辅网络设备,主网络设备也可以称为主站或主节点(master node,MN),辅网络设备也可以称为辅站或辅节点(secondary node,SN)。
图2a至图2d为本申请实施例提供的双连接的场景示意图。核心网为演进分组核心网(evolved packet core,EPC)时的双连接又可以称为演进的通用陆面无线接入与新空口双连接(E-UTRA NR dual connectivity,EN-DC)模式。示例性地,如图2a所示,核心网为EPC,主网络设备为LTE基站,辅网络设备为NR基站。在这一场景下,LTE基站和NR基站之间存在X2接口,至少有控制面连接,可以还有用户面连接;LTE基站和EPC之间存在S1接口,至少有控制面连接,可以还有用户面连接;NR基站和EPC之间存在S1-U 接口,即只有用户面连接。LTE基站可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为主小区(master cell group,MCG)。相应的,NR基站也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为辅小区组(secondary cell group,SCG)。
核心网为第五代核心网(5th generation core,5GC),即5G通信系统中的核心网时的双连接又可以称为新空口与演进的通用陆面无线接入双连接(NR E-UTRA dual connectivity,NE-DC)模式。示例性地,如图2b所示,核心网为5GC,LTE基站为主网络设备,NR基站为辅网络设备。在这一场景下,LTE基站和NR基站之间存在Xn接口,至少有控制面连接,可以还有用户面连接;LTE基站和5GC之间存在NG接口,至少有控制面连接,可以还有用户面连接;NR基站和5GC之间存在NG-U接口,即只有用户面连接。LTE基站可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为MCG。相应的,NR基站也可以通过至少一个NR小区为终端提供空口资源,此时所述至少一个NR小区称为SCG。
如图2c所示,核心网为5GC,NR基站为主网络设备,LTE基站为辅网络设备。在这一场景下,NR基站和LTE基站之间存在Xn接口,至少有控制面连接,可以还有用户面连接;NR基站和5GC之间存在NG接口,至少有控制面连接,可以还有用户面连接;NR基站和5GC之间存在NG-U接口,即只有用户面连接。此时NR基站可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为MCG。相应的,LTE基站也可以通过至少一个LTE小区为终端设备提供空口资源,此时所述至少一个LTE小区称为SCG。
如图2d所示,核心网为5GC时,主网络设备和辅网络设备都是NR基站。NR主基站备与NR辅基站之间的接口为Xn接口,至少有控制面连接,可以还有用户面连接;NR主基站和5GC之间存在NG接口,至少有控制面连接,可以还有用户面连接;NR辅基站和5GC之间存在NG-U接口,即只有用户面连接。此时NR主基站可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为MCG。相应的,NR辅基站也可以通过至少一个NR小区为终端设备提供空口资源,此时所述至少一个NR小区称为SCG。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
请参考图3,为本申请实施例提供的一种通信方法的流程示意图,该方法包括:
步骤S301、第一网元向第二网元发送第一QoS流对应的N组QoS特征信息(QoS profiles),N为大于或等于1的整数。
可选的,第一网元还可以向第二网元发送第一QoS流的标识(即QoS flow ID)。
在一种实施方式中,如图4a所示,终端设备可以被配置双连接,第一网元可以为终端设备接入的主网络设备,第二网元可以为终端设备接入的辅网络设备,第三网元可以为核心网设备,所述辅网络设备与主网络设备连接,该主网络设备进一步与核心网设备具有控制面连接,示例性地,所述核心网设备可以为接入与移动性管理功能(access and mobility management function,AMF)实体。在这一实施方式中,主网络设备可在决定将终端设备的第一QoS流分流到辅网络设备来传输时,将第一QoS流的标识以及第一QoS流对应的N组QoS特征信息发送给辅网络设备。可选的,主网络设备可以采用CU-DU的分离式架构,此时,所述主网络设备具体可以是指主网络设备中的CU;类似的,所述辅网络设备也可以采用CU-DU的分离式架构,此时,所述辅网络设备具体是指辅网络设备中的CU。
需要说明的是,在图4a所示的实施方式中,主网络设备可以在为终端设备配置好双连接后,执行步骤S301,向辅网络设备发送第一QoS流对应的N组QoS特征信息;或者,主网络设备也可以在为终端设备准备配置双连接的过程中,执行步骤S301至步骤S306中的方法,例如,主网络设备可以在添加辅网络设备时,与辅网络设备进行QoS特征信息的协商,向核心网设备上报辅网络设备选择的一组QoS特征信息,然后再为终端设备提供双连接的配置,本申请并不限定。
另一种实施方式中,如图4b所示,终端设备可以被配置双连接,且终端设备接入的辅网络设备采用CU-DU的分离式架构,第一网元可以为终端设备接入的辅网络设备中的CU,第二网元可以为终端设备接入的辅网络设备中的DU,所述辅网络设备与主网络设备连接,该主网络设备进一步与核心网设备连接,示例性地,所述核心网设备可以为AMF。在这一实施方式中,在主网络设备决定将终端设备的第一QoS流分流到辅网络设备传输的情况下,辅网络设备中的CU可从主网络设备接收第一QoS流的标识以及第一QoS流对应的N组QoS特征信息,然后将第一QoS流的标识以及第一QoS流对应的N组QoS特征信息发送给辅网络设备中的DU。
在又一种实施方式中,如图4c所示,终端设备接入的网络设备采用CU-DU的分离式架构,第一网元可以为终端设备接入的网络设备中的CU,第二网元可以为终端设备接入的网络设备中的DU,第三网元可以为核心网设备,该网络设备与核心网设备连接,示例性地,核心网设备可以为AMF。在这一实施方式中,终端设备接入的网络设备中的CU可从核心网设备接收第一QoS流的标识以及第一QoS流对应的N组QoS特征信息,然后将第一QoS流的标识以及第一QoS流对应的N组QoS特征信息发送给该网络设备中的DU。
本申请实施例中,所述QoS流对应的一组QoS特征信息可包括下列一项或多项QoS参数的取值:上行最大流比特率(maximum flow bit rate,MFBR)、下行MFBR、上行保证流比特率(guaranteed flow bit rate,GFBR)、下行GFBR、上行最大丢包率(maximum packet loss rate,MPLR)、下行MPLR、包延迟预算(packet delay budget,PDB)、错包率(packet error rate,PER)、第五代QoS指示(5G QoS identifier,5QI)、最大数据爆发量(maximum data burst volume,MDBV)、QoS流的优先级。当然,一组QoS特征信息中还可以包括其它QoS参数的取值,本申请在此不再一一列举。应注意,QoS流对应的一组QoS特征信 息也可以称为QoS流对应的一组/套QoS参数或QoS profile,或者具有其他名称,本申请并不限定。
