WO2016033922A1 - 液晶透镜分光器件及其制造方法、立体显示装置 - Google Patents

液晶透镜分光器件及其制造方法、立体显示装置 Download PDF

Info

Publication number
WO2016033922A1
WO2016033922A1 PCT/CN2015/070018 CN2015070018W WO2016033922A1 WO 2016033922 A1 WO2016033922 A1 WO 2016033922A1 CN 2015070018 W CN2015070018 W CN 2015070018W WO 2016033922 A1 WO2016033922 A1 WO 2016033922A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
substrate
liquid crystal
display panel
light
Prior art date
Application number
PCT/CN2015/070018
Other languages
English (en)
French (fr)
Inventor
吴坤
徐传祥
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/771,614 priority Critical patent/US20160291335A1/en
Publication of WO2016033922A1 publication Critical patent/WO2016033922A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • Embodiments of the present invention relate to a liquid crystal lens spectroscopic device, a method of fabricating the same, and a stereoscopic display device.
  • the naked-eye stereoscopic display technology is favored in the field of three-dimensional stereoscopic display because it does not require viewers to wear glasses.
  • the main way to realize the naked-eye stereoscopic display technology is to divide the pixel unit of the display panel into an odd-numbered column pixel unit and an even-numbered column pixel unit in the horizontal direction by setting a grating in front of the display panel, thereby respectively being able to separate the left and right eyes of the viewer.
  • a grating in front of the display panel, thereby respectively being able to separate the left and right eyes of the viewer.
  • the parallax effect of the viewer's left eye image and right eye image forms a depth of field, which in turn produces a stereoscopic display effect.
  • the grating includes two types of occlusion type and split type, and the occlusion type is further divided into a black and white parallax barrier grating and a liquid crystal slit grating, and the spectroscopic type is divided into a columnar physical lens and a liquid crystal lens.
  • the liquid crystal lens stereoscopic display technology requires a large liquid crystal layer thickness, generally 10 ⁇ m or more, for ensuring a good phase retardation amount after the optical signal passes through the liquid crystal lens to generate two different images.
  • a spherical ball spacer (Ball Spacer, BS for short) may be used as a support to support the thickness of the liquid crystal layer, such as a large-sized silicon ball.
  • the spherical spacers are dispersed between the substrates of the liquid crystal lens by dispersion, and their positions and densities cannot be precisely controlled.
  • liquid crystal lens when one or more supports are located in a display area in a pixel unit in the display panel, the position occupied by the support cannot fill the liquid crystal, and the support will be in the liquid crystal lens corresponding to the display area
  • the arrangement of liquid crystal molecules causes an influence. Due to the extrusion of the support, the nearby liquid crystal molecules are not aligned in a predetermined direction in which the lens is formed, thereby causing disordered scattered light to be generated, causing crosstalk.
  • Embodiments of the present invention provide a liquid crystal lens spectroscopic device, a manufacturing method thereof, and a stereoscopic display device Set to reduce or eliminate crosstalk.
  • At least one embodiment of the present invention provides a liquid crystal lens beam splitting device for use in a display panel, the liquid crystal lens beam splitting device comprising a first substrate and a second substrate, the second substrate being disposed on a light emitting side of the display panel a liquid crystal is filled between the first substrate and the second substrate, a support is disposed between the first substrate and the second substrate; and the support and the display panel are in a light emitting direction of the display panel The non-light-emitting areas on the opposite are opposite.
  • the liquid crystal may form at least two liquid crystal lenses, and the support may be located at an interface area of adjacent liquid crystal lenses.
  • the support may be uniformly disposed between the first substrate and the second substrate.
  • the support can be a photoresist spacer.
  • the support may be a columnar support, and the support may have a circular or polygonal cross section in the light outgoing direction of the display panel.
  • the support may include a first portion and a second portion; one end of the first portion of the support is in contact with the first substrate, and the other end of the first portion of the support is second with the support One end of the portion is in contact, and the other end of the second portion of the support is in contact with the second substrate.
  • the display panel is a liquid crystal display panel
  • the non-light-emitting area is a black matrix area.
  • An embodiment of the present invention further provides a stereoscopic display device including a display panel and a liquid crystal lens beam splitting device disposed on a light exiting side of the display panel, wherein the liquid crystal lens splitting device is any one of the liquid crystal lens splitting devices described above.
  • Embodiments of the present invention also provide a method of fabricating a liquid crystal lens, comprising: fabricating a first substrate and a second substrate disposed on a light exiting side of the display panel; on the first substrate and/or on the second substrate Forming a support thereon; aligning the first substrate and the second substrate into the liquid crystal; and the support is opposite to the non-light-emitting area on the display panel in a light-emitting direction of the display panel.
  • the forming a support on the first substrate may include: forming a first portion of the first support on the first substrate by a patterning process; and forming a first portion of the support by a patterning process A second portion of the support is formed thereon; a first portion of the support and a second portion of the support constitute the support.
  • the forming a support on the second substrate may include: forming a second portion of the support on the second substrate by a patterning process; and forming a second portion of the support by a patterning process A first portion of the support is formed on two portions; a first portion of the support and a second portion of the support constitute the support.
  • the forming a support on the first substrate and the second substrate may include: forming a first portion of the support on the first substrate by a patterning process; A second portion of the support is formed on the second substrate; the first portion of the support and the second portion of the support constitute the support.
  • the support may be formed by a patterning process in which the material viscosity of the support exceeds a predetermined viscosity value.
  • FIG. 1 is a schematic structural diagram of a liquid crystal lens spectroscopic device according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the position of a support provided by an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the position of a support according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a liquid crystal lens beam splitting device according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a liquid crystal lens beam splitting device according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a liquid crystal lens beam splitting device according to still another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a liquid crystal lens beam splitting device according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a liquid crystal lens beam splitting device according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a liquid crystal lens beam splitting device according to still another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a liquid crystal lens spectroscopic device according to another embodiment of the present invention.
  • 100-liquid crystal lens splitting device 110-first substrate; 120-second substrate; 130-support; 140-junction area of adjacent liquid crystal lens; 1301-first part of support; 1302-second of support Portion; 140-liquid crystal lens junction region; 150-liquid crystal; 200-display panel; 201-non-light-emitting region; 111-first substrate; 112-electrode lead; 113-first insulating layer; 114-first electrode 115-second insulating layer; 116-first alignment layer; 121-second substrate; 122-second electrode; 123-second alignment layer.
  • an embodiment of the present invention provides a liquid crystal lens beam splitting device 100, which is disposed on a display panel 200.
  • the liquid crystal lens beam splitting device includes: a first substrate 110 and a second substrate 120, and the second substrate 120 is disposed at The light-emitting side of the display panel (the arrow below the second substrate 120 in FIG.
  • the first substrate 110 is further away from the light-emitting layer of the display panel; the first substrate 110 and the second substrate 120 are filled with In the liquid crystal 150, a support 130 is disposed between the first substrate 110 and the second substrate 120; and the support 130 is opposed to the non-light-emitting region 201 on the display panel 200 in the light-emitting direction of the display panel 200.
  • the non-light-emitting area 201 may be a non-light-emitting area between adjacent pixel units in a display panel of any mode.
  • the non-light-emitting area 201 may be an area between adjacent pixel units; when the display panel is a liquid crystal display panel, the non-light-emitting area 201 may be a black matrix area.
  • the support 130 is a columnar support, and in the light-emitting direction of the display panel (in conjunction with FIG.
  • the cross-section of the support is circular or polygonal, it being understood that when the cross-section of the support is circular
