WO2021233097A1 - 透镜光栅的制作方法 - Google Patents

透镜光栅的制作方法 Download PDF

Info

Publication number
WO2021233097A1
WO2021233097A1 PCT/CN2021/090565 CN2021090565W WO2021233097A1 WO 2021233097 A1 WO2021233097 A1 WO 2021233097A1 CN 2021090565 W CN2021090565 W CN 2021090565W WO 2021233097 A1 WO2021233097 A1 WO 2021233097A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
lenses
lens
shielding structure
light
Prior art date
Application number
PCT/CN2021/090565
Other languages
English (en)
French (fr)
Inventor
刁鸿浩
黄玲溪
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Publication of WO2021233097A1 publication Critical patent/WO2021233097A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • This application relates to the field of optical technology, for example, to a method of manufacturing a lens grating.
  • lens gratings are widely used in 3D displays.
  • 3D displays based on lens gratings enable users to directly obtain 3D viewing effects through left and right eyes without using 3D glasses.
  • the embodiment of the present disclosure provides a method for manufacturing a lens grating to solve the problem of the irregular cross-sectional structure of the lens grating at the junction between two lenses, which causes the light projection position of the sub-pixels to be wrong and causes crosstalk between the left and right eye images. technical problem.
  • a method for manufacturing a lens grating including:
  • the substrate is provided with at least one light shielding structure
  • At least two lenses are formed on the substrate, so that the boundary area of adjacent lenses in the at least two lenses corresponds to the at least one light shielding structure.
  • One end of the light-shielding structure in the thickness direction of the substrate penetrates the substrate
  • At least two lenses are formed on the substrate, including:
  • the at least two lenses are provided on the side of the substrate facing away from the light-shielding structure; or,
  • the at least two lenses are arranged on the side of the substrate close to the light shielding structure.
  • the light shielding structure penetrates the substrate in the thickness direction of the substrate
  • At least two lenses are formed on the substrate, including:
  • the at least two lenses are provided.
  • the light shielding structure is disposed on the surface of the substrate
  • At least two lenses are formed on the substrate, including:
  • the at least two lenses are provided on the side where the light shielding structure is provided on the substrate.
  • one end of the light shielding structure protrudes from the surface of the substrate
  • Setting the at least two lenses includes:
  • the boundary area between the adjacent lenses of the at least two lenses is arranged in the part of the light shielding structure protruding from the substrate.
  • the light shielding structure is completely placed in the substrate
  • At least two lenses are formed on the substrate, including:
  • the boundary area between the adjacent lenses of the at least two lenses is arranged in the projection area on the substrate corresponding to the light shielding structure.
  • the substrate is a monolithic substrate.
  • the substrate is a partial substrate, and the light-shielding structure is disposed on the surface of the partial substrate;
  • the method further includes:
  • At least two lenses are formed on the substrate, including:
  • the at least two lenses are provided on the side of the part of the substrate facing away from the light shielding structure; or,
  • the at least two lenses are provided on the side of the part of the substrate where the filling material is provided.
  • the at least two lenses include at least one of a concave lens and a convex lens.
  • the at least two lenses include at least one of a cylindrical lens and a spherical lens.
  • the at least two lenses include the cylindrical lens
  • At least two lenses are formed on the substrate, including:
  • Part or all of the lenticular lenses are arranged in parallel on the substrate.
  • it further includes:
  • the length of the lenticular lens in the axial direction is set to be the same as the length of the light shielding structure in the axial direction of the lenticular lens.
  • the at least two lenses include the spherical lens
  • At least two lenses are formed on the substrate, including:
  • Part or all of the spherical lenses are arranged in an array on the substrate.
  • it further includes:
  • the at least two lenses have no gaps or gaps between adjacent lenses.
  • At least one light-shielding structure formed on the substrate of the lens grating is used to block the light directed to the lens grating, so as to solve the sub-pixel light caused by the distortion area formed by the irregular cross-sectional structure of the boundary area between the adjacent lenses of the lens grating.
  • the problem of the wrong projection position can reduce or eliminate the crosstalk between the left and right eye images.
  • FIG. 1 is a schematic flowchart of a first embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a substrate in a first embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure of a lens grating in the first embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a lens grating in a second embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 5 is a schematic cross-sectional structure diagram of the lens in the lens grating in the third embodiment of the manufacturing method of the lens grating provided by the embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional structure diagram of the lens in the lens grating in the third embodiment of the method for manufacturing the lens grating provided by the embodiments of the present disclosure is a concave lens;
  • FIG. 7 is a schematic cross-sectional structure diagram of a lens grating in a third embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure, in which the lens is a combination of a concave lens and a convex lens;
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a lens grating in a fourth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a cross-sectional structure of a lens grating in a fifth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a lens grating in a sixth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a cross-sectional structure of a lens grating in a seventh embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 12 is a schematic cross-sectional structure diagram of the lens in the lens grating in the eighth embodiment of the method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a cross-sectional structure of a lens grating in a ninth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a cross-sectional structure of a lens grating in a tenth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 15 is a schematic diagram of a cross-sectional structure of a lens grating in an eleventh embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • 16A is a schematic diagram of a cross-sectional structure of a part of a substrate in a second embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • 16B is a schematic diagram of another cross-sectional structure of a part of the substrate in the second embodiment of the method for manufacturing a lens grating according to an embodiment of the present disclosure
  • 16C is a schematic diagram of a cross-sectional structure of a lens grating in a twelfth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • 16D is a schematic diagram of a cross-sectional structure of a lens grating in the thirteenth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 17 is a schematic diagram of an arrangement of an embodiment of forming a plurality of cylindrical lenses in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of the arrangement of another embodiment of forming a plurality of cylindrical lenses in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • Figure 19 is a cross-sectional view taken along line A-A of Figure 17;
  • FIG. 20 is a schematic diagram of an arrangement of an embodiment of forming a plurality of spherical lenses in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • 21 is a schematic diagram of the arrangement of another embodiment of forming a plurality of spherical lenses in a method for manufacturing a lens grating according to an embodiment of the present disclosure
  • FIG. 22 is a schematic diagram of an arrangement of a plurality of spherical lenses and a plurality of cylindrical lenses in a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • 100 lens grating; 101: substrate; 102: lens; 103: shading structure; 201: part of the substrate; 202: filling material; 301: substrate; 1021: cylindrical lens; 1022: spherical lens.
  • FIG. 1 shows a schematic flowchart of a first embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a method for manufacturing a lens grating 100, including:
  • a substrate 101 is provided, wherein the substrate 101 is provided with at least one light shielding structure 103.