举例来说,一组QoS特征信息中可包括上行MFBR、下行MFBR、上行GFBR和下行GFBR,其中,上行MFBR、下行MFBR、上行GFBR和下行GFBR的最大取值均为4Gbps。
步骤S302、第二网元从第一网元接收第一QoS流对应的N组QoS特征信息。
步骤S303、第二网元从所述N组QoS特征信息中为所述第一QoS流选择一组QoS特征信息。
步骤S304、第二网元向第一网元发送第一指示信息,该第一指示信息用于指示第二网元为第一QoS流选择的该组QoS特征信息,该组QoS特征信息为所述N组QoS特征信息之一。
本申请实施例中,第二网元可根据自身能够满足的QoS,从所述N组QoS特征信息中选择出能够满足的QoS要求最高的一组QoS特征信息,然后通过第一指示信息将选择出的该组QoS特征信息告知给第一网元。所述第一指示信息可以是选择出的该组QoS特征信息在所述N组QoS特征信息中的索引,或者也可以是该组QoS特征信息中包括的各个QoS参数的具体取值,本申请并不限定。
需要说明的是,在图4b和图4c所示的实施例中,由于第二网元采用CU-DU的分离式架构,因此在具体进行QoS特征信息选择的过程中,可以由CU来具体执行对QoS特征信息中包括的QoS参数的判断,也可以由DU来具体执行对QoS特征信息中QoS参数的判断,或者也可以是由CU来执行一部分QoS参数的判断,由DU来执行另一部分QoS参数的判断,本申请并不限定。
步骤S305、第一网元从第二网元接收第一指示信息。
可选的,第一网元还可以从第三网元接收第一QoS流的标识以及第一QoS流对应的M组QoS特征信息,然后根据接收到的M组QoS特征信息,确定所述N组QoS特征信息。其中,所述N组QoS特征信息可以是所述M组QoS特征信息的子集。例如,第一网元可以从第二网元接收用于指示第二网元能够满足的QoS的辅助信息,然后根据接收到的该辅助信息,从所述M组QoS特征信息中确定所述N组QoS特征信息,所述N组QoS特征信息是所述M组QoS特征信息的部分或全部组,或者说,第一网元发送给第二网元的一组或多组QoS特征信息与第一网元从第三网元接收的一组或多组QoS特征信息可以是相同或不同的。所述辅助信息中可以包括一组QoS特征信息中各个QoS参数的具体取值,表示第二网元能够保证的QoS。
也就是说,第一网元可以将从第三网元接收到的第一QoS流对应的M组QoS特征信息作为所述N组QoS特征信息直接转发给第二网元,此时N等于M;第一网元也可以对从第三网元接收到的第一QoS流对应的M组QoS特征信息进行筛选,将其中的部分组QoS特征信息(即所述N组QoS特征信息)发送给第二网元,此时N小于M。
可选的,在此基础上,第一网元从所述M组QoS特征信息中确定出N组QoS特征信息后,还可以进一步对该N组QoS特征信息中的一组或多组QoS特征信息中的一个或多个QoS参数的取值进行修改,得到最终的所述N组QoS特征信息。
举例来说,假设第一网元为终端设备接入的主网络设备,第二网元为终端设备接入的辅网络设备,第三网元为核心网设备,主网络设备可从核心网设备接收第一QoS流的标识以及第一QoS流对应的M组QoS特征信息。如果主网络设备决定将第一QoS流配置为锚 点在辅网络设备上的承载,那么主网络设备可以将从核心网设备接收的M组QoS特征信息发送给辅网络设备,由辅网络设备选择第一QoS流应用的一组QoS特征信息,并将选择的该组QoS特征信息的索引携带在第一指示信息中发送给主网络设备。
如果主网络设备决定将第一QoS流配置为锚点在主网络设备上的承载,那么主网络设备可从接收到的M组QoS特征信息中确定出N组QoS特征信息,然后将该N组QoS特征信息发送给辅网络设备,由辅网络设备选择第一QoS流应用的一组QoS特征信息,并将选择的该组QoS特征信息的索引携带在第一指示信息中发送给主网络设备。其中,所述N组QoS特征信息可以与所述M组QoS特征信息不同,所述不同可以是指N组与M组的数量不同或者N组QoS特征信息中的任意一组或多组内的具体的QoS参数的取值与M组QoS特征信息中的一组或多组内的具体的QoS参数的取值不同。例如,主网络设备可在M组QoS特征信息中去掉几组QoS特征信息,然后将剩下的N组QoS特征信息发送给辅网络设备,或者主网络设备还可以进一步对剩下的N组QoS特征信息中的某一组或多组QoS特征信息中的某一项或多项QoS参数的具体取值进行修改,得到最终的N组QoS特征信息,此时N为小于M的整数;再或者,主网络设备也可以直接对M组QoS特征信息中的一组或多组QoS特征信息中的一项或多项QoS参数的具体取值进行修改,得到最终的M组QoS特征信息,此时N等于M,所述M组QoS特征信息即为N组QoS特征信息。
步骤S306、第一网元向第三网元发送第二指示信息,该第二指示信息用于指示为第一QoS流选择的该组QoS特征信息。
本申请实施例中,所述第二指示信息可以是选择出的该组QoS特征信息在所述M组QoS特征信息中的索引,或者也可以是该组QoS特征信息中包括的各个QoS参数的具体取值,本申请并不限定。
应注意的是,本申请实施例中,若第一指示信息和第二指示信息采用的都是索引,那么该第一指示信息与第二指示信息的取值可以相同或不同,但是指示的一组QoS特征信息是相同的。即,第一指示信息和第二指示信息用于指示同一组QoS特征信息,但该组QoS特征信息在第一网元发送给第二网元的所述N组QoS特征信息中的索引,与该组QoS特征信息在第一网元从第三网元接收的所述M组QoS特征信息中的索引可以是相同或不同的。这可能是因为第一网元向第三网元发送的所述N组QoS特征信息,与第一网元从第三网元接收的所述M组QoS特征信息的数量不同,即N小于M。即使N等于M,第一网元将从第三网元接收到的M组QoS特征信息不作删减地发送给第二网元,那么第一网元在发送所述M组QoS特征信息时,也有可能改变所述M组QoS特征信息之间的排列顺序,进而导致同一组QoS特征信息的索引改变。
图5a和图5b为本申请实施例提供的一种通信方法的两个具体示例。如图5a所示,终端设备已配置有双连接,第一网元为终端设备接入的主网络设备,第二网元为终端设备接入的辅网络设备,第三网元为AMF。在步骤S501中,AMF可向主网络设备发送第一QoS流的标识(例如QFI),以及选择的多组QoS特征信息。可选的,由于可能存在多个协议数据单元(protocol data unit,PDU)会话,且不同PDU会话中的QoS流的标识可能相同,因此,在步骤S501中,AMF还可向主网络设备发送第一QoS流所在的PDU会话的标识。在步骤S502中,主网络设备可将从AMF接收到的第一QoS流的标识以及供选择的多组QoS特征信息发送给辅网络设备。在步骤S503中,辅网络设备可将第一QoS流的标识, 以及根据辅网络设备自身能够满足的服务质量从供选择的多组QoS特征信息选择的一组参考QoS特征信息,发送给主网络设备。在步骤S504中,主网络设备可将第一QoS流的标识以及选择的一组参考QoS特征信息发送给AMF。
如图5b所示,可包含两种可能的应用场景,其中一种应用场景为:终端设备未配置双连接,第一网元为终端设备接入的网络设备的CU,第二网元为终端设备接入的网络设备的DU,第三网元为AMF,或者终端配置有双连接,所述网络设备具体是指终端设备接入的主网络设备。第一种应用场景为:终端设备配置有双连接,第一网元为终端设备接入的辅网络设备的CU,第二网元为终端设备接入的辅网络设备中的DU,第三网元为终端设备接入的主网络设备;图5b中所示的流程与图5a中类似,在此不再展开描述。