  • the side of the support may be a cylindrical surface or a round mesa.
  • the support can be a photoresist spacer.
  • the substrate of the first substrate 110 and the second substrate 120 may be a substrate of a glass substrate, a plastic substrate or other materials, and the second substrate 120 of the liquid crystal lens beam splitting device is disposed on the light emitting side of the display panel, that is, the light emitted by the display panel is
  • the second substrate 120 is incident on the liquid crystal lens spectroscopic device 100; further, the substrate on the light-emitting side of the display panel may share the substrate with the second substrate 120.
  • the display panel is a liquid crystal display panel
  • the color filter substrate of the display panel and the second substrate 120 may share the base substrate.
  • the liquid crystal 150 is filled between the first substrate 110 and the second substrate 120.
  • the liquid crystal 150 can form a liquid crystal lens under the control of the electrodes of the first substrate 110 and the second substrate 120.
  • the liquid crystal lens is in the liquid crystal lens.
  • the spectroscopic devices 100 are arranged in an array for generating a spectroscopic effect on the light incident on the liquid crystal lens spectroscopic device 100 from the second substrate 120, thereby realizing 3D display.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting region on the display panel in the light-emitting direction of the display panel, so that the first substrate and the second substrate are not
  • the arrangement order of the liquid crystal molecules corresponding to the light-transmitting region of the display panel affects, and the crosstalk phenomenon is reduced or eliminated.
  • the support does not block the light of the light-transmitting region of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided.
  • the liquid crystal forms at least two liquid crystal lenses, and the support is located at the boundary region 140 of the adjacent liquid crystal lens.
  • the support is located in the liquid crystal lens region formed by the liquid crystal, since the position of the corresponding support in the liquid crystal lens cannot fill the liquid crystal, and the presence of the support affects the deflection of the liquid crystal molecules in the liquid crystal lens, the support is disposed adjacent to each other.
  • the boundary area of the liquid crystal lens avoids the generation of disordered light, thereby reducing the crosstalk of the liquid crystal lens.
  • liquid crystals in the boundary region of adjacent liquid crystal lenses are affected by the orientation direction of the liquid crystal alignment layer, at the same initial deflection angle in the initial state, but when the electric field is applied, the boundary of adjacent liquid crystal lenses
  • the electric fields on both sides of the area are opposite in direction, and the liquid crystal which is affected by the boundary between the adjacent liquid crystal lenses causes liquid crystal phase errors, which may cause disordered light.
  • the support is disposed at the boundary region of the adjacent liquid crystal lens, and the liquid crystal at the boundary of the support is replaced by the support instead of the liquid crystal at the boundary of the adjacent liquid crystal lens, thereby reducing the disordered light.
  • the support may be a columnar support, and the cross section of the support may be circular or polygonal in the light outgoing direction of the display panel.
  • the support is a cylinder or a circular body, and the side walls are cylindrical side walls or round table side walls, compared to a conventional spherical support, a cylindrical side wall or a truncated cone
  • the sidewall is more favorable for the orderly arrangement of the liquid crystal molecules, and avoids the problem that the liquid crystal molecules around the spherical support cannot be arranged in the order of the original arrangement due to the influence of the spherical outer wall, thereby effectively reducing light scattering and further reducing crosstalk. .
  • the support 13 may be uniformly disposed between the first substrate and the second substrate, and the spherical support is randomly disposed between the first substrate and the second substrate in a dispersed manner compared to the usual spherical support.
  • the position, density, etc. of the spherical support cannot be precisely controlled, so that the scattering caused by the light is also disordered.
  • the support is formed in the first by a preparation process Between the substrate and the second substrate, it can be evenly distributed between the first substrate and the second substrate according to a certain rule, and the density is the same in the entire region of the light splitting device, thereby further avoiding the generation of disordered scattered light and improving the whole The uniformity of the splitting device.
  • the support may be formed by one patterning process, in which one end of the support 130 is in contact with the first substrate 110, and the other end of the support 130 is in contact with the second substrate 120.
  • the height of the photoresist spacer produced by the existing mass production process can generally be about 5 ⁇ m, and the height of the support required for the liquid crystal lens is generally 10 ⁇ m or more.
  • the support 130 in the corresponding embodiment of FIG. 4 or FIG. 5 may be coated at one time using a photoresist spacer material exceeding a predetermined viscosity, and the support 130 is formed by one patterning process.
  • the photoresist spacer material exceeding "predetermined viscosity" means that the viscosity satisfies twice or more the viscosity of the photoresist spacer material used in the prior art production process.
  • FIG. 4 is an example of forming a support on a first substrate
  • FIG. 5 is an example of forming a support on a second substrate
  • FIG. 6 can be understood as being simultaneously in the liquid crystal lens spectroscopic device. A support is formed on the substrate and the second substrate, and the structure shown in FIG. 6 is formed after the case.
  • the support 130 may be formed by two patterning processes in a photoresist gap manner produced by an existing mass production process.
  • the support 130 includes a first portion 1301 and a second portion 1302; one end of the first portion 1301 of the support 130 is in contact with the first substrate 110, and the first portion of the support 130 The other end of the 1301 is in contact with one end of the second portion 1302 of the support 130, and the other end of the second portion 1302 of the support 130 is in contact with the second substrate 120.
  • the support 130 is disposed on the first substrate 110 , and the first portion 1301 of the support 130 is formed on the first substrate 110 by the first applied photoresist spacer material, and the support 130 may be first
  • the first portion 1301 is pre-cured, and then the second coated photoresist spacer material forms a second portion 1302 of the support 130; the support 130 is disposed on the second substrate 120 with reference to FIG.
  • the second portion 1302 of the support 130 may be pre-cured, and then the second time.
  • the coated photoresist spacer material forms a first portion 1301 of the support 130; the first portion 1301 of the support 130 is disposed on the first substrate 110 with reference to FIG. 9, and the second portion 1302 of the support 130 is disposed on the second substrate
  • the first portion 1301 of the rear support 130 and the second portion 1302 of the support 130 contact the support box.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting region on the display panel in the light-emitting direction of the display panel, so that the first substrate and the second substrate are not
  • the arrangement order of the liquid crystal molecules corresponding to the light-transmitting regions of the display panel between the substrates affects, and the crosstalk phenomenon is reduced or eliminated.
  • the support does not block the light of the light-transmitting area of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided, and the first part formed by the two-time patterning process is further
  • the second part of the composition can be produced by the usual manufacturing process to reduce the complexity of production.
  • An embodiment of the invention provides a method for fabricating a liquid crystal lens spectroscopic device, which may include the following steps.
  • the first substrate and the second substrate disposed on the light emitting side of the display panel are fabricated.
  • the first substrate and the second substrate can be fabricated in a conventional manner. As shown in FIG. 10, a first substrate and a second substrate are provided, which are of course only exemplary and are not intended to limit the invention. As shown in Figure 10, one implementation is as follows.
  • first substrate 110 including a first substrate 111, an electrode lead 112, a first insulating layer 113, a first electrode 114, a second insulating layer 115, and a first alignment layer 116; and fabricating the second substrate 121, the second electrode 122, the second substrate 120 of the second alignment layer 123; the first electrode 114 in the figure may be a comb electrode, and the second electrode 122 is a plate common electrode.
  • first substrate 111 and the second substrate 121 may be a substrate of a glass substrate, a plastic substrate or other materials, and the method for fabricating the substrate may be the same as the conventional technology, and details are not described herein again.
  • the support is formed of a photoresist spacer material; wherein the support can be formed by a patterning process; the patterning process generally includes substrate cleaning, film formation, photoresist coating, exposure, development, etching, photoresist a process such as stripping; a metal layer is usually formed by physical vapor deposition (for example, magnetron sputtering), a pattern is formed by wet etching, and a non-metal layer is usually formed by chemical vapor deposition, and is patterned by dry etching. The etch forms a pattern.