  • At least two lenses 102 are formed on the substrate 101, so that the boundary area between adjacent lenses 102 of the at least two lenses 102 corresponds to the at least one light shielding structure 103.
  • the manufacturing process of disposing the light-shielding structure 103 on the substrate 101 may include at least one of the following: etching, filling, inkjet, imprinting, and screen printing.
  • the width of the plurality of light shielding structures 103 along the arrangement direction of the lenses 102 can be set to eliminate stray light at the junction of adjacent lenses 102.
  • the light-shielding material forming the light-shielding structure 103 may include at least one of a light-absorbing material and a light-reflecting material.
  • the type of shading material can be determined according to actual process requirements and other conditions.
  • each light-shielding structure 103 may be the same or different.
  • the at least two lenses 102 can be fabricated using nanoimprint technology: the substrate 101 is coated with a material for making the lens 102, and the at least two lenses 102 are formed by nanoimprinting.
  • the at least two lenses 102 can also be made by a hot melt method: laying the material used to make the lens 102 on the substrate 101, lithography is performed on the material used to make the lens 102, and the remaining Part of the heating is performed to form the shape of the lens 102 under the action of surface tension, and at least two lenses 102 are formed after cooling.
  • the at least two lenses 102 can also be made by etching: laying a material layer for making the lens 102 on the substrate 101, depositing photoresist on the material layer for making the lens 102, and performing The shape of at least two lenses 102 is formed by photolithography, and the material layer of the lens 102 is etched using photoresist as a mask to form at least two lenses 102, and then the remaining photoresist is removed.
  • the projection area of the light shielding structure 103 on the substrate 101 covers the boundary area between the adjacent lenses 102, which can effectively shield the external light directed to the lens grating 100.
  • the lens grating can be solved.
  • the boundary area between the adjacent lenses is caused by the distortion area formed by the irregular cross-sectional structure.
  • the light projection position of the sub-pixels is wrong, which causes the technical problem of crosstalk between the left and right eye images, reduces or eliminates the crosstalk phenomenon of the left and right eye images, and improves the 3D image. Display quality.
  • FIG. 2 shows a schematic diagram of a cross-sectional structure of a substrate in the first embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the substrate 101 provided may be an integral substrate .
  • the at least two lenses 102 formed on the substrate 101 may include at least one of a concave lens and a convex lens.
  • FIG. 3 shows a schematic diagram of a cross-sectional structure of a lens grating in a first embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light-shielding structure 103 is formed in the thickness direction of the substrate 101.
  • One end may penetrate the substrate 101; forming at least two lenses 102 on the substrate 101 may include: arranging at least two lenses 102 on the side of the substrate 101 facing away from the light shielding structure 103.
  • the at least two lenses 102 formed on the substrate 101 may include convex lenses.
  • FIG. 4 shows a schematic cross-sectional structure diagram of a lens grating in a second embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light-shielding structure 103 is formed in the thickness direction of the substrate 101.
  • One end may penetrate the substrate 101; forming at least two lenses 102 on the substrate 101 may include: arranging at least two lenses 102 on a side of the substrate 101 close to the light shielding structure 103.
  • the at least two lenses 102 formed on the substrate 101 may include convex lenses.
  • FIG. 5 shows a schematic diagram of a cross-sectional structure of a lens grating in a third embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light shielding structure 103 can be arranged in the thickness direction of the substrate 101. Passing through the substrate 101; forming at least two lenses 102 on the substrate 101 may include: arranging at least two lenses 102 on any side of the substrate 101.
  • the at least two lenses 102 formed on the substrate 101 may include convex lenses.
  • FIG. 6 shows a schematic cross-sectional structure diagram of a lens grating in a third embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • a concave lens is formed on the substrate 101.
  • the at least two lenses 102 may include concave lenses.
  • FIG. 7 shows a schematic cross-sectional structure diagram of a lens grating in a third embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the lens in the lens grating is a combination of a concave lens and a convex lens.
  • the at least two lenses 102 formed above may include a combination of a concave lens and a convex lens.
  • the following describes the embodiments of the present disclosure mainly by taking the lens 102 as a convex lens as an example.
  • FIG. 8 shows a schematic diagram of a cross-sectional structure of a lens grating in a fourth embodiment of a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • the light shielding structure 103 is provided on the surface of the substrate 101;
  • the formation of at least two lenses 102 on the substrate 101 may include: at least two lenses 102 are provided on the side of the substrate 101 where the light-shielding structure 103 is provided.
  • the boundary area between the adjacent lenses 102 of the at least two lenses 102 may be arranged on the surface of the light shielding structure 103.
  • FIG. 9 shows a schematic diagram of a cross-sectional structure of a lens grating in a fifth embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light shielding structure 103 is formed in the thickness direction of the substrate 101. One end may penetrate through the substrate 101, and the light shielding structure 103 may protrude from the surface of the substrate 101; the provision of at least two lenses 102 may include:
  • the boundary area between the adjacent lenses 102 of the at least two lenses 102 is disposed on the part of the light shielding structure 103 protruding from the substrate 101.
  • FIG. 10 shows a schematic diagram of a cross-sectional structure of a lens grating in a sixth embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light shielding structure 103 can be arranged in the thickness direction of the substrate 101. Passing through the substrate 101, and the light shielding structure 103 may protrude from the surface of the substrate 101, and at least two lenses 102 are provided, which may include:
  • the boundary area between the adjacent lenses 102 of the at least two lenses 102 is disposed on the part of the light shielding structure 103 protruding from the substrate 101.
  • the light-shielding material of the part of the light-shielding structure 103 protruding from the surface of the substrate 101 and the light-shielding material of the part of the light-shielding structure 103 located in the substrate 101 may be the same or different.
  • the projection area of the portion of the light shielding structure 103 protruding from the substrate 101 on the surface of the substrate 101 may be the same as the portion of the light shielding structure 103 in the substrate body 101 on the substrate body 101.
  • the projected area on the surface is the same.
  • Figure 11 shows a schematic cross-sectional structure diagram of a lens grating in a seventh embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • Figure 12 shows a schematic diagram of a lens grating provided by an embodiment of the present disclosure
  • the projection area of the portion of the light shielding structure 103 protruding from the substrate 101 on the surface of the substrate 101 may be larger than that of the light shielding structure 103 in the substrate 101 The projected area of the part on the surface of the substrate 101.
  • FIG. 13 shows a schematic cross-sectional structure of a lens grating in a ninth embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure
  • FIG. 14 shows a schematic diagram of a lens grating provided by an embodiment of the present disclosure
  • the projection area of the portion of the light shielding structure 103 protruding from the substrate 101 on the surface of the substrate 101 may be smaller than that of the light shielding structure 103 in the substrate 101 The projected area of the part on the surface of the substrate 101.
  • FIG. 15 shows a schematic diagram of a cross-sectional structure of a lens grating in an eleventh embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light-shielding structure 103 may be completely placed in the substrate 101 ; At least two lenses 102 are formed on the substrate 101, which may include:
  • the boundary area between the adjacent lenses 102 of the at least two lenses 102 is arranged in the projection area on the substrate 101 corresponding to the light shielding structure 103.
  • the substrate provided may be part of the substrate 201.
  • the manufacturing process of disposing the light-shielding structure 103 on part of the substrate 201 may include at least one of the following: etching, filling, inkjet, imprinting, and screen printing.
  • FIG. 16A shows a schematic cross-sectional structure diagram of a part of the substrate in the second embodiment of the method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the light-shielding structure 103 may be provided on the part of the substrate 201 s surface.
  • FIG. 16B shows another schematic cross-sectional structure diagram of a part of the substrate in the second embodiment of the method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • at least two substrates are formed on the substrate 201.
  • the lens 102 it may include:
  • a filling material 202 is provided on the side of the partial substrate 201 where the light-shielding structure 103 is provided.
  • the filling material 202 may include a substrate material.
  • FIG. 16C shows a schematic diagram of a cross-sectional structure of a lens grating in a twelfth embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • at least two lenses 102 are formed on a substrate 201 , Can include:
  • At least two lenses 102 are provided on the side of part of the substrate 201 facing away from the light shielding structure 103.
  • FIG. 16D shows a schematic cross-sectional structure of a lens grating in a thirteenth embodiment of a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • at least two lenses 102 are formed on a substrate 201 , Can include:
  • At least two lenses 102 are provided on the side of the part of the substrate 201 where the filling material 202 is provided.
  • some or all of the adjacent lenses in the lens 102 may have no gaps, or there are gaps.
  • some of the plurality of lenses 102 may be provided with no gaps or gaps between adjacent lenses 102.
  • the plurality of lenses 102 provided on the substrate 301 may include at least one of a cylindrical lens 1021 and a spherical lens 1022, and the substrate 301 may be the above-mentioned whole substrate (substrate 101) or part of the substrate 201.
  • the lenticular lens 1021 may include at least one of a cylindrical concave lens, a cylindrical convex lens, a combination of a cylindrical convex lens, and a cylindrical concave lens.
  • the spherical lens 1022 may include at least one of a spherical concave lens, a spherical convex lens, a combination of a spherical concave lens, and a spherical convex lens.
  • the plurality of lenses 102 may include at least one of a combination of a cylindrical convex lens and a spherical convex lens, a combination of a cylindrical convex lens and a spherical concave lens, a combination of a cylindrical concave lens and a spherical concave lens, and a combination of a cylindrical concave lens and a spherical convex lens.
  • the lens 102 may include a cylindrical lens 1021, a spherical lens 1022, or has other shapes
  • at least one curve of the surface of the lens 102 may be circular or non-circular in macroscopic view, such as an ellipse or a hyperbola. , Parabola, etc.
  • at least one curve of the surface of the lens 102 may have a non-circular shape such as a polygon in the microscopic view.
  • the shape of the lens 102 may be determined according to actual conditions such as process requirements, for example: the shape of the surface of the lens 102.
  • the plurality of lenses 102 may include cylindrical lenses 1021.
  • part or all of the lenticular lenses 1021 may be arranged in parallel on the substrate 301.
  • FIG. 17 shows an arrangement diagram of an embodiment of forming a plurality of lenticular lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • all the lenticular lenses 1021 may be arranged in parallel .
  • FIG. 18 shows an arrangement diagram of another embodiment of forming a plurality of lenticular lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • part of the lenticular lenses 1021 may be arranged in parallel.
  • part of the lenticular lenses 1021 may be arranged in a preset direction, and the preset direction may include a direction at a preset angle with the arrangement direction of the lenticular lenses 1021 arranged in parallel, which can be considered according to actual conditions such as process requirements.
  • the preset angle setting is not limited to the preset angle setting.
  • FIG. 19 shows a cross-sectional view of FIG. 17 along the line AA.
  • the length of the cylindrical lens 1021 in the axial direction may be the same as the length of the light shielding structure 103 in the axial direction of the cylindrical lens 1021 .
  • the length of the cylindrical lens 1021 in the axial direction and the arrangement of the length of the light shielding structure 103 in the axial direction of the cylindrical lens 2011 can be considered according to actual conditions such as process requirements.
  • the plurality of lenses 102 may include spherical lenses 1022.
  • part or all of the spherical lenses 1022 may be arranged on the substrate 301 in an array.
  • FIG. 20 shows an arrangement diagram of an embodiment of forming a plurality of spherical lenses in a method for manufacturing a lens grating according to an embodiment of the present disclosure.
  • all the spherical lenses 1022 may be arranged in an array.
  • FIG. 21 shows an arrangement diagram of another embodiment of forming a plurality of spherical lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • some of the spherical lenses 1022 may be arranged in an array.
  • the number of the spherical lenses 1022 and the spatial arrangement of the spherical lenses 1022 on the substrate 301 can be determined according to actual conditions such as process requirements.
  • FIG. 22 shows a schematic diagram of an arrangement of a plurality of spherical lenses and a plurality of cylindrical lenses in a method for manufacturing a lens grating provided by an embodiment of the present disclosure.
  • the substrate 301 is arranged
  • the plurality of lenses 102 may include a cylindrical lens 1021 and a spherical lens 1022, all the cylindrical lenses 1021 may be arranged in parallel on the substrate 301, and all the spherical lenses 1022 may be arranged on the substrate 301 in an array.
  • all the cylindrical lenses 1021 are arranged in parallel on the substrate 301, and some spherical lenses 1022 are arranged on the substrate 101 in an array.
  • part of the cylindrical lenses 1021 are arranged in parallel on the substrate 301, and all the spherical lenses 1022 are arranged on the substrate 301 in an array.
  • part of the cylindrical lenses 1021 are arranged in parallel on the substrate 301, and part of the spherical lenses 1012 are arranged on the substrate 301 in an array.
  • the number of cylindrical lenses 1021 and spherical lenses 1012 and the spatial arrangement on the substrate 301 can be determined according to actual conditions such as process requirements.
  • the manufacturing method of the lens grating provided by the embodiment of the present disclosure shields the light directed to the lens grating through at least one light-shielding structure formed on the substrate of the lens grating, so as to solve the irregularity of the lens grating due to the boundary area between adjacent lenses.
  • the cross-sectional structure of the sub-pixel caused by the wrong projection position of the sub-pixel can reduce or eliminate the crosstalk between the left and right eye images, thereby improving the display quality of the 3D image projected through the boundary area.
  • the first element can be called the second element, and similarly, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations that include one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other identical elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the relevant parts can be referred to the description of the method parts.
  • the disclosed methods and products can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to implement this embodiment.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram can represent a module, program segment, or part of the code, and the above-mentioned module, program segment, or part of the code contains one or more options for realizing the specified logical function.
  • Execute instructions In some alternative implementations, the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种透镜光栅(100)的制作方法,包括:提供基板(101),其中,基板(101)设置有至少一个遮光结构(103);在基板(101)上形成至少两个透镜(102),以使至少两个透镜(102)中相邻透镜(102)的交界区域对应于至少一个遮光结构(103)。通过在透镜光栅(100)的基板(101)形成的至少一个遮光结构(103)对射向透镜光栅(100)的光线进行遮挡,解决透镜光栅(100)因相邻透镜(102)之间的交界区域形成的不规则的剖面结构导致的子像素的光线投射位置错误的问题,可以减小或者消除左右眼图像串扰。