可选的,在一种可能的实施方式中,第一网元可从第二网元接收辅助信息,该辅助信息用于指示第二网元能够满足的QoS,可选的,该辅助信息用于指示第二网元能够满足的要求最高的QoS。如此,第一网元从第三网元接收到第一QoS流对应的M组QoS特征信息后,可根据该辅助信息,从中选择第二网元能够满足的QoS要求最高的一组QoS特征信息,然后将该组QoS特征信息发送给第二网元。进而,第一网元可在接收到来自第二网元对该组QoS特征信息的确认信息(例如ACK)后,向第三网元发送第二指示信息,该第二指示信息用于指示选择的该组QoS特征信息。
由此可知,本申请实施例中,接入侧的两个节点可以是终端设备接入的主网络设备和辅网络设备。若主网络设备决定将第一QoS流分流到辅网络设备传输,那么主网络设备可将第一QoS流对应的多组QoS特征信息发送给辅网络设备,由辅网络设备从中为第一QoS流选择应用的QoS特征信息,进而再向主网络设备指示选择的该组QoS特征信息。如此,通过采用该技术方案,辅网络设备可参与到QoS特征信息的选择中,从而确保分流到辅网络设备的第一QoS流的QoS参数可与辅网络设备能够满足的QoS相匹配,有效保障业务的服务质量,改善用户的业务体验。
类似的,接入侧的两个节点可以是终端设备接入的网络设备中的CU和DU。由于业务的QoS流通常会承载在DU上传输,因此通过CU向DU发送QoS流对应的多组QoS特征信息,由DU从中选择一组合适的QoS特征信息,并反馈给CU,可使得最终选择的QoS特征信息能够与DU能够保障的服务质量相匹配,从而有效保障业务的服务质量,改善用户的业务体验。
可选的,在一种可能的实施方式中,QoS特征信息中的部分QoS参数的选择可以由CU完成,剩余部分QoS参数的选择可以由DU完成。此时CU向DU发送的QoS特征信息与CU从核心网或者主网络设备收到的QoS特征信息可以不同,具体的,CU发给DU的QoS特征信息包含的QoS参数可以是CU收到的QoS特征信息中包含的QoS参数的一部分。
请参考图6,为本申请实施例提供的另一种通信方法的流程示意图,该方法包括:
步骤S601、主网络设备向辅网络设备发送第一指示信息,该第一指示信息用于指示辅网络设备开启终端设备的高速(high speed)模式。
其中,主网络设备也可以称为主节点,例如可以是主基站;辅网络设备也可以称为辅节点,例如可以是辅基站。
本申请实施例可以应用于终端设备处于高速移动状态的场景下,例如高铁、高速公路 等。在这一场景下,网络设备(例如主网络设备或辅网络设备)可以为接入的终端设备开启高速模式,例如,网络设备可以通过某种预设的算法来判断终端设备是否处于高速移动中或是否属于高速用户,进而决策是否为该终端设备开启高速模式。作为一种示例,网络设备可以检测终端设备的移动速度,并将检测到的移动速度超过某一设定阈值的终端设备确定为高速用户,进而为该终端设备开启高速模式。所述高速模式是指网络设备可以为该终端设备提供专用的物理层配置,这些配置又可以称为高速配置,所述高速配置用于指示终端设备按照高速模式下增强的无线资源管理(radio resource management,RRM)要求工作,和/或,指示终端设备按照高速模式下的解调性能要求工作,所述高速配置也可以称为高速增强配置。
在为终端设备开启高速模式的基础上,网络设备还可以决策为接入的终端设备配置双连接。应注意,本申请实施例中对为终端设备开启高速模式,以及为终端设备配置双连接的先后顺序不作限定。
在步骤S601的具体实施中,主网络设备可在决定开启终端设备的高速模式后,向辅网络设备发送第一指示信息,以指示辅网络设备也开启该终端设备的高速模式,从而使得主网络设备与辅网络设备之间能够保持高速模式的同步,即保持高速模式开启的一致性。鉴于此,所述第一指示信息也可以理解为用于指示主网络设备决定开启终端设备的高速模式。
应注意,在主网络设备决定开启终端设备的高速模式后,主网络设备可以立即开启该终端设备的高速模式,如向终端设备发送主网络设备生成的高速配置,以使终端设备能够尽快地应用这些高速配置;或者,主网络设备也可以通过与辅网络设备协商确定一开启时刻,然后在该开启时刻同时开启终端设备的高速模式,例如,将自己生成的高速配置与辅网络设备生成的高速配置一起发送给终端设备,本申请并不限定。
步骤S602、辅网络设备从主网络设备接收第一指示信息。
步骤S603、辅网络设备根据该第一指示信息,为终端设备生成高速配置。
步骤S604、辅网络设备向主网络设备发送所述高速配置。
具体的,若辅网络设备采用CU-DU的分离式架构,在步骤S602至步骤S604的具体实施例中,辅网络设备中的CU可从主网络设备接收第一指示信息,然后将该第一指示信息发送给辅网络设备中的DU。进而,辅网络设备中的DU可根据该第一指示信息,为终端设备生成高速配置,然后将生成的高速配置发送给辅网络设备中的CU,由CU再将该高速配置发送给主网络设备。
步骤S605、主网络设备从辅网络设备接收辅网络设备为终端设备生成的高速配置。
在一种实施方式中,第一指示信息可以包含在辅站添加请求消息中,辅网络设备生成的高速配置可以包含在辅站添加请求确认消息中。也就是说,主网络设备可以在为终端设备配置双连接的过程中,执行上述方法,以在主网络设备与辅网络设备之间同步高速模式。如图7所示,在步骤S701中,若主网络设备决定为该终端设备配置双连接,主网络设备可以向辅网络设备发送辅站增加请求消息,该辅站增加请求消息中包括所述第一指示信息。辅网络设备在接收到该第一指示信息后可决定开启终端设备的高速模式,并为该终端设备生成相应的高速配置,进而在步骤S702中向主网络设备发送辅站增加请求确认消息,该辅站增加请求确认消息中包括辅网络设备生成的高速配置。
在另一种实施方式中,第一指示信息可以包含在辅站修改请求消息中,辅网络设备生 成的高速配置可以包含在辅站修改请求消息中。也就是说,主网络设备也可以在修改双连接配置的过程中,执行上述方法,以在主网络设备与辅网络设备之间同步高速模式。如图8所示,在步骤S801中,若主网络设备决定修改该终端设备的双连接配置,主网络设备可以向辅网络设备发送辅站修改请求消息,该辅站修改请求消息中包括所述第一指示信息。辅网络设备在接收到该第一指示信息后可决定开启终端设备的高速模式,并为该终端设备生成相应的高速配置,进而在步骤S802中向主网络设备发送辅站修改请求确认消息,该辅站修改请求确认消息中包括辅网络设备生成的高速配置。
在步骤S605之后,如图7中的步骤S703、步骤S704和步骤S705,以及图8中的步骤S803、步骤S804和步骤S805所示,主网络设备还可以向终端设备发送RRC重配置消息,该RRC重配置消息中包括辅网络设备生成的高速配置。终端设备可在完成所述高速配置后,向主网络设备发送RRC重配置完成消息,该RRC重配置完成消息用于指示终端设备已完成辅网络设备提供的高速配置。进而,主网络设备还可将接收到的RRC重配置完成消息发送给辅网络设备。
可选的,本申请实施例中,主网络设备确定要关闭终端设备的高速模式,并向辅网络设备发送第二指示信息,该第二指示信息用于指示辅网络设备关闭终端设备的高速模式,或者也可以理解为,该第二指示信息用于通知辅网络设备:主网络设备决定关闭终端设备的高速模式。主网络设备还可以为终端设备生成高速模式的释放配置,同理,辅网络设备接收到该第二指示信息后,也可以为该终端设备生成高速模式的释放配置,然后将该释放配置发送给主网络设备。如此,主网络设备可将自己生成的高速模式的释放配置和辅网络设备生成的高速模式的释放配置一起发送给终端设备,从而使得主网络设备和辅网络设备在是否关闭高速模式上也保持一致。