  • the following steps can be included:
  • Step 1 coating a photoresist on the photoresist spacer material on the substrate;
  • Step 2 exposing the substrate by using a mask having a light-transmitting region and an opaque region, wherein the light-transmitting region corresponds to a region where the formed or opaque region corresponds to the support;
  • Step 3 developing, removing the photoresist corresponding to the region of the non-support region
  • Step 4 etching the exposed photoresist spacer material on the substrate according to the material selection etching method; finally forming a support.
  • the support is formed by one patterning process, and the material viscosity of the support exceeds a predetermined viscosity value.
  • the height of the support required for the liquid crystal lens is generally 10 ⁇ m or more.
  • the height of the photoresist spacer produced by the mass production process can be about 5 ⁇ m.
  • a photoresist spacer material exceeding a predetermined viscosity can be used for one-time coating, and formed by one patterning process. Support.
  • the photoresist spacer material "beyond the predetermined viscosity" means that the viscosity satisfies twice or more the viscosity of the photoresist spacer material used in the prior art production process.
  • the first substrate and the second substrate are paired with the box and filled with the liquid crystal.
  • the support is opposite to the non-light-emitting area on the display panel in the light-emitting direction of the display panel.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting area on the display panel in the light-emitting direction of the display panel, so that the first substrate and the first substrate are not
  • the arrangement order of the liquid crystal molecules corresponding to the light-transmitting region of the display panel between the second substrates affects, and the crosstalk phenomenon is reduced or eliminated.
  • the support does not block the light of the light-transmitting region of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided.
  • Embodiments of the present invention also provide a method of manufacturing the liquid crystal lens shown in FIG. 7, which may include the following steps:
  • the first substrate and the second substrate disposed on the light emitting side of the display panel are fabricated.
  • step S902 forms a first portion 1301 of the support 130 through the first applied photoresist spacer material using a patterning process, and then pre-cures the first portion 1301 of the support 130.
  • the first portion 1301 of the support 130 formed in step S902 is a photoresist spacer produced by an existing mass production process, and has a height of about 5 ⁇ m.
  • step S903 is to apply a second patterning photoresist spacer material by using a patterning process.
  • a second portion 1302 of the support 130 is formed.
  • the second portion 1302 of the support 130 formed in step S903 may be a photoresist spacer produced by an existing mass production process, and has a height of about 5 ⁇ m, wherein the first portion of the support and the second portion of the support constitute a support.
  • the first substrate and the second substrate are paired with the liquid crystal.
  • the support is opposite to the non-light-emitting area on the display panel in the light-emitting direction of the display panel.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting region on the display panel in the light-emitting direction of the display panel, so that the first substrate is not
  • the arrangement order of the liquid crystal molecules corresponding to the light-transmitting region of the display panel between the second substrate and the second substrate affects, and the crosstalk phenomenon is reduced or eliminated.
  • the support does not block the light of the light-transmitting region of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided.
  • the first portion and the second portion of the support formed by the two patterning processes can all be fabricated using conventional fabrication processes to reduce the complexity of production.
  • Embodiments of the present invention also provide a method of fabricating the liquid crystal lens shown in FIG. 8, which may include the following steps:
  • a first substrate and a second substrate disposed on a light outgoing side of the display panel are fabricated.
  • step S1002 forms a second portion 1302 of the support 130 by the first applied photoresist spacer material using a patterning process, and then pre-curing the second portion 1302 of the support 130.
  • the second portion 1302 of the support 130 formed in the step S1002 is a photoresist spacer produced by the existing mass production process, and has a height of about 5 ⁇ m.
  • step S1003 is to form the first portion 1301 of the support 130 by coating the photoresist spacer material a second time using a patterning process.
  • the first portion 1301 of the support 130 formed in step S1003 is a photoresist spacer produced by a prior art mass production process, and has a height of about 5 ⁇ m; the first portion of the support and the second portion of the support constitute a support.
  • the support is opposite to the non-light-emitting area on the display panel in the light-emitting direction of the display panel.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting region on the display panel in the light-emitting direction of the display panel, so that the first substrate is not And liquid crystal molecules corresponding to the light transmissive area of the display panel between the second substrate
  • the order of the order affects, reducing or eliminating crosstalk.
  • the support does not block the light of the light-transmitting area of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided, and the first part and the first part of the support are further formed by two patterning processes.
  • the two-part composition can be produced by using the usual manufacturing process to reduce the complexity of production.
  • Embodiments of the present invention also provide a method of fabricating the liquid crystal lens shown in FIG. 9, which may include the following steps:
  • a first substrate and a second substrate disposed on a light outgoing side of the display panel are fabricated.
  • the photoresist spacer material may be coated on the first substrate using the PS material used in the existing mass production process, and the first portion 1301 of the support 130 having a height of about 5 ⁇ m is obtained on the first substrate by this patterning process.
  • the photoresist spacer material may be coated on the second substrate using the PS material used in the existing mass production process, and the height of the first support on the second substrate is obtained by the patterning process to obtain a height of 5 ⁇ m.
  • the second portion 1302 of the left and right supports 130 is opposite to the non-light-emitting area on the display panel in the light-emitting direction of the display panel.
  • S1104 The first substrate and the second substrate are paired with the liquid crystal and filled into the liquid crystal.
  • the support is opposite to the non-light-emitting area on the display panel in the light-emitting direction of the display panel.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting region on the display panel in the light-emitting direction of the display panel, so that the first substrate is not
  • the arrangement order of the liquid crystal molecules corresponding to the light-transmitting region of the display panel between the second substrate and the second substrate affects, and the crosstalk phenomenon is reduced or eliminated.
  • the support does not block the light of the light-transmitting region of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided.
  • the first part and the second part of the support formed by the two patterning processes can all be fabricated by a usual manufacturing process to reduce the complexity of production.
  • Embodiments of the present invention provide a stereoscopic display device including a display panel and a display surface
  • a liquid crystal lens spectroscopic device on the light-emitting side of the panel, and a liquid crystal lens spectroscopic device is any liquid crystal lens spectroscopic device provided in the above embodiments.
  • the liquid crystal lens beam splitting device supports the thickness of the support through the support, and the support is opposed to the non-light-emitting area on the display panel in the light-emitting direction of the display panel.
  • the stereoscopic display device may be any product or component having a display function such as an electronic paper, a mobile phone, a watch, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the support between the first substrate and the second substrate is opposite to the non-light-emitting region on the display panel in the light-emitting direction of the display panel, so that the first substrate and the second substrate are not
  • the arrangement order of the liquid crystal molecules corresponding to the light-transmitting region of the display panel affects, and the crosstalk phenomenon is reduced or eliminated.
  • the support does not block the light of the light-transmitting region of the display panel from passing through the liquid crystal lens, so that the influence of the support on the transmittance of the display panel can be further reduced or avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶透镜分光器件(100)及其制造方法、立体显示装置,液晶透镜分光器件(100)用于设置于显示面板(200)上,包含:第一基板(110)和第二基板(120),第二基板(120)设置在显示面板(200)的出光侧;其中第一基板(110)和第二基板(120)之间充有液晶(150),第一基板(110)和第二基板(120)之间设置有支撑物(130);其中,在显示面板(200)的出光方向上支撑物(130)与显示面板(200)上的非出光区域(201)相对,液晶透镜分光器件(100)可以降低或消除串扰现象,可用于显示装置的制造。