Description

透镜光栅的制作方法
本申请要求在2020年05月22日提交中国知识产权局、申请号为202010440107.3、发明名称为“透镜光栅的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,例如涉及透镜光栅的制作方法。
背景技术
目前,透镜光栅广泛应用于3D显示器中,基于透镜光栅的3D显示器使得用户不需要借助3D眼镜,通过左右眼即可直接获得3D观看效果。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:在透镜光栅的制作过程中,由于制作工艺的精度限制,在透镜光栅的两个透镜之间交界处产生的不规则的剖面结构极易形成畸变区域。当子像素的光线经过畸变区域时,容易投射到错误的位置,造成左右眼图像串扰。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种透镜光栅的制作方法,以解决透镜光栅因两个透镜之间交界处产生的不规则的剖面结构,导致的子像素的光线投射位置错误、造成左右眼图像串扰的技术问题。
在一些实施例中,提供了一种透镜光栅的制作方法,包括:
提供基板,其中,所述基板设置有至少一个遮光结构;
在所述基板上形成至少两个透镜,以使所述至少两个透镜中相邻透镜的交界区域对应于所述至少一个遮光结构。
在一些实施例中,
所述遮光结构在所述基板的厚度方向上的一端贯穿所述基板;
在所述基板上形成至少两个透镜,包括:
在所述基板上背离所述遮光结构的一面,设置所述至少两个透镜;或者,
在所述基板上靠近所述遮光结构的一面,设置所述至少两个透镜。
在一些实施例中,所述遮光结构在所述基板的厚度方向上贯穿所述基板;
在所述基板上形成至少两个透镜,包括:
在所述基板的任意一面,设置所述至少两个透镜。
在一些实施例中,所述遮光结构设置于所述基板的表面;
在所述基板上形成至少两个透镜,包括:
在所述基板上设置有所述遮光结构的一面,设置所述至少两个透镜。
在一些实施例中,所述遮光结构的一端凸出于所述基板的表面;
设置所述至少两个透镜,包括:
将所述至少两个透镜中相邻透镜的交界区域,设置于所述遮光结构凸出于所述基板的部分。
在一些实施例中,所述遮光结构完全置于所述基板内;
在所述基板上形成至少两个透镜,包括:
将所述至少两个透镜中相邻透镜的交界区域,设置于所述遮光结构对应于所述基板上的投影区域内。
在一些实施例中,所述基板为整体基板。
在一些实施例中,
所述基板为部分基板,所述遮光结构设置于所述部分基板的表面;
在所述基板上形成至少两个透镜之前,还包括:
在所述部分基板设置有所述遮光结构的一面设置填充材料;
在所述基板上形成至少两个透镜,包括:
在所述部分基板背离所述遮光结构的一面,设置所述至少两个透镜;或者,
在所述部分基板设置有所述填充材料的一面,设置所述至少两个透镜。
在一些实施例中,所述至少两个透镜包括凹透镜和凸透镜中的至少一种。
在一些实施例中,所述至少两个透镜包括柱状透镜和球面透镜中的至少一种。
在一些实施例中,所述至少两个透镜包括所述柱状透镜;
在所述基板上形成至少两个透镜,包括:
将所述柱状透镜中的部分或全部呈平行排布在所述基板上。
在一些实施例中,还包括:
将所述柱状透镜在轴向上的长度,设置为与所述遮光结构沿所述柱状透镜的轴向上的 长度相同。
在一些实施例中,所述至少两个透镜包括所述球面透镜;
在所述基板上形成至少两个透镜,包括:
将所述球面透镜中的部分或全部呈阵列排布在所述基板上。
在一些实施例中,还包括:
设置所述至少两个透镜中的部分或全部相邻透镜之间无间隙,或者有间隙。
本公开实施例提供的透镜光栅的制作方法,可以实现以下技术效果:
通过在透镜光栅的基板形成的至少一个遮光结构对射向透镜光栅的光线进行遮挡,解决透镜光栅的相邻透镜之间的交界区域因不规则的剖面结构形成的畸变区域导致的子像素的光线投射位置错误的问题,可以减小或者消除左右眼图像串扰。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的透镜光栅的制作方法第一种实施例的流程示意图;
图2是本公开实施例提供的透镜光栅的制作方法第一种实施例中基板的剖面结构示意图;
图3是本公开实施例提供的透镜光栅的制作方法第一种实施例中透镜光栅的剖面结构示意图;
图4是本公开实施例提供的透镜光栅的制作方法第二种实施例中透镜光栅的剖面结构示意图;
图5是本公开实施例提供的透镜光栅的制作方法第三种实施例中透镜光栅中的透镜为凸透镜的剖面结构示意图;
图6是本公开实施例提供的透镜光栅的制作方法第三种实施例中透镜光栅中的透镜为凹透镜的剖面结构示意图;
图7是本公开实施例提供的透镜光栅的制作方法第三种实施例中透镜光栅中的透镜为凹透镜和凸透镜组合的剖面结构示意图;
图8是本公开实施例提供的透镜光栅的制作方法第四种实施例中透镜光栅的剖面结构示意图;
图9是本公开实施例提供的透镜光栅的制作方法第五种实施例中透镜光栅的剖面结构示意图;
图10是本公开实施例提供的透镜光栅的制作方法第六种实施例中透镜光栅的剖面结构示意图;
图11是本公开实施例提供的透镜光栅的制作方法第七种实施例中透镜光栅的剖面结构示意图;
图12是本公开实施例提供的透镜光栅的制作方法第八种实施例中透镜光栅中的透镜为凸透镜的剖面结构示意图;
图13是本公开实施例提供的透镜光栅的制作方法第九种实施例中透镜光栅的剖面结构示意图;
图14是本公开实施例提供的透镜光栅的制作方法第十种实施例中透镜光栅的剖面结构示意图;
图15是本公开实施例提供的透镜光栅的制作方法第十一种实施例中透镜光栅的剖面结构示意图;
图16A是本公开实施例提供的透镜光栅的制作方法第二种实施例中部分基板的一种剖面结构示意图;
图16B是本公开实施例提供的透镜光栅的制作方法第二种实施例中部分基板的另一种剖面结构示意图;
图16C是本公开实施例提供的透镜光栅的制作方法第十二种实施例中透镜光栅的剖面结构示意图;
图16D是本公开实施例提供的透镜光栅的制作方法第十三种实施例中透镜光栅的剖面结构示意图;
图17是本公开实施例提供的透镜光栅的制作方法中形成多个柱状透镜一种实施例的排布示意图;
图18是本公开实施例提供的透镜光栅的制作方法中形成多个柱状透镜另一种实施例的排布示意图;
图19是图17沿A-A线的剖面图;
图20是本公开实施例提供的透镜光栅的制作方法中形成多个球面透镜一种实施例的排布示意图;
图21是本公开实施例提供的透镜光栅的制作方法中形成多个球面透镜另一种实施例的排布示意图;
图22是本公开实施例提供的透镜光栅的制作方法中多个球面透镜和多个柱状透镜一种实施例的排布示意图。
附图标记:
100:透镜光栅;101:基板;102:透镜;103:遮光结构;201:部分基板;202:填充材料;301:基板;1021:柱状透镜;1022:球面透镜。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
参见图1,图1示出了本公开实施例提供的透镜光栅的制作方法第一种实施例的流程示意图,本公开实施例提供了一种透镜光栅100的制作方法,包括:
S101、提供基板101,其中,基板101设置有至少一个遮光结构103。
S102、在基板101上形成至少两个透镜102,以使至少两个透镜102中相邻透镜102的交界区域对应于至少一个遮光结构103。
在一些实施例中,在基板101设置遮光结构103的制作工艺可以包括以下至少一种:刻蚀、填充、喷墨、压印、丝网印刷。
在一些实施例中,多个遮光结构103沿透镜102排列方向上的宽度可以设置为消除相邻透镜102交界处的杂散光。
在一些实施例中,形成遮光结构103的遮光材料可以包含光吸收材料和光反射材料中的至少一种。可以根据实际工艺需求等情况确定遮光材料的类型。
在一些实施例中,形成各个遮光结构103的遮光材料可以相同,或者不相同。
在一些实施例中,至少两个透镜102可采用纳米压印技术制作:在基板101上涂覆用于制作透镜102的材料,采用纳米压印的方式形成至少两个透镜102。
在一些实施例中,至少两个透镜102还可采用热熔法制作:在基板101上铺设用于制作透镜102的材料,对用于制作透镜102的材料进行光刻,将光刻后剩余的部分进行加热,在表面张力的作用下形成透镜102的形状,冷却后形成至少两个透镜102。
在一些实施例中,至少两个透镜102还可采用刻蚀的方法制作:在基板101上铺设用 于制作透镜102的材料层,在用于制作透镜102的材料层上沉积光刻胶,进行光刻形成至少两个透镜102的形状,并以光刻胶作掩膜刻蚀透镜102的材料层,形成至少两个透镜102,之后去除剩余的光刻胶。
可选地,将遮光结构103在基板101上的投影区域覆盖相邻透镜102之间的交界区域,可以对射向透镜光栅100的外界光线进行有效遮挡,通过对外界光线进行遮挡,解决透镜光栅的相邻透镜之间的交界区域因不规则的剖面结构形成的畸变区域导致的子像素的光线投射位置错误造成左右眼图像串扰的技术问题,减少或者消除左右眼图像串扰的现象,提高3D图像的显示质量。
参见图2,图2示出了本公开实施例提供的透镜光栅的制作方法第一种实施例中基板的剖面结构示意图,在一些实施例中,步骤S101中,提供的基板101可以为整体基板。
在一些实施例中,在基板101上形成的至少两个透镜102,可以包括凹透镜和凸透镜中的至少一种。
参见图3,图3示出了本公开实施例提供的透镜光栅的制作方法第一种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103在基板101的厚度方向上的一端可以贯穿基板101;在基板101上形成至少两个透镜102,可以包括:在基板101上背离遮光结构103的一面,设置至少两个透镜102。可选地,在基板101上形成的至少两个透镜102可以包括凸透镜。
参见图4,图4示出了本公开实施例提供的透镜光栅的制作方法第二种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103在基板101的厚度方向上的一端可以贯穿基板101;在基板101上形成至少两个透镜102,可以包括:在基板101上靠近遮光结构103的一面,设置至少两个透镜102。可选地,在基板101上形成的至少两个透镜102可以包括凸透镜。
参见图5,图5示出了本公开实施例提供的透镜光栅的制作方法第三种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103在基板101的厚度方向上可以贯穿基板101;在基板101上形成至少两个透镜102,可以包括:在基板101的任意一面,设置至少两个透镜102。可选地,在基板101上形成的至少两个透镜102可以包括凸透镜。
参见图6,图6示出了本公开实施例提供的透镜光栅的制作方法第三种实施例中透镜光栅中的透镜为凹透镜的剖面结构示意图,在一些实施例中,在基板101上形成的至少两个透镜102可以包括凹透镜。
参见图7,图7示出了本公开实施例提供的透镜光栅的制作方法第三种实施例中透镜光栅中的透镜为凹透镜和凸透镜组合的剖面结构示意图,在一些实施例中,在基板101上 形成的至少两个透镜102可以包括凹透镜和凸透镜的组合。
下面主要以透镜102可以为凸透镜为例对本公开实施例进行描述。
参见图8,图8示出了本公开实施例提供的透镜光栅的制作方法第四种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103设置于基板101的表面;在基板101上形成至少两个透镜102,可以包括:在基板101上设置有遮光结构103的一面,设置至少两个透镜102。可选地,可以将至少两个透镜102中相邻透镜102的交界区域,设置于遮光结构103的表面上。
参见图9,图9示出了本公开实施例提供的透镜光栅的制作方法第五种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103在基板101的厚度方向上的一端可以贯穿基板101,且遮光结构103可以凸出于基板101的表面;设置至少两个透镜102,可以包括:
将至少两个透镜102中相邻透镜102的交界区域,设置于遮光结构103凸出于基板101的部分。
参见图10,图10示出了本公开实施例提供的透镜光栅的制作方法第六种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103在基板101的厚度方向上可以贯穿基板101,且遮光结构103可以凸出于基板101的表面,设置至少两个透镜102,可以包括:
将至少两个透镜102中相邻透镜102的交界区域,设置于遮光结构103凸出于基板101的部分。
在一些实施例中,遮光结构103凸出于基板101的表面的部分的遮光材料,与遮光结构103位于基板101内的部分的遮光材料可以相同,或者不相同。
参见图9、图10,在一些实施例中,遮光结构103凸出于基板101的部分在基板101的表面上的投影面积,可以与遮光结构103在基板本体101内的部分在基板本体101的表面上的投影面积相同。
参见图11、图12,图11示出了本公开实施例提供的透镜光栅的制作方法第七种实施例中透镜光栅的剖面结构示意图;图12示出了本公开实施例提供的透镜光栅的制作方法第八种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103凸出于基板101的部分在基板101的表面上的投影面积,可以大于遮光结构103在基板101内的部分在基板101的表面上的投影面积。
参见图13、图14,图13示出了本公开实施例提供的透镜光栅的制作方法第九种实施例中透镜光栅的剖面结构示意图;图14示出了本公开实施例提供的透镜光栅的制作方法 第十种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103凸出于基板101的部分在基板101的表面上的投影面积,可以小于遮光结构103在基板101内的部分在基板101的表面上的投影面积。
参见图15,图15示出了本公开实施例提供的透镜光栅的制作方法第十一种实施例中透镜光栅的剖面结构示意图,在一些实施例中,遮光结构103可以完全置于基板101内;在基板101上形成至少两个透镜102,可以包括:
将至少两个透镜102中相邻透镜102的交界区域,设置于遮光结构103对应于基板101上的投影区域内。
参见图16A至图16D,在一些实施例中,步骤S101中,提供的基板可以为部分基板201。
在一些实施例中,在部分基板201设置遮光结构103的制作工艺可以包括以下至少一种:刻蚀、填充、喷墨、压印、丝网印刷。
参见图16A,图16A示出了本公开实施例提供的透镜光栅的制作方法第二种实施例中部分基板的一种剖面结构示意图,在一些实施例中,遮光结构103可以设置于部分基板201的表面。
参见图16B,图16B示出了本公开实施例提供的透镜光栅的制作方法第二种实施例中部分基板的另一种剖面结构示意图,在一些实施例中,在基板201上形成至少两个透镜102之前,可以包括:
在部分基板201设置有遮光结构103的一面设置填充材料202。可选地,填充材料202可以包括基板材料。
参见图16C,图16C示出了本公开实施例提供的透镜光栅的制作方法第十二种实施例中透镜光栅的剖面结构示意图,在一些实施例中,在基板201上形成至少两个透镜102,可以包括:
在部分基板201背离遮光结构103的一面,设置至少两个透镜102。
参见图16D,图16D示出了本公开实施例提供的透镜光栅的制作方法第十三种实施例中透镜光栅的剖面结构示意图,在一些实施例中,在基板201上形成至少两个透镜102,可以包括:
在部分基板201设置有填充材料202的一面,设置至少两个透镜102。
在一些实施例中,可以设置透镜102中的部分或全部相邻透镜之间是无间隙,或者有间隙。可选地,参见图3至图15,可以设置多个透镜102中的全部相邻透镜102之间无间隙。参见图16C、图16D,可以设置多个透镜102中的部分相邻透镜102之间无间隙,或 者有间隙。
在一些实施例中,基板301上设置的多个透镜102可以包括柱状透镜1021和球面透镜1022中的至少一种,基板301可以为上述整体基板(基板101)或者部分基板201。可选地,柱状透镜1021可以包括柱状凹透镜、柱状凸透镜、柱状凸透镜和柱状凹透镜的组合中的至少一种。可选地,球面透镜1022可以包括球面凹透镜、球面凸透镜、球面凹透镜和球面凸透镜的组合中的至少一种。可选地,多个透镜102可以包括柱状凸透镜和球面凸透镜的组合、柱状凸透镜和球面凹透镜的组合、柱状凹透镜和球面凹透镜的组合、柱状凹透镜和球面凸透镜的组合中的至少一种。
在一些实施例中,无论透镜102包括柱状透镜1021、球面透镜1022还是具有其他形状,透镜102的表面的至少一条曲线在宏观上可以呈圆形或非圆形,例如:椭圆形、双曲线形、抛物线形,等。可选地,透镜102的表面的至少一条曲线在微观上可以呈多边形等非圆形的形状。可选地,可以根据工艺需求等实际情况确定透镜102的形状,例如:透镜102的表面的形状。在一些实施例中,多个透镜102可以包括柱状透镜1021。可选地,柱状透镜1021中的部分或全部可以呈平行排布在基板301上。
参见图17,图17示出了本公开实施例提供的透镜光栅的制作方法中形成多个柱状透镜一种实施例的排布示意图,在一些实施例中,全部柱状透镜1021可以呈平行排布。
参见图18,图18示出了本公开实施例提供的透镜光栅的制作方法中形成多个柱状透镜另一种实施例的排布示意图,在一些实施例中,部分柱状透镜1021可以呈平行排布在基板301上。可选地,部分柱状透镜1021可以按照预设方向排布,预设方向可以包括与呈平行排布的柱状透镜1021的排布方向呈预设夹角的方向,可以根据工艺需求等实际情况考虑预设夹角的设置。
参见图19,图19示出了图17沿A-A线的剖面图,在一些实施例中,柱状透镜1021在轴向上的长度,与遮光结构103沿柱状透镜1021的轴向上的长度可以相同。可以根据工艺需求等实际情况考虑柱状透镜1021在轴向上的长度,以及遮光结构103沿柱状透镜2011的轴向上的长度的设置。
在一些实施例中,多个透镜102可以包括球面透镜1022。可选地,球面透镜1022中的部分或全部可以呈阵列排布在基板301上。
参见图20,图20示出了本公开实施例提供的透镜光栅的制作方法中形成多个球面透镜一种实施例的排布示意图,在一些实施例中,全部球面透镜1022可以呈阵列排布在基板301上。
参见图21,图21示出了本公开实施例提供的透镜光栅的制作方法中形成多个球面透 镜另一种实施例的排布示意图,在一些实施例中,部分球面透镜1022可以呈阵列排布在基板301上。
可选地,可以根据工艺需求等实际情况确定球面透镜1022的数量以及球面透镜1022在基板301上的空间位置排布。
参见图22,图22示出了本公开实施例提供的透镜光栅的制作方法中多个球面透镜和多个柱状透镜一种实施例的排布示意图,在一些实施例中,在基板301上设置的多个透镜102可以包括柱状透镜1021和球面透镜1022,可以将全部柱状透镜1021呈平行排布在基板301上,将全部球面透镜1022呈阵列排布在基板301上。可选地,将全部柱状透镜1021呈平行排布在基板301上,将部分球面透镜1022呈阵列排布在基板101上。可选地,将部分柱状透镜1021呈平行排布在基板301上,将全部球面透镜1022呈阵列排布在基板301上。可选地,将部分柱状透镜1021呈平行排布在基板301上,将部分球面透镜1012呈阵列排布在基板301上。可以根据工艺需求等实际情况确定柱状透镜1021和球面透镜1012的数量以及在基板301上的空间位置排布。
本公开实施例提供的透镜光栅的制作方法,通过在透镜光栅的基板形成的至少一个遮光结构对射向透镜光栅的光线进行遮挡,解决透镜光栅因相邻透镜之间的交界区域形成的不规则的剖面结构导致的子像素的光线投射位置错误的问题,可以减小或者消除左右眼图像串扰,从而提高经过该交界区域投射的3D图像的显示质量。
以上描述和附图充分地示出了本公开的实施例,以使本领域技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样地,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及 其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括该要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。本领域技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在附图中,考虑到清楚性和描述性,可以夸大元件或层等结构的宽度、长度、厚度等。当元件或层等结构被称为“设置在”(或“安装在”、“铺设在”、“贴合在”、“涂布在”等类似描述)另一元件或层“上方”或“上”时,该元件或层等结构可以直接“设置在”上述的另一元件或层“上方”或“上”,或者可以存在与上述的另一元件或层之间的中间元件或层等结构,甚至有一部分嵌入上述的另一元件或层。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模 块、程序段或代码的一部分,上述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (14)