可选的,本申请实施例中,辅网络设备也可以确定关闭终端设备的高速模式,并向主网络设备发送第三指示信息,该第三指示信息用于指示主网络设备关闭终端设备的高速模式,或者也可以理解为,该第三指示信息用于通知主网络设备:辅网络设备决定关闭终端设备的高速模式。辅网络设备还可以为终端设备生成高速模式的释放配置,并发送给主网络设备,例如可以和上述第三指示信息一起发送给主网络设备,如此主网络设备接收到该第三指示信息后,也可以为终端设备生成高速模式的释放配置,然后将自己生成的高速模式的释放配置和辅网络设备生成的高速模式的释放配置一起发送给终端设备,从而使得主网络设备和辅网络设备在是否关闭高速模式上也保持一致。
通过采用上述技术方案,可使终端设备接入的主网络设备与辅网络设备之间就高速模式的开启和关闭保持一致,从而有效增强终端设备的业务传输的稳定性和可靠性,提高业务体验。
可选的,主网络设备可以从终端设备或核心网设备接收第四指示信息,该第四指示信息用于指示该终端设备支持双连接场景下的高速模式。该第四指示信息也可以理解为终端设备的能力信息,用于表示终端设备在双连接场景下是否具有支持高速增强配置的能力。
可选的,在一种可能的实施方式中,也可以由辅网络设备来触发高速模式的开启,即辅网络设备也可以自行检测到终端设备处于高速移动状态,决定开启终端设备的高速模式,然后向主网络设备发送用于指示开启终端设备的高速模式的指示信息,以及为终端设备生成的高速配置。例如,辅网络设备可以主动向主网络设备发送辅站修改请求消息,在该辅站修改请求消息中携带用于指示开启终端设备的高速模式的指示信息,以及辅网络设备生 成的高速配置。所述指示信息的具体实施方式与第一指示信息类似,在此不再赘述。
类似的,在辅网络设备触发高速模式的开启的场景下,主网络设备可确定关闭终端设备的高速模式,并向辅网络设备发送第二指示信息,以指示辅网络设备关闭终端设备的高速模式。或者,辅网络设备可以确定关闭终端设备的高速模式,并向主网络设备发送第三指示信息,以指示主网络设备关闭终端设备的高速模式。
由此可知,本申请实施例中,触发终端设备高速模式的开启以及触发终端设备高速模式的关闭这两个操作可以是相互独立的,既可以由主网络设备发起高速模式的开或关,也可以由辅网络设备发起高速模式的开或关。
具体的,在由主网络设备触发高速模式开启的场景下,可以由主网络设备触发高速模式的关闭,也可以由辅网络设备触发高速模式的关闭。在由辅网络设备触发高速模式开启的场景下,可以由主网络设备触发高速模式的关闭,也可以由辅网络设备触发高速模式的关闭。
本申请实施例还提供一种通信装置,请参考图9,为本申请实施例提供的一种通信装置的结构示意图,该通信装置900包括:收发模块910和处理模块920。该通信装置可用于实现上述任一方法实施例中涉及网络设备的功能。例如,该通信装置可以是网络设备,或网络设备中包括的芯片。
该通信装置可以作为第一网元或第二网元,执行图3中所示的方法实施例。其中,第一网元可以是终端设备接入的主网络设备,相对应的,第二网元可以是终端设备接入的辅网络设备,第三网元可以是核心网设备。或者,第一网元与可以是终端设备接入的辅网络设备中的中心单元CU,相对应的,第二网元可以是终端设备接入的辅网络设备中的分布式单元DU,第三网元可以是终端设备接入的主网络设备。或者,第一网元可以是终端设备接入的网络设备中的CU,相对应的,第二网元可以是终端设备接入的网络设备中的DU,第三网元可以是核心网设备。
示例性的,当该通信装置作为第一网元,执行图3中所示的方法实施例时,收发模块910用于向第二网元发送第一QoS流对应的N组QoS特征信息,N为大于或等于1的整数;以及从第二网元接收第一指示信息,该第一指示信息用于指示第二网元为第一QoS流选择的一组QoS特征信息,所述为第一QoS流选择的一组QoS特征信息为所述N组QoS特征信息之一;处理模块920用于,通过收发模块910向第三网元发送第二指示信息,该第二指示信息用于指示为第一QoS流选择的一组QoS特征信息。
在一种可能的设计中,收发模块910还用于,从第三网元接收第一QoS流对应的M组QoS特征信息;处理模块920还用于,根据所述M组QoS特征信息,确定所述N组QoS特征信息,M为大于或等于N的整数。
在一种可能的设计中,收发模块910还用于,从第二网元接收辅助信息,该辅助信息用于指示第二网元能够满足的服务质量QoS;处理模块920还用于,根据所述辅助信息,从所述M组QoS特征信息中确定出所述N组QoS特征信息。
在一种可能的设计中,处理模块920还用于,对所述N组QoS特征信息中的一组或多组QoS特征信息中的一项或多项QoS参数的取值进行修改。
当该通信装置作为第二网元,执行图3中所示的方法实施例时,收发模块910用于,从第一网元接收第一QoS流对应的N组QoS特征信息,N为大于等于1的整数;处理模 块920用于从所述N组QoS特征信息中为第一QoS流选择一组QoS特征信息;收发模块910用于,向第一网元发送第一指示信息,该第一指示信息用于指示第二网元为第一QoS流选择的一组QoS特征信息。
在一种可能的设计中,收发模块910还用于,向第一网元发送辅助信息,该辅助信息用于指示第二网元能够满足的服务质量QoS。
该通信装置也可以作为主网络设备或辅网络设备执行图6中所示的方法实施例,其中所述主网络设备可以是终端设备处于双连接时接入的主网络设备,辅网络设备可以是终端设备处于双连接时,接入的辅网络设备。
示例性的,当该通信装置作为主网络设备,执行图6中所示的方法实施例时,收发模块910用于,向辅网络设备发送第一指示信息,该第一指示信息用于指示辅网络设备开启终端设备的高速模式;处理模块920用于,通过所述收发模块910从辅网络设备接收辅网络设备为该终端设备生成的高速配置。
在一种可能的设计中,第一指示信息包含在辅站添加请求消息中,且高速配置包含在辅站添加请求确认消息中;或者,第一指示信息包含在辅站修改请求消息中,且高速配置包含在辅站修改请求确认消息中。
在一种可能的设计中,收发模块用于,向终端设备发送RRC重配消息,该RRC重配消息中包括所述高速配置;以及从终端设备接收RRC重配完成消息,并将该RRC重配完成消息发送给辅网络设备,该RRC重配完成消息用于指示终端设备已完成高速配置。
在一种可能的设计中,处理模块920用于,关闭终端设备的高速模式;收发模块910用于向辅网络设备发送第二指示信息,该第二指示信息用于指示辅网络设备关闭终端设备的高速模式。
在一种可能的设计中,收发模块910用于从辅网络设备接收第三指示信息,该第三指示信息用于指示主网络设备关闭终端设备的高速模式;处理模块920用于,根据第三指示信息,关闭终端设备的高速模式。
在一种可能的设计中,收发模块910还用于从终端设备或核心网设备接收第四指示信息,该第四指示信息用于指示终端设备支持双连接场景下的高速模式。
当该通信装置作为辅网络设备,执行图6中所示的方法实施例时,收发模块910用于,从主网络设备接收第一指示信息,该第一指示信息用于指示辅网络设备开启终端设备的高速模式;处理模块920用于,根据该第一指示信息,为终端设备生成高速配置;收发模块910还用于,向主网络设备发送所述高速配置。
在一种可能的设计中,第一指示信息包含在辅站添加请求消息中,且高速配置包含在辅站添加请求确认消息中;或者,第一指示信息包含在辅站修改请求消息中,且高速配置包含在辅站修改请求确认消息中。
在一种可能的设计中,收发模块910还用于,从主网络设备接收RRC重配完成消息,该RRC重配完成消息用于指示终端设备已完成高速配置。
在一种可能的设计中,收发模块910还用于,从主网络设备接收第二指示信息,该第二指示信息用于指示辅网络设备关闭终端设备的高速模式;处理模块920还用于,根据该第二指示信息,关闭终端设备的高速模式。