Description

液晶透镜分光器件及其制造方法、立体显示装置 技术领域
本发明的实施例涉及一种液晶透镜分光器件及其制造方法、立体显示装置。
背景技术
随着立体显示技术的快速发展,立体显示设备也有了越来越多的需求。在当前众多实现三维立体显示的技术当中,裸眼立体显示技术由于无需观看者戴眼镜,因此在三维立体显示领域中备受青睐。
目前,实现裸眼立体显示技术的主要方式是通过在显示面板前设置光栅,在水平方向上将显示面板的像素单元分割为奇数列像素单元和偶数列像素单元,从而可为观看者的左右眼分别提供两幅不同的图像。观看者左眼图像和右眼图像的视差效应形成景深,进而产生立体显示效果。光栅又包括遮挡式和分光式两种,遮挡式又分为黑白视差障碍光栅和液晶狭缝光栅,分光式分为柱状物理透镜和液晶透镜等。
液晶透镜立体显示技术需要较大的液晶层厚度,一般要大于等于10μm,用于保证光信号通过液晶透镜后有良好的相位延迟量,以生成两幅不同的图像。可以采用球形的球状间隙子(Ball Spacer,简称BS)作为支撑物来支撑液晶层厚度,例如大粒径硅球。球状间隙子通过散布方式分散在液晶透镜的基板之间,其位置、密度无法精确控制。
在液晶透镜中,当一个或多个支撑物位于显示面板中的像素单元中的显示区域中时,支撑物所占据的位置不能填充液晶,并且支撑物会对该显示区域对应的液晶透镜中的液晶分子的排列造成影响。由于支撑物的挤压,附近的液晶分子并不能按照形成透镜的预定方向排列,从而造成杂乱的散射光线产生,造成串扰现象。
发明内容
本发明的实施例提供一种液晶透镜分光器件及其制造方法、立体显示装 置,用以降低或消除串扰现象。
本发明至少一个实施例提供一种液晶透镜分光器件,其用于设置于显示面板上,所述液晶透镜分光器件包括第一基板和第二基板,所述第二基板设置在显示面板的出光侧;所述第一基板和第二基板之间充有液晶,所述第一基板和第二基板之间设置有支撑物;在所述显示面板的出光方向上所述支撑物与所述显示面板上的非出光区域相对。
例如,所述液晶可形成至少两个液晶透镜,所述支撑物可位于相邻的所述液晶透镜的交界区域。
例如,所述支撑物可均匀设置于所述第一基板和所述第二基板之间。
例如,所述支撑物可为光阻间隙子。
例如,所述支撑物可为柱状支撑物,在所述显示面板的出光方向上,所述支撑物的截面可为圆形或多边形。
例如,所述支撑物可包括第一部分和第二部分;所述支撑物的第一部分的一端与所述第一基板接触,所述支撑物的第一部分的另一端与所述支撑物的第二部分的一端接触,所述支撑物的第二部分的另一端与所述第二基板接触。
例如,所述显示面板为液晶显示面板,所述非出光区域为黑矩阵区域。
本发明的实施例还提供一种立体显示装置,其包括显示面板和设置在所述显示面板出光侧的液晶透镜分光器件,所述液晶透镜分光器件为上述任一液晶透镜分光器件。
本发明的实施例还提供一种液晶透镜的制造方法,包括:制作第一基板和设置在显示面板的出光侧的第二基板;在所述第一基板上和/或在所述第二基板上形成支撑物;将所述第一基板与第二基板对盒并充入液晶;在所述显示面板的出光方向上所述支撑物与所述显示面板上的非出光区域相对。
例如,所述在所述第一基板上形成支撑物,可包括:通过构图工艺在所述第一基板上形成所述第一支撑物的第一部分;通过构图工艺在所述支撑物的第一部分上形成所述支撑物的第二部分;所述支撑物的第一部分和所述支撑物的第二部分组成所述支撑物。
例如,所述在所述第二基板上形成支撑物,可包括:通过构图工艺在所述第二基板上形成所述支撑物的第二部分;通过构图工艺在所述支撑物的第 二部分上形成所述支撑物的第一部分;所述支撑物的第一部分和所述支撑物的第二部分组成所述支撑物。
例如,所述在所述第一基板和所述第二基板上形成支撑物,可包括:通过构图工艺在所述第一基板上形成所述支撑物的第一部分;通过构图工艺在所述第二基板上形成支撑物的第二部分;所述支撑物的第一部分和所述支撑物的第二部分组成所述支撑物。
例如,所述支撑物可通过一次构图工艺形成,形成所述支撑物的材料粘度超过预定粘度值。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例提供的液晶透镜分光器件示意性结构图;
图2为本发明的实施例提供的一种支撑物的位置示意图;
图3为本发明的另一实施例提供的一种支撑物的位置示意图;
图4为本发明另一实施例提供的一种液晶透镜分光器件示意性结构图;
图5为本发明又一实施例提供的一种液晶透镜分光器件示意性结构图;
图6为本发明再一实施例提供的一种液晶透镜分光器件示意性结构图;
图7为本发明另一实施例提供的一种液晶透镜分光器件示意性结构图;
图8为本发明又一实施例提供的一种液晶透镜分光器件示意性结构图;
图9为本发明再一实施例提供的一种液晶透镜分光器件示意性结构图;
图10为本发明另一实施例提供的一种液晶透镜分光器件示意性结构图。
附图标记:
100-液晶透镜分光器件;110-第一基板;120-第二基板;130-支撑物;140-相邻的液晶透镜的交界区域;1301-支撑物的第一部分;1302-支撑物的第二部分;140-液晶透镜的交界区域;150-液晶;200-显示面板;201-非出光区域;111-第一衬底基板;112-电极引线;113-第一绝缘层;114-第一电极;115-第二绝缘层;116-第一取向层;121-第二衬底基板;122-第二电极;123-第二取向层。
具体实施方式
下面结合附图对本发明实施例提供的液晶透镜及制造方法、显示面板进行详细描述,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
需要说明的是,本发明的实施利中用相同的附图标记指示本文中的相同元件。在下面的描述中,为便于解释,给出了大量具体细节,以便提供对一个或多个实施例的全面理解。然而,很明显,也可以不用这些具体细节来实现所述实施例。
参照图1、2所示,本发明实施例提供一种液晶透镜分光器件100,设置于显示面板200上,液晶透镜分光器件包括:第一基板110和第二基板120,第二基板120设置在显示面板的出光侧(附图1中第二基板120下方的箭头表示光线方向),相应地第一基板110距离显示面板的出光层更远;第一基板110和第二基板120之间充有液晶150,第一基板110和第二基板120之间设置有支撑物130;在显示面板200的出光方向上支撑物130与显示面板200上的非出光区域201相对。