  1. 一种透镜光栅的制作方法,包括:
    提供基板,其中,所述基板设置有至少一个遮光结构;
    在所述基板上形成至少两个透镜,以使所述至少两个透镜中相邻透镜的交界区域对应于所述至少一个遮光结构。
  2. 根据权利要求1所述的方法,其中,所述遮光结构在所述基板的厚度方向上的一端贯穿所述基板;
    在所述基板上形成至少两个透镜,包括:
    在所述基板上背离所述遮光结构的一面,设置所述至少两个透镜;或者,
    在所述基板上靠近所述遮光结构的一面,设置所述至少两个透镜。
  3. 根据权利要求1所述的方法,其中,所述遮光结构在所述基板的厚度方向上贯穿所述基板;
    在所述基板上形成至少两个透镜,包括:
    在所述基板的任意一面,设置所述至少两个透镜。
  4. 根据权利要求1所述的方法,其中,所述遮光结构设置于所述基板的表面;
    在所述基板上形成至少两个透镜,包括:
    在所述基板上设置有所述遮光结构的一面,设置所述至少两个透镜。
  5. 根据权利要求2至4任一项所述的方法,其中,所述遮光结构凸出于所述基板的表面;
    设置所述至少两个透镜,包括:
    将所述至少两个透镜中相邻透镜的交界区域,设置于所述遮光结构凸出于所述基板的部分。
  6. 根据权利要求1所述的方法,其中,所述遮光结构完全置于所述基板内;
    在所述基板上形成至少两个透镜,包括:
    将所述至少两个透镜中相邻透镜的交界区域,设置于所述遮光结构对应于所述基板上的投影区域内。
  7. 根据权利要求1至6任一项所述的方法,其中,所述基板为整体基板。
  8. 根据权利要求1所述的方法,其中,所述基板为部分基板,所述遮光结构设置于所述部分基板的表面;
    在所述基板上形成至少两个透镜之前,还包括:
    在所述部分基板设置有所述遮光结构的一面设置填充材料;
    在所述基板上形成至少两个透镜,包括:
    在所述部分基板背离所述遮光结构的一面,设置所述至少两个透镜;或者,
    在所述部分基板设置有所述填充材料的一面,设置所述至少两个透镜。
  9. 根据权利要求1所述的方法,其中,所述至少两个透镜包括凹透镜和凸透镜中的至少一种。
  10. 根据权利要求9所述的方法,其中,所述至少两个透镜包括柱状透镜和球面透镜中的至少一种。
  11. 根据权利要求10所述的方法,其中,所述至少两个透镜包括所述柱状透镜;
    在所述基板上形成至少两个透镜,包括:
    将所述柱状透镜中的部分或全部呈平行排布在所述基板上。
  12. 根据权利要求11所述的方法,还包括:
    将所述柱状透镜在轴向上的长度,设置为与所述遮光结构沿所述柱状透镜的轴向上的长度相同。
  13. 根据权利要求10所述的方法,其中,所述至少两个透镜包括所述球面透镜;
    在所述基板上形成至少两个透镜,包括:
    将所述球面透镜中的部分或全部呈阵列排布在所述基板上。
  14. 根据权利要求1至13任一项所述的方法,还包括:
    设置所述至少两个透镜中的部分或全部相邻透镜之间无间隙,或者有间隙。
PCT/CN2021/090565 2020-05-22 2021-04-28 透镜光栅的制作方法 WO2021233097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010440107.3 2020-05-22
CN202010440107.3A CN113703185A (zh) 2020-05-22 2020-05-22 透镜光栅的制作方法