在一种可能的设计中,处理模块920还用于关闭终端设备的高速模式;收发模块910还用于,向主网络设备发送第三指示信息,该第三指示信息用于指示主网络设备关闭终端 设备的高速模式。
应理解,该通信装置中涉及的处理模块920可以由处理器或处理器相关电路组件实现,收发模块910可以由收发器或收发器相关电路组件实现。该通信装置中的各个模块的操作和/或功能分别为了实现例如图3、图5a、图5b、图6、图7或图8中所示方法的相应流程,为了简洁,在此不再赘述。
请参考图10,为本申请实施例中提供的一种通信装置的另一结构示意图。该通信装置可具体为一种网络设备,例如基站,用于实现上述任一方法实施例中涉及网络设备的功能,所述网络设备可以是图3、图5a、图5b中所示的方法实施例中的第一网元或第二网元,或者也可以是图6、图7、图8中所示的方法实施例中的主网络设备或辅网络设备。
该网络设备1000包括:一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1001和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1002。所述RRU 1001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线10011和射频单元10012。所述RRU 1001部分主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU 1002部分主要用于进行基带处理,对基站进行控制等。所述RRU 1001与BBU 1002可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1002为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)1002可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU 1002可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1002还可以包括存储器10021和处理器10022,所述存储器10021用于存储必要的指令和数据。所述处理器10022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中的发送操作。举例来说,当所述基站为图3中所示的方法实施例中的第一网元时,处理器可以用于控制基站执行向第二网元发送第一QoS流对应的N组QoS特征信息,以及向第三网元发送第二指示信息等发送操作。所述存储器10021和处理器10022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA), 可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括第一网元和第二网元。可选的,该通信系统中还可包括至少一个终端设备。可选的,该通信系统中还可包括第三网元。
其中,第一网元可以是终端设备接入的主网络设备,相对应的,第二网元为所述终端设备接入的辅网络设备,第三网元可以是核心网设备;或者,第一网元可以是终端设备接入的辅网络设备中的中心单元CU,相对应的,第二网元可以是终端设备接入的辅网络设备中的分布式单元DU,第三网元可以是终端设备接入的主网络设备;或者,第一网元可以是终端设备接入的网络设备中的CU,相对应的,第二网元可以是终端设备接入的网络设备中的DU,第三网元可以是核心网设备。所述第一网元、第二网元和第三网元可以相互配合,以执行图3、图5a、图5b中所示的方法实施例,具体请参见上文中对该方法实施例的描述,在此不再重复。
本申请实施例还提供一种通信系统,该通信系统包括主网络设备和辅网络设备。可选的,该通信系统中还可包括至少一个终端设备。可选的,该通信系统中还可包括核心网设备。所述主网络设备和辅网络设备可以相互配合,以执行图6、图7、图8中所示的方法实施例,具体请参见上文中对该方法实施例的描述,在此不再重复。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中涉及的各种数字编号仅为描述方便进行的区分,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。

Claims (46)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一网元向第二网元发送第一QoS流对应的N组QoS特征信息,所述N为大于或等于1的整数;
    所述第一网元从所述第二网元接收第一指示信息,所述第一指示信息用于指示所述第二网元为所述第一QoS流选择的一组QoS特征信息,所述为所述第一QoS流选择的一组QoS特征信息为所述N组QoS特征信息之一;
    所述第一网元向第三网元发送第二指示信息,所述第二指示信息用于指示所述为所述第一QoS流选择的一组QoS特征信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网元为所述终端设备接入的主网络设备,所述第二网元为所述终端设备接入的辅网络设备,所述第三网元为核心网设备;
    或者,所述第一网元为所述终端设备接入的辅网络设备中的中心单元CU,所述第二网元为所述终端设备接入的辅网络设备中的分布式单元DU,所述第三网元为所述终端设备接入的主网络设备;
    或者,所述第一网元为所述终端设备接入的网络设备中的CU,所述第二网元为所述终端设备接入的网络设备中的DU,所述第三网元为核心网设备。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一网元从所述第三网元接收所述第一QoS流对应的M组QoS特征信息,所述M为大于或等于N的整数;
    所述第一网元根据所述M组QoS特征信息,确定所述N组QoS特征信息。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一网元从所述第二网元接收辅助信息,所述辅助信息用于指示所述第二网元能够满足的服务质量QoS;
    所述第一网元根据所述M组QoS特征信息,确定所述N组QoS特征信息,包括:
    所述第一网元根据所述辅助信息,从所述M组QoS特征信息中确定所述N组QoS特征信息。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述第一网元对所述N组QoS特征信息中的一组或多组QoS特征信息中的一项或多项QoS参数的取值进行修改。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,每组QoS特征信息中包括下列一项或多项QoS参数的取值:
    上行最大流比特率MFBR、下行MFBR、上行保证流比特率GFBR、下行GFBR、上行最大丢包率MPLR、下行MPLR、包延迟预算PDB、错包率PER、第五代QoS指示5QI、最大数据爆发量MDBV、QoS流的优先级。
  7. 一种通信方法,其特征在于,所述方法包括:
    第二网元从第一网元接收第一QoS流对应的N组QoS特征信息,所述N为大于等于1的整数;
    所述第二网元从所述N组QoS特征信息中为所述第一QoS流选择一组QoS特征信息;