例如,上述非出光区域201可以采用任意模式的显示方式的显示面板中相邻像素单元之间的非出光区域。例如:当显示面板是有机发光二极管(OLED)显示面板时,非出光区域201可以为相邻的像素单元之间的区域;当显示面板为液晶显示面板时,非出光区域201可为黑矩阵区域。此外,例如,支撑物130为柱状支撑物,在显示面板的出光方向上(结合参考图1),支撑物的横截面为圆形或多边形,可以理解的是当支撑物的横截面为圆形时,支撑物的侧面可为圆柱面、或圆台面。支撑物可以采用光阻间隙子。第一基板110和第二基板120的衬底基板可以为玻璃基板、塑料基板或其他材料的基板,液晶透镜分光器件的第二基板120设置在显示面板的出光侧,即显示面板发出的光线由第二基板120射入液晶透镜分光器件100;此外,显示面板出光侧的基板可以与上述第二基板120共用衬底基板。例如:当显示面板为液晶显示面板时,显示面板的彩膜基板和上述第二基板120可以共用衬底基板。
第一基板110和第二基板120之间充有液晶150,液晶150可以在第一基板110和第二基板120的电极控制下形成液晶透镜,液晶透镜在液晶透镜 分光器件100成阵列排列用于对由第二基板120射入液晶透镜分光器件100的光线产生分光效果,从而实现3D显示。
上述实施例提供的液晶透镜分光器件,在显示面板的出光方向上第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响。
例如,参照图3所示,液晶形成至少两个液晶透镜,支撑物位于相邻的液晶透镜的交界区域140。当支撑物位于液晶形成的液晶透镜区域时,由于液晶透镜中对应支撑物的位置不能填充液晶,此外支撑物的存在会对液晶透镜中的液晶分子偏转造成影响,因此支撑物设置在相邻的液晶透镜的交界区域避免了杂乱光线的产生,进而降低了液晶透镜的串扰。
例如,一般来说,相邻的液晶透镜的交界区域中的液晶受液晶取向层的取向方向的影响,在初始状态处于相同的初始偏转角但是,当加电场后,相邻的液晶透镜的交界区域两侧的电场方向相反,受此影响相邻的液晶透镜的交界区域的液晶会产生液晶相错,进而会产生杂乱光线。在本发明的实施例中将支撑物设置于相邻的液晶透镜的交界区域,通过支撑物取代相邻的液晶透镜的交界区域液晶,消除了支撑物位置的液晶相错,进而减少了杂乱光线的产生。
例如,支撑物可为柱状支撑物,在显示面板的出光方向上,支撑物的横截面可为圆形或多边形。参考附图,以横截面为圆形为例,支撑物为圆柱体或圆台体,其侧壁为圆柱侧壁或圆台侧壁,相比于通常的球形支撑物来说,圆柱侧壁或圆台侧壁更有利于液晶分子的有序排列,避免了球形支撑物周围的液晶分子因其球形外壁的影响而无法依原定排列方向有序排列的问题,从而有效减少光线散射,进而降低串扰现象。
例如,支撑物13可均匀设置于第一基板和第二基板之间,相比于通常的球形支撑物来说,球形支撑物是以散布的方式随机设置在第一基板和第二基板之间,球形支撑物的位置、密度等都无法精确控制,从而对光线造成的散射也是杂乱的。本发明的实施例中,支撑物是通过制备工艺方法形成于第一 基板和第二基板之间,所以可实现按照一定的规律均匀分布于第一基板和第二基板之间,在整个分光器件的区域内密度相同,从而进一步避免了杂乱散射光线的产生,提高整个分光器件的均一性。
以下以支撑物为光阻间隙子(PS,Photo Spacer)为例,对本发明实施例的实施方式进行详细说明。
例如,参照图4或图5所示,支撑物可以为通过一次构图工艺形成,此时支撑物130的一端与第一基板110接触,支撑物130的另一端与第二基板120接触。
现有量产工艺所生产的光阻间隙子高度一般可以为5μm左右,液晶透镜需要的支撑物高度一般大于等于10μm。为了不增加通常的制程工艺得到图4或图5对应实施例中的支撑物130可使用超过预定粘度的光阻间隙子材料一次性涂布,通过一次构图工艺形成支撑物130。这里“超过预定粘度”的光阻间隙子材料是指粘度满足现有量产工艺中所使用的光阻间隙子材料粘度的两倍及以上。需指出的是,本领域一般技术人员完全可根据通常的技术手段和具体工况需求来确定预定粘度的值。图4中以在第一基板上制作形成支撑物为例,图5中以在第二基板上制作形成支撑物为例,图6所示可以理解为在液晶透镜分光器件中可以同时在第一基板及第二基板上制作形成支撑物,对盒之后形成图6所示的结构。
例如,为了控制材料成本,可以以现有量产工艺所生产光阻间隙子方式通过两次构图工艺形成支撑物130。参照图7、图8、图9所示的实施例,支撑物130包括第一部分1301和第二部分1302;支撑物130的第一部分1301的一端与第一基板110接触,支撑物130的第一部分1301的另一端与支撑物130的第二部分1302的一端接触,支撑物130的第二部分1302的另一端与第二基板120接触。
参照图7所示支撑物130设置于第一基板110上,通过第一次涂布的光阻间隙子材料在第一基板110上形成支撑物130的第一部分1301后可以先对支撑物130的第一部分1301进行预固化处理,然后第二次涂布的光阻间隙子材料形成支撑物130的第二部分1302;参照图8所示支撑物130设置于第二基板120上,通过第一次涂布的光阻间隙子材料形成支撑物130的第二部分1302后可以先对支撑物130的第二部分1302进行预固化处理,然后第二次 涂布的光阻间隙子材料形成支撑物130的第一部分1301;参照图9所示支撑物130的第一部分1301设置在第一基板110上,支撑物130的第二部分1302设置在第二基板120上,对盒后支撑物130的第一部分1301和支撑物130的第二部分1302接触支撑盒厚。
上述实施例提供的液晶透镜分光器件中,在显示面板的出光方向上,第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响,进一步的支撑物通过两次构图工艺形成的第一部分和第二部分组成,可以全部采用通常的制作工艺制作降低了生产的复杂性。