Publications (1)

Publication Number Publication Date
WO2021233097A1 true WO2021233097A1 (zh) 2021-11-25

Family

ID=78646139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090565 WO2021233097A1 (zh) 2020-05-22 2021-04-28 透镜光栅的制作方法

Country Status (3)

Country Link
CN (1) CN113703185A (zh)
TW (1) TW202146946A (zh)
WO (1) WO2021233097A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200606460A (en) * 2004-08-03 2006-02-16 Nano Prec Corp Method for maufacturing lenticular sheet and structure thereof
US20140118664A1 (en) * 2012-11-01 2014-05-01 Seiko Epson Corporation Micro lens array substrate, electro-optical device, and electronic apparatus
JP2015200840A (ja) * 2014-04-10 2015-11-12 リコー光学株式会社 マイクロレンズアレイ基板
CN204989640U (zh) * 2015-06-29 2016-01-20 张家港康得新光电材料有限公司 一种视景分离器件及3d显示装置
CN107193069A (zh) * 2017-07-04 2017-09-22 京东方科技集团股份有限公司 一种光栅及双视显示装置
CN212255896U (zh) * 2020-05-22 2020-12-29 北京芯海视界三维科技有限公司 透镜光栅、显示模组、显示屏及显示器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200506418A (en) * 2003-07-01 2005-02-16 Nippon Sheet Glass Co Ltd Lens plate, its manufacturing method, and image transmitting apparatus
CN102681183B (zh) * 2012-05-25 2015-01-07 合肥鼎臣光电科技有限责任公司 基于透镜阵列的双向三维成像和裸眼三维显示系统
CN103064136B (zh) * 2013-01-16 2014-12-31 福州大学 用于集成成像3d显示的组合微透镜阵列及其制作方法
CN104898291A (zh) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 一种视镜分离器件及其制作方法
CN105448197A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN108169922A (zh) * 2018-01-30 2018-06-15 武汉华星光电技术有限公司 3d显示装置及其透镜组件
CN110703368A (zh) * 2019-10-29 2020-01-17 武汉华星光电技术有限公司 透镜阵列及其制备方法、显示面板
CN110764169A (zh) * 2019-11-06 2020-02-07 京东方科技集团股份有限公司 透镜结构及制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200606460A (en) * 2004-08-03 2006-02-16 Nano Prec Corp Method for maufacturing lenticular sheet and structure thereof
US20140118664A1 (en) * 2012-11-01 2014-05-01 Seiko Epson Corporation Micro lens array substrate, electro-optical device, and electronic apparatus
JP2015200840A (ja) * 2014-04-10 2015-11-12 リコー光学株式会社 マイクロレンズアレイ基板
CN204989640U (zh) * 2015-06-29 2016-01-20 张家港康得新光电材料有限公司 一种视景分离器件及3d显示装置
CN107193069A (zh) * 2017-07-04 2017-09-22 京东方科技集团股份有限公司 一种光栅及双视显示装置
CN212255896U (zh) * 2020-05-22 2020-12-29 北京芯海视界三维科技有限公司 透镜光栅、显示模组、显示屏及显示器

Also Published As

Publication number Publication date
CN113703185A (zh) 2021-11-26
TW202146946A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
EP2818914A1 (en) Liquid crystal lens and process for manufacturing the same, stereoscopic display device and process for manufacturing the same
WO2015027603A1 (zh) 阵列基板及其制作方法、3d显示装置
WO2014134886A1 (zh) 彩膜基板及其制作方法、液晶显示屏
WO2016033922A1 (zh) 液晶透镜分光器件及其制造方法、立体显示装置
CN212255896U (zh) 透镜光栅、显示模组、显示屏及显示器
WO2023221886A1 (zh) 显示屏及显示装置
WO2014139221A1 (zh) 彩膜基板的制作方法、彩膜基板及显示装置
TWI491925B (zh) A super stereoscopic vision separation element
TWI801904B (zh) 光學元件的製造方法、光學元件、和用於製造光學元件的設備
WO2021233097A1 (zh) 透镜光栅的制作方法
EP3112928B1 (en) Display apparatus
WO2021233096A1 (zh) 透镜光栅的制作方法
TWI491926B (zh) A super stereoscopic vision separation element
WO2021233105A1 (zh) 透镜光栅及其制作方法
WO2021233074A1 (zh) 透镜光栅的制作方法
CN102830546B (zh) 3d显示装置及其制作方法
WO2021233075A1 (zh) 透镜光栅的制作方法
WO2021233073A1 (zh) 透镜光栅、显示模组、显示屏及显示器
US20090103019A1 (en) Color filter substrate and fabricating method thereof and liquid crystal display panel
TW201506447A (zh) 一種可同時顯示2d與3d動態影像之方法與裝置
WO2021233071A1 (zh) 透镜、光栅、显示面板和显示器
WO2021147760A1 (zh) 透镜光栅、显示模组、显示屏和显示器
TWI485436B (zh) 顯示裝置及其相位延遲膜製作方法
WO2021233072A1 (zh) 制作光栅组件的方法
JP2010175597A (ja) フォトマスク、カラーフィルタの製造方法、カラーフィルタ、及び液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808371

Country of ref document: EP

Kind code of ref document: A1