    所述第二网元向所述第一网元发送第一指示信息,所述第一指示信息用于指示所述第 二网元为所述第一QoS流选择的一组QoS特征信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网元为所述终端设备接入的主网络设备,所述第二网元为所述终端设备接入的辅网络设备,所述第三网元为核心网设备;
    或者,所述第一网元为所述终端设备接入的辅网络设备中的中心单元CU,所述第二网元为所述终端设备接入的辅网络设备中的分布式单元DU,所述第三网元为所述终端设备接入的主网络设备;
    或者,所述第一网元为所述终端设备接入的网络设备中的CU,所述第二网元为所述终端设备接入的网络设备中的DU,所述第三网元为核心网设备。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第二网元向所述第一网元发送辅助信息,所述辅助信息用于指示所述第二网元能够满足的服务质量QoS。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,每组QoS特征信息中包括下列一项或多项QoS参数的取值:
    上行最大流比特率MFBR、下行MFBR、上行保证流比特率GFBR、下行GFBR、上行最大丢包率MPLR、下行MPLR、包延迟预算PDB、错包率PER、第五代QoS指示5QI、最大数据爆发量MDBV、QoS流的优先级。
  11. 一种通信装置,其特征在于,该装置包括:
    收发模块,用于向第二网元发送第一QoS流对应的N组QoS特征信息,所述N为大于或等于1的整数;
    所述收发模块还用于,从所述第二网元接收第一指示信息,所述第一指示信息用于指示所述第二网元为所述第一QoS流选择的一组QoS特征信息,所述为所述第一QoS流选择的一组QoS特征信息为所述N组QoS特征信息之一;
    处理模块,用于通过所述收发模块向第三网元发送第二指示信息,所述第二指示信息用于指示所述为所述第一QoS流选择的一组QoS特征信息。
  12. 根据权利要求11所述的装置,其特征在于,所述装置为所述终端设备接入的主网络设备,所述第二网元为所述终端设备接入的辅网络设备,所述第三网元为核心网设备;
    或者,所述装置为所述终端设备接入的辅网络设备中的中心单元CU,所述第二网元为所述终端设备接入的辅网络设备中的分布式单元DU,所述第三网元为所述终端设备接入的主网络设备;
    或者,所述第一装置为所述终端设备接入的网络设备中的CU,所述第二网元为所述终端设备接入的网络设备中的DU,所述第三网元为核心网设备。
  13. 根据权利要求11或12所述的装置,其特征在于,所述收发模块还用于,从所述第三网元接收所述第一QoS流对应的M组QoS特征信息,所述M为大于或等于N的整数;
    所述处理模块还用于,根据所述M组QoS特征信息,确定所述N组QoS特征信息。
  14. 根据权利要求13所述的装置,其特征在于,所述收发模块还用于,从所述第二网元接收辅助信息,所述辅助信息用于指示所述第二网元能够满足的服务质量QoS;
    所述处理模块具体用于,根据所述辅助信息,从所述M组QoS特征信息中确定所述N组QoS特征信息。
  15. 根据权利要求13或14所述的装置,其特征在于,所述处理模块还用于,对所述N组QoS特征信息中的一组或多组QoS特征信息中的一项或多项QoS参数的取值进行修改。
  16. 根据权利要求11至15中任一项所述的装置,其特征在于,每组QoS特征信息中包括下列一项或多项QoS参数的取值:
    上行最大流比特率MFBR、下行MFBR、上行保证流比特率GFBR、下行GFBR、上行最大丢包率MPLR、下行MPLR、包延迟预算PDB、错包率PER、第五代QoS指示5QI、最大数据爆发量MDBV、QoS流的优先级。
  17. 一种通信装置,其特征在于,所述装置包括:
    收发模块,用于从第一网元接收第一QoS流对应的N组QoS特征信息,所述N为大于等于1的整数;
    处理模块,用于从所述N组QoS特征信息中为所述第一QoS流选择一组QoS特征信息;
    所述收发模块还用于,向所述第一网元发送第一指示信息,所述第一指示信息用于指示所述装置为所述第一QoS流选择的一组QoS特征信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第一网元为所述终端设备接入的主网络设备,所述装置为所述终端设备接入的辅网络设备,所述第三网元为核心网设备;
    或者,所述第一网元为所述终端设备接入的辅网络设备中的中心单元CU,所述装置为所述终端设备接入的辅网络设备中的分布式单元DU,所述第三网元为所述终端设备接入的主网络设备;
    或者,所述第一网元为所述终端设备接入的网络设备中的CU,所述装置为所述终端设备接入的网络设备中的DU,所述第三网元为核心网设备。
  19. 根据权利要求17或18所述的装置,其特征在于,所述收发模块还用于,向所述第一网元发送辅助信息,所述辅助信息用于指示所述装置能够满足的服务质量QoS。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,每组QoS特征信息中包括下列一项或多项QoS参数的取值:
    上行最大流比特率MFBR、下行MFBR、上行保证流比特率GFBR、下行GFBR、上行最大丢包率MPLR、包延迟预算PDB、错包率PER、第五代QoS指示5QI、最大数据爆发量MDBV、QoS流的优先级。
  21. 一种通信方法,其特征在于,所述方法包括:
    主网络设备向辅网络设备发送第一指示信息,所述第一指示信息用于指示所述辅网络设备开启终端设备的高速模式;
    所述主网络设备从所述辅网络设备接收所述辅网络设备为所述终端设备生成的高速配置。
  22. 根据权利要求21所述的方法,其特征在于,所述第一指示信息包含在辅站添加请求消息中,且高速配置包含在辅站添加请求确认消息中;或者,所述第一指示信息包含在辅站修改请求消息中,且高速配置包含在辅站修改请求确认消息中。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述主网络设备向所述终端设备发送RRC重配消息,所述RRC重配消息中包括所述高速配置;
    所述主网络设备从所述终端设备接收RRC重配完成消息,并将所述RRC重配完成消息发送给所述辅网络设备,所述RRC重配完成消息用于指示所述终端设备已完成高速配置。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述主网络设备关闭所述终端设备的高速模式;
    所述主网络设备向所述辅网络设备发送第二指示信息,所述第二指示信息用于指示所述辅网络设备关闭所述终端设备的高速模式。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述方法还包括:
    所述主网络设备从所述辅网络设备接收第三指示信息,所述第三指示信息用于指示所述主网络设备关闭所述终端设备的高速模式;
    所述主网络设备根据所述第三指示信息,关闭所述终端设备的高速模式。
  26. 根据权利要求21至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述主网络设备从所述终端设备或所述核心网设备接收第四指示信息,所述第四指示信息用于指示所述终端设备支持双连接场景下的高速模式。
  27. 一种通信方法,其特征在于,所述方法包括:
    辅网络设备从主网络设备接收第一指示信息,所述第一指示信息用于指示所述辅网络设备开启所述终端设备的高速模式;