本发明一实施例提供一种液晶透镜分光器件的制造方法,可以包括如下步骤。
S801、制作第一基板和设置在显示面板的出光侧的第二基板。
第一基板和第二基板的制作方式可以为通常技术,可参照图10所示,提供一种第一基板和第二基板,这当然只是示例性的,并不是对本发明的限定。如图10所示,一种实现方式如下所述。
S801、制作包括第一衬底基板111、电极引线112、第一绝缘层113、第一电极114、第二绝缘层115和第一取向层116的第一基板110;制作包括第二衬底基板121、第二电极122、第二取向层123的第二基板120;图中第一电极114可以为梳状电极,第二电极122为平板公共电极。此外上述第一衬底基板111和第二衬底基板121可以为玻璃基板、塑料基板或其他材料的基板,基板的制作方法可与通常技术相同,本文在此不再赘述。
S802、在第一基板上和/或在第二基板上形成支撑物。
例如,支撑物由光阻间隙子材料形成;其中支撑物的制作方法可以采用构图工艺形成;构图工艺通常包括基板清洗、成膜、光刻胶涂覆、曝光、显影、刻蚀、光刻胶剥离等工序;对于金属层通常采用物理气相沉积方式(例如磁控溅射法)成膜,通过湿法刻蚀形成图形,而对于非金属层通常采用化学气相沉积方式成膜,通过干法刻蚀形成图形。可包括以下步骤:
步骤1、在基板上的光阻间隙子材料上涂覆光刻胶;
步骤2、采用具有透光区和不透光区的掩模板对基板进行曝光,其透光区对应形成或不透光区对应形成支撑物的区域;
步骤3、显影,去除非支撑物的区域对应区域的光刻胶;
步骤4、根据基板的材料选取刻蚀方法对基板上暴露的光阻间隙子材料进行刻蚀;最终形成支撑物。
例如,当采用支撑物高度独立支撑液晶层厚度时,支撑物为通过一次构图工艺形成,支撑物的材料粘度超过预定粘度值,一般来说,液晶透镜需要的支撑物高度一般大于等于10μm,现有量产工艺所生产的光阻间隙子高度可在5μm左右,为了不增加通常技术的制程工艺得到支撑物,可使用超过预定粘度的光阻间隙子材料一次性涂布,通过一次构图工艺形成支撑物。“超过预定粘度”的光阻间隙子材料是指粘度满足现有量产工艺中所使用的光阻间隙子材料粘度的两倍及以上。
S803、将第一基板与第二基板对盒并充入液晶。
在显示面板的出光方向上支撑物与显示面板上的非出光区域相对。
本发明实施例提供的方法制造的液晶透镜分光器件,在显示面板的出光方向上第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响。
本发明的实施例还提供了一种制造图7所示的液晶透镜的方法,可包括以下步骤:
S901、制作第一基板和设置在显示面板的出光侧的第二基板。
S902、通过构图工艺在第一基板上形成支撑物的第一部分。
例如,步骤S902为采用一次构图工艺通过第一次涂布的光阻间隙子材料形成支撑物130的第一部分1301,然后对支撑物130的第一部分1301进行预固化处理。其中步骤S902形成的支撑物130的第一部分1301为现有量产工艺所生产的光阻间隙子,高度在5μm左右。
S903、通过构图工艺在支撑物的第一部分上形成支撑物的第二部分。
例如,步骤S903为采用一次构图工艺通过第二次涂布光阻间隙子材料 形成支撑物130的第二部分1302。步骤S903形成的支撑物130的第二部分1302可为现有量产工艺所生产的光阻间隙子,高度在5μm左右,其中支撑物的第一部分和支撑物的第二部分组成支撑物。
S904、将第一基板与第二基板对盒并充入液晶。
在显示面板的出光方向上支撑物与显示面板上的非出光区域相对。
本发明实施例提供的方法制造的液晶透镜分光器件中,在显示面板的出光方向上第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响。通过两次构图工艺形成支撑物的第一部分和第二部分,可以全部采用通常的制作工艺制作以降低生产的复杂性。
本发明的实施例还提供一种制作图8所示的液晶透镜的方法,可包括以下步骤:
S1001、制作第一基板和设置在显示面板的出光侧的第二基板。
S1002、通过构图工艺在第二基板上形成支撑物的第二部分。
例如,步骤S1002为采用一次构图工艺通过第一次涂布的光阻间隙子材料形成支撑物130的第二部分1302,然后对支撑物130的第二部分1302进行预固化处理。其中步骤S1002形成的支撑物130的第二部分1302为现有量产工艺所生产的光阻间隙子,高度在5μm左右。
S1003、通过构图工艺在支撑物的第二部分上形成支撑物的第一部分。
例如,步骤S1003为采用一次构图工艺通过第二次涂布光阻间隙子材料形成支撑物130的第一部分1301。其中步骤S1003形成的支撑物130的第一部分1301为现有量产工艺所生产的光阻间隙子,高度在5μm左右;支撑物的第一部分和支撑物的第二部分组成支撑物。
S1004、将第一基板与第二基板对盒并充入液晶。
在显示面板的出光方向上支撑物与显示面板上的非出光区域相对。
本发明实施例提供的方法制造的液晶透镜分光器件中,在显示面板的出光方向上第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的 排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响,进一步通过两次构图工艺形成支撑物的第一部分和第二部分组成,可以全部采用通常的制作工艺制作降低了生产的复杂性。
本发明的实施例还提供一种制作图9所示的液晶透镜的方法,可包括以下步骤:
S1101、制作第一基板和设置在显示面板的出光侧的第二基板。
S1102、通过构图工艺在第一基板上形成支撑物的第一部分。
可使用现有量产工艺中所使用的PS材料在第一基板上涂布光阻间隙子材料,通过以此构图工艺在第一基板上得到高度5μm左右的支撑物130的第一部分1301。
S1103、通过构图工艺在第二基板上形成支撑物的第二部分。
可使用现有量产工艺中所使用的PS材料在第二基板上涂布光阻间隙子材料,通过以此构图工艺在第二基板上对应第一基板上第一支撑物的位置得到高度5μm左右的支撑物130的第二部分1302,在显示面板的出光方向上支撑物与显示面板上的非出光区域相对。