    所述辅网络设备根据所述第一指示信息,为所述终端设备生成高速配置;
    所述辅网络设备向所述主网络设备发送所述高速配置。
  28. 根据权利要求27所述的方法,其特征在于,所述第一指示信息包含在辅站添加请求消息中,且高速配置包含在辅站添加请求确认消息中;或者,所述第一指示信息包含在辅站修改请求消息中,且高速配置包含在辅站修改请求确认消息中。
  29. 根据权利要求27或28所述的方法,其特征在于,所述方法还包括:
    所述辅网络设备从所述主网络设备接收RRC重配完成消息,所述RRC重配完成消息用于指示所述终端设备已完成高速配置。
  30. 根据权利要求27至29中任一项所述的方法,其特征在于,所述方法还包括:
    所述辅网络设备从所述主网络设备接收第二指示信息,所述该第二指示信息用于指示所述辅网络设备关闭所述终端设备的高速模式;
    所述辅网络设备根据所述第二指示信息,关闭所述终端设备的高速模式。
  31. 根据权利要求27至30中任一项所述的方法,其特征在于,所述方法还包括:
    所述辅网络设备关闭所述终端设备的高速模式;
    所述辅网络设备向所述主网络设备发送第三指示信息,所述第三指示信息用于指示所述主网络设备关闭所述终端设备的高速模式。
  32. 根据权利要求27至31中任一项所述的方法,其特征在于,所述辅网络设备包括中心单元CU和分布式单元DU;
    所述辅网络设备从所述主网络设备接收第一指示信息,包括:
    所述辅网络设备的CU从所述主网络设备接收第一指示信息;
    所述辅网络设备根据所述第一指示信息,为所述终端设备生成高速配置,包括:
    所述辅网络设备的CU将所述第一指示信息发送至所述辅网络设备的DU,由所述辅网络设备的DU根据所述第一指示信息,生成高速配置;
    所述辅网络设备向所述主网络设备发送高速配置,包括:
    所述辅网络设备的DU将高速配置发送至所述辅网络设备的CU,由所述辅网络设备的CU向所述主网络设备发送高速配置。
  33. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求1至6中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于交互代码指令至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法。
  35. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求7至10中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于交互代码指令至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求7至10中任一项所述的方法。
  37. 一种通信装置,其特征在于,包括用于执行如权利要求21至26中任一项所述方法的模块。
  38. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求21至26中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于交互代码指令至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求21至26中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括用于执行如权利要求27至32中任一项所述方法的模块。
  41. 一种通信装置,其特征在于,所述装置包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合:
    所述至少一个处理器,用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述装置执行如权利要求27至32中任一项所述的方法。
  42. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于交互代码指令至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求27至32中任一项所述的方法。
  43. 一种通信系统,其特征在于,所述系统包括第一网元和第二网元;
    其中,所述第一网元用于执行如权利要求1至6中任一项所述的方法,所述第二网元用于执行如权利要求7至10中任一项所述的方法。
  44. 一种通信系统,其特征在于,所述系统包括主网络设备和辅网络设备;
    其中,所述主网络设备用于执行如权利要求21至26中任一项所述的方法,所述辅网络设备用于执行如权利要求27至32中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,用于存储指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现,或者使如权利要求7至10中任一项所述 的方法被实现,或者使如权利要求21至26中任一项所述的方法被实现,或者使如权利要求27至32中任一项所述的方法被实现。
  46. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时,使得计算机执行如权利要求1至6中任一项所述的方法,或者执行如权利要求7至10中任一项所述的方法,或者执行如权利要求21至26中任一项所述的方法,或者执行如权利要求27至32中任一项所述的方法。
PCT/CN2021/093577 2020-05-22 2021-05-13 一种通信方法及装置 WO2021233195A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21808449.9A EP4145901A4 (en) 2020-05-22 2021-05-13 COMMUNICATION METHOD AND DEVICE
US17/989,879 US20230084686A1 (en) 2020-05-22 2022-11-18 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010441955.6A CN113709821A (zh) 2020-05-22 2020-05-22 一种通信方法及装置
CN202010441955.6 2020-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/989,879 Continuation US20230084686A1 (en) 2020-05-22 2022-11-18 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021233195A1 true WO2021233195A1 (zh) 2021-11-25

Family

ID=78646368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093577 WO2021233195A1 (zh) 2020-05-22 2021-05-13 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230084686A1 (zh)
EP (1) EP4145901A4 (zh)
CN (1) CN113709821A (zh)
WO (1) WO2021233195A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143255A1 (zh) * 2022-01-28 2023-08-03 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632910A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种QoS处理方法和设备
CN109392023A (zh) * 2017-08-10 2019-02-26 北京三星通信技术研究有限公司 一种数据流的操作控制的方法及设备
CN110072253A (zh) * 2018-01-22 2019-07-30 华为技术有限公司 通信方法、装置和系统
US20200100156A1 (en) * 2018-09-20 2020-03-26 Qualcomm Incorporated Avoiding out of order uplink data reception upon data radio bearer release, handover to another data radio bearer, or quality of service flow addition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811153A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 通信方法、集中式单元、分布式单元、基站及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632910A (zh) * 2017-03-24 2018-10-09 电信科学技术研究院 一种QoS处理方法和设备
CN109392023A (zh) * 2017-08-10 2019-02-26 北京三星通信技术研究有限公司 一种数据流的操作控制的方法及设备
CN110072253A (zh) * 2018-01-22 2019-07-30 华为技术有限公司 通信方法、装置和系统
US20200100156A1 (en) * 2018-09-20 2020-03-26 Qualcomm Incorporated Avoiding out of order uplink data reception upon data radio bearer release, handover to another data radio bearer, or quality of service flow addition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "23.502: Update procedure to clarify QoS control for GBR QoS flows", 3GPP DRAFT; S2-177865 WAS S2-177349_23.502 GBR QOS FLOW, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Ljubljana, Slovenia; 20171023 - 20171027, 26 October 2017 (2017-10-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051347774 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143255A1 (zh) * 2022-01-28 2023-08-03 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP4145901A4 (en) 2023-11-01
CN113709821A (zh) 2021-11-26
US20230084686A1 (en) 2023-03-16
EP4145901A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US11917450B2 (en) Data transmission method and data transmission apparatus
US11184886B2 (en) Method, base station, and user equipment for implementing carrier aggregation
CN110691419B (zh) 平衡用于双连接的上行链路传输
CN109151918A (zh) 切换控制方法及装置
US20200178138A1 (en) Communication method, base station, terminal device, and system
US11212732B2 (en) Communications method and apparatus, and radio access network
US20230284334A1 (en) Communication configuration method and communication apparatus
WO2021185350A1 (zh) 一种通信方法、接入网设备、终端设备和核心网设备
CN109672510A (zh) 通信方法和通信装置
TW201818712A (zh) 切換通訊模式的方法、終端設備和網路設備
WO2021233195A1 (zh) 一种通信方法及装置
WO2020015715A1 (zh) 一种数据发送的方法和装置
EP3840468A1 (en) Service node update method, terminal apparatus, and network apparatus
WO2020043011A1 (zh) 一种ui显示方法、终端设备及装置
WO2021169732A1 (zh) 一种切换方法及通信装置
WO2021127943A1 (zh) 无线通信方法和终端设备
TWI685223B (zh) 數據傳輸的方法和裝置
CN116114212A (zh) 一种辅助信息的配置方法及通信装置
WO2022237699A1 (zh) 一种激活安全的方法及通信装置
EP4152821A1 (en) Handover method and apparatus
WO2022141332A1 (zh) 一种通信方法及装置
WO2024051421A1 (zh) 切换方法、通信装置和可读存储介质
WO2022222748A1 (zh) 中继通信方法和装置
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2024016942A1 (zh) 通信方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021808449

Country of ref document: EP

Effective date: 20221202

NENP Non-entry into the national phase

Ref country code: DE