上述流程不对步骤S1102和S1103的顺序作限定。
S1104、将第一基板与第二基板对盒并充入液晶。
对盒后步骤S1202形成的支撑物130的第一部分1301和步骤S1203形成的支撑物130的第二部分1302共同组成支撑物130,以支撑液晶透镜分光器件的盒厚。
在显示面板的出光方向上支撑物与显示面板上的非出光区域相对。
本发明实施例提供的方法制造的液晶透镜分光器件中,在显示面板的出光方向上第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响。通过两次构图工艺形成支撑物的第一部分和第二部分组成,可以全部采用通常的制作工艺制作以降低生产的复杂性。
本发明的实施例提供一种立体显示装置,包括显示面板和设置在显示面 板出光侧的液晶透镜分光器件,液晶透镜分光器件为上述实施例提供的任一的液晶透镜分光器件。例如,液晶透镜分光器件通过支撑物支撑盒厚,该支撑物在显示面板的出光方向上支撑物与显示面板上的非出光区域相对。该立体显示装置可以为:电子纸、手机、手表、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
上述实施例提供的立体显示装置,在显示面板的出光方向上第一基板与第二基板间的支撑物与显示面板上的非出光区域相对,从而不会对第一基板和第二基板间与显示面板的透光区域对应的液晶分子的排列顺序造成影响,降低或消除串扰现象。此外,支撑物不会遮挡显示面板的透光区域的光线通过液晶透镜,所以能够进一步降低或避免支撑物对显示面板透过率的影响。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本专利申请要求于2014年9月5日递交的中国专利申请第201410450047.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种液晶透镜分光器件,用于设置于显示面板上,所述液晶透镜分光器件包括:第一基板和第二基板,其中,所述第二基板设置在显示面板的出光侧;所述第一基板和第二基板之间充有液晶,所述第一基板和第二基板之间设置有支撑物;
    在所述显示面板的出光方向上所述支撑物与所述显示面板上的非出光区域相对。
  2. 根据权利要求1所述的液晶透镜分光器件,其中,所述液晶形成至少两个液晶透镜,所述支撑物位于相邻的所述液晶透镜的交界区域。
  3. 根据权利要求1或2所述的液晶透镜分光器件,其中,所述支撑物均匀设置于所述第一基板和所述第二基板之间。
  4. 根据权利要求1-3任一项所述的液晶透镜分光器件,其中,所述支撑物为柱状支撑物,在所述显示面板的出光方向上,所述支撑物的横截面为圆形或多边形。
  5. 根据权利要求1-4任一项所述的液晶透镜分光器件,其中,所述支撑物为光阻间隙子。
  6. 根据权利要求1-5任一项所述的液晶透镜分光器件,其中,所述支撑物包括第一部分和第二部分;所述支撑物的第一部分的一端与所述第一基板接触,所述支撑物的第一部分的另一端与所述支撑物的第二部分的一端接触,所述支撑物的第二部分的另一端与所述第二基板接触。
  7. 根据权利要求1-6任一项所述的液晶透镜分光器件,其中,所述显示面板为液晶显示面板,所述非出光区域为黑矩阵区域。
  8. 一种立体显示装置,包括显示面板和设置在所述显示面板出光侧的液晶透镜分光器件,所述液晶透镜分光器件为权利要求1-7任一项所述的液晶透镜分光器件。
  9. 根据权利要求8所述立体显示装置,其中,所述显示面板为液晶显示面板或有机发光二极管显示面板。
  10. 一种液晶透镜分光器件的制造方法,包括:
    制作第一基板和设置在显示面板的出光侧的第二基板;
    在所述第一基板上和/或在所述第二基板上形成支撑物;
    将所述第一基板与第二基板对盒并充入液晶;
    其中,在所述显示面板的出光方向上所述支撑物与所述显示面板上的非出光区域相对。
  11. 根据权利要求10所述的方法,其中,所述在所述第一基板上形成支撑物,包括:
    通过构图工艺在所述第一基板上形成所述支撑物的第一部分;
    通过构图工艺在所述支撑物的第一部分上形成所述支撑物的第二部分;其中,所述支撑物的第一部分和所述支撑物的第二部分组成所述支撑物。
  12. 根据权利要求10所述的方法,其中,所述在所述第二基板上形成支撑物,包括:
    通过构图工艺在所述第二基板上形成所述支撑物的第二部分;
    通过构图工艺在所述支撑物的第二部分上形成所述支撑物的第一部分;其中,所述支撑物的第一部分和所述支撑物的第二部分组成所述支撑物。
  13. 根据权利要求10所述的方法,其中,所述在所述第一基板和所述第二基板上形成支撑物,包括:
    通过构图工艺在所述第一基板上形成所述支撑物的第一部分;
    通过构图工艺在所述第二基板上形成支撑物的第二部分;其中,所述支撑物的第一部分和所述支撑物的第二部分组成所述支撑物。
  14. 根据权利要求10所述的方法,其中,所述支撑物为通过一次构图工艺形成,形成支撑物的材料粘度超过预定粘度值。
PCT/CN2015/070018 2014-09-05 2015-01-04 液晶透镜分光器件及其制造方法、立体显示装置 WO2016033922A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,614 US20160291335A1 (en) 2014-09-05 2015-01-04 Liquid crystal lens light splitting device and manufacturing method thereof, and stereoscopic display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410450047.8 2014-09-05
CN201410450047.8A CN104238231A (zh) 2014-09-05 2014-09-05 一种液晶透镜分光器件及其制造方法、立体显示装置

Publications (1)

Publication Number Publication Date
WO2016033922A1 true WO2016033922A1 (zh) 2016-03-10

Family

ID=52226614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070018 WO2016033922A1 (zh) 2014-09-05 2015-01-04 液晶透镜分光器件及其制造方法、立体显示装置

Country Status (3)

Country Link
US (1) US20160291335A1 (zh)
CN (1) CN104238231A (zh)
WO (1) WO2016033922A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238231A (zh) * 2014-09-05 2014-12-24 京东方科技集团股份有限公司 一种液晶透镜分光器件及其制造方法、立体显示装置
CN106483667B (zh) * 2015-08-28 2019-06-18 深圳超多维科技有限公司 立体显示装置
CN105929597B (zh) 2016-05-20 2021-05-25 京东方科技集团股份有限公司 背光源及其制作方法、显示基板、显示装置及其显示方法
CN106842712A (zh) * 2017-04-01 2017-06-13 深圳市华星光电技术有限公司 裸眼3d液晶显示面板及裸眼3d液晶显示装置
CN107024809A (zh) * 2017-05-27 2017-08-08 深圳市华星光电技术有限公司 液晶盒透镜面板及液晶显示装置
CN108153010A (zh) * 2018-01-31 2018-06-12 京东方科技集团股份有限公司 液晶透镜及其制造方法、显示装置
CN109343259B (zh) * 2018-11-29 2020-11-27 电子科技大学 一种液晶透镜及其制备方法
CN112492190B (zh) * 2020-12-17 2022-08-19 维沃移动通信有限公司 电子设备
CN115826302A (zh) * 2021-09-17 2023-03-21 京东方科技集团股份有限公司 一种液晶透镜、以及具有其的显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081754A1 (en) * 2008-12-31 2013-04-04 Lensvector Inc. Method of manufacturing a liquid crystal device
CN103034012A (zh) * 2012-12-14 2013-04-10 京东方科技集团股份有限公司 3d显示模组、液晶透镜及其制备方法
CN103984153A (zh) * 2013-06-26 2014-08-13 天马微电子股份有限公司 具有间隔物的基板及包含该基板的液晶盒
CN104238231A (zh) * 2014-09-05 2014-12-24 京东方科技集团股份有限公司 一种液晶透镜分光器件及其制造方法、立体显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069991B2 (ja) * 1998-08-10 2008-04-02 株式会社 日立ディスプレイズ 液晶表示装置
JP3714083B2 (ja) * 2000-01-14 2005-11-09 コニカミノルタフォトイメージング株式会社 焦点位置可変空間変調デバイス
KR20030082141A (ko) * 2002-04-16 2003-10-22 엘지.필립스 엘시디 주식회사 패턴드 스페이서를 가지는 액정표시장치
CN101103306A (zh) * 2004-12-27 2008-01-09 积水化学工业株式会社 液晶显示装置的制造方法、间隔粒子分散液及液晶显示装置
GB0500147D0 (en) * 2005-01-05 2005-02-16 Koninkl Philips Electronics Nv Optical element
KR101715849B1 (ko) * 2010-07-02 2017-03-14 엘지디스플레이 주식회사 스위처블 입체 전환 수단의 제조 방법
JP5701690B2 (ja) * 2011-06-03 2015-04-15 株式会社ジャパンディスプレイ 表示装置
JP5596625B2 (ja) * 2011-06-07 2014-09-24 株式会社ジャパンディスプレイ 表示装置
CN103135287B (zh) * 2011-11-22 2016-08-17 上海天马微电子有限公司 间隙子及液晶显示面板
CN102854628B (zh) * 2012-09-25 2015-02-11 京东方科技集团股份有限公司 一种显示装置及其制造方法
CN103558724B (zh) * 2013-11-15 2015-02-11 京东方科技集团股份有限公司 一种液晶棱镜及其制作方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130081754A1 (en) * 2008-12-31 2013-04-04 Lensvector Inc. Method of manufacturing a liquid crystal device
CN103034012A (zh) * 2012-12-14 2013-04-10 京东方科技集团股份有限公司 3d显示模组、液晶透镜及其制备方法
CN103984153A (zh) * 2013-06-26 2014-08-13 天马微电子股份有限公司 具有间隔物的基板及包含该基板的液晶盒
CN104238231A (zh) * 2014-09-05 2014-12-24 京东方科技集团股份有限公司 一种液晶透镜分光器件及其制造方法、立体显示装置

Also Published As

Publication number Publication date
US20160291335A1 (en) 2016-10-06
CN104238231A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2016033922A1 (zh) 液晶透镜分光器件及其制造方法、立体显示装置
US9400344B2 (en) Liquid crystal lens comprising a plurality of lens electrode groups and process for manufacturing the same, stereoscopic display device and process for manufacturing the same
US10203510B2 (en) Fresnel liquid crystal lens panel, manufacturing method thereof and 3D display
US9857639B2 (en) Method for manufacturing liquid crystal lens
US20120314144A1 (en) Display device
WO2016004683A1 (zh) 电致变色光栅及其制备方法、3d显示装置
CN101750647B (zh) 透镜片、显示面板和制造透镜片的方法
KR20130078878A (ko) 액정 렌즈 패널 및 이의 제조 방법
CN103941469B (zh) 显示面板及其制作方法、显示装置
JP2000206541A (ja) 液晶パネル、液晶パネルの製造方法および液晶表示装置
KR20020071541A (ko) 입체영상 액정표시장치
TWI449962B (zh) 用於三維顯示之液晶透鏡
JP2014157349A (ja) 表示基板、それを製造するためのマスク、及び表示基板の製造方法
US10133128B2 (en) Display substrate, method of manufacturing the same, display panel and display device
WO2016004685A1 (zh) 液晶面板及双视液晶显示装置
US9235058B2 (en) Polarization-type three-dimensional display device and manufacturing method thereof
KR102390321B1 (ko) 표시 장치 및 이의 제조 방법
US20210165256A1 (en) Active switch array substrate, manufacturing method thereof and liquid crystal display panel applying the same
US9720248B2 (en) Liquid crystal lens, fabrication method thereof and display device
JP2015082115A (ja) 表示装置
EP3112928B1 (en) Display apparatus
KR101879860B1 (ko) 표시 패널 및 그 제조 방법
WO2015192543A1 (zh) 偏光控制面板及其制作方法和显示装置
US20170176801A1 (en) Color filter plate and fabrication method thereof, display panel
WO2020238031A1 (zh) 3d 显示装置及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771614

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15837814

Country of ref document: EP

Kind code of ref document: A1